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ABSTRACT 
This study examines the mathematical learning that occurred when students studied the history of the 
concept of function. Students experienced an in-depth study of the history of functions during a 5-week unit 
in the junior-senior level History of Mathematics course. They completed a series of worksheets, readings, 
and problems.   
 The research methodology was a teaching experiment and the framework for analysis of data was 
APOS (Action, Process, Object, Schema) Theory. All 17 students enrolled in the course completed an 
extensive initial questionnaire and 6 were selected to participate in an in-depth interview to reveal their 
understanding of the function concept.  During the unit, each student wrote a series of reflections about his 
or her understanding.  After the unit, students completed a second questionnaire and participated in another 
in-depth interview to discern the changes in their thinking about the concept.   
 The findings support the notion that studying the history of a mathematical concept enables a deep 
reflection of ideas. Four of the six participants notably strengthened their function conceptions. Two moved 
an entire APOS level. Five of the six exhibited an increased ability to recognize a function in a given 
scenario. Growth was most profound in the area of graphical representations. 

1 Introduction 

Professional mathematical societies are deeply concerned about the mathematical 
education of our teachers and are continuing to search for effective means to deepen 
students’ understanding of fundamental mathematical concepts (Conference Board of 
Mathematical Sciences, 2001). In the USA, national reports call for better preparation of 
our mathematics teachers (RAND Mathematics Study Panel, 2003; U.S. Department of 
Education,2000).                                                                                                                
 The concept of function takes center stage when it comes to mathematics education. 
Guershon Harel and Ed Dubinsky argued (1992) that  

The concept of function is the single most important concept from kindergarten to 
graduate school and is critical throughout the full range of education. Arithmetic in 
early grades, algebra in middle and high school, and transformational geometry in 
high school are all coming to be based on the idea of function. (p. vii) 

Though some researchers have obtained positive results for student construction of a 
process conception of function (Breidenbach et al., 1992), others have not (Sfard, 1992) 
and still others note the continued difficulty students have with the concept (Breidenbach 
et al., 1992; Carlson, 1998; Even, 1993; Norman, 1992; Sierpinska, 1992; Wilson, 1994). 

The purpose of this study was to discern if students learn mathematics by studying its 
history. In particular, it investigated the changes in pre-service secondary school teachers’ 
thinking about functions resulting from their studying the history of the concept.  This 
study addressed the following questions. 
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• Does studying the history of the concept of function deepen a student’s 
understanding of the concept in any way and if so, in what way? In particular, 
does studying the history facilitate his or her move from an action level 
understanding to a process level understanding as described by APOS theory 
(Action, Process, Object, and Schema)? 

• In what ways can studying the history of a mathematical concept be used to 
deepen a student’s understanding of the concept? 

• Does a student’s studying the history of the concept of function facilitate his or 
her move from a process level understanding to an object level understanding? 

2 Theoretical Basis for the Study:  APOS Theory  
The purpose of this section is to explain APOS Theory, a constructivist approach to the 
learning and understanding of mathematics at the post-secondary level. APOS theory and 
constructivism are theories that are simultaneously about knowing and coming to know, 
that is, knowledge and learning.  

 The developers of APOS theory wanted to use the idea of theoretical cognitive 
structures from Piaget and relate them to observable behaviors in college-level students 
(Asiala, Brown, et al., 1997). They created a model for conducting research in 
mathematics education. APOS is the cognitive aspect of the model. It guides the 
theoretical analysis of a student’s understanding of a mathematical concept and is an 
attempt to model the epistemology of the concept.  

