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ABSTRACT

Euler’s appointment as a full professor to the Academy was not the most exciting news in
St. Petersburg in 1730. Possibly that news was carried by Vitus Bering, returning from five
years exploring the Siberian far east. It fell to the Academy geographer Nicolas Deslisle and
his young colleague, Leonhard Euler, to organize the mass of data that Bering brought back.

More than 40 years laters, Euler published a series of three articles about mathematical
cartography:

We examine Euler’s interest in cartography in the context of the developing science of car-
tography, the developing Russian nation-state, and the internal politics of the St. Petersburg
Academy.

1 Introduction

Leonhard Euler’s principal contribution to mathematical cartography was a series of
three articles, published in 1777 in Acta Academiae Scientarum Imperialis Petropoliti-
nae.

e On the representation of the spherical surface on a plane!,?

e On the geographic projection of a sherical surface?

e On Delisle’s Geographic Projection and its Use in the General Map of the Russian
Empire?

In the present work, we do not discuss in detail the contents of these articles. Rather,
our intention is to put them in context of the political, social, and scholarly setting of
the eighteenth century.

The general trend is from abstract principles in the first article to a general applica-
tion in the second, to a very specific application in the third. In the interest of improved
clarity, we shall discuss the articles in reverse order, beginning with the third.

2  On Delisle’s Geographic Projection and its Use in the Gen-
eral Map of the Russian Empire
In 1716, Gottfried Wilhelm von Leibniz wrote one of many memoirs addressed to

Tsar Peter of Russia. After proposing the foundation of a central library and a scientific
museum (“collection of curiosities”), he went on to say®

LAll English translations of Euler’s text are the author’s.

2De repraesentatione superficiei sphaericae super plano

3De projectione geographica superficiei sphaericae

4De projecitione geographica De-Lisliana in mappa generalii imperii russici usitata
5Leibniz, 1716



So much for the equipment for sciences and arts. Let us now consider the ways
and means of bringing them to the people. These include schools for the children,
universities and academies for the young people, and finally scientific and learned
societies and other [associations] for those who are advanced in their studies and
are concerned with the improvement [of knowledge].

Lastly we must consider the institutions for new discoveries by which sciences
are advanced; here the extensive lands of the Russian Empire, with so many
possessions in Europe and others adjoining Asia, offer excellent opportunities; for
Russia is almost virgin soil and is still insufficiently explored; thus it should yield
many plants, animals, minerals, and other natural objects that have not yet been
described.

At Your Tsarist Majesty’s command it could be found out whether Asia can be
circumnavigated on the north, or whether the edge of the ice cap is attached to
America, which is something that the English and the Dutch have tried in vain
to discover during their dangerous sea explorations.

Peter partially implemented Leibniz’ ideas about schools, founding the Imperial
Petersburg Academy of Science in 1724. But he enthusiastically embraced Leibniz’
final suggestion. Two successive “Great Northern Expeditions”, headed by the Danish
explorer Vitus Bering, were sent across Siberia to explore and claim new lands for the
Tsar. True to Leibniz’ vision, geography was one of the principal roles of the Academy
in its early years; its geographic projects received the heaviest funding.%

The French astronomer Joseph Nicolas Delisle was appointed head of the Academy’s
Department of Geography, and was assigned to produce an atlas of the Russian Empire.
Leonhard Euler, as a member of the Geography Department, was to assist Delisle.
Although Delisle was undoubtedly skilled and experienced, under his direction the
project suffered repeated delays and setbacks. On at least two occasions, Delisle refused
orders to meet with Euler and seek his assistance, further announcing that he would
not head the Geography Department as long as Euler worked there.” Finally, in 1740,
when Delisle was away on an expedition to Siberia, Euler took over the project and
began publication a few years later.

Data from the Bering expeditions was considered a state secret by Russia. The
Senate decreed in 1733 that

“...observations, maps, and other materials submitted by the Kamchatka ex-
pedition and transmitted to the Academy should be guarded carefully so as to
prevent covert or overt knowledge about them and in order that they should not
become known in foreign parts earlier than in this country.”®

Much later, it was discovered that Delisle had in fact sending copies to France of
almost everything he received at the Academy. Bagrow (1945) suggests that Delisle
might have been secretly working for France, and deliberately putting delays into the
Russia geography project. Perhaps this also explains his reluctance to meet with Euler.

