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ABSTRACT 
The so-called rigorization of Analysis in the 19th century is a standard topic in the history of mathematics, 
and has indeed provided material for didactical research works centred either on notions (e.g. limit, 
continuity) or on shifts in levels of abstraction (Advanced Mathematical Thinking). For four years, members 
of the “history of mathematics” group of the French IREM network endeavoured to establish new 
connections between historical and didactical questions. For the Paris group, the starting point was the 
identification of four viewpoints on functions : point-wise, infinitesimal, local and global. We gathered 
historical material – sometimes standard, sometimes less well-known – showing typical interactions between 
these viewpoints at different stages of the rigorization process. We also tried to identify the contexts in 
which these viewpoints first emerged, then were explicitly differentiated one from the other. We eventually 
devised two epistemological models – the “world of quantity” and the “world of sets” –  in order to describe 
two distinct forms of “functional thinking”. These high-level descriptive tools helped us gain new insights 
into didactical questions relevant for the teaching of Analysis at elementary or advanced level. After a short 
case-study, we will present the main features of the epistemological models. We shall eventually consider 
more general teaching perspectives. 

Introduction 

From 2002 to 2006, the “history of mathematics” group of Paris 7 IREM1 contributed to a 
research project funded by the Institut National de la Recherche Pédagogique (INRP). We 
chose to work on the multiplicity of viewpoints on functions. In spite of the fact that some 
didactical and some historical research work was available on this topic, we felt the 
relevant connections still needed to be pointed to and explored. We also made use of fresh 
historical research work, namely R. Chorlay’s doctoral dissertation on the emergence of 
the concepts of “local” and “global” in mathematics [Chorlay 2007(b)]. 

We borrowed from didactical works the notion of viewpoint (as opposed to 
theoretical frame and semiotic register [DIDIREM 2002]) and the distinction between four 
viewpoints in mathematical Analysis : point-wise, infinitesimal, local and global. 
Didactical work focused either on issues of cognitive flexibility (versatility) – the ability 
to change viewpoints, frames or semiotic registers in problem-solving – and its growing 
importance in higher education (Advances Mathematical Thinking), or on curricular 
discontinuities : a point-wise / global dialectic when the concept of function is first 
encountered, then the infinitesimal and local viewpoints come into play with calculus, 
then an all-encompassing abstract theoretical frame in higher education. We focused our 
more historical investigation on a series of hot spots in which the four viewpoints interact 
and, eventually, were made explicit in the 19th century : proofs of the mean value theorem 
; proofs of the link between the sign of f’ and the variations of f ; differentiation of the 
three notions of maximum, local maximum and upper bound ; emergence of the domain 

                                                           
1 IREM : Institut de Recherche sur l’Enseignement des Mathématiques. The e-mail address for the history of 
mathematics group is iremmath@yahoo.fr . The members of the Paris group were : Philippe Brin, Renaud 
Chorlay and Anne Michel-Pajus. 
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concept. From an curricular viewpoint, these topics cover material that students study 
from the beginning of high-school (maximum) all the way to undergraduate college 
Analysis. 

In this talk, we shall present some of the results of this investigation. After a general 
and a-historical introduction of the four viewpoints we will briefly present a short case-
study. We will then introduce a more general explanatory framework, distinguishing 
between a “world of quantity” and a “world of sets”. We will eventually outline didactical 
perspectives. 

1. The interplay between four viewpoints 
Let us give a few examples in order to illustrate the intricacy of the interplay between 

the four viewpoints in rather simple statements in function theory. Let’s first consider 
“function f is positive in 2”, the property it states is clearly point-wise. Things get more 
tricky with “function f is differentiable in 2” : here stated an infinitesimal property, which  
is also a local property of function f ; in addition, from a purely syntactical viewpoint, the 
statement looks perfectly point wise (“when x = 2”). Now “function f has a local (or 
relative) maximum when x = 2” is of a local nature, yet stated in a point-wise fashion, and 
often (but not necessarily, since the property if perfectly well defined for non-
differentiable functions) related to the infinitesimal behaviour of the function. If one is to 
give an example of a global property, “function f is bounded on [0,1] ” can do : the fact 
that the property if global is reflected in the fact that a domain relative to which the 
property holds appears explicitly in the statement (though is could be left implicit if a 
domain had been set once and for all). This domain-component of the statement helps 
differentiate global statements from the three other kinds of statements, in which the 
domain is usually left implicit. It should be noted straight away that, in this context, the 
term “viewpoint” doesn’t primarily denote a subjective property : in spite of the fact that 
the word “viewpoint” places the emphasis on cognitive processes, our four viewpoints 
refer to mathematical properties of mathematical statements and objects. 