 The acronym APOS stands for Action, Process, Object, and Schema—mental 
constructions made by students in their attempts to understand mathematics. Actions lead 
to processes, which must come before seeing a concept as an object. The origins of this 
interpretation of mathematical understanding lie in Piaget’s work and parallel many 
concepts in von Glasersfeld’s radical constructivism. The developers of APOS see their 
work as “the result of reconstruction of our understanding of Piaget’s theory leading to 
extension in its applicability to post-secondary mathematics” (Asiala, Brown, et al., 1997, 
p. 41). To them, the following best describes what it means to learn and know something 
in mathematics: 

An individual’s mathematical knowledge is her or his tendency to respond to 
perceived mathematical problem situations by reflecting on problems and their 
solutions in a social context and by constructing or reconstructing mathematical 
actions, processes and objects and organizing these in schemas to use in dealing with 
the situation. (p. 40) 
They assumed that what a person knows and is capable of doing is not necessarily 

available to him or her in any given moment in any situation. As did Piaget, therefore, they 
see reflective abstraction as crucial to a student’s construction of mathematical process 
and objects. Reflection involves paying conscious attention to operations performed. Such 
reflection is significantly enhanced in a social context (Asiala, Brown, et al., 1997). APOS 
theorists refer to the literature supporting the importance of a student’s social interaction 
while learning and also to a research mathematician’s need for interaction with colleagues 
before, during, and after doing creative work in mathematics. 
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2.1   The Action Construct 
The Action construction is similar to Piaget’s action schemes. A student who has an action 
understanding of functions sees an algebraic expression as a command to calculate. Such a 
student can carry out a transformation only by reacting to external cues (textbook 
directions, teacher suggestion, etc.) that give exact details on what to do. This conception 
is like a recipe and they must apply it to some number before it will produce anything. 
They do not necessarily see the recipe as an object in itself, that is, a result of its own 
application (Thompson, 1994). Though it is considered the lowest level of abstraction, it is 
a necessary beginning to the understanding of functions. The reason so many students 
have trouble understanding piece-wise functions, composition, and inverses of functions 
and sets of functions, for example, is that the learner is not able to go beyond an action 
understanding of functions (Asiala, Brown, et al., 1997).  

Interestingly, Breidenbach, Dubinsky, Hawks, and Nicols (1992) found students who 
did not display any aspect of a function concept, not even an action conception. The 
meaning these students gave to the term function was not useful to them as they attempted 
to deal with activities related to mathematical functions. The researchers categorized such 
students as having a pre-function conception.  

2.2   The Process Construct 
A process is an internal construction that performs the same transformation as the action, 
but it is internal and hence under the control of the individual. She no longer needs the 
external stimuli, no longer needs to actually evaluate an expression to think of its result. 
She can reflect on, describe, or reverse the steps of a transformation without actually 
performing those steps. A good example is an understanding of the function cos x. Since 
no explicit recipe exists for evaluating this function at a given value, one needs to imagine 
the process of associating a real number with its cosine. With this understanding, a student 
can link one or more processes to construct a composition, or reverse the process to obtain 
inverses of functions. 

 When a student moves from an action understanding to a process one, APOS 
theorists say the student has interiorized an action to form a process. This process relates 
to von Glasersfeld’s internalization of a topic, which, according to Battista (1999b, p. 3), 
is “the process that results in the ability to re-present a sensory item without relevant 
sensory signals being available.” It is at this level, according to von Glasersfeld, that a 
concept has been formed. To be considered a concept, these constructs must be stable 
enough to be re-presented without requiring perceptual input (von Glasersfeld, 1995). 
Achieving a process conception of function is non-trivial for students (Thompson, 1994) 
and research has shown that many students do not achieve this level without specific 
instruction geared specifically to that end (Thompson).  

