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1. Introduction 
Since the 1980’s didactical studies point out that, students encounter important difficulties to 

understand variation and its parameters (e.g. Mevarech 1983, Loosen et al. 1985, Huck et al. 1986, 
Batanero et al. 1994, Shaughnessy 1992, 1999). Nevertheless, as Baker (2004a, p.16,) Reading (2004) and 
others remark, no much attention was given to variation in didactical research before the end of the 90’s. 
Only recently there have been some systematic studies on the development of students’ conception of 
variation. (e.g. Torok and Watson 2000, Watson et al. 2003, Baker 2004(b), Reading 2004, Reading and 
Shaughnessy 2004, Canada 2006, Garfield & Ben-Zvi 2007, especially pp.382-386). 

 The research work of deLmas & Liu point out that college students have important conceptual 
difficulties for understanding and coordinate even the simpler of the underlying foundational concepts of 
the standard deviation and that considerable and well organized teaching work is needed in order to 
ameliorate the comprehension and coordination of these concepts (deLmas & Liu 2005). For 
understanding the variance and the standard deviation (s.d.) students’ reasoning has to correspond to the 
highest of the levels of the developmental hierarchy established by Reading & Shaughnessy (2004), which 
concerns the description of variation. This is also compatible with Mooney’s corresponding 
developmental hierarchy (Mooney 2002, pp. 36-37)1. 

Today’s students are not the only ones for whom the variance appear to be a complex and difficult 
notions. The historical analysis of Statistics points out that a long, multifarious and conceptually complex 
path had been followed before a deep understanding of variance was achieved (Stigler 1986, Porter 1986, 
Tzanakis & Kourkoulos 2006). Examining didactically the historical development of the concept of 
variance can be useful in its teaching for several reasons of a more general value, but which in the case of 
Statistics are especially valuable: This historical development was related to several different domains, 
and the students may appreciate their interrelation and that fruitful research in a scientific domain does not 
stand in isolation from similar activities in other domains. In addition, it is possible to identify the 
motivations behind the introduction of the concept of variance, through the study of examples that served 
as prototypes in its historical development and which may help students to understand it, when they are 
didactically reconstructed. In fact, history provides a vast reservoir of relevant questions, problems and 
expositions which may be valuable both in terms of their content and their potential to motivate, interest 
and engage the learner. Didactical activities designed and/or inspired by history may be used to get 
students involved into, hence become more aware of, the creative process of “doing mathematics”. As we 
describe later (section 5), students may do “guided research work” in this context. Moreover, the historical 
analysis may help to appreciate conceptual difficulties and epistemological obstacles that are worth of 
more attention since they may bear some similarity with students’ difficulties; hence, to provide clues for 
explaining some of the students’ difficulties (cf. Tzanakis & Arcavi 2000, section 7.2). Such a historical 

                                                 
1Reading & Shaughnessy’s hierarchy concerns the types of description and measures of variation used by the 
students, classified according to their cognitive complexity. Moreover a refinement of this hierarchy, based on SOLO 
taxonomy (Biggs & Collis 1991, Pegg 2003), is proposed by Reading (Reading 2004). Mooney’s developmental 
hierarchy is part of a broader classification of students’ statistical thinking, presented in Mooney 2002; it concerns 
mainly the correctness and validity of students’ descriptions and measures of spread. 
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approach can be particularly fruitful for a complex notion, like variance, in a domain (Statistics) for which 
teaching large populations and didactical researches are relatively recent  (Baker 2004a ch4 ). 

This paper aims to make clear that the historical analysis of the development of basic statistical 
concepts related to variation, reveals the importance of physical examples in this context, implicitly 
suggests their possible didactical relevance and points out that examples from social sciences are 
definitely more complicated, hence, they should be selected and treated with adequate carefulness, 
especially in introductory statistics courses. Therefore, in section 2 we present some didactically relevant 
selected elements of the historical development of the concept of variance and in the next sections we 
comment on them from a didactical point of view, also using data from our previous experimental 
teaching work (Kourkoulos Tzanakis 2003 a,b Kourkoulos et al. 2006, Tzanakis & Kourkoulos 2006). 

2. Historical aspects of the development of the statistical concept of variance 
During the18th century, probabilistic thinking and the treatment of data in astronomy and geodesy 

followed distinct paths. The convergence and synthesis of these paths, culminating with the works of Gauss 
and Laplace (from 1809 to 1812), required important developments in both domains, as well as, overcoming 
deep conceptual barriers (Stigler 1986, part I, Kolmogorov & Yushkevich 1992, ch.4, Maistrov 1974, §§III9, 
III.10).  

The discovery of the normal distribution by De Moivre as an approximation to the binomial distribution, 
Laplace’s work on the approximation of probability distributions, culminating in 1810 with the proof of the 
central limit theorem, and his works on inverse probability and error functions -aiming at statistical 
inferences- (Smith 1959 pp.566-575, Laplace 1886/1812 pp.309-327, English translation in Smith 1959 
pp.588-604), are key elements concerning the evolution in probabilities necessary for the convergence and 
synthesis mentioned above (Stigler 1986 chs.2-4). 

On the other hand, the important development of methods to combine observations in the second half 
of the 18th century, culminating in 1805 with Legendre’s publication of the least-squares method, was the 
essential element in the evolution of data treatment in astronomy and geodesy necessary for to the 
aforementioned convergence to become possible. The development of these methods was enriched by 
important insights in mechanics and mathematics and by extended acquaintance with the characteristics of 
the data under consideration. Before Gauss and Laplace’s synthesis, there was no appeal to formal 
probability theory in developing and establishing these methods,2 although, some limited but essential 
intuitive probabilistic notions were used. Since observed measures that contain random measurement 
errors had to be combined, it was considered reasonable to assume that (i) equilibrium centers of sets of 
observed measures (i.e. averages, centers of gravity) are the most likely values of the correct measures; (ii) 
positive errors should (most probably) compensate negative ones; and (iii) a line of best fit should 
minimize the total amount of (weighted, or not) errors’ absolute values. These intuitive probabilistic ideas 
were enhanced by their compatibility with fundamental mechanical models, and scientists’ acquaintance 
with their data characteristics; they were further established by the success of these methods in main 
problems of astronomy and geodesy (Stigler 1986, ch.1).  

In the evolution of probability, the use of variance and standard deviation (s.d.) appears closely connected 
to the normal distribution. De Moivre was the first to use a parameter equal to twice the s.d. in his work of 
1733, where the normal distribution appears as an approximation to the binomial distribution (Smith 1959, 
pp.566-575).3 Because of this approximation, in this work he measured distances from the center of the 

                                                 
2Though important works have been done in probability concerning error functions before 1810 (Stigler 1986, ch.3; 
Henry 2001 pp.51-52 table 9), it had not been possible to use them in methods of treating real data in astronomy and 
geodesy (Stigler 1986, ch.1). 
3 This was, also, the first appearance of the normal distribution. 
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symmetrical binomial as multiples of n  (where n is the total number of trials). In the 2nd edition of his 
The Doctrine of Chances (1738) he goes further and explains clearly that n  is the unit that should be used 
for measuring the distances from the center of the distribution and he introduced the term modulus4 for this 
unit n ) (Smith 1959 p.572, Stigler 1986, ch.2, particularly pp.80-85). The interest of using the s.d. (or a 
multiple of it) as a dispersion parameter was increased as other probability distributions were found to be 
approximated well by the normal distribution (mainly by Laplace; see Stigler 1986 ch.3; but Lagrange’s 
memoir of 1776 played also a significant role, ibid pp.117, 118). This approach culminated with Laplace’s 
formulation and proof of the central limit theorem in 1810 (Laplace 1898a/1810), and the Gauss-Laplace 
synthesis (1809-1812), which determined a very large category of probabilistic phenomena in which the 
natural way for measuring distances from the center is by using the s.d. (or a multiple of it) as unit of 
measurement. 5  

An interesting relevant parameter that enjoyed popularity during the 19th century is the “probable 
error”, which is equal to 0,6745s.d. It was introduced by Bessel before 1820 (Stigler 1986 p.230 footnote 
5), and played the role of s.d. in many works of this period. The probable error is that multiple of the s.d. 
that would correspond to the distance from the mean to a quartile if the distribution were normal. An 
interesting characteristic of the “probable error” is that, although determined by the s.d., it conserves, 
through the assumption of normality, a close conceptual relation with the interquartile range, which is 
another basic aggregate of dispersion, easier to understand than the s.d. 

In the combination of observations in geodesy and astronomy, a first6 significant use of squared distances 
appeared in Legendre’s work of 18057. In this work he also explained that his use of the sum of squared 
distances leads to a general method for treating problems concerning the combination of inconsistent 
observations (the method of least squares). Legendre used three main arguments to convince for the 
importance of his method: (i) the method of least squares satisfies the criterion of minimizing the total 
amount of weighted errors8, a criterion then generally accepted; (ii) the solution thus found establishes “a 
kind of equilibrium among the errors” and reveals the center around which the results of observations 
arrange themselves; (iii) it is a general and easy-to-apply method. 9 

