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Abstract: It is a strange paradox that calculus and linear algebra recently have been 
reacquainted with inspirations in science and industry; yet trigonometry — which owes 
its very existence to outside needs — remains virtually untouched. It was born in 
Hipparchus’s fusion of astronomical models with Babylonian calculation, forming the 
first truly exact science. It was rejuvenated with Muslim requirements to determine the 
direction of Mecca; it flourished with the beginning of European ocean-going navigation. 
Although trigonometry has a colorful history crossing the boundaries of ancient Greece, 
medieval India and Islam, and the West, students usually remain unaware both of its 
cultural richness and of the reasons that these cultures cared. We shall explore examples 
of these little-known stories accessible to students learning the subject, providing 
interesting historical motives for some of the more peculiar twists and turns encountered 
in the classroom. 
 
 
 
Multicultural education has been a buzzword in pedagogical circles for some years now. 
The increasing need for intercultural dialogue in a very quickly developing global 
monoculture is altering how we teach our classes. In fact, the university I’m helping to 
build right now uses “International” as one of its three slogans, and we emphasize 
communication across all sorts of boundaries, disciplinary as well as cultural. Within the 
mathematics classroom, amazingly fast inroads have been made through 
ethnomathematics, especially at lower grade levels. Ethnomathematics has helped to 
increase our awareness of different ways to approach mathematics, which in turn leads us 
to work more effectively with students from backgrounds different than our own. It might 
even address the math gender gap. But by the time students reach high school age and 
take subjects that lead toward calculus, they’re learning European mathematics. And they 
need to, if they’re going to be able to function mathematically at the level that society 
expects of them. 
 
The unfortunate effect of this specialization is that cultural diversity starts to disappear as 
students begin to scale the peaks of analytic geometry. Efforts to battle the monoculture 
view of mathematics begin to suffer, in the face of the unity of the content that we must 
teach. Inevitably, ethnomathematics becomes marginalized as students learn how to 
factor polynomials, solve logarithmic equations, and apply trigonometric identities. It’s 
enough to make one question: is it even possible to permit different cultural approaches at 
this level, beyond the superficialities of textbook margins filled with biographies and 
photographs? Is it really true that culture affects not just elementary mathematics, but 
secondary as well, in some demonstrably teachable way? 
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Figure 1: Determining the Sun’s declination 
 

 
It is my contention that the answer to both of these questions is an emphatic “yes”. I have 
just completed a book on the early history of trigonometry, which moves from Greece to 
India, medieval Islam to the West. One of my most striking revelations during this project 
was how differently one can view a subject even as advanced in the high school 
curriculum as trigonometry, depending on who you are. Significant historical issues arise 
that nicely muddy the interpretive waters, raising questions that get at the heart of what 
we think mathematics is. What do we mean by the “birth of a mathematical subject”? 
How is that subject transformed when it transmits into a different society, with different 
values? Is mathematics a universal discipline, or are our subject boundaries simply a 
reflection of who we are? Is it even possible to talk about the discovery of a mathematical 
result? Each of these questions became all too real for me as I wrote my book, and I see 
no reason why they cannot be asked of high school students as they learn trigonometry. 
Indeed, for the sake of deeper awareness, it seems to me that they really should. 
 
The Birth of Trigonometry 
 
To bolster this claim, some examples would seem to be in order. Let’s begin at the 
beginning…whenever that is. The word “trigonometry”, or “triangle measurement”, was 
coined by Bartholomew Pitiscus in 1595, with his Trigonometriae. This was no more 
than a variant on the phrase in vogue in Renaissance Europe, the “science of triangles”, 
used for instance by Georg Rheticus (Nicolaus Copernicus’s student and champion), and 
the 15th-century astronomer Regiomontanus.  
 
But triangles are a relatively recent development in trigonometry. The transition toward 
triangles took place several centuries earlier, in the Muslim world around the late 10th and 
early 11th centuries, when that culture was at the peak of its scientific power. The sea  



 
 
 
 
 
 
 
 
 
 

Figure 2: Menelaus’s Theorem 
 
 
change took place within spherical astronomy, which had been the mother of invention 
for trigonometry since the beginning. Consider the following typical problem (Figure 1). 
The Sun is in a certain position at a certain time on the celestial sphere; the Earth is an 
infinitesimal dot at the center of this sphere. The Sun’s annual path through this sphere is 
called the ecliptic, and the Sun’s position is measured as the arc λ measured from the 
point � where the ecliptic and equator cross, the vernal equinox. These two great circles 
are inclined to each other at an angle 1

2
23ε ≈ ° . Given λ and ε, how far is the Sun 

removed from the equator — its declination δ? 
 
