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ABSTRACT 

Efforts to understand the trajectory of cannonballs are an interesting example of the tensions between 
practical and theoretical knowledge.  Although Galileo's 1638 parabolic trajectory was an important 
theoretical step forward, field gunnery practice was guided by the Tartaglia's 1537 “mixed motion” model 
through the eighteenth century.  In 1742, Benjamin Robins published New Principles of Gunnery, and 
revolutionized the study of ballistics by suggesting the projectile’s initial velocity – not its range – was the 
appropriate parameter to consider in accounting for air resistance.  In 1745, Leonard Euler produced a 
German translation of New Principles, adding his own extensive commentary.  Euler’s annotated translation 
quickly became a standard text – Napoléon Bonaparte studied ballistics from the French version –  thereby 
influencing the education of artillery officers and, eventually, of all engineers.  This paper surveys the 
contributions of Robins and Euler to mathematical ballistics theory, examines the influence of these 
developments on the education of eighteenth century military engineers, and considers the extent to which 
the history of ballistics theory supports the thesis that the drive to reconcile practical knowledge with 
theoretical knowledge can be a critical element in shaping mathematical theory.  We close with comments 
concerning the use of this history in today’s classroom. 

1 Introduction  

Like everyone else, mathematicians are dependent on the support of society and its 
institutions for their livelihood.  So it is not surprising that mathematical practitioners of 
the early modern period undertook a variety of tasks of potential military value within the 
political context of expanding European nation states.  For example, Turgot – in his 
capacity as Minister of the Marine and Controller General of France – wrote to Louis XVI 
on 23 August 1774: 

The famous Leonard Euler, one of the greatest mathematicians of Europe, 
has written two works which could be very useful to the schools of the 
Navy and the Artillery.  One is a Treatise on the Construction and 
Manœver of Vessels; the other is a commentary of the principles of artillery 
of Robins … I propose that Your Majesty order these to be printed1. 

The two works Turgot proposed for translation had been completed by Euler during his 
Berlin period, in 1749 and 1745 respectively.  As indicated by Turgot (and by its title 
Neue Grundsätze der Artillerie aus dem Englischen des Herrn Benjamin Robins übersetzt 
und mit vielen anmerkungen), the latter was itself a translation into German (with added 
commentary) of an English text, New Principles of Gunnery, published by Benjamin 
Robins in 1742.  The continuation of Turgot’s letter further illustrates the value European 
nation states placed on mathematics, as well as the financial benefits which 
mathematicians might reap from that state interest: 

                                                 
1As quoted in Truesdell (1984), p. 337. 
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It is to be noted that an edition made thus without the consent of the author 
injures somewhat the kind of ownership he has of his work.  But it is easy 
to recompense him in a manner very flattering for him and glorious to Your 
Majesty.  The means would be that Your Majesty would vouchsafe to 
authorize me to write on Your Majesty’s part to the lord Euler and to cause 
him to receive a gratification equivalent to what he could gain from the 
edition of his book, which would be about 5,000 francs.  This sum will be 
paid from the secret accounts of the Navy2. 

Elsewhere, Turgot asked whether “this Euler, who lets nothing slip by unnoticed, might 
have treated in his mechanics or elsewhere” the most advantageous height for wagon 
wheels3. In addition to ballistics, navigation and wagon design, mathematicians of this 
period were called upon to assist with problems in cartography, cryptography, fortification 
design, and hydraulic engineering.  But to what extent – if any – was the drive to reconcile 
practical knowledge with theoretical knowledge in these areas a critical element in shaping 
mathematical theory?   

In this paper, we consider this question within the context of the history of ballistics 
theory, focusing particularly on the contributions of Robins and Euler.  We then examine 
the educational context of eighteenth century military engineers in order to evaluate the 
suggestion of some historians that the new stage of ballistics theory launched by the work 
of Robins and Euler provided justification for increasing the level of mathematical studies 
for military engineers.  We close with some comments concerning the value of this 
(hi)story for today’s mathematics classroom. 

2 The Early History of Mathematical Ballistics Theory 

Efforts to understand the trajectory of a cannonball are particularly interesting as an 
example of the tensions that can exist between practical (military) knowledge and 
theoretical (mathematical) knowledge.  For instance, although Galileo's 1638 discovery of 
the parabolic projectile trajectory was (and is) viewed as an important mathematical step 
forward, the actual practice of field gunners continued to be guided by the less 
sophisticated “mixed motion” model presented by Tartaglia in his 1537 La nova scientia.  
In fact, this remained the case until well into the eighteenth century for reasons to be 
considered below.     