 Once students have practice working with processes, groundwork is laid for them to 
begin thinking about sets of inputs in relation to sets of corresponding outputs. APOS 
theorists say students are then ready to begin to reason more formally about functions—
they encapsulate the process to form an object. A process understanding of function 
corresponds to Piaget’s “operations” whereas the next level—object construct—
corresponds to Piaget’s objects. 
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2.3   The Object Construct 
An object understanding of a concept sees it as “something to which actions and processes 
may be applied” (Selden & Selden, 1992, p. 19). One indication that a student is 
functioning at the object level in understanding functions is her ability to reason about 
operations on sets of functions (Thompson, 1994). It is often necessary, however, to de-
encapsulate objects back into processes. For example, one can think about adding or 
multiplying functions or forming sets of functions, but to actually find these sums or 
products of sets requires the student to de-encapsulate them back to the processes from 
which they come. Asiala, Brown, et al. (1997) claimed that reaching this level of 
abstraction is incredibly difficult for students and has found few pedagogical strategies to 
be effective in achieving this end. They claimed the reason for this difficulty is the fact 
that there is very little in our experience that corresponds to performing actions on 
processes. 

2.4   Conclusion 
APOS theory is a theory of knowing mathematics that has its roots in constructivism. It 
was developed as an extension of Piaget’s work so researchers could understand the nature 
of learning in college mathematics students. It firmly holds to the basic tenets of 
constructivism: (a) knowledge is not passively received, but built up by the cognizing 
subject; and (b) the function of cognition is adaptive and serves to organize the 
experiential world, NOT the discovery of an ontological reality (Von Glasersfeld, 1995). 
Knowledge is obtained by reflecting on problems and by constructing and reconstructing 
actions, processes and objects in a social setting. It has specific implications for 
instructional strategies that are based on inquiry learning. 

3 Procedure for the Study 
Students enrolled in the History of Mathematics course participated in a five-week unit on 
the history of the concept of function. These learning materials were nontraditional in that 
they did not follow a chronological approach of multiple topics typically used in history of 
mathematics texts. They focused on the development of a single concept and thus did not 
fit into the curriculum as the course is usually taught.  Three of the worksheets were 
created by the researcher, one was adapted from Usiskin (2003) and five were from Katz 
& Michalowicz (2005).  Since only one section of the course is taught per semester, the 
researcher was the instructor of the course. The culture of the classroom was inquiry-
based, with students working collaboratively.  
 All students in the class completed questionnaires before and after the instructional 
program to ascertain their conception of function.  Most of the questions on them are 
adapted from the work of Dubinsky and Harel (1992). Based on student responses to the 
initial questionnaire, the researcher chose seven students to interview. The initial 
interviews consisted of questioning students about responses to the initial assessment. In 
particular, the researcher asked them to explain their thinking as they responded to each 
question. Each of these interviews was audio taped. Each interview lasted between 60 and 
90 minutes. All tapes were transcribed. 
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 All students in the course worked in groups both in class and outside of class to 
complete the readings and worksheets in the Appendices. After each reading or worksheet, 
each student wrote a one page summary reflection indicating the following:  

• her understanding of the concept of function; 
• if and how the worksheet led to new insights concerning the concept of 

function. 
The researcher conducted another individual interview with each of the 6 participants at 
the conclusion of the unit. These interviews were also between 60 and 90 minutes in 
length and focused on students’ responses on both questionnaires. In particular, the 
researcher asked the participants again to explain their thinking in detail as they worked 
through the second questionnaire and asked if they would change any of their answers on 
the initial questionnaire. These interviews, the completed questionnaires, the student 
worksheets, and the individual reflections comprised the data for this study.  

4 Data Analysis 
The theoretical framework for this study was APOS theory as previously described. 
Analysis closely followed that in the articles by Breidenbach et al. (1992) and by 
Dubinsky and Harel (1992). Since the questions for the current study are adapted from the 
Dubinsky and Harel study, their detailed analysis of the situations presented follows.  

4.1   Finite Sequences 
For a student to identify a function from a sequence, she must have thought in terms of a 
first term, second term, and so forth, something not given to her in the situation. The 
authors claimed that if a student can accept a positive integer as the ordinal position of one 
of the quantities in the sequence, and take that quantity as the output, then that student is 
using a process conception. However, in these particular questions, the format of the 
problem strongly suggests that construction (Dubinsky & Harel, 1992). Therefore, a 
student’s success in dealing with these questions might only indicate an action conception. 
One question involves Boolean values for output, however and it “does provide us with a 
context for suggesting the possibility that those who were successful were capable of more 
than an action conception of function” (p. 92). 

