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ABSTRACT

We discuss and present excerpts from classroom project modules based on primary
historical sources, being developed by an interdisciplinary faculty team for courses in
discrete mathematics, graph theory, combinatorics, logic, and computer science. The
goal is to provide motivation, direction, and context for these subjects through student
projects based directly on the writings of the pioneers who �rst developed crucial ideas
and worked on seminal problems. Each module is built around primary source material
close to or representing the discovery of a key concept. Through guided reading and
activities, students explore the mathematics of the original discovery and develop their
own understanding of the subject. We describe a dozen projects already available, and
give substantial selections from two of them, on Pascal�s elucidation of mathematical in-
duction in his treatise on the arithemetical triangle, and Euler�s seminal paper in graph
theory on the Königsberg Bridge Problem. We also discuss the details of classroom
implementation of teaching with historical projects. Preliminary evaluation shows a
statistically signi�cant bene�t to students�performance in subsequent courses from a
course with a historical project. Further evaluation and project development is under-
way, and two web sites provide expanded materials and information. Ongoing support
is provided by the US National Science Foundation.

1 Introduction
A discrete mathematics course often teaches about precise logical and algorithmic
thought, and methods of proof, to students studying mathematics, computer science, or
teacher education. The roots of such methods of thought, and of discrete mathematics
itself, are as old as mathematics, with the notion of counting, a discrete operation,
usually cited as the �rst mathematical development in ancient cultures [9]. However,
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a typical course frequently presents a fast-paced news reel of facts and formulae, often
memorized by the students, with the text o¤ering only passing mention of the mo-
tivating problems and original work that eventually found resolution in the modern
concepts of induction, recursion and algorithm. We will focus on the pedagogy of his-
torical projects for students, always centered on actual excerpts from primary historical
sources, that place the material in context, and provide direction to the subject matter.
Our interdisciplinary team of mathematics and computer science faculty has com-

pleted a pilot program funded by the US National Science Foundation, in which we
have developed and tested over a dozen historical project modules for student work in
courses in discrete mathematics, graph theory, combinatorics, logic, and computer sci-
ence. The projects are slated to appear in print [1], and are presently available through
the web resource [3].
Designed to capture the spark of discovery and motivate subsequent lines of inquiry,

each module is built around primary source material close to or representing the dis-
covery of a key concept. Through guided reading and activities, students explore the
mathematics of the original discovery and develop their own understanding of the sub-
ject. To place the source in context, a module also provides biographical information
about its author, and historical background about the problems with which the author
was concerned. For example, motivated by the problems of computing odds in a game
of chance and of �nding the summation of powers (with the eventual goal of computing
the area under certain curves), Pascal arranged �gurate numbers into columns of a ta-
ble, today called Pascal�s Triangle. Having noticed certain patterns in the table which
he wished to justify, he formulated verbally what has become mathematical induction.
After reading Pascal�s original writings in his 1653 Treatise on the Arithmetical Tri-
angle, students are asked to explore the validity of his claims with concrete numerical
values, and then grapple with the logic behind induction techniques.
Our team is now beginning a four-year NSF expansion grant through which addi-

tional modules based on primary sources will be developed, tested, evaluated, revised,
and published. The expansion will support classroom testing by faculty at twenty other
institutions, careful evaluation of their e¤ectiveness, and provide training in teaching
with these projects to graduate students. The projects being created under the expan-
sion grant are described at our new web resource [2], and we welcome instructors who
would like to collaborate in testing or writing projects.
Here we will brie�y describe the completed pilot projects, outline the content of two

of them, describe how such historical projects can be implemented in the classroom,
and discuss preliminary evaluation of their e¤ectiveness.