The mathematical construction of a cannon trajectory developed by Niccolò Tartaglia 
(1499 – 1557) was founded “on perfectly conventional academic ideas” of the sixteenth 
century; namely, the violent and natural motions of Aristotelian dynamics and the ideal 
constructions of Euclidean geometry4. Tartaglia represented the initial (violent) portion of 
the motion by a line with slope determined by the angle of the cannon and the final 
(natural) portion of the motion by a vertical line, with a circular segment on which the 
highest point of the trajectory occurs joining these two lines (Figure 1).   

 

                                                 
2 As quoted in Truesdell (1984), p. 337. 
3 Truesdell (1984), p. 338.   
4 Hall (1983),  p. 116.   
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Figure 1 Figure 2 

Tartaglia’s Model of Projectile Motion Cover Page of Tartaglia’s Nova Scientia 
 

Although the resulting image seems absurd to a modern eye, the cover page of La 
nova scientia makes it clear that Tartaglia realized his mathematical model was not a 
realistic depiction of a cannon trajectory (Figure 2). In La nova scientia and in his 1546 
Questi et Inventioni Diverse, he evean stated that no part of the trajectory is actually a 
straight line.  But as Büttner et al  argue: 

The challenge was not to produce a realistic image of the trajectory, but 
rather to relate such an image to other knowledge available on projectile 
notion5. 

“Other knowledge” in this case was the experience-based practical knowledge of gunners, 
observations such as the fact that the range does not monotonically increase with a 
decreasing angle of elevation, but reaches a maximum at some non-zero angle of elevation 
relative to the horizontal.  Tartaglia’s model was successful in accounting for this 
particular aspect of practical knowledge, and implied that the maximum range is attained 
at a 45° angle of elevation.   

Tartaglia further claimed his theory would permit the compilation of a table of ranges 
which field gunners could use to adjust the angle of elevation as need for a desired range.  
Although Tartaglia himself never compiled such a table, he described in La nova scientia 
the construction of a gunner’s quadrant for measurement of cannon elevation on a twelve-
point scale, a devise later revised to a conventional 90° scale and used in conjunction with 
range tables throughout the eighteenth century. 

In traditional accounts of ballistics history, no further theoretical developments 
occurred until Galileo Galilei (1564 – 1642) announced that, absent air resistance, the 
trajectory of a projectile is parabolic.  The first published account of Galileo’s theory 
actually appeared in Lo Speccio Ustoria, a 1632 text on trajectories written by Galileo’s 
student Bonaventure Cavalieri (1598 – 1647).  Galileo’s own more detailed development 
of this theory appeared in his Discorsi e dimostrazioni matematiche: intorno a due nuoue 
scienze of 16386.  More to the point, the parabolic trajectory was the result of an extended 

                                                 
5 Büttner et al (2003), p. 13. 
6 Another of Galileo’s students, Evangelista Torricelli (1608 – 1674) attempted to make Galileo’s theory 
more useful to gunners; see Swetz (1995), pp. 97–100. 
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effort – by Galileo and others7 – to produce a theoretical model of projectile motion that 
captures all elements of practitioner’s knowledge.  Interestingly, Galileo’s efforts in this 
regard led him to link the trajectory of a projectile with the shape of a hanging curve (or 
catenary)8.  Within the context of Aristotelian physics, Galileo proposed that both curves 
are subject to the same combination of violent action (along the horizontal) and natural 
action (along the vertical).  This assumption led to his erroneous conclusion that – like the 
trajectory of a projectile free of air resistance – the curve of the catenary is a parabola, a 
conclusion that was not corrected until the 18th century.   