4.2   Character Strings 
The mental constructions required for strings are mathematically equivalent to those 
required for sequences. They pose more psychologically difficult for students, however, 
since the outputs are characters rather than numbers, and no suggestion of the construction 
is evident (Dubinsky & Harel, 1992). All one sees is the result. 

4.3   Graphs  
The authors believed that graphs have potential to provide indication of one’s ability to 
use a process conception of function, particularly if the graph required use of values on the 
vertical axis as the domain. One question showed a set of discrete points on the Cartesian 
plane.  It is a good indicator of a process conception since a student with a process 
conception of function would see the function process even if the domain was very small. 
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The researchers noted student difficulty with this type of question, reminiscent of 
Carlson’s (1998) finding that students often believe that a function had to be continuous.  

4.4   Sets of Ordered Pairs  
Dubinsky and Harel (1992) noted significant student difficulty with this representation of 
function. Students often confused the process of constructing the set of ordered pairs with 
the function itself. However, the function can only be constructed if the ordered pairs are 
already there by identifying the domain as the first element and taking the second element 
as the result of the function process. The ordered pair representation does not suggest this 
construction, so it must come from the student himself.  
 The researchers noted the common student confusion of the uniqueness condition 
with the notion of one-to-one, results also consistent with Vinner’s (1989) study. Because 
of this confusion and the necessity for the construction coming from within the student, 
they claimed that “the set of ordered pairs is a bellweather type of situation for detecting 
the presence and strength of a process conception of function” (Dubinsky & Harel, 1992, 
p. 93). 

4.5   Tables  
Dubinsky and Harel (1992) claimed that, for the purpose of their analysis, tables are 
similar to ordered pairs. A student who insisted upon a rule relating the first number to the 
second and/or cannot construct a process as the act of going from an item in the first 
column to one in the second, is “probably displaying an action conception of function” (p. 
93). 

4.6   Equations  
If a student insisted upon solving an equation in two variables for one in terms of the 
other, she probably displayed an action conception of function. If she can describe the 
process without actually doing it, she “probably” exhibited “at least the beginning of” a 
process conception (Dubinsky & Harel, 1992, p. 93). 
 With equations involving one or more variables, one can view as input any numerical 
value(s) and as output a Boolean value, True or False. Since such a construction must 
come from the student himself, it is evidence of a process conception of function.  

4.7   Statements  
These are the most open-ended in Dubinsky and Harel’s (1992) list of situations. They 
included these simply to observe what type of functions the participants would construct, 
given a situation with very little structure.  
 One consistent theme for evidence of a process conception of function is that the 
subject did the construction himself, that is, the representation does not suggest the 
construction.  

5 Findings 
This section analyzes the six participants (DB, CW, MJ, BG, MS, and CS) as a group to 
see what patterns emerged regarding the growth in their understanding of functions as they 
studied the history of the concept. This section has four subsections. The first part is a 
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glimpse at the participants’ growth concerning their definition of function, the second is a 
look at their increased abilities to recognize functions in situations, and the third 
summarizes changes in APOS levels. The section ends with comments concerning 
changes in understanding graphs of functions.  