2 Available classroom projects
Each historical project is centered around a publication of mathematical signi�cance,
such as Blaise Pascal�s �Treatise on the Arithmetical Triangle� [11, vol. 30] from the
1650s or Alan Turing�s 1936 paper �On Computable Numbers with an Application to
the Entscheidungsproblem� [14]. The projects are designed to introduce or provide
supplementary material for topics in the curriculum, such as induction in a discrete
mathematics course, or compilers and computability for a computer science course.
Each project provides a discussion of the historical exigency of the piece, a few bio-
graphical comments about the author, excerpts from the original work, and a sequence
of questions to help the student appreciate the source and learn how to do the relevant
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mathematics. The main pedagogical idea is to teach and learn certain course topics
directly from the primary historical source, thus recovering motivation for studying the
material.
The following dozen projects (and a few more) are currently available for instructors

[1][3]. The introduction to this collection discusses the topic material of each project
further, and suggests appropriate courses for each project. Each project also has guiding
notes for the instructor on its use in teaching. Listed below are the project titles together
with the primary historical author whose work is highlighted in the module.

1. �Are All In�nities Created Equal?�(Georg Cantor, 1845�1918, [5])

2. �Turing Machines, Induction and Recursion,�(Alan Turing, 1912�1954, [14])

3. �Turing Machines and Binary Addition,�(Alan Turing, 1912�1954, [14])

4. �Binary Arithmetic: From Leibniz to von Neumann� (Gottfried Leibniz, 1646�
1716, [8])

5. �Arithmetic Backwards from von Neumann to the Chinese Abacus,� (Claude
Shannon, 1916�2001, [12])

6. �Treatise on the Arithmetical Triangle,�(Blaise Pascal, 1623�1662, [11])

7. �Counting Triangulations of a Polygon,�(Gabriel Lamé, 1795�1870, [10])

8. �Two-Way Deterministic Finite Automata,�(John Shepherdson [13])

9. �Church�s Thesis,�(Alonzo Church, 1903�1995, [6])

10. �Euler Circuits and the Königsberg Bridge Problem,� (Leonhard Euler, 1707�
1783, [4])

11. �Topological Connections from Graph Theory,�(Oswald Veblen, 1880�1960, [4])

12. �Hamiltonian Circuits and Icosian Game,�(William Hamilton, 1805�1865, [4])

3 Two sample historical projects
Here we provide some excerpts from two of the projects listed above. For each project
we display selections from the primary historical source in the project, and also from the
student assignment questions, to give a �avor of the nature of the project for students.
The project Treatise on the Arithmetical Triangle is intended for introductory level

discrete mathematics, and presents the concept of mathematical induction from the
pioneering work of Blaise Pascal [11, vol. 30] in the 1650s. After arranging the �gurate
numbers in one table, forming �Pascal�s triangle,� the French scholar notices several
patterns in the table, which he would like to claim continue inde�nitely. Exhibiting
unusual rigor for his day, Pascal o¤ers a condition for the persistence of a pattern,
stated verbally in his Twelfth Consequence, a condition known today as mathemati-
cal induction. Moreover, the Twelfth Consequence results in the modern formula for
the combination numbers or binomial coe¢ cients. In this project, students will learn
�rst-hand about the issues involved in proofs by iteration, generalizable example, and
mathematical induction.
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The project Early Writings on Graph Theory: Euler Circuits and The Königsberg
Bridge Problem is suitable for a beginning-level discrete mathematics course, or for
a �transition to proof�course. In the paper on which the project is based [7], today
considered to be the starting point of modern graph theory, Leonhard Euler (1707�1783)
undertakes a mathematical formulation of the famous Königsberg Bridge Problem. By
introducing modern graph theory terminology alongside Euler�s original writing, the
project assumes no prior background in graph theory. The �rst part of the project
in which students are required to read and understand Euler�s analysis of the �bridge
problem� is well suited for small group discussion. Other questions ask students to
compare Euler�s treatment of key results to the treatment of these same results in a
modern textbook, with the objective of drawing students�attention to current standards
regarding formal proof. The project culminates with exercises which require students
to ��ll in the gaps�in a modern proof of Euler�s main theorem. These questions are
ideally suited for individual practice in proof writing, but could also be completed in
small groups.