In an unpublished manuscript, Galileo proposed that a chain might be used to allow 
gunners to predict the angle of elevation needed for a specific range.  Even had his model 
of the catenary been correct, however, this suggestion could not have fully met the 
practical needs of gunners of his day – nor could his (theoretically correct) parabolic 
model of projectile motion.  By neglecting to account for the effect of air resistance, the 
theoretical predictions simply could not be reproduced in practice9.  Thus, despite the fact 
that Galileo’s parabolic theory was incorporated into seventeenth century artillery texts, 
field artillerists continued to employ the Tartaglian mixed motion conception, especially 
for projectiles at high velocity for which the effect of air resistance is more pronounced.  
Clearly, this was not just due to a lack of correspondence between the parabolic model and 
an actual trajectory – Tartaglia’s model did not correspond to actual trajectories either.  
But as Swetz remarked, a gunner who is primarily interested in finding range as a function 
of cannon barrel may find that it works just fine to simply model a trajectory by something 
as basic as a right triangle10; such a model was, in fact, proposed by Daniel Santbech in 
1561.  Furthermore, “something like Tartaglia’s picture of mixed motion persisted among 
these artisanal gunners because it provided a ready guide practice in the field” until well 
into the eighteenth century, during which time gunnery practice remained an art (rather 
than engineering)11.   

 
 
 
 
 
 
 
 

 
Figure 3 - Daniel Santbech’s Model of Projectile Motion 

In short, given the available artillery technology and the uncertainties which 
characterized actual field practice, the approximations provided by the mathematically less 
precise models fitted well with the practical needs and the working conditions of field 
                                                 
7For a discussion of Thomas Harriot’s work in this area, see Büttner et al (2003), pp. 21–23. 
8 See Büttner et al (2003), pp. 23–24.  Note especially their claim (p. 24) that “[Galileo’s] erroneous 
conviction that he could demonstrate the equivalence of parabolic trajectory and the chain provided him with 
a strong argument form claiming, against a firmly rooted and traditional doctrine, that the projectile 
trajectory has a symmetrical shape, a claim he could not prove otherwise.”  
9 Hall (1969), p. 42, suggests this was due in part to the greater precision of Galileo’s new mechanics, which 
allowed for tests of a greater order of accuracy than previously. 
10 Swetz (1995), p. 10. 
11 Alder (1997), pp. 93–94.   
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artillerists.  Galileo himself was well aware that air resistance was a factor, but did not 
attempt to incorporate it into his theory.  Like all (mathematical) theories, his was limited 
by  the explanatory resources available to him.  Prior to the development of calculus and 
Newtonian physics, theorists simply did not have the means to account for air resistance.  
Yet Galileo’s work contributed to an intellectual transformation which replaced the 
Aristotelian by Newtonian physics, and Euclidean geometry by calculus.  Subsequent 
attempts to solve the problem of air resistance in projectile motion were made by Christian 
Huygens, Johann Bernoulli, and Isaac Newton.  By assuming air resistance was 
proportional to the square of the velocity, however, their models required the solution of 
non-linear differential equations.  This (new) mathematical obstacle was further 
complicated by the unavailability of accurate numerical data for use as initial conditions 
and coefficients in these equations.  A breakthrough in this latter regard came, at last, in 
the work of English mathematician and military engineer Benjamin Robins.  

3 Benjamin Robins12 and New Principles of Gunnery 

Benjamin Robins was born in Bath in 1707 – the same year as Euler13 – to parents 
described as “practicing Quakers” who were neither well-educated nor financially well-
off.  Early recognition of Robins’ talent for mathematics led to him becoming a pupil of 
Lord Henry Pemberton, editor of the third edition of Newton’s Principia.  At the age of 
20, Robins’ first publication Demonstration of the 11th Proposition of Sir I. Newton’s 
Treatise on Quadratures appeared in the Philosophical Transactions of Royal Society; he 
was elected to the Royal Society the same year.  During the 1730s, Robins developed an 
interest in military engineering.  He also joined in the British debate over the foundations 
of fluxions initiated by Berkeley’s The Analyst 14 and the British critique of continental 
differential techniques.  His contributions to these debates earned him further acclaim in 
the Royal Society.  Among Robins’ publications in defense of Newtonian fluxions is a 
1739 pamphlet including three treatises, the first of which was entitled Remarks on Mr. 
Euler’s “Treatise of Motion”.  In its preface, Robins declared: 

In the first of the treatises I design to examine, the author has unfortunately 
followed the principles of his calculus with so little caution, as even to 
contradict Euclide himself15.   

Robins’ detailed critique of Euler’s 1736 Mechanica repeatedly faulted Euler for his use of 
algebraic calculations as a means to solve problems via difficult equations – calculations 
which Robins found obscure and logically inconsistent to solve problems he believed were 
more simply approached via geometrical techniques.  