The Russian land mass, spanning nearly 180 degrees of longitude, presented new
challenges to cartographers. These are discussed in Euler’s paper “On de Lisle’s Ge-
ographic Projection”. The Geography Department at the Academy chose to use a

6Calinger, 1996, p. 146.
"Bagrow, 1945, p.180.
8Bagrow, 1945, p.179.



”conic” map projection (see Figure 1), in which the meridians are drawn as segments
of straight lines meeting at common point, and the circles of latitude (“parallels”) are
drawn as circular arcs which meet each meridian in a right angle. Two parallels can
be chosen along which there is no scale distortion; this choice determines the angle
at which the meridians meet. The Academy used an “equidistant conic” projection,
with equally spaced arcs representing all parallels; thus the choice of the two “standard
parallels” essentially determined the projection.

Although Euler did not criticize DeLisle directly in his article (DeLisle had in fact
died in 1768), perhaps we can detect the echo of a past quarrel in Paragraph 6:

Delisle, the most celebrated Astronomer and Geographer of the time, to whom the
care of such a map was first entrusted, in trying to fulfill these conditions, made
the relationship between latitude and longitude exact at two specific Parallels. He
was of the opinion that if the named circles of Parallel were at the same distance
from the middle Parallel of the map as from its outermost edges, the deviation
could nowhere be significant. Now the question is asked, which two circles of
paralell ought to be chosen, so that the maximum error over the entire map be
minimized.

Euler started with Delisle’s assumptions and computed the angle of the meridians,
errors at the north and south edges and in the middle of the map, and the deviation
between the image of a great circle and a straight line. He never directly contradicted
Delisle, but showed that the maximum distortion does not lie exactly in the middle of
the map, which casts doubt on the original assumption. Euler concluded (Paragraph
25) with a carefully worded judgement about the Delisle projection:

In this projection is obtained the extraordinary advantage, that straight lines,
which go from any point to any other point, correspond rather exactly to great
circles and therefore the distances between any places on the map can be mea-
sured by using a compass without considerable error. Because of these important
characteristics the projection discussed was preferred before all others for a gen-
eral map of the Russain Empire, even though, under rigorous examination, it
differs not a little from the truth.

Today Delisle is credited with the discovery of the equidistant conic projection
with two standard parallels.” Euler’s work inspired a number of published articles by
cartographers over two centuries, describing different ways to minimize distortions with
this kind of map. Most notable was the work of Kavraisky in 1934,'° which seems to
have been one of the standard map projections used during the Soviet era.

3 On the placement of a spherical area on a map

The stereographic projection, or planisphere (see Figure 2), may have been known in
ancient Egypt!!. Synesius of Cyrene attributed its discovery to Hipparchus'?. Ptolemy’s

9This is ironic, since a form of the projection was developed by Claudius Ptolemy in the second
century C.E.; also since, for technical reasons, Delisle’s map was not in a true conic projection. See
Snyder, 1987, p. 111.

108nyder, 1978

1Keuning, 1955

12Heath 1981, p. 293



Planisphaerum described its use, but in astronomy, not geography; in fact this pro-
jection seems to have been used exclusively for star charts and astrolabes until the
sixteenth century. Rumold Mercator '3 published, in 1595, an atlas with maps based
on the equatorial stereographic projection'4. After this it became very popular among
cartographers, and its popularity continued during the time of Euler (see Figure 3.)

One reason for the popularity of this projection (which also accounts for its use
in medieval astrolabes) was probably its ease of construction. All circles on the globe
(not just great circles) are projected onto circles on the plane (or exceptionally, onto
straight lines). This property was known to the ancients. In fact, a proposition'® at the
beginning of Apollonius’ Conics seems almost designed with the planisphere in mind.
Since all meridians and all circles of latitude are circles, only three points are needed on
each to construct it, and the entire graticule can be constructed with only a compass.