5.1   Definitions of Functions   
Recall that Dubinsky and Harel (1992) claimed that an emphasis on equations, numbers, 
and evaluating expressions is evidence of an action conception of function. On the initial 
questionnaire, several participants exhibited this tendency. The notion that a function was 
an equation was strongest in CW and CS. DB and MJ exhibited the tendency to a lesser 
degree and DB thought that a graph or a formula is the function, rather than just a 
representation of a function. Interestingly, DB and MJ at times discussed a function as a 
general process, but reverted to a “function as equation” as they attempted to recognize 
functions in situations. This tendency suggests that DB and MJ had an emerging, but not 
strong, process conception initially. MS at times referred to the need for “some operation” 
but he, like BG, was able to recognize that a function may have more than one 
representation. BG did not exhibit the “function as equation” understanding.  
 On the second questionnaire and interview, DB made no mention of function as 
equation. In her words, “now I feel that a function simply stated is something that takes an 
input and produces an output.” She came to understand the uniqueness criterion, 
something she overlooked on the initial instruments. Similarly, CW’s new definition of 
function is “a relationship between variables where one input produces one output and the 
relationship can be shown in a number of ways, not just an analytic expression.” MJ and 
CS also let go of their tendency to look for an equation, with MJ noting, “the mapping can 
be arbitrary” and CS claiming that a “function is a relationship that provides us with a 
unique output for a given input.” Note that there is no mention of equation in these 
definitions.  
 These results suggest that studying the history of functions broadened the 
participants’ definition of function. After working on the worksheet entitled “Definitions 
of Functions” and the readings associated with it, the class had an extensive discussion 
about the change in the definition of function over the years and what prompted such 
change. It is reasonable to conclude that this worksheet and discussion facilitated a move 
away from the “function as equation” notion in the participants. Table 1 summarizes these 
results.  
 
Table 1 
Participants Holding the Notion of “Function as Formula” Before and After History of 
Functions Unit 
 Before After 

DB *  

CW *  

MJ *  

BG   

MS   

CS *  
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5.2   Functions in Situations   
The current study provided other evidence that studying the history of function facilitate a 
move away from a narrow view of function. Not only did the participants’ definitions 
change, but their ability to find functions in situations improved as well. The following 
discussion focuses on four tasks on the initial questionnaire and the corresponding tasks on 
the second questionnaire that may be considered bellwether indicators of a process 
conception (Dubinsky & Harel, 1992).  
 Table 2 indicates which participants recognized a function in the given scenario. An 
asterisk (*) means that participant clearly articulated an appropriate function. The phrase 
“considered the possibility” indicates that the participant had a vague notion of function in 
the scenario, but was either unable to articulate it or gave an inappropriate formulation. 
 
Table 2 
Appropriate Answers to Specific Tasks Before History of Functions Unit 

 

 

 
String as function 

 

 
Arbitrary pairing as 

function 
(i.e., table or list)  

 
Recognizes a Boolean 

(true-false output) 
function 

 
Discrete set of points 
on graph as function  

 
DB 

   
considered the 

possibility 

 
considered the 

possibility 
 

CW 
    

 
MJ 

  
   * 

   

 
BG 

 
* 

 
* 

 
* 

 
* 

 
MS 

 
considered the 

possibility 

 
* 

  
considered the 

possibility 
 

CS 
 

    

 

Only two participants considered an arbitrary mapping as a function. The “function as 
equation” notion was evident in DB (“you apply the function of subtraction”), CW (“if 
you’d have the previous one plus five, you would have a function”), and MJ (“starting to 
graph it a little bit and see if there was any kind of relationship”). CS left the task 
completely blank. On the discrete set of points graph, MS did successfully find a function, 
but insisted on connecting the dots and trying to find a formula so that he could “find a 
pattern of how to change it” [the inputs]. Note also that other than BG and MS, the 
participants had little success with these tasks as a whole. 
 Table 3 indicates the participants who successfully recognized a function in these 
scenarios on the second questionnaire or while revisiting the initial questions during the 
second interview.  
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Table 3 
Correct Answers to Specific Tasks after the Unit on History of Functions 

 String as function 
 

Arbitrary pairing 
as function 
(i.e., list) 

Recognizes a 
Boolean (true-false 

output) function 

Discrete set of 
points on graph as 

function 
 

DB 
 

* 
 

* 
 

* 
 

not discussed 
 

 
CW 

 