The basic element is the fact that, to say if roughly, functions are objects of a 
relational nature, they “do something somewhere”. The syntactic structures which reflects 
this relational nature is  

Function f is [property] on [domain], 
a syntactic structure which (French) students are required to use systematically as from 
their first encounter with the function concept (at age 15). One could consider 
characterising the four viewpoints by a classifying domain-types : the property is point-
wise if it can be defined on a single-point domain, it is local if its proper definition 
requires neighbourhoods of a point. It is hard to go much further in this direction, for two 
essential reasons. The first one is specific to the infinitesimal level : it can not be 
characterised through a specific domain type, unless one introduces tools of unreasonable 
sophistication such as tangent spaces (if only the first order is concerned) or “infinitesimal 
neighbourhoods” of the kind differential geometry or modern algebraic geometry 
consider. The other reason is specific to the dialectic between local and global. A property 
is not global because it deals with a certain type of domain, it is global because the domain 
involved plays a specific role in the statement of the property. This was explicitly 
remarked by the first (at least to our knowledge) mathematician who tried to explain the 
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meaning of “local” and “global” in a mathematical treatise, in 1901. In the article on the 
theory of functions of complex variables which he write for Felix Klein’s Encyclopaedia 
of mathematics, American mathematician Willian Fogg Osgood gave the following 
criterion (we paraphrase the German original) : in function theory, the behaviour of a 
function is local if it refers to the neighbourhood of a point (or a subset), it is global if it 
refers to a domain which had been set right from the start, as opposed to domains whose 
extent is determined afterwards to fit the requirements of the problem [Osgood 1901 p.12]. 
The wording may, at first, seem a little obscure, but it stresses the fact that what matters is 
the role that domains play in the syntactic structure of the statement. What Osgood had in 
mind was the difference between a local and a global inversion theorem : in the global 
theorem, the conclusion holds for the very domain which had been set at the start; in the 
local case, the conclusion holds for some domain which is usually a sub-domain of the 
domain we started with. A more elementary example can be found in the distinction 
between a global maximum (a maximum over the whole domain you started with) and a 
local maximum (for which some unspecified yet specifiable domain is referred to). This 
distinction between “given domains” and “specifiable domains”, or, to put it differently, 
between “domains given right from the start” and “domains determined afterwards” is 
reflected in the order of quantifiers in the formal statement. Unfortunately, the 
illuminating Osgood distinction doesn’t say it all, at least in the local case. The global 
nature of a property may be completely characterised by the role of the domain, but it is 
not so for local properties : a neighbourhood is also a type of domain ; the local / global 
dialectics may be captured on the syntactic level, but the local part has deeper, non 
syntactic, topological roots. 
 

It seems there is no easy way out, yet our job is to design ways in for students, 
whether at high-school or university level. Of course, one could argue that these 
intricacies are to be avoided completely. We think, and there is empirical evidence to 
support this claim, that complete avoidance of these problems has a high cost in the long 
term in terms of cognitive flexibility (in problem solving) and ability to adapt to evolving 
theoretical frameworks ; we think some degree of awareness of this interplay is necessary 
for students to be able to do more than routine calculation in Analysis, and that teachers 
and those who train them cannot shun the topic altogether.  

Before reflecting on two historical case-studies, let us try to show how reasonable 
classroom work could help raise awareness. We will consider three couples of statements ; 
in each case, students could be asked if they are true or false ; in the latter case, they could 
be required to exhibit (graphically, for instance) some counter-example.  

Statement 1 : if f is continuous in 2 and positive in 2, then f is positive in the 
neighborhood of 2. 
Statement 2 : if f is continuous in 2 and positive in 2, then f is positive in 2,00001. 