Euler’s second paper treated the stereographic projection in great detail. He found
the point locations on the projected plane of the north and south poles, and of the
center and radii of the circles which are images of the equator, the meridians, and the
small circles of latitude. He concluded (Paragraph 20):

Moreover, let it be remarked, that this method of projection is extraordinarily
appropriate for the practical application required by geography, for it does not
strongly distort any region of the earth. Nevertheless, the most important is that
with this projection, not only all meridians and circles of parallel are represented
as circles or even as straight lines, but also all great circles on the sphere pass
into circular arcs or straight lines. ..

Euler gave no proof of his assertion that the stereographic projection “does not
strongly distort any region of the earth”!¢. In fact, this is not literally true; distortion
increases without limit in the hemisphere opposite to the center of the projection. How-
ever, perhaps Euler was thinking of the maps, common in his century, which represented
the eastern and western hemispheres by separate equatorial stereographic projections.
Certainly these had less distortion than the world chart of Mercator, which we discuss
next.

4 On the mapping of Spherical Surfaces onto the Plane

In response to inquiries from Portuguese ship captains, Pedro Nunes in 1537 dis-
covered that the course followed by a ship which kept to a single compass bearing (a
“rhumb line”, or “loxodrome”) is not in general a great circle. Unless the bearing is
one of the four cardinal directions, the rhumb line is a logarithmic spiral approaching
one of the poles of the earth. In 1569, Gerhardus Mercator (father of Rumold Mercator
mentioned in the previous section) published A new and enlargedj description of the
earth, with improvements for use in navigation'”. This is the familiar map that depicts
meridians as vertical lines, parallels of latitude as horizontal lines (it is a cylindrical
projection) and it greatly exaggerates the scale at polar latitudes, so that, e.g., Green-
land appears about the size of South America. However, minimal distortion was not

Bson of Gerhardus Mercator, whom we discuss in the next section

4 8nyder, 1978

15Proposition 6 of Book I

16yeram figuram regionum terrestrim non admodum detorquet

1"Nova et aucta orbis terrae descriptio ad usum navigatorum emendatae accomodata
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the point. As its title indicates, the map was an instrument for use in navigation; and
in fact, the Mercator projection has the unique property that all loxodromes appear a
straight line on the map.

By the early seventeenth century, the principles of computing the Mercator “sea
chart” were known. (Mercator himself did not explain them, and probably used a
purely graphical method.) Since the circle of latitude ¢ had to be stretched to equal
the length of the equator, the horizontal distortion at a point with latitude ¢ was equal
to sec . To compensate, the vertical distortion was also set equal to sec ¢. Since the
distortion was the same in two orthogonal directions, it was the same in all directions.
The mapping preserves angles, or, in modern terms, is conformal.

Edward Wright'® presented this reasoning in a colorful metaphor (and also explained
why the Mercator projection is called “cylindrical”):

Suppose a sphaerical superficies with Meridians, Parallels, Rumbes, and the whole
hydrographicall description drawn thereupon, to be inscribed into a concave cylin-
der, their axes agreeing in one.

Let this Sphaerical superficies swel like a bladder, (whiles it is in blowing) ae-
qually alwayes in every part thereof (that is, as much in longitude as in latitude)
till it apply, and joyn itself (round about, and all alongst also towards either
pole) unto the concave superficies increasing successively from the Aequinoctial*®
towards either pole, until it come to be of equal diameter with the cylinder, and
consequently the Meridians still widening themseleves, till they come to be so far
distant every where each from other as they are at the Aequinoctial. Thus it may
most easily bee understood , how a sphaerical superficies may (by extension) be
made a cylindrical, and consequently a plain Parallelogram superficies; because
the superficies of a cylinder is nothing else but a plain paralleleogram wound
about two equal equidstant circles that have one common axtree perpendicular
upon the centers of them both, and the peripheries of each of them equal to the
length of the parallelogram as the distance betwixt those circles, or height of the
cylinder is equal to the breadth thereof. So as the nauticall planisphaere may be
defined to be nothing else but a parallelogram made of the sphaerical superficies
of an Hydrographical Globe inscribed into a concave cylyinder, both their axes
concurring in one; and the Sphaerical superficies swelling in every part equally in
longitude and latitude, till every one of the Parallels thereupon be inscribed into
the cylinder (each parallel growing as great as the Aequinoctial: or till the whole
sphaerical superficies, touch and apply it selfe every where to the concavity of the
cylinder.