                                                 
4The term modulus was used later by Bravais (1846) as a term for the scale parameter of a normal distribution and by 
Edgeworth for the square root of twice the variance; hence Edgeworth’s modulus was equal to De Moivre modulus 
divided by √2 (Stigler 1986, p.83; Stigler 1999 p.103; Walker 1931). The term “standard deviation” was introduced 
by Pearson at the end of the 19th century (Porter 1986 p.13; Baker 2004, p.70; David 1995). 
5In the 18th century works, error distributions were proposed, which used squared distances from the center of the 
distribution: Lambert (1765) examined the error function φ(x)= 1/2 √(1- x2) (flattened semicircle). Lagrange in his 
1776 memoir examined a family of distributions of the mean error, φ(x), that are proportional to the quantity p2-x2. 
The error function φ(x)= a2-x2 is also examined by Daniel Bernoulli, in his 1778 memoir (Stigler 1986, ch.3 pp.110, 
117, Baker 2004, pp.75, 76). These geometrically motivated distributions, satisfy the basic criteria requested 
in that period for an error distribution, namely (i) φ(x) is symmetric with zero average; (ii) φ(x) decreases to the 
right and left of the average; and (iii) φ(x)=0 beyond a certain distance from the average, or at least it is very small 
and tends to 0. As the examined distributions satisfied these criteria, at that period they could be considered as 
legitimate candidates of good error distributions. However, neither the initial works, nor later ones reveal any 
significant domain, or categories of practical situations in which the use of these error distributions leads to efficient 
treatments. 
6There was a priority dispute between Gauss and Legendre (Stigler 1999 ch.17; Stigler 1986 145,146). Although this 
issue may not be entirely settled, it seems clear that both Gauss and Legendre conceived the method independently 
and that Legendre’s significant contribution was that he realized the generality and power of the method and 
formulated it in a way that attracted the attention of the scientific community (Stigler 1999, p.331).  
7Sur la méthode des moindres carrés, reproduced in part in Smith 1959, pp.576-579. 
8Considering that the weighting coefficients are equal (or proportional) to the errors. 
9Legendre remarks that there is some arbitrariness in any chosen way to let errors influence aggregate equations 
(Stigler 1986 p.13). This suggests that he thought that there was no absolutely indisputable reason for choosing the 
criterion of least squares, although after this remark, he defended firmly his method: “Of all the principles that can be 
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Before Legendre’s least-squares method, there were other important works in the 2nd half of the 18th 
century on the treatment of inconsistent observations in astronomy and geodesy, where simpler measures 
were used for measuring deviations (errors): first order relative and absolute deviations (Boscovich’s 
method, presented in his works of 1757, 1760, 1770), as well as, weighted deviations (Laplace’s “method 
of situation” in 1799). An earlier, but also influential method was Mayer’s method of 1750 (amended by 
Laplace in his work of 1787). According to this method, in situations in which more initial (linear) 
equations than unknowns exist, and these equations are inconsistent (because they are obtained from 
observed values having errors of measurement), equations were weighted in a simple way (each equation 
was multiplied by 1, 0 or -1) and then added, in order to obtain an aggregate equation; the final solution 
was found by solving a system of such aggregate equations10 (Stigler 1986, 31-55). 

These widely used methods were the conceptual background that allowed Legendre to conceive his 
method. Thus, the emergence of the least-squares method appears as a natural evolution of previously 
existing methods of data treatment, rather than as a jump, or discontinuity in their evolution due mainly to 
one man’s genius. Within the conceptual context formed by the previously existing methods, the least 
squares method appears as another way of weighting errors, whose important advantages were initially 
supported by Legendre with theoretical and practical arguments (and later on, by the Gauss-Laplace 
synthesis and the accumulated experience from its use). 11 

The simplicity and generality of this method, the interest in the results of the treated examples, and 
Legendre’s arguments and clarity of presentation were decisive for his method to attract the interest of 
scientists in astronomy and geodesy from the outset12. The method was gradually disseminated in 
continental Europe and England so that, by the end of 1825, it had become a standard and widely used tool 

                                                                                                                                                              
proposed for this purpose, I think there is none more general, more exact or easier to apply, than that which we have 
used in this work; it consist of making the sum of the squares of the errors minimum. By this method, a kind of 
equilibrium is established among the errors, since it prevents the extremes from dominating, is appropriate for 
revealing the state of the system which more nearly approach the truth.” (Smith 1959 p.577). Then he explained that 
(i) if there is a perfect match, the method will find it and (ii) the arithmetic mean is a special case of the solutions 
found with this method. After that he explained that the center of gravity of several equal masses in space, as well as, 
the center of gravity of a solid body, are also a special case of the solutions found with the method; then, by analogy 
to the center of gravity he concluded: “We see, then, that the method of least squares reveals to us, in a fashion, the 
center aboud which all the results furnished by experiments tend to distribute themselves, in such a manner as to 
make their deviations from it as small as possible.” (ibid p.579). It is explicit in these quotations that Legendre 
considered an analogy between the properties of the solution obtained by his method and properties of mechanical 
equilibrium (Stigler pp 11-15, 55-61). Conceptually, this analogy was an important convincing element, especially in 
this post-Newtonian era, where, for example, the basis of the theoretical framework of astronomy and geodesy was 
Newtonian and classical mechanics.      
10The underlying principle of the method is that the system of aggregate equations is more stable (less sensitive to 
measurement errors) than the systems obtained from the initials equations, if adequate weightings of initial equations 
are chosen. (Thus, weighting was chosen by taking under consideration simple criteria of mechanical equilibrium, at 
least for the values of the more important of the involved statistical variables, as well as, other criteria specific to the 
examined situation). In this early method, errors’ measures are not expressed in the mathematical treatment and 
properties of errors’ distribution are not directly discussed. Annihilation of the influence of errors is realised through 
the use of equilibrium criteria, often of an ad hoc and context-dependent character. In fact, at the conceptual level, in 
this method the key issue is stability, rather than the explicit discussion and treatment of instability factors. In this 
respect, Boscovich method constitute a significant advance, since the measure of errors is explicit, properties of 
errors’ are clearly expressed and constitute the key point of the whole treatment for obtaining aggregate equations. 
11That a few years earlier (1801), Gauss used the same method for the determination of the orbit of Ceres, the first 
asteroid ever discovered, is an additional indication that the least-squares method was the outcome of a natural 
evolution of pre-existing methods of data treatment in geodesy and astronomy (Gauss 1996/1821 p.III; cf. footnote 6 
and references therein). 
12In the same year (1805) the method was presented in the Traité de géodésie by L. Puissant and the next year it was 
presented in Germany by von Lindenau in von Zach’s astronomical journal (Stigler 1986 p.15). 
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in both disciplines, although there was some resistance and explicit objections13.  
We have noticed that in Legendre’s initial work there is no explicit appeal to probability for founding 

the method of least squares (Stigler 1986 pp.11-15, 55-61), despite the fact that important works had 
already been done on error functions, inverse probability and statistical inference (Stigler 1986, ch.3). For 
an interpretative probabilistic framework to explain this method, two key elements were still needed: (a) 
Gauss’ brilliant result in 1809, that the normal distribution is the adequate choice of an error function 
under apparently quite plausible conditions (Gauss 1996/1809, pp.65-76)14 15, and (b) Laplace’s central 
limit theorem, which allowed him to provide in his works of 1810, 1811 and 1812 better explanations for 
Gauss’ choice and to point out a large family of situations where the normal distribution was an 
appropriate error function16 (Laplace 1898b/1810, 1898c/1811, 1886/1812 pp.309-327, Stigler 1986 
pp.139-148). 
Gauss and Laplace’s works (from 1809 to 1812) constitute, both a main synthesis of the distinct 
evolutionary paths followed in the 18th century in probabilities and in the treatment of data in astronomy 
and geodesy, and the next step in understanding the significance of the sum of squares distances, hence of 
variance. 

Concerning the use of the sums of absolute deviations and the sums of squared deviations it is worth 
noting the following from the works of Laplace and Gauss: 

In his works of 1810, 1811, 1812, Laplace considered that the basic criterion for selecting a best 
estimate value for an unknown parameter sought is: to chose as an estimate that value which minimize the 
posterior expected absolute error (that he called “l’erreur moyen à craindre” - “the mean error to be 
feared”); and it seems to have no doubt about his criterion17. n these works, he explained that in the 
examined cases, involving normal distribution, the least square method leads to the same estimate value as 
his criterion. In the work of 1810 he adds explicitly that in the examined cases this estimate is also the 
“most probable” (it corresponds to the mode of the posterior distribution), and thus it also satisfies this 
criterion of choosing a best estimate, which was used by Daniel Bernoulli, Euler and Gauss; however he 
continues that in the general case his criterion is more appropriate (Laplace 1898b/1810  p 352).  
Gauss in his work of 1821 agrees with Laplace’s idea that the best estimate should be the one which 

                                                 
13The Mayer - Laplace method is simpler and demands much less labour than the least-squares method, therefore it 
enjoyed popularity until the mid 19th century, even though it is less accurate (Stigler 1986, p. 38-39).  
As late as 1832, Bowditch was recommending Boscovich’s method, which involves first-order relative and absolute 
deviations, over least squares, because it attributes less weight to defective observations (Stigler 1986, p.55). 
14 Gauss relied on the widely spread idea at that time that the arithmetic mean was a very good way for combining 
observations’ results. He admitted as an axiom that the most probable value of a single unknown quantity observed  
several times under the same circumstances is the arithmetic mean of the observations, and he proved that, if so, the 
probability law of the errors of observations has to be a normal distribution. He proved then that in the more general 
case, this errors’ distribution leads to the method of least squares as the method that provides the most probable 
estimates of the sought parameters (Stigler 1986 pp.140-143). 
15In 1808 R. Adrain has also obtained the normal distribution as an appropriate error function, but his work went 
largely unnoticed (Maistrov 1974, pp.149-150, Stigler 1978).  
16E.g. in his work of 1810 (Laplace, 1898b/1810) he explained that when the measurements’ errors are aggregates 
(e.g. sums, or averages) of a large number of commonly distributed elementary errors, the normal distribution 
approximates their distribution via the central limit theorem, and strengthened the conclusion by proving that in this 
case, the solution provided by the least-squares method was not only the most probable, but also the most accurate one, 
(in the sense that it minimizes the posterior expected error; Stigler 1986 pp.143-146, 201-202; Maistrov 1974 p.147; 
Kolmogorov & Yushkevich 1992, p.225).  
17For example in his work of 1810 he writes « Pour déterminer le point de l’axe des abscisses où l’on doit fixer le milieu 
entre les résultats des observations n, n', n'',…nous observerons que ce point est celui où l’écart de la vérité est un 
minimum ; or, de même que, dans la théorie de probabilités, on évalue la perte à craindre en multipliant chaque perte 
que l’on peut éprouver par sa probabilité, et en faisant une somme de tous ces produits, de même on aura la valeur de 
l’écart à craindre en multipliant chaque écart de la vérité, ou chaque erreur, abstraction faite du signe, par sa probabilité, 
et en faisant une somme de tous ces produits. » (our emphasis; Laplace 1898b/1810  p. 351). 