Despite a promising beginning towards an academic career, political missteps soon 
halted Robins’ progress.  In 1739, he published three pamphlets criticizing the Whig 
government of Sir Robert Walpole, later to find his way barred to an appointment as 
                                                 
12 Although not well known among mathematicians, Robins has received a fair amount of attention from 
engineers in recent years for his work in ballistics and its accompanying contributions to aerodynamics and 
experimental fluid mechanics.  This is due in part to a series of biographical articles published in engineering 
journals by William Johnson, F.R.S.  A partial list of Johnson’s articles appears in the references.   
13  Unlike that of Euler’s, the exact date of Robins’ birth is unknown. 
14 See Boyer (1959), pp. 229 –235.  
15 Robins (1739),  p. iv of preface. 
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mathematics professor at the new Royal Military Academy in Woolwich, founded by the 
Walpole administration in 1741.  Robins began his research in ballistics around this time, 
in part to bolster his application for this position.  In 1747, he was awarded the Royal 
Society’s most prestigious award, the Copley Medal, for this work.  After years of striving 
for professional advancement, Robins accepted a position with the East India Company on 
8 December 1749. H began his duties as Engineer General in India on 14 July 1750, only 
to die there of a fever on 29 July 1751.   

Robins’ ground-breaking contribution to the study of ballistics was the suggestion that 
the initial velocity of a projectile – and not its range – was the appropriate parameter to 
consider in order to account for air resistance.  Critical of experiments conducted by the 
British Ordnance Department, Robins conducted his own experiments using an instrument 
of his design; his ballistics pendulum remained the most popular ballistics instrument 
through mid-nineteenth century16.  Designed to measure projectile velocity, the ballistics 
pendulum consisted of a flat wooden plate swinging from a pendulum, which was in turn 
was suspended from a rigid tripod.  A ribbon attached to the wooden plate allowed Robins 
to measure the first deflection of the pendulum following the impact of a bullet on the 
wooden plate.  Using Newtonian mechanics and Huygens’ theories of pendulum motion, 
Robins was then able to calculate the projectile’s velocity.  By measuring weight and 
velocity of a bullet at different ranges and applying Newtonian principles, he was also able 
to employ data obtained with the ballistics pendulum as a means to measure air resistance.  
The ballistics pendulum thus provided Robins, and later Euler, with numerical coefficients 
for these two fundamental parameters in the differential equations for projectile motion, 
thereby providing the means to reconcile (mathematical) theory with practical 
(experimental) results.   

Robins published his results in his New Principles of Gunnery of 1742, a relatively 
short 150-page text consisting of two chapters preceded by a historical preface.  Another 
important feature of New Principles was the connection it established between internal 
ballistics (e.g., gunpowder explosions) and external ballistics (e.g., trajectory).  Robins 
treated internal ballistics in Chapter 1, where he sought to solve the problem of 
determining a projectile’s muzzle velocity as a function of its mass, gunpowder quantity, 
and barrel geometry.  The answer to this question was considered relevant to issues of 
eighteenth-century cannon design.  Thus, for example, Robins was cited as an authority 
(by both sides) in the French eighteenth century military debate concerning the optimal 
length of a cannon barrel17.  Robins confirmed his theoretical solution of this problem in 
Proposition VII experimentally using data from the ballistics pendulum18.    

In Chapter II of New Principles, Robins treated problems in external ballistics, 
including the question of the magnitude of air resistance encountered by earthbound 
projectiles.  Again, both theoretical and experimental reasoning were employed to support 
his conclusions.  In particular, Robins’ experimental results showed the claim of Huygens 
and Newton that air resistance was proportional to the square of the velocity was true only 
at lower velocities.  Once projectile velocities approach the speed of sound, his data 
                                                 
16 Robins also developed an instrument called a whirling arm to measure air resistance at velocities too low 
for the ballistics pendulum.  See, for example, Johnson (1992c), pp. 305–306 for a description. 
17 Alder (1995) treats this debate at length.  For a summary , see Steele (2005), p. 295, or Steele(1994a),  pp. 
207–212. 
18 Steele (2005), p. 86, argues that Robins’ resolution of this problem represents an early connection between 
19th century engineering thermodynamics and 17th century mechanics. 



 
 

7

suggested, air resistance increased by a factor of three.  Robins derived an equation of air 
resistance as a function of velocity which agreed with these experimental results.  In doing 
so, he provided theoretical justification for a fact well-known to artillerists: a parabola 
satisfactorily models projectiles with low velocities (such as mortars), but fails at higher 
velocities.   