A graphical counter-example to statement 2 should help point to the fact that no given size 
can be assigned to the domain over which the conclusion is valid, in spite of the fact that 
there is such a domain. According to the teacher’s goal for the discussion, statement 1 
could either be considered to be the right one (as opposed to false statement 2), or too 
vague to be the right one. The first statement could then be amended by introducing “on a 
neighbourhood of 2” (in which sentence “neighbourhood” is a definable domain type and 
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not only a metaphor from daily life) or quantified statements such as “one can find a 
positive number A such that f is positive of ]2-A , 2+A[“.  
 

Statement 3 : if f(2) = g(2) then f’(2) = g’(2) 
Statement 4 : if f’(2) = g’(2) then f(2) = g(2) 

Both statements are false and are classical mistakes, but they point to two different kinds 
of errors. If one tries to characterise these errors, the first one comes from an improper 
understanding of the relative scopes of the hypothesis (which is point-wise) and the 
conclusion (which is infinitesimal, thus local) ; the second one can be ascribed to the 
intrinsic loss of information that derivation entails, a loss of information that student often 
fail to see in spite of the fact that they learn that a primitive (over an interval) of a 
continuous function is given up to an additive constant. Whether the explicit wording of 
the reasons for which the statements are false should be a goal for classroom work is left 
to the teacher’s choice. For instance, it could be considered irrelevant in high-school but 
highly relevant at the beginning of university Calculus or in a teacher training session. In 
any case, high school students should be able to identify these statements as false, and 
draw counter-examples. 
 

Statement 5 : a continuous function is bounded. 
Statement 6 : an everywhere locally increasing function is an increasing function. 

Both statement deal with passage from local hypotheses (at every point though) to global 
conclusions. They should help point to the fact that, in order for global conclusions to 
hold, some knowledge about the nature of the domain is required. For instance, the first 
statement is valid if the domain is a closed and bounded (i.e. compact) interval, and 
student should be able to come up with counter-examples, even on bounded intervals 
(consider for example the tangent function tan on ]-π/2 , π/2[). As for statement 6, it is 
valid for intervals (for reasons of connectedness) but not for disconnected domains, as       
–1/x on R\{0} clearly shows. Both can help stress the importance of the domain part in the 
“function f is [property] on [domain]” structure, a part whose importance usually fails to 
strike students at any level of the educational system. 

 
2. A case-study: sign of f’ and variations of f according to Cauchy. 
We conducted a few case-studies, some of which we will leave aside here – for 

instance the study of the history of the implicit function theorem [Chorlay 2003], or that 
on the evolution of the meaning of “maximum” [Chorlay 2007(b)] We will only present 
some elements from one case-study, on the theorem linking the sign of the derivative and 
the variations of the primitive.  

This theorem is one of the first ones that students encounter in Calculus and, in 
(French) high-schools, it tends to become the main application of the notion of derivative 
(approximation aspects play a lesser role in the current curriculum). Heuristic arguments 
for this theorem are given at high-school level, but no proof ; the proof that has become 
standard since the late 19th century (which depends on the mean value theorem, whose 
proof, in turn, depends on a maximum arguments which depends on topological properties 
of R) is usually given at the very beginning of College Calculus, and is one of the first 
occasions to experience the wealth of links between the four viewpoints. As far as History 
is concerned, we studied the historical emergence of this proof-scheme in the works of 
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Bonnet, Serret, Dini and Jordan, to name a few. We also studied a former generation of 
proofs, namely those of Ampère and Lagrange. 

Yet another proof-scheme can be found in Cauchy’s 1823 treatise on differential 
calculus. Here is a (crude) translation from the French : 

“Problem. Assuming that function y = f(x) is continuous relative to x in the 
neighbourhood of specific value x = x0, one asks whether the function increases or 
decreases as from this value, as the variable itself is made to increase or decrease. 
Solution. Let Δx, Δy denote the infinitely small and simultaneous increments of 
variables x and y. The Δy/Δx ratio has limit dy/dx = y’. It has to be inferred that, for 
very small numerical values of Δx and for a specific value x0 of variable x, ratio 
Δy/Δx is positive if the corresponding value of y’ is positive and finite. […] 
This being settled, let’s assume function y = f(x) remains continuous between two 
given limits x = x0 and x = X. If variable x is made to increase by imperceptible 
degrees from the first limit to the second one, function f shall increase every time 
its derivative, while being finite, has a positive value.” [Cauchy p.37] 