 6

minimizes “l’erreur moyen à craindre” (Gauss 1996/1821 pp.11-13), however it determines differently 
“l’erreur moyen à craindre (m)”: for Gauss, m should be the square root of the expected squared error (m2 

= dxxx 2)(∫
+∞

∞−

ϕ ,  x being an error and φ(x) the “the relative facility of error x”- in modern terminology, the 

probability density distribution of error x to occur).18  This difference in the definition of “the mean error 
to be feared” in fact changed the criterion for the best estimate value.  
Gauss discussed his choice in some length for “the mean error to be feared” (ibid p 12):  
- Initially he admits that there is an element of arbitrariness in the determination of “the mean error to be 
feared”. (“Si l’on objecte que cette convention est arbitraire et ne semple pas nécessaire nous en 
convenons volontiers. La question qui nous occupe a, dans sa nature même, quelque chose de vague et ne 
peut être bien  précisée que par un principe jusqu’à un point  arbitraire.” (ibid p 12)) 
- Then he establishes an analogy, pretty much like Laplace (footnote 17), between the determination of a 
quantity through observations and a game of chance where there is “a loss to fear and no gain to expect”. 
In the context of this analogy, each error, positive or negative, corresponds to a loss of the truth and thus 
the expected loss is the sum of products of possible losses multiplied by their respective probability to 
occur. But what loss corresponds to each error? According Gauss, it is this point, which is unclear and 
needs to be settled by a partially arbitrary convention. (“Mais quelle perte doit on assimiler à une erreur 
déterminée? C’est ce qui n’est pas clair en soi; cette détermination dépend en partie de notre volonté.”, 
ibid p.12). The only restriction he considered is that each positive or negative error, should correspond to a 
loss and not to a gain, and he concludes that among all functions that satisfy this condition “it seems 
natural to choose the simplest, which is doubtlessly, the square of the error” (“il semble naturel de choisir 
la plus simple, qui est sans contredit, le carré de l’erreur”); ibid p 12. 
- Then Gauss considers Laplace’s choice for that function: the errors’ absolute value (“l’erreur elle même 
prise positivement” - the error itself taken positively). He considered that Laplace’s choice was equally 
arbitrary to his own, but admitted that it was also equally legitimate, and concluded that his choice was 
recommended because of the “generality and the simplicity of its consequences”. 
-What he meant by the “generality and the simplicity of its consequences” becomes clear later in the text. 
Based on probabilistic arguments, Gauss concluded that if his definition of “the mean error to be feared” 
(and thus his criterion of best estimate) is accepted, then the method of least squares provides “les 
combinaisons le plus avantageuses des observations” (the most advantageous combinations of 
observations) even in the cases that there is a small number of observations and errors’ probability law is 
any such law, and not necessarily a normal distribution (ibid pp. 21-26). So he extended the cases for 
which the method of least squares can be considered as preferable beyond those in which the normal 
distribution is involved, directly or through the central limit theorem. This generalised result offers a 
unified solution, and thus simplifies the whole problem of the treatment of observations, if his criterion is 
accepted; this result is known as the Gauss-Markov theorem (Stigler 1986, p 148).  
Gauss argumentation, that the square of errors is a simple function and thus adequate to be used to define 
“the mean error to be feared”, may be a convincing argumentation for an educated audience, but that it is 
simpler than the absolute value of the error it is much less convincing; for example, Laplace thought 
differently on this issue (see also footnote 13). Most likely, it was the aposteriori appreciation of the 
expected squared error (the “generality and the simplicity of its consequences”) that mainly convinced 
Gauss to prefer the use of squared errors than the use of absolute errors.  

                                                 
18He writes “Nous ne limitons pas, du reste, cette dénomination [l’erreur moyen à craindre] au résultat immédiat des 
observations, mais nous l’entendons, au contraire, à toute grandeur qui peut s’en déduire d’un manière quelconque” 
(ibid p13). So, “l’erreur moyen à craindre”, thus defined, is used not only for the errors of directs observations but 
also for aggregate errors as well as posterior errors’ distributions. 
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The theory of errors and the techniques of analyzing data for the treatment of problems in geodesy and 

astronomy, developed in the 18th century, were not a sufficient basis for the elaboration of adequate tools 
for the statistical treatment of problems in social sciences. A difficult and laborious evolution for almost a 
century, and overcoming important conceptual barriers were necessary for the elaboration of such tools 
(Stigler 1986 ch 8-10, Porter 1986, part 3, Stigler 1999 part I). Galton’s work on heredity and the related 
conceptual framework on linear regression that he established19 constituted a major breakthrough20 that 
opened the way to the works of Edgeworth, Pearson and Yule, who elaborated adequate conceptual 
frameworks and the first efficient tools for the statistical treatment of problems in social sciences. It is 
characteristic of the importance of the conceptual difficulties of the statistical treatment of such problems 
that only in 1897, on the basis of theoretical arguments, Yule proposed a generalised method21 of linear 
regression for problems in social sciences based on the use of least squares. 

 
Three interrelated issues were the main reasons for the conceptual difficulties encountered in the 

statistical treatment of such problems: 
(i) Social phenomena are susceptible to important influences by a very large number of factors; hence, 

the initial classification of social data becomes a main issue22.  
(ii) Unlike geodesy or astronomy, there were no theories of social phenomena incorporating coherently 

and efficiently all (or most of) the influencing factors, that would permit to determine a priori which of 
them are important and which have only a secondary influence that could be fairly assimilated to random 
disturbances. Hence, it was not possible to compare the results of data statistical analysis with relatively 
reliable a priori expectations. 

(iii) Unlike the phenomena in many areas of physics, or psychometrics, social phenomena are very 

                                                 
19The full presentation of Galton’s development of the concept of regression is given in his 1889 book Natural 
Inheritance. However this work is based on a series of previous works dating from 1874, or even earlier. The main 
part of this development was achieved by 1886 (Stigler 1986 ch 8; 1999 ch.9). 
20Stigler (1986 p.281) qualified Galton’s work as “…perhaps the single major breakthrough in statistics in the second 
half of the 19th century” (cf. Stigler 1999 p.176). 
21Yule’s method can also be applied to bivariate and multivariate distributions that are not normal. Until that time 
(1897), Edgeworth and Pearson’s significant works in two or more dimensions, concerned only distributions that fit, 
at least approximately, bivariate or multivariate normal distributions (prior to 1897, Pearson had done important 
work on distributions that deviate significantly from normality, but his work was restricted to one dimension only 
concerning what was called “skew curves”; Stigler 1986, chs 9, 10).  
22The large number of these factors made impossible to use all of them in the initial classifications necessary to the 
collection and the statistical data analysis of social phenomena. Therefore, the selection of a relatively small number 
of factors to be used in the initial classifications was considered to be a main issue, since it could greatly influence 
the conclusions of the statistical analysis. In 1827, Baron de Keverberg argued that since a very large number of 
factors are expected to have an important influence on the ratio of population to births in the Low Countries, and 
since a classification based on all these factors is impossible to be used for an adequate sampling process, any 
inference based on such data is untrustworthy. Moreover, Quetelet’s results of his first crude efforts to use 
incomplete samples for inference purposes seemed to corroborate Keverberg’s critique. These results combined with 
this critique convinced Quetelet that only complete census and large amounts of data allow for reliable conclusions 
(Stigler 1986, pp.163-169). On the other hand, in 1843, A.A. Cournot, argued that using probabilities is irrelevant to 
the treatment of social data. The key point of his reasoning was that: Following the factors that a priori can influence 
the examined social phenomenon, a large number of subdivisions of the data is relevant. Because of the importance 
of this number, it is very likely that in one or more of these subdivisions chance alone will produce important 
differences between the observed and the a-priori ratios (probabilities). So, in the limited number of subdivisions that 
will be effectively examined, we have not any objective criterion to decide which of the differences indicated as 
significant by the calculus of probabilities are really due to chance alone (Stigler 1986, pp.195-201). Keverberg and 
Cournot’s reserves were shared by many contemporary social scientists and the whole of their arguments constituted a 
main problem, the solution of which did not come early; in fact, we cannot say that it is completely settled even today 
(Stigler 1986, pp. 200, 359-361). 



 8

rarely subject to experimental treatment; hence, in most cases it is not possible to vary some factors, while 
keeping the others constant in order to evaluate their importance and influence. This was not only a 
difficulty for the creation and evolution of social theories, but also an additional important difficulty for 
elaborating and evaluating statistical methods for treating social data.  

Related to these issues is the fact that, the aggregates of central tendency and variation of social data 
have not the status of approximations to measures of “real objects” of central importance in the situation 
under consideration, as in the case of geodesy, or astronomy; such aggregates often represent only data 
tendencies23. Therefore, their good understanding required at least the understanding of the basic 
characteristics of this type of data, which required a wide experience of data treatment and analysis24. But 
this analysis, in turn, necessitated also the use of statistical aggregates, whose meaning is well understood. 
In fact, what took place was a slow and difficult interactive evolution (where an improved understanding 
of data’s characteristics permitted an improved understanding of the existing aggregates, as well as, the 
introduction of new aggregates (e.g. correlation coefficients), these improvements allowed for a better 
understanding of data characteristics, and so on). 
Critical information for the fundamental significance of variance came also from another domain, namely, 
physics. In the 19th century, the parallel development of the kinetic theory of gases and statistical 
mechanics through the work of Maxwell, Boltzmann, Gibbs and others gave further insights into the 
importance of variance of the molecular distribution of velocity and provided its physical interpretation as 
the macroscopic temperature of a system of molecules. (Tzanakis & Kourkoulos 2006, pp.289-290; Sklar 
1993 §§2.II, 2.III, Brush 1983 §§1.11, 1.13) 25. More specifically, Maxwell derived the normal distribution 
as the distribution of velocities in an ideal gas, in analogy to Gauss’ derivation of the law of errors and 
                                                 