 
* 

 
* 

 
* 

 
* 
 

 
MJ 

 

 
not discussed 

 
* 

 
* 

 
* 
 

 
BG 

 

 
* 

 
* 

 
* 

 
* 
 

 
MS 

 

considered the 
possibility 

 
* 

  
* 

 
CS 

 
considered the 

possibility 
 

 
* 

  
considered the 

possibility 

 

Other than BG, each participant exhibited an increased ability to recognize a function in 
the given scenarios. The data shows remarkable progress in the abilities of DB, CW, MJ, 
and CS. It is worth noting that BG, who recognized functions in each of the initial 
scenarios, exhibited evidence of an object conception of function in the second interview. 
Also noteworthy is the fact that MS, who showed the least growth, had put forth the least 
effort during the functions project, insisting on working alone, and turning in work of 
mediocre quality. The others, DB and MJ in particular, worked incredibly hard on the 
project, seeking help when necessary, struggling with the ideas presented. Not 
surprisingly, they exhibited impressive growth.  
 Of interest to the researcher is the fact that the class never discussed Boolean 
functions, nor was topic covered on any of the worksheets. It is possible that participants 
discussed this scenario in small groups, since they worked together on the function project. 
It is also likely that the worksheet entitled “Definitions of Functions” and the subsequent 
class discussion facilitated an ability to recognize this type of function.  

5.3   APOS Level changes   

The initial APOS conception of each participant is summarized in Table 4.  
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Table 4 
APOS Conception Before History of Functions Unit 

 Action Emerging Process Process Object 
DB  *   
CW *    
MJ  *   
BG   *  
MS  *   
CS *    

 
 Table 5 lists each participant’s conception after the unit on the history of functions.  
A double asterisk (**) indicates a change in level from the initial conception. Note that 
four participants notably strengthened their function conceptions. Two participants moved 
an entire level: CS from an action conception to an emerging process one and BG from a 
process conception to an object. Admittedly, however, the evidence from this study is 
insufficient to claim that the unit on history of functions enabled BG’s move to an object 
level, since the initial questionnaires did not test for this understanding. All one can claim 
is that after the unit on the history of functions, BG appeared to hold an object conception. 
DB and MJ appear to have strengthened their process conception. Recall that though CW 
did not advance a level in her APOS conception, she appeared to be moving toward a 
process conception. Recall also that MS was the weakest student among the participants 
and not surprisingly, showed little growth. 
 

Table 5 

APOS Conception After History of Functions Unit 

 Action Emerging Process Process Object 
DB   **  
CW *    
MJ   **  
BG    ** 
MS  *   
CS  **   

 

5.4   Changes in Understanding Graphical Representations   
This section considers the participants’ responses to individual graphing tasks and 
characterizes the APOS level for that task. A summary of the participants’ understanding 
of graphs before the history of functions unit is in Table 6.  
 

 

 

 



 11

Table 6 
Interpretation of Graphs Before History of Functions Unit  

 
Task 

 
Participant         

 
1 

 
2c 

 
3a 

 
3d 

 
5 

 
DB 

 

 
(no answer) 

 
Pre-Function 

 
Pre-Function 

 
Pre-Function 

 
Pre-Function 

CW 
 

Process Process Pre-Function Pre-Function Process 

MJ 
 

Action Object Object Pre-Function Pre-Function 

BG 
 

Process Object Object Process Process 

MS 
 

Process Object Process Process Process 

CS 
 

Process Pre-Function Object Pre-Function Pre-Function 

 

Notable is the low level of graphical understanding for two or more questions in three of 
the participants, DB, CW, and MJ. Compare these levels with those following the study of 
the history of functions, in particular, after completion of the worksheet concerning 
Oresme’s techniques. Table 7 lists only those conceptions which changed during the 
course of study.  
 