3.1 Treatise on the Arithmetical Triangle: Blaise Pascal

TREATISE ON THE ARITHMETICAL TRIANGLE
Definitions

I call arithmetical triangle a �gure constructed as follows:

From any point, G, I draw two lines perpendicular to each other, GV, G� in
each of which I take as many equal and contiguous parts as I please, beginning
with G, which I number 1, 2, 3, 4, etc., and these numbers are the exponents
of the sections of the lines.

Next I connect the points of the �rst section in each of the two lines by another
line, which is the base of the resulting triangle.

In the same way I connect the two points of the second section by another line,
making a second triangle of which it is the base.

And in this way connecting all the points of section with the same exponent, I
construct as many triangles and bases as there are exponents.

Through each of the points of section and parallel to the sides I draw lines whose
intersections make little squares which I call cells.

Cells between two parallels drawn from left to right are called cells of the same
parallel row, as, for example, cells G, �; �, etc., or ';  ; �; etc.

Those between two lines are drawn from top to bottom are called cells of the
same perpendicular row, as, for example, cells G;';A;D; etc., or �;  ;B; etc.

Those cut diagonally by the same base are called cells of the same base, as, for
example, D;B; �; �; or A; ; �. : : :

Now the numbers assigned to each cell are found by the following method:

The number of the �rst cell, which is at the right angle, is arbitrary; but that
number having been assigned, all the rest are determined, and for this reason
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it is called the generator of the triangle. Each of the others is speci�ed by a
single rule as follows:

The number of each cell is equal to the sum of the numbers of the perpendicular
and parallel cells immediately preceding. Thus cell F; that is, the number of
cell F; equals the sum of cell C and cell E; and similarly with the rest.

Whence several consequences are drawn. The most important follow, wherein I
consider triangles generated by unity, but what is said of them will hold for all
others.

First Consequence

In every arithmetical triangle all the cells of the �rst parallel row and of the �rst
perpendicular row are the same as the generating cell.

For by de�nition each cell of the triangle is equal to the sum of the immediately
preceding perpendicular and parallel cells. But the cells of the �rst parallel row
have no preceding perpendicular cells, and those of the �rst perpendicular row
have no preceding parallel cells; therefore they are all equal to each other and
consequently to the generating number.

Thus ' = G+ 0; that is, ' = G;
A = '+ 0; that is, ';
� = G+ 0; � = � + 0;

And similarly of the rest.
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Second Consequence

In every arithmetical triangle each cell is equal to the sum of all the cells of the
preceding parallel row from its own perpendicular row to the �rst, inclusive.

Let any cell, !; be taken. I say that it is equal to R+ �+ +'; which are the
cells of the next higher parallel row from the perpendicular row of ! to the �rst
perpendicular row.

This is evident if we simply consider a cell as the sum of its component cells.

For ! equals R + C| {z }
� +B| {z }

 + A| {z }
',

for A and ' are equal to each other by the preceding consequence.

Therefore ! = R + � +  + '. : : :

1. Pascal�s Triangle and its numbers

(a) Let us use the notation Ti;j to denote what Pascal calls the number assigned
to the cell in parallel row i (which we today call just row i) and perpendicular
row j (which we today call column j). We call the i and j by the name indices
(plural of index) in our notation. Using this notation, explain exactly what
Pascal�s rule is for determining all the numbers in all the cells. Be sure to
give full details. This should include explaining for exactly which values of
the indices he de�nes the numbers.

(b) In terms of our notation Ti;j, explain his terms exponent, base, reciprocal,
parallel row, perpendicular row, and generator.

(c) Rewrite Pascal�s �rst two �Consequences�entirely in the Ti;j notation.

(d) Rewrite his proofs of these word for word in our notation also.

(e) Do you �nd his proofs entirely satisfactory? Explain why or why not.

(f) Improve on his proofs using our notation. In other words, make them apply
for arbitrary prescribed situations, not just the particular examples he lays
out.