23E.g. a mean can approximate the unknown position of a celestial body, a regression line can be an approximation to 
the trajectory of such a body, and the variance can be a measure of the inaccuracy of observations. (Of course, often 
the approximated objects (e.g. the trajectory of a celestial body) have the status of real objects within a specific 
theoretical framework (for example, Newtonian theory). Changing the theoretical framework can provoke changes of 
what “real objects” are. Empirical, statistical treatments can also provoke changes of what is considered to be real 
object. An interesting example is Laplace’s initial consideration within Newtonian mechanics, of the shape of the 
earth as an ellipsoid, and his reconsideration of that shape when he found that the statistical line of best fit still had 
important deviations from the observed data. This reconsideration had led him to revise also what it was initially 
considered as measurements’ errors (Stigler 1986, pp.50-55, particularly p.53).  
On the contrary, for social phenomena, it was not easy to find (or even to construct theoretically) “real objects” that 
correspond to statistical aggregates of central importance. A characteristic example is Quetelet’s conception of 
“average man”, which can be considered as an effort to conceive a palpable social analogue of the statistical centre of 
gravity for multidimensional social data. It was highly criticized and finally rejected, at least by the scientific 
community, but still, as Stigler remarks because of its simplicity and apparent clarity it remains very alive in popular 
use (Stigler 1986, pp.169-174, 201; Porter 1986, pp.171-172, 175, 182, 188). 
Furthermore, for simpler statistical aggregates, like the mean of the distribution of one variable, real elements having 
a value close to the value of the aggregate may exist (e.g. one, or more individuals in a population may have an 
income very close to its mean value for that population). However, the role and importance of these real elements is 
neither comparable to the role of the aggregate in the situation described by the distribution, nor to the aforementioned 
role of real objects in astronomy and geodesy. Therefore, these real elements are inadequate for interpreting the 
examined aggregate.  
24The existing statistical methods developed in astronomy and geodesy, and even direct analogies with the treatment 
of data analysis in these domains, was a very important help. Nevertheless, the insufficiency of possibilities for 
extrinsic evaluation and interpretation based on social theory, or experimental design, raised the issue of the 
evaluation and interpretation based on the intrinsic treatment of social data, as main elements for understanding its 
characteristics and structure. (Stigler 1986 pp 199-201, 221-223, 358-361) 
25In addition, the first general proof of the (weak) Law of Large Numbers by Chebyshev (in 1866; Maistrov 1974, 
pp.198-201), using his inequality, was a key result in which variance was explicitly used (the inequality had been 
published earlier, in 1853 by Bienaymé in a paper on the least squares method; ibid p.201). At the same time, it was a 
probabilistic proposition that did not require exact knowledge of the distribution; by using the variance, it provided 
general conditions for the stability of averages, hence the regularity of randomness (Kolmogorov & Yushkevich 
1992, p.259; Tzanakis & Kourkoulos 2006, pp.288). 
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influenced by the ideas of Quetelet as presented by J. Herschel. This made clear that the variance of the 
microscopic velocity distribution is proportional to the mean kinetic energy of the microscopic particles. 
Since, on the basis of previous more rough statistical ideas of Waterston, Krönig and Clausius, it was 
known that this energy was proportional to the product of the volume of the gas and its pressure, which in 
turn was proportional to the (absolute) temperature of the gas by the ideal gas law, variance acquired a 
direct macroscopic physical interpretation as being proportional to the (absolute) temperature of the gas 
(Porter, 1986, ch.5 particularly pp.118-119; Brush 1983, p.59; Sklar,1993, §2.II.2). In fact, it was exactly 
because of the physical meaning of velocity, that Maxwell’s derivation makes no use of Gauss’ 
assumption that the mean and the most probable values of the sought distribution coincide (Jeans, 
1954/1904, 55-57). More generally, there was a close interplay between ideas in physics and the social 
sciences that influenced the conception and development of statistical methods for both (Porter 1986 
chs.5, 7). For example, it is not accidental that Quetelet was educated in mathematics and astronomy and 
Lexis in mechanics, or that Maxwell and Boltzmann were influenced in their ideas in statistical physics by 
similar ideas in the social sciences (Porter 1986 pp.42ff, 242, 118-119, 208). 

3. Didactical remarks 
3.1. The historical elements presented in section 2 reveal that the variance is a multifarious notion of 

great conceptual complexity. This is compatible with the results of didactical research, which, although at 
an initial stage, points out that variance is a complex and difficult concept for students (Mevarech 1983, 
Loosen et al 1985, Batanero et al 1994, Reading & Shaughnessy 2004, Reading 2004, deLmas & Liu 
2005). In fact, the examination of the complexity and multifarious character of this concept suggests that 
the expectations from introductory courses in statistics and probability should be restricted: a relatively 
complete understanding of variance is not a realistic task for first courses in statistics and /or probabilities, 
but rather a task of a longer and more complete statistical education. This raises the question what can be 
taught of variance in introductory courses in statistics and probability. The remarks on this and the next 
sections concern this question for undergraduate students.26 

3.2. The good computational properties and the resulting (relative) easiness of treating the sum of 
squared distances from a center, or from a regression line, were one of the main reasons that, historically, 
contributed to gradually impose these sums as a principal tool to measure and treat variation, both in 
statistics and probability. The importance of these properties is more pronounced in the case of bivariate 
(or multivariate) distributions, but is also apparent for distributions of one variable, and their 
understanding is a basic element for understanding variance. Many of these properties can initially be 
taught in an introductory course on descriptive statistics, or on Exploratory Data Analysis (EDA)27. Of 
course, these properties must be reconsidered in the context of probability theory and inferential statistics 
but introducing them initially in a context with no formal reference to probability can facilitate their 
understanding, since it is an approach, which does not accumulate their mathematical difficulties with 
conceptual difficulties inherent in probability theory. 

It is worth noting that an important preparatory work can be done independently of statistics courses, in 
domains where appropriate activities can be realised concerning the properties of the sums of squared 

                                                 
26Most of the remarks done in this section are valid for introductory courses to upper high school students, as well. 
27 EDA is a relatively new approach of data analysis in which the focus is on meaningful investigations of data sets, 
using multiple representations and graphing techniques and just a bit of probability theory, or inferential statistics. 
(Tukey 1977). EDA, or its variations, was adopted by several statistics educators and researchers on statistics education, 
because of the possibilities that it offers for elaborating an introductory teaching of statistics with more data analysis and 
less theory and recipes. EDA was considered as an opportunity to broaden the context of descriptive statistics, to give 
students a richer and more genuine experience in meaningful contexts of what statistics is really about (Shaughnessy et 
al. 1996, Ben-Zvi & Arcavi 2001, Jones et al. 2001, Baker 2004 p.11). 
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distances, such as equilibrium, motion of systems of (microscopic or macroscopic) bodies, collision and 
explosion problems in physics and the associated momentum and energy calculations, extrema problems, 
geometrical problems etc. 

3.3. It is possible to teach variance in introductory courses on probability and descriptive statistics, or 
EDA. The historical analysis points out that these two possibilities offer significantly different insights to 
this concept and indicate that their subsequent synthesis can be very fruitful.28  
Concerning the introductory teaching on probabilities, Baker formulates the hypothesis that the basic idea 
of the interquartile range is conceptually simpler than those of variance and s.d. (Baker 2004a pp. 69, 70).29 
30 Our previous research, with students of Sciences of Education (Tzanakis& Kourkoulos 2006, §3.3) points 
out that many undergraduate students, with little knowledge of statistics and probabilities, consider that the 
inerquartile range is also a clearer and more interesting parameter than variance and s.d. Their main 
argument for this evaluation is that the interquartile range (combined with a quartile value) allows to know 
where precisely lies the middle half of the probability distribution, whereas, they believe that, variance (and 
the average absolute deviation) does not give any precise information on where some part of the probability 
distribution lies. 

Historically, the first appearance of modulus (see footnote 4) is tightly related to the discovery of the 
normal distribution as an approximation of the binomial distribution; moreover the dissemination of the use 
of (multiples of) s.d. as dispersion parameters is related to the large number of cases where, because of the 
central limit theorem, the normal distribution is an adequate approximation of the unknown distribution. In 
these cases, using (a multiple of) s.d. as a measure of the distance of values from the mean allows for finding 
approximately the probability density of a given value, and by integration, the probability of the variable 
between the mean and that value. This was a main reason for imposing the s.d. as a principal parameter of 
variation. 

There is an interesting similarity between the historical reasons of widely using s.d and variance and 
students’ reserves about the s.d and variance. In both cases, the possibilities offered by a dispersion 
parameter to determine the relation between a range of values and its corresponding probability, are 
considered to be an important element for evaluating the efficiency and interest of this parameter. But of 
course, students’ limited knowledge leads them to different evaluations than those established in history.  

Teaching should take into consideration this point and provide some adequate explanations, especially 
in the usual case, where the variance and s.d. are introduced long before the introduction of the central 
limit theorem. Otherwise, it is possible that, for a long time, students will have the feeling that the s.d. and 
its use are unjustifiably imposed by the teacher, while, there are other, more efficient dispersion 
parameters with clearer meaning, or that s.d. is another probabilistic object whose reasons of existence 
remain obscure. Chebychev’s inequality can be taught soon after the introduction of variance and the s.d.  
and could offer interesting insights to the students: it allows for a quick, albeit partial, answer to students’ 
reserves about the s.d., showing that the s.d. gives information on the corresponding probability of a range 
of values centered on the mean, when the radius of this range is greater than the s.d. (Tzanakis& 
Kourkoulos 2006, p.292). Of course, this information is not as precise as the information deduced from the 
s.d. in cases the normal distribution can be used as an approximation, but it can be applied more generally 

                                                 
28Teaching variance in probability courses only, or trying to avoid the use of probabilities for very long, are, of 
course, approaches that put severe restrictions on the goal of a rather complete understanding of this concept.  
29This does not mean that the procedure of calculating the interquartile range is simpler than those of calculating the 
variance (see Schuyten 1991, Batanero et al 1994) or that interquartile range have better computational properties. 
30The “probable error”, presented on p. 3, is an historical aggregate of variation relevant to this subject: it may be 
considered as expressing a tendency to combine the clarity and simplicity of interquartile range with the efficiency of 
standard deviation.   
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and leads to the proof of the (weak) law of large numbers. 

4. Introductory statistics courses and data related to social phenomena  
4.1. It is interesting to remark that often, in introductory statistics courses, the examples with an extra-
mathematical content (i.e. that are not pure numerical) are mainly (or almost exclusively) examples 
referring to data related to social phenomena (e.g. students’ weights, notes, diseases, income etc) 31. 