Rather than approaching the obvious triangle in the problem, the Muslims had inherited 
from the Greeks a solution using Menelaus’s Theorem (Figure 2). This apparently 
cumbersome theorem requires that one find a particular configuration of great circle arcs 
on one’s diagram, and apply one or the other of these two equalities of ratios of sines: 
 

 
 
 
 
 
 
Surprisingly, this configuration is actually easily found in most problems of spherical 
astronomy, if one is prepared to add some great circles to the diagram. In our case it can 
be found as NCBA��, from which application of the second identity gives rise to the 
solution sin sin sinδ λ ε= . 
 

But scientists like Abū’l-Wafā’ and Abū Na�r Man�ūr pulled Menelaus out of the 

foundation of the subject and made it a mere corollary, replacing it with what Abū Na�r 

called the “figure that frees” (Figure 3) — what we now call the Rule of Four Quantities 
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Figure 3: The Rule of Four Quantities 
 
 
which applied directly to the triangle without the need for extra construction. The 
difference here is simply one of convenience: the two solutions are qualitatively the 
same, even though one focuses on triangles and the other doesn’t. 
 
So triangles are not necessarily the essence of trigonometry; but then, what is? Before the 
“triangular revolution”, astronomers in Islam and India were using sines and tangents to 
solve many problems. But well before that the Greeks were clearly doing trigonometry, 
and they simply appealed to the chord function. The first extant trigonometric problem, 
due to Hipparchus of Rhodes, is to determine the eccentricity of the Sun’s orbit given the 
lengths of the seasons (Figure 4). The large circle is the Sun’s orbit around the Earth; but 
it was observed quite early that the seasons are of different lengths. Hipparchus’s solution 
was to displace the Earth E from the center of the Sun’s orbit Z; the goal is to determine 
the length EZ. The data are the lengths of the seasons, which can be transformed easily 

into the arcs �MΘ , �KΘ , �KL , and �LM . 
 

The first step is to use the known arcs to determine some other arcs, in particular, �YΘ . 
The key step comes next: Hipparchus uses his chord table to determine the length YTΘ  

from �YΘ . Half of this is TΘ , which is equal to XE. Applying a similar technique to 
�QPK  determines FK, which is equal to ZX. Finally, the Pythagorean Theorem applied at 

the middle of the diagram gives EZ. 
 
What makes this trigonometric? The need to convert arbitrary arcs in the diagram to 
lengths of line segments. This leads to a simple definition of the subject: the systematic 
ability to convert between arcs/angles and lengths.  
 
This ability came about with the fusion of Greek geometric models for celestial motions 
with the imported Babylonian base-60 number system, roughly in the 2nd century BC. 
The capacity afforded by efficient numeration transformed their astronomy, from the 
essentially qualitative model-building science of Eudoxus and Autolycus to the more 
familiar quantitative one of Hipparchus and Ptolemy. The explanatory models now 
became capable of predicting positions, not merely mimicking behaviour. In a sense, one 
might say grandly that trigonometry triggered the birth of the first truly exact science. 
 
But what of earlier claimed occurrences of trigonometry? Problems that require triangle 
measurement occur on the Egyptian Rhind papyrus, 1600 years earlier, involving the  
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Figure 4: Hipparchus’s determination of the Sun’s eccentricity 
 
 
measurements of the sides and slopes of pyramids. Another case is the infamous 
Babylonian tablet Plimpton 322, which contains trios of whole numbers that satisfy the 
Pythagorean Theorem — the so-called Pythagorean triples. When one considers how the 
ratios of the numbers in successive rows of this table change with respect to one another, 
it becomes tempting to think of the numbers as an attempt to measure ratios of sides in 
right-angled triangles. This interpretation, however, has been scorned by recent historians 
largely because there simply was no Babylonian conception of arcs or angles as later 
cultures understood them. So however one might describe what these very ancient people 
were doing, it shares little with what we, or even the ancient Greeks, were doing. 
 