: : : The next consequence is the most important and famous in the whole treatise.
Pascal derives a formula for the ratio of consecutive numbers in a base. From this he
will obtain an elegant and e¢ cient formula for all the numbers in the triangle.

Twelfth Consequence
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In every arithmetical triangle, of two contiguous cells in the same base the upper
is to the lower as the number of cells from the upper to the top of the base is
to the number of cells from the lower to the bottom of the base, inclusive.

Let any two contiguous cells of the same base, E; C; be taken. I say that

E : C :: 2 : 3
the the because there are two because there are three
lower upper cells from E to the cells from C to the top,

bottom, namely E; H; namely C; R; �:

Although this proposition has an in�nity of cases, I shall demonstrate it very
brie�y by supposing two lemmas:

The �rst, which is self-evident, that this proportion is found in the second base,
for it is perfectly obvious that ' : � :: 1 : 1;

The second, that if this proportion is found in any base, it will necessarily be
found in the following base.

Whence it is apparent that it is necessarily in all the bases. For it is in the
second base by the �rst lemma; therefore by the second lemma it is in the third
base, therefore in the fourth, and to in�nity.

It is only necessary therefore to demonstrate the second lemma as follows: If
this proportion is found in any base, as, for example, in the fourth, D�; that
is, if D : B :: 1 : 3, and B : � :: 2 : 2, and � : � :: 3 : 1, etc., I say the
same proportion will be found in the following base, H�, and that, for example,
E : C :: 2 : 3.

For D : B :: 1 : 3, by hypothesis.

Therefore D +B| {z } : B :: 1 + 3| {z } : 3
E : B :: 4 : 3

Similarly B : � :: 2 : 2; by hypothesis

Therefore B + �| {z } : B :: 2 + 2| {z } : 2
C : B :: 4 : 2

But B : E :: 3 : 4

Therefore, by compounding the ratios, C : E :: 3 : 2: q.e.d.

The proof is the same for all other bases, since it requires only that the proportion
be found in the preceding base,and that each cell be equal to the cell before it
together with the cell above it, which is everywhere the case.

6. Pascal�s Twelfth Consequence: the key to our modern factorial formula

(a) Rewrite Pascal�s Twelfth Consequence as a generalized modern formula, en-
tirely in our Ti;j terminology. Also verify its correctness in a couple of ex-
amples taken from his table in the initial de�nitions section.
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(b) Adapt Pascal�s proof by example of his Twelfth Consequence into modern
generalized form to prove the formula you obtained above. Use the principle
of mathematical induction to create your proof.

Now Pascal is ready to describe a formula for an arbitrary number in the triangle.

Problem

Given the perpendicular and parallel exponents of a cell, to �nd its number
without making use of the arithmetical triangle. : : :

3.2 The solution of a problem relating to the geometry of position:
Leonhard Euler

SOLUTIO PROBLEMATIS AD GEOMETRIAM SITUS PERTINENTIS

1 In addition to that branch of geometry which is concerned with magni-
tudes, and which has always received the greatest attention, there is an-
other branch, previously almost unknown, which Leibniz �rst mentioned,
calling it the geometry of position. This branch is concerned only with the
determination of position and its properties; it does not involve measure-
ments, nor calculations made with them. It has not yet been satisfactorily
determined what kind of problems are relevant to this geometry of position,
or what methods should be used in solving them. Hence, when a problem
was recently mentioned, which seemed geometrical but was so constructed
that it did not require the measurement of distances, nor did calculation
help at all, I had no doubt that it was concerned with the geometry of
position � especially as its solution involved only position, and no calcu-
lation was of any use. I have therefore decided to give here the method
which I have found for solving this kind of problem, as an example of the
geometry of position.