Table 7 
Interpretation of Graphs After History of Functions Unit 

 
      Task 

 
Participant          

 
1 

 
2c 

 
3a 

 
3d 

 
5 
 

 
DB 

 

 
Process 

 
Object 

 
Object 

 
Process 

 
Process 

CW 
 

   
Action 

  

MJ 
 

 
Process 

   
Process 

 
Process 

BG 
 

     

MS 
 

     

CS 
 

   Process Process 

6 Discussion 
There appears to be little question that a marked improvement in understanding functions 
occurred during the course of studying its history for four of these six participants. Less 
clear is the reason this improvement occurred. This section attempts to answer the 
question, 
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• In what ways can studying the history of a mathematical concept be used to 
deepen a student’s understanding of the concept? 

In other words, what specific uses of historical material facilitated the change? 
  Growth was most profound in the area of graphical representations of functions. 
Interestingly, of all the worksheets, the Oresme worksheet on the history of graphs was the 
one most dependent upon original sources and provided the most in-depth information 
about the germination of the concept. It offered a combination of historical reading 
pinpointing the rationale for a new technique, activities comparing Oresme’s techniques to 
modern ones, and Oresme’s proofs with the details omitted. It appears to have cured the 
“graph as picture” tendency in DB and CW and enabled the understanding of area under 
the curve for MJ and DB. According to MJ, it helped him understand the “connection 
between/motivation for integration and area.” DB commented that this particular set of 
exercises clarified her thinking about graphs. One can reasonably conclude that this use of 
primary sources revealing the germination of an idea along with activities relating original 
methods to modern-day ones enabled conceptual growth. With the other worksheets it is 
difficult to say whether the history, the class discussion, or group interaction caused 
growth, but here, it is evident that the use of these materials facilitated growth. This 
finding validates the work described by Jahnke (2000) concerning the benefits of using 
original sources.  
 A worksheet about the work of Leibniz concerned the first use of the word 
“function,” a geometric interpretation.  Perhaps this exercise suggested the idea that a 
function need not be definable by equations alone. A worksheet about Fibonacci was not 
historical in the sense that it did not delve into the beginnings of an idea. It was just a 
problem from history. The learning that occurred as a result of this worksheet supports the 
claim that history is a good source of problems, however. Both MJ and CW had not 
considered sequences to be functions until after their work on this assignment. Perhaps it 
facilitated their new-found ability evidenced on the second questionnaire and in the second 
interview to see strings as functions as well.  
 A worksheet on the Definitions of Function showed participants that the definition 
changed, but did not really go into depth about why it changed. One may therefore wonder 
if the change in participants’ understanding was superficial, though their comments in the 
second interview suggested otherwise.  
 The above evidence suggests that a wide variety of materials may pull students along 
in their understanding of a concept: primary source readings about the germination of a 
concept, problems from history, or simply reading about the changes of a concept over 
time. The emphasis here, however, is clearly on a thematic approach to history—the 
germination and development a single mathematical concept. To those who view the 
history of mathematics as a disjoint collection of anecdotes, facts, and dates, this study 
offers nothing.  

7 Conclusion and Summary 
This study has shown that it is possible to create a positive and productive learning 
environment using historical materials and confirmed what countless mathematicians have 
conjectured about the value of studying the history of mathematics. History can be a 
vehicle to refresh and strengthen a student’s understanding of a mathematical concept. An 
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in-depth study of the birth of an idea and its early development provide the impetus. A 
thematic approach, studying the development of an idea, reading original sources, and 
working on problems of former mathematicians did lend insight into the conceptual base. 
Three students showed significant growth. Five of the six showed improvement in finding 
functions in situations. One claimed that the unit helped refresh ideas long forgotten.
 This study, then, provided evidence that studying the history of mathematics enables 
a deep reflection of ideas, or as Von Glasersfeld (1995) suggested, a “re-presentation” or 
reconstruction of ideas. For those that study it for pure enjoyment, this research suggests 
another good reason to study it, to teach it, to preach it.  
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