And here lies a rather meaningful question that is worth addressing, even in the 
classroom. I’ve just excluded Egypt and Babylon from consideration as trigonometric 
forebears. But telling the continuous story from Hipparchus forward, through India and 
Islam, and into Renaissance Europe and beyond, forces me to include the work (say) of 
Leonhard Euler on the relation between exponentials, complex numbers, and 
trigonometric functions. Why should cos sinie iθ θ θ= +  be part of the story any more than 
the slopes of Egyptian pyramids? 
 
Here we run into trouble with the use of labels for the disciplines that we practice, that 
inevitably change gradually over time. My previous statements notwithstanding, the very 
business of carving up history with the tool of pre-programmed definitions seems faulty. 
It leads to the possibility of imposing modern views on our subject (as if that risk wasn’t 
present in almost everything we do in any case), without respecting changes in culture 
and attitude. It rigidifies the content, forcing us to stay within highway lines that do not 
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follow the river where it wants to go. In short, definitions increase the danger of a Whig 
approach to history, the royal road to “us” — it’s “presentism”. 
 
Cultural awareness, then, requires us to respect changing contexts and boundaries as we 
move from one society to another. This is part of a broader movement in the history of 
ideas known as “contextualism”: the rejection of the notion of an independently existing 
“perennial idea” altogether, in favour of the recovery of an original author’s intention 
through an appreciation of how language, schools of thought, and other influences shaped 
a unique instance of intellectual culture, not easily comparable to apparent occurrences of 
similar ideas elsewhere. The borders of a historical treatment, therefore, should respect 
narrative continuity more than the subject itself. So, I choose to disconnect Egyptian 
pyramids from Hipparchus, but not disconnect Hipparchus from Euler. cos sinie iθ θ θ= +  
is a far cry from Hipparchus’s solar model, but it is an elaboration 2000 years later of a 
conversation that began with an examination of the stars. 
 
This changing point of view may make it more of a challenge to use especially ancient 
history of mathematics in the classroom. The new sourcebook of non-Western 
mathematics edited by Victor Katz, for example, is strongly influenced by contextualism. 
It is more difficult to pick out an example of, say, Babylonian multiplication from this 
book to enhance your mathematical lesson than it was from its predecessors — because, 
to understand what’s presented, your students will need to grasp something of 
metrological systems in Mesopotamia, their accounting systems, their farming, and so on. 
It’s not a simple plug-in. But there is an incredible opportunity here as well, to break 
through today’s artificial disciplinary boundaries and teach an integrated unit that touches 
on history, weights and measures, and even agriculture. Treating the subject more 
honestly, while it causes extra hard work now, cannot help but provide valuable 
educational rewards. 
 
Transmission and Cultural Dissonance: The Example of Greece versus India 
 
This leads us directly to our most crucial question: how can cultural differences be shown 
to affect the mathematics beyond multiplication? One leading example that I’d like to 
dwell on for a few minutes is the transmission of trigonometry from Greece to India. 
Truth be told, we know little about trigonometry in the early stages of either culture. In 
Greece, the bulk of our knowledge comes from Claudius Ptolemy’s Almagest, his classic 
work on geocentric astronomy. At this time trigonometry was not its own subject, but 
simply the mathematical preliminaries to determining the positions of the planets in the 
night sky. So, to understand the origins of trigonometry you need to know some ancient 
astronomy, of which (luckily) we’ve already seen a taste. However, astronomy was 
hardly independent of mathematics: Ptolemy’s original title for the Almagest was the 
Mathematical Compilation.  
 
As “applied geometry”, the Almagest’s astronomy has a distinctly Euclidean feel. Its 
trigonometry contains some differences from our own (for instance, the use of the chord 
function rather than the sine, and a base circle radius of 60 rather than 1), but aside from 
these trivialities, the math is familiar. To construct a table of chords, Ptolemy begins with  