The proof architecture is quite clear : the behaviour of the function is studied in the 
neighbourhood of a given point (and Cauchy’s inference is correct), then the conclusion is 
extended to intervals of continuity. A few things are worth stressing.  
First, what Cauchy proves in the first part of the proof is not that the function is locally 

increasing, as counter-example 
x

xx 1sin10 2+  shows when x = 0 : the derivative in x = 0 is 

positive, yet the function is monotonous in no interval around 0. Of course Cauchy never 
claimed he had proved such a thing, but this way of reading it is naturally induced by our 
definition of increasing and decreasing functions.  

By the way, and this is the second point that is worth stressing, in no part of 
Cauchy’s treatises does one find a definition for increasing functions, in sharp contrast to 
current curricula which (in France) include a definition of what it is for a function to 
increase : a function, defined on a domain D, is an increasing function if, whenever a and 
b are any two elements of D such that a ≤ b, then f(a) ≤ f(b) ; increasing functions are 
“order preserving” functions, a notion in which only the point-wise and the global 
viewpoints are involved, but which requires arbitrary pairs of points to be considered. The 
latter definition is mathematically elementary, but proves for most students difficult. More 
often than not, this definition is not included in the concept image of increasing functions, 
a concept image which is sufficient to tell increasing functions from decreasing functions 
when a graph or a table is exhibited. In his proof, Cauchy doesn’t rely on this (or any) 
definition, but rather on the following cognitive root : a function is increasing for a 
specific value x = x0 of the variable if sufficiently small increments Δy and Δx have same 
signs; a cognitive root whose embodied nature is striking. The formal definition which one 
can draw from this cognitive root may be less easy to handle than the order-preservation 
one, but the link between the two notions may be worth eliciting. Field-work on this topic 
is currently being conducted with high-school students (age 16).  

The third point that should be stressed is the role of the domain. In the current 
curriculum, the statement of the theorem goes : “if function f is defined and differentiable 
on an interval I, and if its derivative is positive on I, then f is an increasing function on I”; 
the nature of the domain is an essential part of the statement (for the theorem is false for 
non-connected domains) but usually overlooked by students. Things are quite different in 
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Cauchy. First, the pre-definition cognitive root on which he relies implicitly entails 
connectedness of the domains over which the final conclusion can hold. Second, the fact 
that the conclusion holds for intervals is not entirely captured by the conjuring up of 
“limits” x0 and X. One must recall that Cauchy’s approach of continuity is not entirely 
ours. For instance, we teach students that the reciprocal function 1/x is defined and 
continuous on R* ; saying that it is discontinuous in 0 is just a common mistake : this 
function has no property at all in 0, since it lies outside the definition domain. In Cauchy’s 
treatises the notion of domain of definition never appears, and the behaviour of the 
reciprocal function in 0 is exactly what he calls “being discontinuous”. In the proof above, 
the connectedness of the domain on which the conclusion holds is partly hidden (for us) 
behind the continuity hypotheses “ let’s assume function y = f(x) remains continuous 
between two given limits x = x0 and x = X”. 
 

3 Ways of world-making : the case of functions 
The case-studies, of which only one is sketched above, helped us characterise different 

ways of “working with and speaking about” functions, different ways of (function) world-
making. We shall sketch the outline of two such ways of world-making, the “world of 
quantity”(WOQ) and the “world of sets” (WOS). One of the goals is to get a positive grasp 
of the pre-Weierstrass framework. By “positive” we do not mean a comparison of the 
respective values of both frameworks ; we mean to provide a description of what it does 
and how it is structured which doesn’t rely entirely on negative descriptive elements : lists 
of shortcomings, of implicit assumptions, forms of syntactic vagueness etc. In short, the 
“world of quantity” is not only something that fails to be the “world of sets”. 