In Proposition VI of Chapter 2, Robins formally announced the demise of Galileo’s 
model: 

 
The Track described by the Flight of Shot or Shells is neither a Parabola, 
nor nearly a Parabola, unless they are projected with small Velocities. 

 
His supporting data included, for example, a range predicted to be 16 miles according to 
Galileo, but which was in fact less than 3 miles.  The final proposition of Chapter 2 
considered the possible cause of observed lateral deviations from a parabolic path.  Robins 
(correctly) hypothesized the cause as random spinning of the projectile, an explanation 
known today as the Magnus effect or Robins-Magnus effect.  Perhaps because Euler 
disagreed (claiming instead that lateral deviations were due to irregularities in the 
projectile), Robins’ explanation was not accepted until the work of Gustav Magnus (1802 
– 1870) a century later.  In an unpublished manuscript of 1747, Robins advocated the use 
of rifled barrels with egg-like (rather than spherical) bullets as a corrective for this effect19. 

Although Robins did not include field gunnery tables in New Principles, he presented a 
table to the Royal Society in 1746; a paper submitted to the Royal Society in 1750 
provided experimental evidence of his table’s usefulness for mortar and cannon of the 
time.  The table itself remained unpublished until 1761, a decade after his death.  Perhaps 
surprisingly, its use required only knowledge of Galileo’s ballistics theory, and no 
knowledge of calculus.  Even in New Principles, Robins had minimized the use of 
calculus.  Dr. James Wilson, Robins’ close friend and the editor of his collected works 
following his death, suggested Robins did so in a deliberate effort to gain patronage by 
articulating the benefits of his work for artillery practice, while minimizing its 
mathematical complexity20.  Despite the failure of his New Principles in this regard – 
which Dr. Wilson attributed to on-going personal opposition caused by his polemics 
against Walpole – Robins did gain recognition for his work from another of his polemic 
targets: Leonhard Euler (1707 – 1783). 

4 Ballistic Contributions of Leonard Euler  

The general details of Euler’s biography are well-known.  Less well-known is his first 
work in ballistics theory: Meditatio in Experimenta explosione tormentorum nuper institua 
written in 1727.  Frequently mentioned as the first known appearance21 of the symbol e, 
this manuscript remained unpublished until 1862.  Despite its apparent lack of appeal to 

                                                 
19 See Johnson (1992c), pp. 313–314 and Steele (1994a), pp. 115–116.   
20  Steele (1994a), quotes Wilson to this effect on p. 102, and  discusses Robins’ derivation of his gunnery 
table on pp. 109–110.   
21 The first published occurrence of e appears in Euler’s 1736 Mechanica,  the work which was the subject of 
Robins’ 1739 critique.  A partial translation is included in Smith (1959), pp. 95–96.  The Latin version of 
Meditatio in Experimenta appears in Volume 14, Series 2 of Euler’s Opera Omnia, along with his other 
works on ballistics. 
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the 1727 Russian artillery corps which conducted the seven experiments in question, 
Meditatio provides evidence of Euler’s early interest in ballistic studies.  The experiments 
were also observed by Daniel Bernoulli, who reported on them in his Hydrodynamica of 
1738.  The model of gunpowder explosion employed by Bernoulli was also used by 
Robins, but without acknowledgment by Robins of Bernoulli’s earlier work.  This fact led 
to one of Euler criticisms of Robins’ work in his German translation of that work. 

Euler’s translation of New Principles appeared in 1745, four years after his move to 
Berlin.  Secondary sources typically report that Euler completed the translation in response 
to an inquiry from Frederick regarding the best available artillery text22.  In 1744, Euler 
wrote to Frederick requesting permission to complete a translation of New Principles 
which he had already begun.  Although Frederick’s written response to this letter is 
missing, one surmises the requested permission was granted; Euler not only translated 
Robins’ work, but added his own extensive (250 page) commentary on the (150 page) 
original work.  In his commentary, Euler corrected Robins’ analytic errors and provided a 
critique of certain of his assumptions, as well as treating new topics not considered by 
Robins.  But his commentary was not entirely critical; throughout, Euler praised Robins’ 
work, and especially its contributions towards obtaining the necessary experimental results 
for development of a valid model.  Regarding the ballistics pendulum, Euler declared it 
“one of the most ingenious and useful discoveries in artillery23.”  Even more telling is the 
implicit praise Euler grants Robins in his acceptance of Robins’ experimental results.  
Perhaps even more than Robins, Euler realized the need to reconcile the theoretical results 
of analysis with practical results which could now, thanks to Robins, be obtained through 
experimentation.  