However, the historical analysis points out that the adequate collection and treatment of such data was, 
in most of cases, a very complex and difficult task. Are the reasons for the difficulties encountered in the 
historical evolution obsolete, or irrelevant to modern students’ learning? At least for the main reasons this 
is not so (see section 2 pp.7-8). In addition, it is not true that methods have been found to face and easily 
overcome these sources of difficulties in actual introductory statistics courses. In fact, in the usual initial 
teaching of statistics the difficulties of collecting and treating data concerning social phenomena are 
underestimated and often hidden.32 

4.2 A characteristic example on this subject, concerns the initial design of data collection. In usual 
introductory statistics courses to students of education and social sciences that we have observed, we have 
noticed the following behavior of teachers: After the selection of the phenomenon to be examined (e.g. 
students’ weight), the teacher initiates a discussion on the relevant factors to be examined and on the 
questions to pose. When some factors have been identified (e.g. gender, age, parents’ corresponding 
values) and agreement on their importance has been achieved, the teacher stops the discussion, with no 
reference to the fact that a large number of other factors are relevant and may have important influence on 
the examined phenomenon. In other cases, of classroom discussions, students have started to propose a 

                                                 
31For example, this is so for the introductory course in descriptive statistics in the last-year of Greek General High-
School. This course is part of a one-year compulsory mathematics course and lasts for about one third of the teaching 
time; namely, 24 teaching hours (another 6 hours are used to introduce simple probabilistic concepts and the rest two 
thirds are devoted to introductory calculus). In the official textbook (in primary and secondary education in Greece 
there is an official textbook for each course, published by the ministry of education and used in all schools) there are 
37 solved examples and applications and 59 unsolved exercises in statistics which are taught (Mathematics and 
Elements of Statistics, C’ class of High School, O.E.D.B., 1999, pp55-104, 126-128)] among these: 
 (i) 6 examples (exm) and 10 exercises (exr) are purely numerical.  
(ii) 11exm & 26 exr concern social phenomena  
(iii) 18 exm & 14 exr concern biological phenomena for human populations, also influenced by social factors (e.g. 
disease or death phenomena, human height distributions). 
(iv) 1 exm & 2 exr concern socio-geographical phenomena.  
(v) 1 exm & 4 exr have multiple questions that belong to the categories (ii) and (iii). 
(vi) 2 exr concern situations that are good approximations of outcomes of simple random experiments (e.g. an urn 
model), 1exercise concerns a quality control. 
There is no exercise referring to physics or geometry, or to natural phenomena that don’t involve directly a human 
activity (for other examples on this subject see footnote 35). 
32The much extended use in introductory statistics courses of situations and examples related to social phenomena, 
can be explained by two reasons: (i) the teachers’ and curricula designers’ confidence on students’ feeling of 
familiarity with these phenomena; (ii) the interest that the study of such phenomena has for the students, teachers, 
curricula designers and the educational community in general. Usually, familiarity and previous experience with the 
situations under consideration facilitate their treatment. However, students’ feeling of familiarity with social 
phenomena is due to their familiarity with only some aspects of these phenomena; they are unfamiliar with many 
more aspects of the same phenomena, as well as, with their real complexity. (Besides, this complexity is not the only 
source of difficulties; the absence of a theory allowing for reliable a-priori expectations and the lack of possibilities 
for experimentations are also main sources of difficulties). Hence, students’ feeling of familiarity, concerning the 
easiness of treatment of situations related to social phenomena is misleading. However, studying situations related to 
social phenomena is indeed an important issue for statistical education. Therefore, the questions relevant to an 
introductory teaching of statistics are of the kind: To what extent situations referring to such phenomena should be 
included in this teaching? For example, is it efficient to almost exclude all others types of situations, as it is often the 
case? What are the difficulties inherent to the treatment of this type of situations? What other types of situations are 
necessary, or useful to include in introductory courses and for what purposes? 
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multitude of other factors as relevant (grandparents’ corresponding values, nutrition, place of birth etc.). 
After a while, the teacher intervenes, accepting that there is a large number of such factors, but explaining 
that they should be limited to a small number only, because otherwise, it would be very difficult to collect, 
organize and treat the relevant data. In these cases, the basic point that a large number of factors influence 
phenomena related to the society, is recognized as an element of difficulty, but that’s all. None of the 
questions that naturally emerge concerning this point is discussed; e.g. what are the interest and the 
validity of a data collection where factors that may have an important influence on the examined 
phenomenon are ignored? What is expected to be, at least qualitatively, the influence of the large number 
of significant factors ignored, on the relations among the factors selected to be examined?  

This type of teaching approach can lead to students’ misunderstanding on the real complexity of the 
relations among the factors influencing social phenomena, on the role of factors not taken under 
consideration, and finally, on the meaning of the relations among the factors selected to be examined. 
Moreover, it can lead to several misunderstandings concerning valid ways to collect data, especially, for 
sample data supposed to be representative of the characteristics of a larger population. 

4.3 A known conceptual difficulty of many students, novice in the study of statistics, is that they tend 
to underestimate the relation between two factors, or even to deny its existence, if it is not deterministic 
one (Rubin and Rosbery 1990, Shaughnessy J.M.,1992, Batanero et al., 1994, Noss R. et al., 1999). This 
difficulty is reinforced when there is a large variation that appears in the graphical plan representation of 
the corresponding bivariate data. When the two factors are related to social phenomena it is often the case 
that a large variation appears because of the influence of a large number of other factors, even if the 
existing relation is relatively strong compared to the relations of other relevant factors (e.g. blood pressure 
and age of patients). In such cases, not only novice students, but also professionals with limited statistical 
education have difficulties to understand, or recognize the relation in the presented data, although they 
know about it by professional experience33 (e.g. nurses). Because of these difficulties, in many cases, the 
presentation of the bivariate data functions almost inversely, urging subjects to doubt about their previous 
opinion concerning the strength of the relation, although this opinion was formed on the basis of their 
professional experience34.  

4.4 In most cases, statistical aggregates concerning social phenomena have only the status of elements 
representing data tendencies, whereas, for physical or geometrical phenomena, often, measurements have 
also the status of approximating measures of real objects, which play an important role in the examined 
phenomena. During the historical evolution, this characteristic was one of the reasons that had made 
difficult to understand the meaning and the role of statistical aggregates of data concerning social 
phenomena (see last part of section 2). 
Didactical research points out that conceiving statistical aggregates as representatives of data tendencies is 
one of their most difficult aspects to be understood by the students (Shaughnessy1992, Batanero et al 

                                                 
33 For the study of an interesting example involving blood pressure, age of patients and nurses understanding see 
Noss et al. 1999 
34The points discussed in §§4.2, 4.3 are interrelated. A better approach than that presented in §4.2 concerning the 
initial design of data collection, could make students aware of the phenomenon that in situations, where there exists a 
large number of influencing factors, even if, prior to data examination they have strong reasons, to believe that two 
factors are related, it is possible, and not rare, that a large variation appears in the corresponding bivariate data. This 
variation can be the result of the influence of other factors and doesn’t necessarily signify the absence of statistical 
relation between the two factors. On the contrary, in the approaches mentioned in §4.2, the easiness by which the 
possible existence of many influencing factors is not taken under consideration in the initial design of data collection, 
and the lack of discussion on this subject, can give to the students the impression that the factors ignored do not 
influence the relations among the factors selected to be examined. This enhances the possibility that students 
consider a large variation appearing in the bivariate data of a pair of the examined factors, as some kind of chaotic 
random disturbance, indicating the absence of relation between the examined pair of factors. 
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1994, Mokros & Russell 1995, Noss et al. 1999). These research results support the hypothesis that, in 
introductory courses, where only examples of data referring to social phenomena are used, understanding 
statistical aggregates will be more difficult for the students, than in courses where a significant part of the 
examples that are used refer to adequate physical, or geometrical phenomena. 

For aggregates of central tendency, in particular the arithmetic and the weighted mean, undergraduates and 
last-year high-school students have significant experience from other domains (everyday life, school life 
etc); this is a factor that weakens their difficulties to understand, these concepts, at least for the initial level of 
their understanding. However, students have much less experience of aggregates of variation, so concerning 
these aggregates the choice of an adequate set of examples to elaborate on is even more important for 
introductory statistics courses; this is particularly true for the variance, one of the most complex aggregates 
of variation. 

5. Comments on experimental teaching concerning variation parameters 
In this section we comment on a teaching of variation aggregates, in particular of variance, based on two 
experimental courses on descriptive statistics with two groups of students of the Department of Education 
of the University of Crete (prospective primary school teachers). For each group the corresponding 
experimental course was their first undergraduate statistics course (Kourkoulos & Tzanakis 2003a, b).  

Students worked in small groups (of 3-5 students each in the first course, and 3-4 students each in the 
second). In these courses the approach of guided research work was used, so that students had to 
investigate the properties of basic statistical aggregates of central tendency and of variation. In the version 
of the guided research work that was employed, students had not only to treat problems posed by the 
teacher, but also to be involved in forming the research questions, and gradually posing their own research 
questions and problems (closed and open questions, conjectures etc). Posing such questions and problems 
gradually became an essential part of their work. We should also notice that, in these courses after a (more 
or less) long period of labor, students’ work created a network of questions and problems, which had 
important implications in all aspects of their research work; in particular, it influenced considerably the 
metacognitive aspects of their way to conceive and re-conceive the results of their work. In addition, this 
network was an important factor that often determined the subjects treated in the course. In this context, 
with the exception of certain examples initially provided by the teacher, students had to find examples of 
data necessary in their investigations on the properties of statistical aggregates. Often they had also to 
change existing sets of data, or to produce their own examples of such sets (e.g. when they were exploring 
the influence on statistical aggregates of different types of changes in the data). They had looked for 
examples of data in different textbooks on introductory statistics35 and the Internet. Besides the purely 

                                                 
35In the first course, the students looked for examples of data in 9 different textbooks and in the second, they looked 
for such examples in 7 textbooks: 2 high school textbooks, 4 (3 in the second course) addressed to students of social 
sciences and 3 (2 in the second course) addressed to engineering students. 
 One of the 2 high school textbooks was the one mentioned in footnote 31. The other high-school textbook and the 
textbooks addressed to students of social sciences were close to this one concerning the characteristics of the 
phenomena to which referred the used data examples. Among the treated examples and the exercises included in these 
books: 70%-85%, following the book, are related to social phenomena (of the same kind as those presented in the 
categories ii-iv of footnote 31), 13%-24% refers to purely numerical situations, 2%-7% refers to other types of 
situations (simple random experiments, quality controls etc), no one included examples or exercises from Physics, or 
Geometry.  
Compared to them, the 3 books addressed to engineering students have some significant differences: Among the treated 
examples and the exercises presented: 33%-46%, following the book, are related to social phenomena, 28%-36% refers 
to purely numerical situations, 16%-23% refer to quality control, 5%-10% refer to situations that are (or approximate 
well) outcomes of simple random experiments (urns, dies, distribution of vowels and consonants in a book etc), 2%- 5% 
refer to other types of situations; only in one of the 3 books there was one exercise on a physical model (a bar along 
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numerical examples, the large majority of examples that our students found in these resources were related 
to social phenomena (mainly of the same types as those present in the categories ii-iv in footnote 31); they 
also found geographical and weather data. Nevertheless, they had also encountered some examples of data 
on simpler phenomena; urn models, quality controls, measurements of simple physical objects. Only one 
example was found (in a textbook for engineers) referring to a physical model, namely a bar, along which 
weights were attached and the equilibrium point was examined. 
However, among the examples of data that students found, those they chose to elaborate, as well as, the 
examples they produced by themselves, refer to situations of every day life and to educational phenomena, 
with which they felt familiar (weights and heights of human populations, students’ notes, incomes, 
weddings data etc). The feeling of familiarity as the dominant selection criterion, led students to confine 
the collection of the examples chosen for elaboration, to a subcategory of situations related to social 
phenomena, and not to chose simpler ones. This choice, however, did not facilitate their understanding of 
different aspects of statistical aggregates, e.g. to understand the mean as an equilibrium point (instead, as 
we shall see in section 6, physical examples like a bar with attached weights on it36, or a model with 
springs, can offer important insights to understand this aspect).   
Nevertheless, even working with this restricted set of examples, our students succeeded to examine, in a 
relatively satisfactory depth, basic properties of aggregates of central tendency (mode, median and mean) 
and the simplest of aggregates of variation (the range, interquartile range and mean absolute deviation37). 
To this end, however, they had to do considerable experimental work and in some cases to reduce the 
treated situations: to the corresponding purely numerical situations and/or to the corresponding graphical 
representations38. This was due to the fact that in these cases the examined properties were better 
understood if considered in this way, than in the context of the concrete situations to which the examples 
of data referred. The analysis of their behavior and difficulties point out that a different collection of the 
treated examples, and in particular the use of adequate physical models could significantly facilitate their 
work (Kourkoulos & Tzanakis 2003 a, b, Tzanakis & Kourkoulos 2006). 