A first feature of the world of quantity (or “world of magnitude”) is what we call the 
universally local approach : everything is known about a function when its behaviour is 
known everywhere (that is, for each and every specific value of the variable). In the WOS, 
the point-wise viewpoint is the fundamental one, the starting point : for a specific value of 
the variable, the function has a value. In  the WOQ a function has a behaviour and not 
only a value. A striking example is that in the 19th century functions do note take on value 
0, they vanish. The fundamental viewpoint is not the point-wise one, it is a mixture of 
local and infinitesimal viewpoints ; what is described is not only a value but an event : 
functions do something / something happens to them. In the WOQ, mathematical 
statements and proofs are written in what we called the narrative style, as opposed to the 
static, explicitly quantified Weierstrassian style.  

Three things should be emphasised in this regard. First, this notion of behaviour has a 
formal equivalent in the WOS, if one uses the (somewhat) sophisticated notion of function 
germ ; the notion of germs-ring and of quotient rings can even enable us to state 
infinitesimal properties in a clean-cut, set-theoretic fashion. Second, in the universally 
local approach, local and infinitesimal properties are not distinguished. This has deep 
historical reasons, which one of us tried to study in some detail [Chorlay 2007(b) chapter 
6]. Third, in the universally local approach, some global aspects elude grasp since the 
reference to all points or all values is of a distributive nature : in this context, an important 
class of global properties, namely uniform properties (such as uniform continuity for a 
function or uniform convergence for a sequence of functions) seem to be out of reach. In 
this respect, the advent of the WOS in the work of Weierstrass has (at least) three related 
components : (1) considering the purely point-wise viewpoint to be the most fundamental 
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one (since it is the only one fitted for “arbitrary” functions), (2) distinguishing between 
point-wise and uniform properties (3) distinguishing between “infinitely near points” 
(infinitesimal neighbourhood) and “sufficiently near points” (topological neighbourhood). 
In this respect, the systematic use of explicit quantifiers appears as a tool, an essential tool 
indeed, but a tool nonetheless.  

In defence of the WOQ, it can be argued that in expresses global properties rather 
efficiently in terms of systems of singularities, an epistemic scheme which proved highly 
seminal in the hands of Riemann and Poincaré ; it lead to (algebraic) topology and to the 
qualitative theory of differential equations. In this respect, Riemann is the perfect example 
of the versatile thinker, switching between WOQ and proto-WOS in his works in complex 
or real function theory (respectively).  

To contrast sharply the WOQ against the WOS, one can use the purely set-theoretic 
description of a function as a map between sets : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this formal scheme, two types of “objects” come into play : sets on the one hand – the 
domain of definition E and the target set F –, whose explicit statement is mandatory ; 
another object, the map, which is of a second-order, relational nature : the map is the set of 
arrows (i.e. a part of the cartesian product E×F). At this level of generality, the only 
relevant viewpoints are point-wise and global. This system of arrows may be arbitrary up 
to a certain point, and sets E and F play asymmetrical roles : every element of E has to 
have one (universality) and only one (univocity) counterpart in F, while some elements of 
F may have no counterpart (i.e. the image-set may not coincide with the target set) or 
more than one counterpart in E. In the WOS, a function is just a map between number 
sets. Many of these elementary but structural features of the WOS are in sharp contrast to 
the WOQ : in the WOQ no statement of sets is necessary and the roles of what could be 
considered as definition and target sets are completely symmetrical, in particular since 
many-valued functions are the rule. If today’s functions are just special maps, the multi-
valued function of the 19th century can be seen, in retrospect, as general relations whose 
maximal domain is to be determined. 
 

4 From historical research to didactic engineering and research in didactics 
We mentioned in the first part of this paper various statements (1-6) which can provide 

starting points for the designing of classroom sessions, whether in secondary or higher 
education : the exhibition of counter-examples may be adequate at high-school level ; in 
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higher education, discussion of those statements could trigger the search for precise 
definitions and proof-ideas. They could also help show students how to manage proof-
tasks when no formula is given for the functions which are being studied : this new type of 
task is quite specific to higher education (at least in France) and proves quite unsettling for 
most students. From a research viewpoint, we touch on questions which have been studied 
from a purely didactical perspective, by Aline Robert for instance [Baron & Robert 1993] 
(see also [Praslon 1994]). Adjective such as “local” or “global” belong to what A. Robert 
calls the meta-level : they’re instances of a form of mathematical knowledge that say 
something about mathematics ; they help sort mathematical statements and definitions in 
high-level categories ; they enable you to “find your way around” in an ever-growing, ever 
more complex mathematical environment. This knowledge about mathematics helps you 
spot potential difficulties (e.g. “in this problem we are to go from local to global, I know 
this is usually quite tricky”), identify the right theoretical tools (e.g. to choose between 
Taylor-Lagrange and Taylor-Mac-Laurin formulae, that is between a global and an 
infinitesimal formula) or conjure up problems of a similar kind whose solution you 
remember. Whether this meta-level knowledge is to be made explicit for the students, or 
even taught as such, is a debated issue. 