Yet the true trajectory of a projectile remained elusive.  Euler acknowledged the 
difficulty in his first remark on Proposition VI of Chapter 2, concerning the failure of 
Galileo’s model: 
 

Here, again, Mr. Robins gives us farther expectations of discovering the 
real track of a canon ball.  It is some years since his book was published, 
and nothing more, that I know of has appeared on the subject.  This enquiry 
is so difficult, that the author was in the right to require a longer time to 
complete it24.   

 
Euler also required a longer time to resolve this problem, and his attempts to simplify the 
analysis in Neue Grundsätze met with limited success.  Not until 1753 did he publish 
Recherches sur la veritable courbe que decrivent les corps jettés dans l’air ou dans un 
autre fluide queloconconque, the first complete analysis of equations for ballistic motion 
in a resisting medium. 

Unlike his earlier work, the second-order differential equations used by Euler in 1753 
have a familiar look to them – undergraduate physics and engineering students would 
certainly recognize them.  Abandoning an earlier attempt in Neue Grundsätze to more 

                                                 
22 The source of this report appears to be the eulogy of Euler read at the Imperial Academy of Sciences of 
Saint Petersburg by Nicolaus Fuss on 23 October 1783. 
23 As quoted in Johnson (1992b), p. 672. Euler concluded this quote with the assertion “Whatever had been 
delivered on [artillery experimentation]  before [Robins], was not only uncertain but erroneous.” 
24 All English quotations from Neue Grundsätze in this paper are taken from the Brown (1777). 
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accurately model air resistance as proportional to both the square and the fourth power of 
velocity, Euler now assumed proportionality to velocity squared only, obtaining equations 
representing the range, altitude and velocity during both the ascending and descending 
portions of the trajectory.  These equations predicted that, in the limiting case of a certain 
constant n generated by integration, the descending branch approached a vertical 
asymptote and the ascending branch an asymptote of positive slope.  This prediction, 
reminiscent of pre-Galilean models of projectile motion, was in keeping with the 
observations of both eighteenth-century Prussian artillery experimenters and sixteenth-
century gunners that the descending portion of a trajectory has greater curvature than the 
ascending portion.  Euler calculated values of n for 18 angles of the ascending branch 
asymptote, and then used the trapezoidal rule to produce numerical tables for both 
branches of the trajectory at one particular combination of n and muzzle velocity.  Used 
together, the ascending and descending branch tables permitted the calculation of the 
length, range and flight time for the entire trajectory for this one particular ‘species’ of 
trajectory.  As a demonstration of the ability of analytic methods to solve difficult physical 
problems of practical interest, the work was a masterpiece.   

4 The Education of Military Engineers in the Eighteenth Century 

Although Euler produced tables for only one species of trajectories, at least two sets of 
tables existed by 176425.  The first, a set of tables for 36 different species developed by 
Prussian artillery officer Paul Jacobi, was presented to the Berlin Academy only to be lost 
after Jacobi’s early death in 1758, despite efforts by Euler to locate them.  The second, a 
set of tables for eighteen different species developed and published by infantry officer 
Hennig Friedrich, Graf von Grevnetiz in 1764, proved sufficiently valid for mortar fire 
that they remained in use at least until World War II.   

In his doctoral work, Brett Steele provides extensive documentation in support of his 
thesis that the ballistics work of Robins and Euler ushered in a “military revolution” in 
Europe not only in ballistics research and the design of military hardware, but also in the 
education of the military engineers and artillery officers who provided the accompanying 
“software” to operate that technology26.  Kenneth Alder also notes the influence of Neue 
Grundsätze on both ballistic practice and educational practices in eighteenth century 
France,  where Robins’ scientific ideas first spread to the educational institutions27.  By 
1751, an (unpublished) French translation of Robins by Charles Le Roy was circulating 
within the French scientific-military community.  A series of ballistics experiments based 
on New Principles were conducted by Patrick d’Arcy (1725 – 1779), a French army 
captain and close friend of Le Roy, the results of which also appeared in 175128.  The first 
published French translation of Euler’s annotated translation was completed in 1783 by 
Jean-Louis Lombard (1723-1794), who served as artillery instructor to Napoléon 
Bonaparte at Metz.  Napoléon himself studied ballistics from the French version Artillerie 