The difficulties for understanding the variance were more prominent: 
Right from the start, many students were reserved for its introduction and had difficulties to understand 

                                                                                                                                                              
which weights were attached) and one exercise that concerns measurement errors (repeated measurements of the weight 
of a bottle).  
36In their investigations, our students did not choose spontaneously to use examples that refer to the model of the bar 
with the attached weights. Nevertheless, on teacher’s incitement and insistence, students in the second course used 
some examples of this type.  
37 Initially it was introduced in the teaching activities the mean absolute deviation from the mean, later on students 
examined the mean absolute deviation of a statistical variable X from a value x0 and found that the mean absolute 
deviation become minimum when this value is the median of X. However when they used the term mean absolute 
deviation without further specification they continue to signify the mean absolute deviation from the mean. 
38Graphical representations of statistical distributions are basically geometrical. Although they are often approximate 
and do not follow in a relatively rigorous way, the representation rules that students are used to employ in secondary 
education for functions in algebra, analysis, or physics, still, they conserve operational properties and characteristics 
that often can help students very much to understand the properties of these statistical aggregates. Nevertheless, these 
representations and their use are not themselves free of difficulties and subtleties. Particularly, the deviations between 
the ways of representing statistical frequency distributions and the way students are used to represent graphically 
functions in algebra, analysis or physics, can activate important epistemological obstacles. It gets more difficult for the 
students to overcome these obstacles when teaching does not elaborate explicitly on these deviations, as it is often the 
case.  
In the first course, students were weak in algebra. For them, the use of graphical representations played an even more 
important role; besides the positive role in understanding properties of the aforementioned statistical aggregates, they 
helped in generalizing the expression of these properties. Moreover, elaborating on graphical representations often 
allowed students to find geometrical arguments, explaining the general validity of the observed properties 
(Kourkoulos & Tzanakis 2003a §§3.1-3.3, pp.7-14). 
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its meaning. A main reason for these difficulties was that in all situations that students have used in order to 
obtain examples of distributions for elaboration, the variance had an unclear or even problematic meaning; in 
most cases, the sums of squares were dimensionally meaningless (squares of weights, squares of grades, 
squares of money etc). In fact, with the exception of purely numerical examples, the only cases that the sums 
of squares made sense dimensionally for the students were those involving distributions of lengths (e.g. 
students’ height, travel distances). However, even in these cases, the squares of lengths and theirs sums had 
unclear meaning in the context of the corresponding situations. Students’ expressions are eloquent on this 
point:  
“The squares of the heights of the students… I understand the height, or the weight of a student, but what 
does it mean the square of a student’s height?…I have never heard talking about the square of the height of 
people.”  

Referring to a distribution of distances of bus trips, another student remarks: 
“I don’t understand why to use this sum of squares to measure the dispersion…I see that these squares 

of distances are certain areas, but what they have to do with the trips, or the buses? …I mean, there are 
many quantities really related to the distances of the bus trips, the time of the travel, the fuel, the cost of 
the travel, but the squares of the distances of the trips?…I don’t see what they have to do with the trips, or 
the buses… I mean that it’s only a mathematical artifice; it has nothing to do with the real travel.”  

Another student referring to the same situation: 
“I see that when the distances of bus trips are more dispersed, the sum of the squares of the distances from 
the mean increase, and so… somehow, this sum indicates the dispersion. But why to use these squares of 
the distances that don’t really mean anything for the trips, while we can use the sum of the absolute 
distances from the mean, or the interquartile range that are simple and we do understand what they 
measure? ” 

The expression of the third student is characteristic of the conceptual difficulties of many other 
students: Although they can understand that when the dispersion around the mean increases, the sum of 
the squares of distances from the mean increases too, and therefore, the variance is a parameter that does 
express the dispersion, but they are reticent to accept this way of measuring dispersion, which involves 
quantities that are dimensionally ill-defined, and/or have unclear (obscure) meaning in the context of the 
examined situations. Their resistance against variance is reinforced by the fact that they already disposed 
others parameters measuring dispersion (mean absolute deviation, interquartile range) that are easier to 
understand and conceptually simpler than the variance. 

Some students have pushed their argumentation on the subject even further, for example: 
“If it is permitted to use such strange quantities like squares of weights, or squares of the height of the 
students, why not use the cubes or the fourth powers of the weights to find the dispersion?…What I want to 
say is, why to use these strange quantities and not to use simply the absolute differences from the average 
and the mean absolute deviation which measures directly the dispersion from the average?”  
In their previous work, students had also encountered cases where they had the feeling that the meaning of 
a statistical parameter was not fully understandable in the context of the examined situation; e.g., treating 
distributions of variables with integer values (like the distribution of children per family) they had often 
calculated mean values that were not integers. Nevertheless, for all others parameters, there was a 
significant number of situations for which students had the feeling that the parameter has a clear meaning 
in the given context. For the variance the situation is different. With the exception of purely numerical 
examples, in all examined situations students had the feeling that variance has an unclear meaning in the 
given context, or even, that it is dimensionally ill-defined39. This can activate an important epistemological 
                                                 
39The teacher used a common argument on this point; the use of s.d. instead of variance, resolves, at least partially, 
the dimensional problem, since the s.d. is dimensionally meaningful (e.g. if the variance is determined using squares 
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obstacle for many students, since their criteria for the correct definition of a quantity and its coherent 
integration in the context of a situation remains systematically unsatisfied.40 

The teacher told students that an essential reason for using variance as a dispersion parameter is that it 
has important computational properties and that in most cases it is easier to manipulate the variance than 
the mean absolute deviation from the mean (MAD)41, but in order to understand this aspect they should 
work to find its properties. 
A cause of difficulty in our students’ work, concerning both the initial meaning of variance and its 
properties, was that in the usual graphical representations of statistical data they did not find interpretative 
elements that could help them in their investigations.42 Since, neither the examined real, or realistic data 
examples, nor their graphical representations offer significant interpretative elements, students’ productive 
work on the properties of the variance was confined mainly on a purely numerical-algebraic level.43 

Despite these difficulties, students succeeded to find basic properties of variance and understand others 
explained by the teacher.44 Comparing these properties with the corresponding ones of the MAD, they 
realized some of its important computational advantages and that in most cases it was significantly easier 
to manipulate the variance than the MAD. For example, they considered as an important advantage that, 
the variance of the union of two or more populations can be obtained from only the variance, the means 
and the total frequency of each population, whereas, in general the corresponding elements are not 
sufficient for calculating the MAD in this case. Moreover, they remarked that this phenomenon was not 
unique and that similar phenomena appear for other properties, since they found that: (a) In the general 
case they need less information to calculate the change of the variance resulting from the changes of the 
values of a subset of the total population, than the change of MAD.  
(b) For calculating the second moment of a statistical variable X from a point x0, they needed only the 

                                                                                                                                                              
of weights, the s.d. has the dimensions of weight). But students argued that this was not at all satisfactory because the 
s.d. was obtained through the use of meaningless quantities. 
40Our students worked in a context of guided research work. In this context, trying to respect their own criteria of 
correctness and coherence was right from the start an essential element for achieving advancement in their 
investigations. So, by the time when the variance was introduced, students had developed an increased sensitivity on 
respecting these criteria that might have strengthened their reticence to accept variance. In conventional statistics 
courses, students are often led to accept working with elements that they perceive as obscure, or partially understood 
(this is particularly frequent in courses addressed to “users of statistics”, that Shaughnessy qualifies as “ruler-bound 
receipt-type courses of statistics”, Shaughnessy 1992). In such a course, students’ reticence against the acceptance 
of variance is expected to decrease. However, this decrease is an element that expresses students’ easiness to 
accept working with partially understood elements, and not their feeling of satisfactory understanding 
variance. Teachers should take this point into consideration to avoid an important misinterpretation 
concerning students’ feeling of understanding the variance.  
41 When we use the term MAD, we mean the first absolute moment of a distribution around the mean.  
42Using graphical representations supported students’ work on the statistical parameters examined previously, 
because, in one or another way, they had always found elements to help them understand the properties of these 
parameters. Hence, using usual graphical representations of distributions, they looked for the graphical representation 
of variance, or of sums of squares of distances, but in this case, their research was not fruitful. 
43Of course students have often used examples referring to real, or realistic situations (pupils’ heights, population 
income etc). However, even in these cases, the productive work on these properties was mainly done in the reduced 
purely numerical context. 
44Students in the first course, who were weak in algebra, encountered even more important difficulties than the 
students in the second course. In the first case, students were able to pose adequate questions for examining the 
subject; an important help for this was the network of questions and problems’ that they have already established, 
during their work on the statistical parameters examined previously (e.g. they posed the question: if we have two 
population (or two sets of values) and we want to calculate the variance of their union, what information we have to 
know and how we will calculate it?, in analogy to the corresponding question that they had posed for the parameters that 
they had previously examined.) However, the aforementioned difficulties combined with their weakness in algebra, 
often made very difficult for the students to find the answers, and the teacher had to provide considerable help, or even 
to provide and explain the answer. 
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distance from x0 to the mean value of X and the variance of X, whereas, this distance and the MAD are not 
sufficient to calculate the mean absolute deviation of the variable X from x0

45
. 

Properties of this type and their comparisons have convinced students that variance is a useful 
dispersion parameter and that there are reasons to prefer it to the MAD. Nevertheless, many students still 
have the feeling that they had not a satisfactory understanding of the meaning of the variance, especially in 
the context of the real or realistic situations that they had examined.  