Mercator’s projection is easily understood to be conformal, since horizontal and
vertical scaling are explicitly constructed to be the same. Surprisingly, the stereographic
projection also turned out to be conformal. Edmund Halley (1656-1742) was the first
to publish a proof, although Thomas Harriot proved the result in a manuscript from
about 1614.%°

As of the mid-eighteenth century, two methods of mapping from a sphere to a plane
were known to possess the pleasing property of conformality.?! The open question was,

18Wright, 1657

Bequator

20See Pepper, 1968. The short, intuitive proof in Hilbert and Cohn-Vossen, 1952, is similar to
Harriot’s original.

21The term projectio conformalis was not actually used until 1793.



were there any others? J.H. Lambert?? was the first to answer this question, by present-
ing a family of conic projections that lay, by a clever parametrization, in a continuum
between the Mercator and the polar form of the stereographic projection. Lambert also
discovered another family of conformal projections, the “transverse Mercator”, con-
structed in the same way as Mercator’s, but starting from a designated meridian rather
than from the equator.

Lambert’s treatise was of immense importance to practical cartographers (indeed,
Lambert’s projections are still in common use today), but did not present a complete
theory. Lambert did not claim to categorize all possible conformal projections, nor
to give a complete catalog of useful or interesting properties other than conformality.
Perhaps this was Euler’s motivation for his own work on the subject. On the representa-
tion of a spherical surface on the plane does work to build a more complete theoretical
foundation. Early in the paper, Euler gives a purely analytic proof that no mapping
can be “perfect”, i.e., accurately preserve both distance and angles. This was in some
sense superfluous, since everyone recognized this already (as Lambert remarked), from
the obvious fact that the angles of a spherical triangle sum to more than 180 degrees.
However, perhaps Euler was trying to show the power of the analytic method, or per-
haps was trying to show that the entire theory could be founded on the methods of
differential analysis.

In any case, Euler’s work was an impressive tour de force. After showing that a
“perfect” mapping was impossible, he proposed three different sets of conditions that
it might be desirable for a map projection to satisfy:

. Preserve angles (conformal)
II. Preserve areas (equal-area)

ITI. All meridians and all paralells of latitude are straight lines, and each meridian
meets each parallel of latitude in a right angle. (cylindrical).

He characterized the mappings satisfying each condition as the solutions to a pair
of differential equations in two variables, and gave a general form for the family of
solutions. Euler’s paper on the stereographic projection, discussed in the previous
section, showed that all stereographic projections satisfy the general form for (I). Thus
Euler gave a new proof that the stereographic projeection is conformal.

Unlike Lambert (and unlike another contemporary work by Lagrange), Euler dealt
exclusively with mappings from a sphere to a plane. He ignored the fact that the
earth itself is not a pefect sphere. This was well known by the time of his writing,
having been first suggested by Newton in Principia, and confirmed by the French
Academy’s expeditions to Lapland and to South America in the 1730s. Once again,
perhaps Euler was more interested in building a theory than in applications to practical
cartography. And this ambition was ultimately realized in the nineteenth century when
Gauss, Schwartz, and Riemann built on Euler’s work as a foundation for the theory of
conformal mappings.

22Lambert, 1772



5 Conclusion

Euler’s work on cartography is not well known to mathematicians. The topics
presented in the three Euler papers might provide interesting, and entertaining, material
suitable for second semester calculus students.



Figure 1: Basic graticule for a conic projection. At most two parallels of latitude can
be chosen along which the scale is constant. This choice determines the angle w.

Figure 2: Construction of the stereographic projection



Figure 3: World as two hemispheres, mapped in the equatorial aspect of the stereo-
graphic projection. All latitude and longitude lines are projected as straight lines or
circular arcs. This was a popular representation of the world in Euler’s time.

Figure 4: Mercator’s projection or “nautical chart”, on which all compass courses are
straight lines, at the expense of great distortion in the polar regions.
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