                                                 
25 Steele (1994a), pp. 164–165.   
26 Steele (1994a), pp. 169–246.   
27 Although Alder (1997)  agrees with Steele that Robins and Euler together “put ballistics on a new basis” 
(p. 104), he is also critical of certain of Steele’s historiographical assumptions (pp. 91–92).  Note especially 
Alder’s argument that Steele’s assumptions lead him to overestimate Robins’ scientific contributions.  
28 d’Arcy (1751). 
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– his 1788 twelve-page summary of the work appears in his unedited papers29 – and his 
genius for artillery command undoubtedly altered the nature of modern warfare.  But even 
granting that his “scientific understanding of cannon and mortar fire was an important 
element in development of his victorious strategy” at the Siege of Toulon, where he first 
gained national attention in French Revolutionary War30, Napoléon’s frustration with the 
focus on mathematical theory at the expense of practical skills in French engineering 
schools was evident by 180231.   

What, then, led military academies to increasingly emphasize mathematics and 
especially calculus in the decades following the appearance of New Principles, sometimes 
at the expense of the practical training needed for combat success?  That calculus spread 
throughout the engineering curriculum – first in France, then in England, and eventually 
the United States and elsewhere – is unquestionable32.  One is tempted to claim that this 
effect was, in fact, inevitable.  After all, the ability to represent variation within the 
language of analysis provides engineers with a set of tools the the solution of  optimization 
problems associated with applied science and technology.  While acknowledging this, 
Alder argues that mathematics in general, and analysis in particular, served to define 
engineering as a profession in other ways as well33.  For instance, he claims that military 
educators believed the rigor of mathematical studies encouraged desirable values and 
habits of thought by “impress[ing] on students the virtues of uniformity and precision34”.  
Alder also proposes that mathematics granted social status and authority to those who 
mastered it, in part through (indirect) association with the innovative ideas of leading 
Enlightenment savants.  Alder goes even further, and contends that, as the education of 
practitioners changed and controlled experimentation replaced experience, the very nature 
of their practical knowledge also changed. 

In short, even if one accepts the nineteenth century mathematization of engineering as 
an historically inevitability triumph of science, current readings of the historical record 
suggest that the factors which influenced the education of artillery officers (and eventually 
all engineers) in the direction of increased mathematical emphasis included not only the 
success of Robins\Euler in reconciling theory with practice, but also the general military 

                                                 
29 Steele (1994a), p. 371. 
30 Ibid, p. 371. 
31 Alder (1997), pp. 310–312. 
32 By 1772, for example, Newtonian fluxions had become part of the mathematics curriculum at the 
Woolwich Academy.  Woolwich mathematics professor Hugh Brown published an English translation of 
Euler’s annotated translation of Robins in 1777.  An interesting feature of his translation is its use of  
Newtonian fluxion notation to represent Euler’s analysis. 
33 For Alder’s complete argument, see Chapter 2 of Alder (1997).  In summary, Alder states (p. 73):  “… the 
analytic mixed mathematics did more than distinguish the artillery engineer from the rude cannoneers he 
commanded on the battlefield, or from the artisan he directed in the manufactures.  It was more than the sign 
of a practical theory.  Analysis associated the engineer with research, innovation, and a dynamic mode of 
thought.  The geometric methods of the seventeenth century had expressed the limits of theory, and hence 
the limits of destruction.  Analysis was accessible, open-ended, and explosive.  And at the same time, it tied 
the creator of technological novelty to his duty to husband the capital of his (royal) employer.”  Alder also 
considers the role of the descriptive geometry curriculum developed by Gaspard Monge (1746 – 1818)  in 
establishing a new social order for engineers, as well as its role as a tool in artillery design and as a means to 
objectify knowledge, in Chapter 4 of Alder (1997) and  in Alder (1999). 
34 Alder (1997),   p. 67.   
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concerns35 of the state, and the particular political concerns of social groups and 
individuals (including Robins and Euler36) associated with the state.  Furthermore, if one 
accepts Alder’s argument, then this increased mathematical emphasis altered the very 
nature of practical knowledge and its relation to theoretical knowledge. 