Concerning this subject, students in the second course, posed the question of the existence of a relation 
between the variance and the MAD, hoping that such a relation, would link the variance (s2) to MAD 
which was better understood and thus, it could help understanding the variance. After persistent research 
work on this subject, they succeeded to find that, for symmetric distributions, there is a “Pythagorean”- 
like relation (s2 = MAD 2+ S.R.2).46 Then they found that when mean = median, s2 = MAD2+ (S.R2+ 
S.L2)/2, and finally that in the general case s2 = (MAD 2 /4p1 p2)+ (p1 S.R2+ p2 S.L2). (See Kourkoulos & 
Tzanakis 2003b). 

The majority of the students considered these relations as a satisfactory answer to the initial question. 
Nevertheless, some others students pursued their investigation further; by iterating the general formula, 
they tried to find an approximation of s2 using only absolute deviations.47  
Besides the didactical interest of students’ research work on this subject, the extended work and the 
considerable effort that this investigation had demanded, point out the students’ great interest in finding 
relations between MAD and s2. This interest was closely related to their feeling of insufficient 
understanding of the meaning of variance. 

Remarks on sections 4 and 5 
(a) The historical elements presented in section 2 point out that the statistical treatment of problems of social 
sciences was particularly difficult and a main reason was the complexity of the examined (social) 
phenomena. Understanding and adapting statistical aggregates and methods in this context was equally 
difficult; an important source of difficulty was that in this context statistical aggregates represent only data 
tendencies related to such complex phenomena. On the contrary, in domains of physics such as geodesy and 
astronomy the examined phenomena were simpler and statistical aggregates often had the status of 
approximations of measures of real objects that were of central importance for the examined situations. 
These were critical elements that facilitated the conception of basic statistical aggregates and methods in 
these domains.  
   Traditional introductory statistics courses disregard this historical reality and underestimate the 

                                                 
45These characteristics of variance and their differences from those of the MAD, all come from the same fundamental 
characteristic; that the s2×n (the variance multiplied by the corresponding frequency) has properties of an extensive 
quantity that the MAD×n has not, but the subject was not discussed with the students in such a general perspective.  
46S.R. is the standard deviation of the "right subpopulation" ("right subpopulation" is that part of the population with 
values of the variable greater than the mean of the distribution). The S.L., the standard deviation of the "left sub-
population" is defined similarly. p1, p2 are the relatives frequencies of the right and the left subpopulations of the 
distribution. This terminology belongs to the students. To formulate these properties it is also assumed that the 
frequencies of the values exactly on the mean and the median are zero, or negligible. 
47The first and the second relations point out that for the concerned distributions variance is equal to the square of 
MAD plus an additional quantity that express the dispersions of the Right and the Left subpopulations around their own 
means. The third (general) relation can be considered as expressing almost the same thing but with a correction due to the 
unbalance between the size of the right and the left subpopulations.  Furthermore, students have found empirically that in 
most of cases, if they substitute to the p1S.R2+ p S.L2 of the general relation the weighted mean of the squared MAD(s) of 
the right and of the left subpopulations (p1 MADR2+ p2 MADL2)  they find a value close of those of the Variance. (S2 ≈ 
(MAD 2 /4p1p2)+ p1MADR2+ p2MADL2.  So, at the conceptual level, many of the students have the idea that for a large 
category of distributions they have arrive to approximate the variance with a rather simple relation that involves only the 
MAD, MADR and MADL. Students that have not found satisfactory this approximation have continued with the 
aforementioned iteration. 
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difficulties that students face concerning the elaboration of data examples related to social phenomena. 
This is expressed both, in the way examples related to such phenomena are treated and in the fact that 
often the examples used that are not purely numerical, are (almost) exclusively examples related to social 
phenomena. In introductory statistics courses more attention should be given to these difficulties 
concerning both the selection of the proposed examples that are related to social phenomena and the 
designed elaborations on these examples. Moreover, it is important that a significant part of the elaborated 
examples refer to situations that are conceptually simpler than those related to social phenomena (e.g. 
examples concerning adequate physical or geometrical models). 
The above comment is particularly worthy concerning the introduction of variance and the s.d. The 
preceding analysis points out that the meaning of variance in examples referring to everyday-life 
phenomena (and more generally related to social phenomena), is very often unclear for the students or, 
even worse, dimensionally ill-defined. Often, introductory statistics courses are confined to the use of 
examples referring to such situations. This restriction can activate important epistemological obstacles 
against students’ initial understanding of the meaning of variance. Moreover, the absence of examples 
referring to adequate situations, in which variance has a clear meaning, deprive students of interpretative 
elements, important for understanding its properties and allowing for a more profound understanding of 
the subject. 

(b) Concerning the use of sums of first order absolute deviations and of squared deviations, there are some 
significant elements of similarity between our students’ behavior and the historical development of the 
treatment of measurements’ errors (in geodesy and astronomy) worth to be noticed:  In both cases the use 
of the sums of absolute deviations appears as an important conceptual predecessor and competitor to the 
use of the sums of squared deviations. Our students (i) initially considered as conceptually simpler and 
clearer the meaning of MAD, whereas they considered the meaning of variance as difficult and/or obscure. 
(ii) By comparing the properties of MAD and of variance, they appreciated the computational advantages 
of variance and thus understood an important, albeit operationalistic, argument in favor of its use. By 
searching and finding relations between MAD and variance, they try to ameliorate their understanding of the 
meaning of variance through its linking to the conceptually simpler MAD; this goal was achieved to a 
significant extent (and they had the feeling that it was so); (iii) although they accepted the importance of 
variance as a dispersion parameter, many of them continued to believe that MAD was conceptually simpler 
(and thus some of them continue to prefer MAD to variance). 
In the historical development, (i) The use of squared deviations and their sums emerged as an 
advantageous way of weighting deviations (errors) in an intellectual environment where weighting errors 
and equations (with simpler ways of weighting) was a common practice for obtaining aggregate equations. 
Among the previously used methods of weighted deviations, a principal one was the use of first order 
absolute deviations (see p.4). (ii) Open discussions on the characteristics of the method using the sums of 
squared deviations (least squares’ method) in comparison to other methods using different ways of 
weighting errors were an essential element for appreciating both the method’s potential and advantages, 
and its disadvantages. One of the main advantages of the Least Squares’ Method (LSM) was the important 
computational properties of the sums of squared distances from a center; from these properties result the 
easiness and generality of application of LSM. (iii) Although already by the end of 1825 LSM had become 
a standard and widely used method in geodesy and astronomy, the method was not totally accepted. A 
remaining competitor was the use of the sum of first order absolute deviations (see note 13). It is also 
worth noting Laplace’s preference to minimizing the mean absolute deviation as the criterion for finding a 
“best solution”, versus Gauss preference to minimizing the mean squared deviation as such a criterion (see 
pp.5-7). 
(c) Besides the aforementioned elements of similarity between our students’ behavior and the historical 
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development, important differences remain concerning the conception of the use of sums of squared 
deviations as a way for measuring dispersion. Two of them are relevant to be underlined here: (i) Our 
students were introduced to this issue in a context using examples related to social phenomena; this was an 
important source of difficulty concerning their effort to understand variance. Historically, as far as 
statistics is concerned, the conception of using sums of squared deviations as a way for measuring 
dispersion was realised in the context of treatment of measurements (and of their errors) in geodesy and 
astronomy. This context was much simpler than the one related to social phenomena. (ii) The use of sums 
of squared deviations was introduced to our students by the teacher. Historically, this use emerged as an 
advantageous way of weighting deviations in an intellectual environment where weighting errors and 
equations, with simpler ways of weighting, was a common practice for obtaining aggregate equations. So 
historically, the use of the sums of squared deviations appears as a natural development of previously 
existing methods and practices.  
This last remark suggests an interesting possible approach for introducing the students to the use of sums of 
squared deviations as a way for measuring dispersion: In the teaching activities situations’ examples could 
be used, in which it is reasonable to consider different ways of weighting deviations from a center (central 
point or central line) for measuring dispersion, including first order absolute deviations and squared 
deviations. Students could compare these ways of weighting deviations and the resulting measures of 
dispersion and look for relations between them, thus achieving a better understanding of the subject. If an 
adequate teaching method is used (e.g. based on guided research work) students may even propose by 
themselves the use of the sums of squared deviations as a way for measuring dispersion. An essential 
question is what kind of situations examples could be used for realizing this approach? Historical analysis 
suggests that situations involving errors measurements may be adequate for this purpose; however, they are 
not the only ones. In the next section we will see situations referring to physical models that meet 
requirements mentioned in (a) above. These situations are also adequate for the approach discussed here.  

6. Physical models 
Remark (a) above summarizes a need that emerges for the analysis of the previous sections concerning the 
introductory teaching of variance: Introductory statistics courses should not be confined exclusively to the 
use of situations’ examples related to social phenomena. In these courses it should be used also adequate 
situations’ examples in which variance has a clear meaning, offering to students interpretative elements 
for understanding variance and its properties and thus facilitating the comprehension of the subject. Such 
situations can be derived by the rich and intimate relation between statistics and physics (see p.8; Tzanakis 
& Kourkoulos 2006). In this section we briefly present three elementary physical models that we have 
identified and it is possible to be used in introductory statistics courses (for further discussion on the 
historical and epistemological origins of these models (and of some others) as well as on the implications 
of their didactical use see Tzanakis, Kourkoulos 2006, Kourkoulos et al, Kourkoulos & Tzanakis 2007, 
Kourkoulos 2008). 

 (A) A system of masses: A first model can be derived directly from the system of points masses that 
Legendre used for explaining the plausibility and the meaning of the MLS (footnote 9, Stigler 1986 pp 11-
15, 55-61, Smith p.579); by considering that masses are distributed in one dimension. The statistical 
variable is the position x of the masses; xi being the position of the mass mi, which plays the role of the 
corresponding frequency, and mixi is the moment of mi about the origin. The mean position x is the 
position of the centre of mass (CM), its variance is proportional to the moment of inertia around the CM, 
IB = Σi mi(xi – x )2, hence through the defining relation IB = M R2, the standard deviation equals the 
gyroscopic radius R of the system, M = Σi mi being the total mass. If additionally we consider that the axis 
is a bar to which the masses are attached and that the whole system is within the usual field of gravity, 
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then x is the only one position at which if we attach the bar, the system can be in static stable equilibrium 
(which is a very clear interpretation of the mean as equilibrium position). If we consider that the bar turns 
with constant angular velocity around x  then the variance is also proportional to the angular momentum 
of the system, which is an additional interpretative element of the variance.  
Variance has a rich and clear significance in the context of this model, however using the model in a 
teaching approach of the variance presupposes some students’ familiarity with the physical concepts 
involved. Thus, it is more adequate to be used with students having such a familiarity (e.g. students’ of a 
department of Physics or of engineering). 