2 The problem, which I am told is widely known, is as follows: in Königs-
berg in Prussia, there is an island A, called the Kneiphof ; the river which
surrounds it is divided into two branches, as can be seen in Fig. [1.2], and
these branches are crossed by seven bridges, a, b , c , d , e , f and g. Con-
cerning these bridges, it was asked whether anyone could arrange a route
in such a way that he would cross each bridge once and only once. I was
told that some people asserted that this was impossible, while others were
in doubt: but nobody would actually assert that it could be done. From
this, I have formulated the general problem: whatever be the arrangement
and division of the river into branches, and however many bridges there be,
can one �nd out whether or not it is possible to cross each bridge exactly
once?
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FIG. 1.2

Notice that Euler begins his analysis of the �bridge crossing�problem by �rst replac-
ing the map of the city by a simpler diagram showing only the main feature. In modern
graph theory, we simplify this diagram even further to include only points (representing
land masses) and line segments (representing bridges). These points and line segments
are referred to as vertices (singular: vertex) and edges respectively. The collection of
vertices and edges together with the relationships between them is called a graph. More
precisely, a graph consists of a set of vertices and a set of edges, where each edge may
be viewed as an ordered pair of two (usually distinct) vertices. In the case where an
edge connects a vertex to itself, we refer to that edge as a loop.

1. Sketch the diagram of a graph with 5 vertices and 8 edges to represent the following
bridge problem.

: : : : : : : : : : : :

After rejecting the impractical strategy of solving the bridge-crossing problem by
making an exhaustive list of all possible routes, Euler again reformulates the problem
in terms of sequences of letters (vertices) representing land masses, thereby making
the diagram itself unnecessary to the solution of the problem. Today, we say that two
vertices joined by an edge in the graph are adjacent, and refer to a sequence of adjacent
vertices as a walk. Technically, a walk is a sequence of alternating (adjacent) vertices
and edges v0e1v1e1 : : : envn in which both the order of the vertices and the order of the
edges used between adjacent vertices are speci�ed. In the case where no edge of the
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graph is repeated (as required in a bridge-crossing route), the walk is known as a path.
If the initial and terminal vertex are equal, the path is said to be a circuit. If every
edge of the graph is used exactly once (as desired in a bridge-crossing route), the path
(circuit) is said to be a Euler path (circuit).

2. For the bridge problem shown in Question 1 above, how many capital letters
(representing graph vertices) will be needed to represent an Euler path?

Having reformulated the bridge crossing problem in terms of sequences of letters
(vertices) alone, Euler now turns to the question of determining whether a given bridge
crossing problem admits of a solution. As you read through Euler�s development of a
procedure for deciding this question in paragraphs 7 - 13 below, pay attention to the
style of argument employed, and how this di¤ers from that used in a modern textbook.

: : : : : : : : : : : :

13 Since one can start from only one area in any journey, I shall de�ne,
corresponding to the number of bridges leading to each area, the number
of occurrences of the letter denoting that area to be half the number of
bridges plus one, if the number of bridges is odd, and if the number of
bridges is even, to be half of it. Then, if the total of all the occurrences
is equal to the number of bridges plus one, the required journey will be
possible, and will have to start from an area with an odd number of bridges
leading to it. If, however, the total number of letters is one less than the
number of bridges plus one, then the journey is possible starting from an
area with an even number of bridges leading to it, since the number of
letters will therefore be increased by one.

Notice that Euler�s de�nition concerning �the number of occurrences of the letter
denoting that area�depends on whether the number of bridges (edges) leading to each
area (vertex) is even or odd. In contemporary terminology, the number of edges incident
on a vertex v is referred to as the degree of vertex v.

4. Let deg(v) denote the degree of vertex v in a graph G. Euler�s de�nition of �the
number of occurrences of v�can then be re-stated as follows:

� If deg(v) is even, then v occurs 1
2
deg(v) times.

� If deg(v) is odd, then v occurs 1
2
[deg(v) + 1] times.