5 Conclusion 

But to what extent, if any, was the drive to reconcile practical knowledge with theoretical 
knowledge in ballistics a critical element in shaping mathematical theory?  Any effort to 
argue in favor of a strong connection in this regard would require a significantly deeper 
analysis of mathematical texts than has been presented here.  But even the general outline 
of mathematical ballistics history presented here suggests the likely failure of such an 
argument.  The practical success of a theoretical model may have helped to gain 
acceptance for the mathematical ideas on which they were based, but the development of 
new tools seems not to have been motivated primarily, if at all, by the failure of previous 
theoretical models to capture the practical knowledge of artillerists.  Rather, the 
mathematical tools used by theorists at each stage (e.g., Euclidean geometry, 
fluxional\differential analysis) were already at hand, having been initially developed in 
contexts other than the study of projectile motion.  The influence of Galileo’s work on the 
development of Newtonian physics notwithstanding, the relationship appears to be less 
direct than a causal shaping of mathematical content.       

Does this story belongs in today’s classroom? The answer depends on one’s 
instructional goals.  With respect to developing the mathematical details of the various 
models, one must also consider students’ technical backgrounds.  Although the simpler 
models of Galileo and Torricelli are accessible with little more than basic physics, 
geometry and trigonometry37, Euler’s more complicated analysis requires significantly 
greater technical expertise.  There is also the difficult question of whether war-related 
topics should enter the mathematics classroom.  Avoiding them, of course, will not negate 
the historical record; mathematics and war have been intimately connected in the past, and 
are even more so today38.  Furthermore, ignoring their connection may not serve students 
well in making informed decisions concerning their own participation in either endeavor39.   

 For those who do choose to share this story in their classroom, a number of morals can 
also be drawn from it concerning the practice and development of mathematics, on both 
the individual and societal level.  Even in broad outline, the tale suggests an interplay 
between practical knowledge and theoretical knowledge far richer than that portrayed by 

                                                 
35 The etymological origins of the French ingénier  in the Latin ingenium, or engine of war, is another 
reminder of this fact. 
36 Truesdell (1984) has the following to say concerning Euler and politics (pp. 371–372): “In all of Euler’s 
vast correspondence there is no mention of politics and little reference to social conditions. Evidently one 
country, government, or party was the same as another for him, provided it allowed free worship in the 
Protestant faith his father had taught him and the chance to do a mountain of mathematics for a good salary. 
… While obviously neither a Prussian nationalist nor a Russian one, Euler served both countries with the 
total loyalty which in those days was regarded as the ordinary, moral duty of a servant to his master.  The 
personal failings of Frederick II as a candidate for God’s lieutenant on earth must have been more than 
obvious to Euler, but it was not those that drove him from Berlin.  Rather, he sought a social and financial 
position worthy of himself and, above all, advancement for his children.”  
37 See Swetz (1995) for specific suggestions in this regard. 
38 See Booß, B., Høyrup (1984), Booß, B., Høyrup (2003a) and Booß, B., Høyrup (2003b). 
39 For more on this issue, see d’Ambrosio (1998), d’Ambrosio (2002), Shulman (2002) and Shulman (2004). 
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the typical textbook story about projectile motion.  For instance, the role of diagrams as a 
mediating factor between theory and practice in the sixteenth century, and the 
corresponding role played by controlled experimental data in the seventeenth century, 
sheds new light on this interplay, and especially the need for something beyond both 
theory and practice in order to overcome gap between them.   

This story also adds credence to the view of Rupert Hall that theorists tackled ballistic 
problems “because these problems were intellectually fascinating and to some extent open 
to solution40.”  This aspect of mathematical work is one not always revealed to 
undergraduates, despite the attraction it holds for many working mathematicians.  On the 
other hand, Hall appears to be wrong in declaring “existing military art was incapable of 
adopting mathematical theory of projectile flight and applying it to practice, nor (so far as 
one can tell) did it ever attempt to do so, at least before the death of Newton41.”  Here, 
Robert Merton appears closer to the truth: “The effort to attain mathematical precision in 
artillery fire was a model for the industrial arts and a link with the current science.  In any 
event, military needs, as well as the other technologic needs … tended to direct scientific 
interest into certain fields42”.  Another aspect of mathematical practice which the telling of 
this tale can convey to students is the “force of active tradition in guiding problem 
choice43” discussed by both Merton and Hall in relation to mathematics and ballistics. 

 Of course, one need not share the theories of historians to convey these ideas to 
students; in as much as any good (hi)story has insights to offer, the tale of how 
mathematics went ballistic must stand (or fall!) on its own merits. 
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