Physical models in which the variance expresses the dispersion energy of a physical system 

(B) The model of moving particles: In the mid 19th century considering that a gas is constituted by 
molecules moving with different velocities (the molecular hypothesis) and taking into account the ideal 
gas law it was found that the mean kinetic energy of the molecules and (thus the variance of their 
velocities) is proportional to the absolute temperature of a gas. Therefore, the variance of velocities 
acquired a fundamental physical meaning and it was the first fundamental idea connecting macroscopic 
properties of a physical system to its microscopic structure (see p.8). From this fundamental physical 
modelisation a simple generic model can be derived by considering a set of particles of unit mass moving 
in the same direction. The distribution of the masses’ velocities is such that the mass mi (constituted by mi 
unit mass particles) moves with velocity vi (e.g. state B in figure 1). The energy of the particles as seen by 
an immovable observer is EB obser0 =½Σimivi

2 . If we consider an initial state (A) where all masses move 
with the mean velocity, the energy of the particles in this state is EA obser0 =  ½ Σimi v 2

.The system of 
masses can change from state A to state B for any internal or external reason that conserves the mean 
velocity, and equivalently the momentum (Σimivi= Σimi v ). If the change from state A to state B is due to 
an internal reason (e.g. an explosion), then momentum conservation holds and thus the conservation of 
v is assured. 
The energy necessary for dispersing the masses from situation A in which they move together with the 
same velocity v to situation B where they move with different velocities is: 
Edisp = ½ Σimivi

2-½ Σimi v 2 but Edisp=½ Σimis2 , where s2 is the variance of the velocities at state B. In 
other terms the variance s2 is proportional to the energy necessary for dispersing the masses from the state 
in which they move together with the same velocity v to state B where they move with different 
velocities. More precisely, s2 is (numerically) equal to twice the mean dispersion energy per particle or per 
unit mass. In the context of this model, not only variance has a clear meaning, but also it is easy to justify 
why it is interesting and natural to use it as a dispersion measure; since it expresses (is proportional to) the 
energy necessary for realizing the dispersion phenomenon examined. In other terms, there is a strong 
causal relation between the variance and the dispersion phenomenon that it measures. 

Figure 1 

 
 
For an observer moving with the mean velocity: EA obser v  = 0 and EB obser v  = ½ Σimi (vi

2- v )2. So the 
energy necessary for dispersing masses’ velocities from state A to state B for this observer is  
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E’
disp = ½ Σimi (vi

2- v )2 -0. By the basic property of variance, ( - )2x x = x2 - x 2 , we have that E’
disp = ½ 

Σimis2 =Edisp. The consideration of the 2nd observer permits to obtain an independent interpretation for each 
one of the two basic formulas that express variance; moreover through the basic property of variance 
reveals an important physical property: although the two observers perceive differently the energy in states 
A and B, they perceive the same “dispersion energy” (the amount of energy necessary to disperse masses’ 
velocities from state A to state B).       

 (C) The springs’ model: Later on, in the first decade of the 20th century, Einstein and Debye considered a 
solid body as constituted by elementary constituents that behave as microscopic oscillators. When the 
whole system is at equilibrium, the kinetic and potential energies of each oscillator is quadratic in its 
velocity and deviation from its mean position and the total energy of the system is proportional to its 
absolute macroscopic temperature. Furthermore, the variance of the variable corresponding to each degree 
of freedom (which are practically of infinite number) is also proportional to the absolute temperature of 
the system; this is the so-called (classical) energy equipartition theorem (see Tzanakis & Kourkoulos 
2006). From this basic physical modelisation a simple generic model can be derived by considering a set 
of springs (in analogy to the oscillators) stretched in the same direction. For simplicity, only the aspect of 
potential energy is examined, thus the system is considered to be static. Although this model can be used 
independently (e.g. see Kourkoulos Tzanakis 2007) it is also complementary to model (B); in (B) the 
dispersing energy is kinetic whereas here it is potential. 
We consider a set of springs having one edge attached to a bar and the other edge attached at some 
distance from the bar, so that the springs are perpendicular to the bar and the bar remains parallel to a fix 
direction (see figure 2 (B) below). Springs obey Hook’s law and have the same spring constant k (in our 
teaching approach we initially put k=1 for simplicity). If the bar is at the origin, then the force on a spring 
is kxi , where xi is the distance of spring’s end point from the origin, and the potential energy of this spring 
is ½kxi

2. The total force that the springs exert on the bar is kΣinixi and the total potential energy of the 
system is ½kΣinixi

2 (where ni is the number of springs having their endpoint at distance xi from the origin). 
Let x  been the mean distance of springs endpoints from the origin. Consider that in a previous state of the 
system all springs’ endpoints were at distance x from the origin and the attachment bar was at the origin 
(see figure 2 (A) below). In this state of the system the same force is exerted to the bar, kΣinixi= kΣini x . In 
this state the total potential energy of the system is ½kΣini x 2 . Therefore Edisp=½kΣinixi

2 -½kΣini x 2 is the 
energy necessary for dispersing the springs’ endpoints from x  to the positions xi, with the attachment bar 
being at O; this energy is also equal to ½ kΣi nis2, (where s2 is the variance of the distances of the springs 
end points from the origin at the final state). Thus s2 is proportional to the energy necessary for dispersing 
the springs’ endpoints from x  to the positions xi. More precisely, ½ks2 is the mean dispersion energy per 
spring.  
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Figure 2 

If initially the attachment bar is at x and all endpoints are also at x , both the force exerted to the bar and 
the potential energy of the system is 0 (figure 2 (A') above). If after that, the attachment bar remains at 
x but springs’ end points are dispersed to the positions xi , so that ni is conserved as previously, (see 
figuren 2 (B') above) then: (a) The total force exerted on the bar is kΣi ni(xi – x )=0, which explains that x  
is the equilibration position of the bar. (This constitutes a very clear interpretation of the mean as 
equilibrium position.) (b) The potential energy of the system is ½kΣini(xi – x )2. Since the initial potential 
energy of the system is zero, this is also the energy necessary for dispersing the springs’ endpoints from 
the mean position x  to the final positions xi, when the attachment bar remains to x . This energy is also 
equal to ½ kΣi nis2.   
So the variance (s2) expresses (is proportional to) the energy necessary for dispersing the springs endpoints 
from the mean position to their final positions, whether the attachment bar remains at the origin, or at the 
mean position.  In the context of this model too, variance has a clear meaning and it appears natural to use 
it as a dispersion measure; since it expresses (is proportional to) the energy necessary for realizing the 
dispersion phenomenon examined. 

In experimental introductory teachings of statistics (that followed those mentioned in section 5) that we 
realized with students of the department of education, we have used not only situations examples related 
to social phenomena, but also examples referring to physical models for interpreting variance (Tzanakis & 
Kourkoulos 2006, Kourkoulos et al 2006, Kourkoulos 2008). We have used mainly models (B) and (C), 
because: (i) students were taught the physical concepts involved in these models, both, in high school and 
university courses of elementary physics, (ii) moreover, students have a significant informal background 
of basic concepts involved in these models (velocities, forces, energy) 48.  
Using both models in the teaching activities, combined with reference to the relevant physical phenomena 
and the related historical modelisation in physics, created a strong conceptual image to the students, 
namely, that the variance expresses the dispersion energy in a variety of fundamental physical phenomena. 
This image helped students significantly to acquire a first understanding of the meaning of variance and 
accept its legitimacy as a basic dispersion parameter. Furthermore, these models permit to conceive 

                                                 
48 Model (A) involves inertia and/or angular momentum for interpreting variance, which were concepts less familiar 
to our students. So, model (A) was used for interpreting the mean as an equilibrium center, that do not involve these 
concepts, and only general reference was given concerning the interpretation of variance in the context of this model. 
However this reference functioned toward enhancing students’ idea (mainly created in relation to the use of models 
B and C) that the variance has a deep physical meaning and it is the natural measure of fundamental physical 
dispersion phenomena. 
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variance as equivalent to a mean energy, hence, to endow it with basic properties of energy. This offers 
important interpretative and explanatory elements on the properties of variance and on related aggregates, 
importantly facilitating their understanding and helping our students to use them with ease49.  

Moreover, the use of these models facilitated importantly students’ acceptance of variance as a basic 
dispersion parameter in general, including its use in social phenomena, in which contextualizing the 
variance is unclear, or even problematic (Kourkoulos et al 2006). This was a significant difference 
compared to our previous experimental teaching work (section 5), in which, besides the pure numerical 
examples, only situations examples related to social phenomena were used; this was the main reason for 
which these students faced important epistemological obstacles to understand and accept the variance as a 
dispersion parameter. 

Final Remarks 
The didactical considerations of historical elements of statistics presented in this paper underlined some 
important students’ difficulties, to which usual introductory teaching pay little attention concerning the 
understanding of variance; also it helped in better understanding the depth of students’ difficulties on this 
issue. Furthermore, these considerations, combined with elements on students’ behavior, permitted to 
identify elements that are important to enrich introductory teaching of the subject, in particular concerning 
the characteristics of the set of situations’ examples used in this teaching. Additionally, they permitted to 
identify approaches and didactical activities that may be fruitful for the introductory teaching of variance: 
(i) The introductory teaching approach mentioned in p.26 §C is not yet investigated empirically; in our 
opinion such an investigation is an interesting further research work (ii) The didactical use of physical 
models (in particular, models B & C in section 6) were investigated in our first experimental teaching 
works and the results were promising. Further research work is needed for investigating the didactical use 
of other such models, and in particular of model A (section 6). (iii) With adequate adaptation, the 
aforementioned physicals models can be used fruitfully in introductory teaching of other important 
statistical concepts (e.g. extending models A & C in two dimensions permits to use them in an 
introductory teaching of the Method of Least Squares; see also Kourkoulos Tzanakis 2007; or, by 
enriching all three models with adequate random aspects of the phenomena involved, it is possible to use 
them in an introductory teaching of the sum of random variables and of the normal distribution). 
Exploring the didactical potential of the models concerning the teaching of these concepts is an appealing 
research perspective. 
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49For example: As we have seen, the basic property of variance, ( - )2x x = x2 - x 2 , has a clear meaning in the 
context of both models, moreover model (C) permits to explain (prove) this property by simple energy consideration 
and without other algebraic calculations except simple additions and subtractions of equations expressing the energy 
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