Based on Euler�s discussion in paragraphs 9 - 12, how convinced are you that this
de�nition gives a correct description of the Königsberg Bridge Problem? How
convincing do you �nd Euler�s claim (in paragraph 13) that the required route
can be found in the case where �the total of all the occurrences is equal to the
number of bridges plus one�? Comment on how a proof of this claim in a modern
textbook might di¤er from the argument which Euler presents for it in paragraphs
9 - 12.
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14 So, whatever arrangement of water and bridges is given, the following
method will determine whether or not it is possible to cross each of the
bridges: I �rst denote by the letters A, B, C, etc. the various areas which
are separated from one another by the water. I then take the total number
of bridges, add one, and write the result above the working which follows.
Thirdly, I write the letters A, B, C, etc. in a column, and write next to
each one the number of bridges leading to it. Fourthly, I indicate with an
asterisk those letters which have an even number next to them. Fifthly,
next to each even one I write half the number, and next to each odd one
I write half the number increased by one. Sixthly, I add together these
last numbers, and if this sum is one less than, or equal to, the number
written above, which is the number of bridges plus one, I conclude that
the required journey is possible. It must be remembered that if the sum
is one less than the number written above, then the journey must begin
from one of the areas marked with an asterisk, and it must begin from an
unmarked one if the sum is equal. Thus in the Königsberg problem, I set
out the working as follows:

Number of bridges 7, which gives 8

Bridges
A, 5 3
B, 3 2
C, 3 2
D, 3 2

Since this gives more than 8, such a journey can never be made.

: : : : : : : : : : : :

5. Apply Euler�s procedure to determine whether the graph representing the �bridge-
crossing�question in question 1 above contains an Euler path. If so, �nd one.

In paragraphs 16 and 17, Euler makes some observations intended to simplify the
procedure for determining whether a given bridge-crossing problem has a solution. As
you read these paragraphs, consider how to reformulate these observations in terms of
degree.

16 In this way it will be easy, even in the most complicated cases, to determine
whether or not a journey can be made crossing each bridge once and once
only. I shall, however, describe a much simpler method for determining this
which is not di¢ cult to derive from the present method, after I have �rst
made a few preliminary observations. First, I observe that the numbers
of bridges written next to the letters A, B, C, etc. together add up to
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twice the total number of bridges. The reason for this is that, in the
calculation where every bridge leading to a given area is counted, each
bridge is counted twice, once for each of the two areas which it joins.

17 It follows that the total of the numbers of bridges leading to each area
must be an even number, since half of it is equal to the number of bridges.
This is impossible if only one of these numbers is odd, or if three are odd,
or �ve, and so on. Hence if some of the numbers of bridges attached to
the letters A, B, C, etc. are odd, then there must be an even number of
these. Thus, in the Königsberg problem, there were odd numbers attached
to the letters A, B, C and D, as can be seen from Paragraph 14, and in
the last example (in Paragraph 15), only two numbers were odd, namely
those attached to D and E.

6. The result described in Paragraph 16 is sometimes referred to as �The Handshake
Theorem,�based on the equivalent problem of counting the number of handshakes
that occur during a social gathering at which every person present shakes hands
with every other person present exactly once. A modern statement of the Hand-
shake Theorem would be: The sum of the degree of all vertices in a �nite graph
equals twice the number of edges in the graph. Locate this theorem in a mod-
ern textbook, and comment on how the proof given there compares to Euler�s
discussion in paragraph 16.

7. The result described in Paragraph 17 can be re-stated as follows: Every �nite
graph contains an even number of vertices with odd degree. Locate this theorem
in a modern textbook, and comment on how the proof given there compares to
Euler�s discussion in paragraph 17.

Euler now uses the above observations to develop simpli�ed rules for determining
whether a given bridge-crossing problem has a solution. Again, consider how you might
reformulate this argument in modern graph theoretic terms; we will consider a modern
proof of the main results below.

: : : : : : : : : : : :

20 So whatever arrangement may be proposed, one can easily determine
whether or not a journey can be made, crossing each bridge once, by the
following rules:

If there are more than two areas to which an odd number of bridges
lead, then such a journey is impossible.