We mentioned in part 2 of the essay how we found some classical notions from the 
psychology of mathematical learning – such as that of cognitive root, or the difference 
between concept image and concept definition – be helpful to link historical work and 
teaching issues. As far as the notion of functional variation is concerned we decided to 
venture in the world of didactic engineering and field-work is under way. 

The distinction between two formal models, WOQ and WOS, helped us point to a 
general problem in the current introduction of the function concept. In France, students 
encounter from the very beginning (age 15) the abstract notion of “arbitrary function on a 
given domain of definition”. This notion is a mixture of elements which, as far as History 
is concerned, emerged in rather distinct contexts. On the one hand, the notion of arbitrary 
function emerged in the debate on the foundations of real Analysis ; no natural domain 
can be ascribed to an arbitrary function ; domain restrictions and extensions are 
completely trivial in this context. On the other hand, questions about domains emerged in 
the case of highly non-arbitrary functions ; for instance, to some convergent power-series 
(usually in a complex variable), one can assign two natural domains : its region of 
convergence, and the domain of holomorphy of the unique holomorphic functions which 
is represents (domains of meromorphy can also be considered). More generally, questions 
of domain extension become relevant only when functions with specific properties are 
concerned. In fact, empirical work would certainly show that this “arbitrary function on a 
given domain of definition” is usually not included in the function concept-image in high-
school, partly for ecological reasons but maybe also for the reason we point to here. 

Finally, the historical perspective may help to guide didactical choices, in particular 
by telling apart more clearly (mathematical) necessity from convention. “Elementary” and 
seemingly “natural” – mathematically natural, not psychologically natural – notions such 
as those of function (as arbitrary, one valued correspondence between sets), domain of 
definition, maximum etc. are partly conventional ; which by no means entails that they are 
arbitrary ! They appear to us as “elementary” and “natural” because mathematicians left us 
a body of mathematics in which massive conceptual restructuring had taken place, 
especially in the 19th century. It is not mathematically necessary to assume that a function 
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is one-valued ; for rigorous mathematics to be written, it is not necessary that domains of 
definitions be stated from the outset : choosing between either conventions will change the 
priority between notions, the syntactic rules for writing rigorous mathematics, alter the 
meaning of a theorem. By their very nature, such conventional parts of our function-world 
cannot be expected to emerge from classroom work as the best solution to a well-designed 
problem ; there lies an intrinsic limit for didactic engineering. Conventions are neither true 
or false ; the shift of conventions is a slow and high-level process in which 
mathematicians react to the global state of mathematics and not to a specific problem.  
 

Conclusion 
By way of conclusion, we would like to stress the interest of a macro-historical 

approach which aims at identifying ideal and coherent “worlds” such as the world of 
quantity and the world of sets. This is neither historical work in the strict sense – in terms 
of the standards of the community of historians of mathematics – nor directly didactical 
work, but we think it helps build bridges without resorting to dubious “ontogeny parallels 
phylogeny” arguments. In particular, the classical Bachelard-Piaget notion of obstacle can 
be interpreted in a less teleological way (“as mathematics developed, mathematicians 
overcame obstacles which students are, in turn, faced with …”). The issue of the 
multiplicity of coherent worlds – none of them being the right one (of which all others are 
superseded archaic forms) – helps us to see obstacles as translation problems that are 
bound to come up when changing worlds. Such translations are difficult for at least two 
different reasons. First, in such a translation task both semiotic and conceptual aspects are 
deeply interconnected ; second, because of the large scale coherence of such “worlds”, 
there is no such thing as a strictly autonomous, purely local move. This type of history-
based investigation should throw light on both versatility issues and long term curricular 
discontinuity problems. 
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