If, however, the number of bridges is odd for exactly two areas,
then the journey is possible if it starts in either of these areas.

If, �nally, there are no areas to which an odd number of bridges
leads, then the required journey can be accomplished starting from
any area.
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With these rules, the given problem can always be solved.

A complete modern statement of Euler�s main result requires one �nal de�nition:
a graph is said to be connected if for every pair of vertices u; v in the graph, there is
a walk from u to v. Notice that a graph which is not connected will consist of several
components, or subgraphs, each of which is connected. With this de�nition in hand,
the main results of Euler�s paper can be stated as follow:

Theorem: A �nite graph G contains an Euler circuit if and only if G is
connected and contains no vertices of odd degree.

Corollary: A �nite graph G contains an Euler path if and only if G is
connected and contains at most two vertices of odd degree.

8. Illustrate why the modern statement speci�es that G is connected by giving an
example of a disconnected graph which has vertices of even degree only and con-
tains no Euler circuit. Explain how you know that your example contains no
Euler circuit.

9. Comment on Euler�s proof of this theorem and corollary as they appear in para-
graphs 16 - 19. How convincing do you �nd his proof? Where and how does he
make use of the assumption that the graph is connected in his proof?

4 Implementation
Time spent working on the project is time for explanation, exploration, and discovery,
for both the instructor and the student. Instructors are encouraged to adapt each
project to their particular course. Add or rephrase some questions, or delete others to
re�ect what is actually being covered. Be familiar with all details of a project before
assignment. The source �le for each project together with its bibliographic references
can be downloaded and edited from the web resource [3].
For use in the classroom, allow one to several weeks per project with one or two

projects per course. Each project should count for a signi�cant portion of the course
grade (about 20%) and may take the place of an in-class examination, or be assigned
in pieces as homework. For certain course topics, the project can simply replace other
course activities for a time, with the main course topics learned directly through the
project. Begin early in the course with a discussion of the relevance of the historical
piece, its relation to the course curriculum, and how modern textbook techniques owe
their development to problems often posed centuries earlier. While a project is assigned,
several class activities are possible. Students could be encouraged to work on the
project in class, either individually or in small groups, as the instructor monitors and
assists their progress and explores meaning in language from time past. A comparison
with modern techniques could begin as soon as the students have read the related
historical passages. For example, after reading Pascal�s verbal description of what today
is recognized as induction, the instructor could lead a discussion comparing this to the
axiomatic formulation of induction found in the textbook. Finally, the historical source
can be used to provide discovery exercises for related course material. For instance,
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in his 1703 publication �An Explanation of Binary Arithmetic� [8], Gottfried Leibniz
introduces the binary system of numeration, states its advantages in terms of e¢ ciency
of calculation, and claims that this system allows for the discovery of other properties
of numbers, such as patterns in the base two expansion of the perfect squares. An
engaging in-class exercise is to examine patterns in a table of perfect squares (base
two) and conjecture corresponding divisibility properties of the integers. The pattern
of zeroes in the binary equivalent of n2 leads to the conjecture that 8j(n2 � 1), n odd,
where the vertical bar denotes �divides.�Construct the table!

5 Conclusion
After completion of a course using historical projects, students write the following
about the bene�ts of history: �See how the concepts developed and understand the
process.��Learn the roots of what you�ve come to believe in.��Appropriate question
building.��Helps with English-math conversion.��It leads me to my own discoveries.�
Furthermore, in an initial pilot study of students learning discrete mathematics from
primary historical sources, there were 229 cases where students earned course grades
above the mean in subsequent courses, compared with 123 cases where students earned
course grades below the mean in follow-on courses. The probability that this would
occur under the assumption that the historical projects had no positive e¤ect is less
than .000001 using a simple binomial sign test. Of course there may be other factors
at play, e.g., di¤ering entering preparation for di¤erent groups of students in di¤erent
courses and semesters, but we plan to compensate for these in the much more extensive
evaluation now underway during our four-year NSF expansion grant work.
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