θθ CCrrdd  θθ  θθ SSiinn  θθ 

½½ ̊ ̊ 00;;3311,,2255    

11 ̊ ̊ 11;;22,,5500    

11½½ ̊ ̊ 11;;3344,,1155    

⋮⋮ ⋮⋮    

77½½ ̊ ̊ 77;;5500,,5544  33¾¾ ̊ ̊ 77;;5511 

⋮⋮ ⋮⋮      

1155 ̊ ̊ 1155;;3399,,4477  77½½ ̊ ̊ 1155;;4400 

⋮⋮ ⋮⋮  ⋮⋮ ⋮⋮ 

3300 ̊ ̊ 3311;;33,,3300  1155 ̊ ̊ 3311;;44 

⋮⋮ ⋮⋮  ⋮⋮ ⋮⋮ 

6600 ̊ ̊ 6600;;00,,00  3300 ̊ ̊ 6600;;00 

⋮⋮ ⋮⋮  ⋮⋮ ⋮⋮ 

9900 ̊ ̊ 8844;;5511,,1100  4455 ̊ ̊ 8844;;5511 

⋮⋮ ⋮⋮  ⋮⋮ ⋮⋮ 

112200 ̊ ̊ 110033;;5555,,2233  6600 ̊ ̊ 110033;;5555 

⋮⋮ ⋮⋮  ⋮⋮ ⋮⋮ 

115500 ̊ ̊ 111155;;5544,,4400  7755 ̊ ̊ 111155;;5555 

⋮⋮ ⋮⋮  ⋮⋮ ⋮⋮ 

118800 ̊ ̊ 112200;;00,,00  9900 ̊ ̊ 112200;;00 
 

Figure 5: Ptolemy’s chord table compared with Varāhamihira’s sine table 
 

 
chord values corresponding to the sine values that we start our students off with today: 
36°, 60°, 72°, and 90°. Next, he demonstrates chord identities equivalent to the modern 
sine addition, subtraction, and half-angle laws. With judicious use of these identities in 
combination with the known chords, it is possible to determine the chords of all arcs that 
are multiples of 3°. 
 
The remaining chord values, however, are inaccessible by the usual ruler and compass 
methods; to find the chord of 1o, for instance, would be equivalent to trisecting the angle. 
Ptolemy and his Muslim successors were forced into various uncomfortable, yet 
ingenious methods to approximate this elusive value. From it the rest of the chord table 
could be filled in. But this required a fundamental violation of geometric principles, a 
replacement of geometric purity with something as crude and unworthy as interpolation. 
This was so repugnant to at least one Arabic geometer, al-Samaw’al, that he actually 
restructured the circle to contain 480o rather than the usual 360o.  
 
The transition to India is not a simple story. It seems that Greek astronomy did find its 
way to India, but before Ptolemy. The earliest reliable Indian astronomical texts date  



θθ SSiinn  θθ 

33¾¾ ̊ ̊ 222255 
    

77½½ ̊ ̊ 444499 

⋮⋮ ⋮⋮ 

1155 ̊ ̊ 889900 

⋮⋮ ⋮⋮ 

3300 ̊ ̊ 11771199 

⋮⋮ ⋮⋮ 

4455 ̊ ̊ 22443311 

⋮⋮ ⋮⋮ 

6600 ̊ ̊ 22997788 

⋮⋮ ⋮⋮ 

7755 ̊ ̊ 33332211 

⋮⋮ ⋮⋮ 

9900 ̊ ̊ 33443388 
 

Figure 6: Āryabha‹a’s sine table 
 
 
from around the 5th century AD, and they contain what appear to be elaborations of the 
Greek epicyclic model of the motions of the planets, the division of the circle into 360o, 
and some other devices that appear to reflect Greek origins. But none of Ptolemy’s 
inventions — his equant point for planetary longitudes, his planetary latitude model, his 
handling of the celestial problem children Mercury and the Moon — are to be found. So, 
many scholars have attempted to find evidence for pre-Ptolemaic Greek astronomy in the 
earliest Indian documents. 
 
But this is a very difficult thing to do. Indian planetary models, while they share the 
epicyclic concept with the Greeks, do not employ it the same way. The Greeks did what 
we would do: assert a physical model that “saves the phenomena”, then work from the 
geometry to the predictions. Indian astronomy is much more concerned with the 
predictions, and less bothered about the physical reality of the geometry. The model does 
not attempt to explain the underlying physics; it is there to work more directly with 
prediction. Thus one finds for each planet a pair of epicycles representing two different 
phenomena without a geometric link, or even a clear position for the planet on the 
diagram. There is a transmission here, but the conversation changes qualitatively on a 
fundamental level. Can the same be said for its supporting mathematics, the 
trigonometry? 
 
In part, yes. The most obvious change is the transition from the chord function to the 
sine, but this makes surprisingly little difference, as witnessed by an early sine table by  



 
 
 
 
 
 
 
 
 

Figure 7: In Indian trigonometry, for small values of θ, Sinθ θ≈  

 
 
Varāhamihira (Figure 5). We see the same use of degrees, the same use of sexagesimal 
numeration, and the same base circle of 60 units. In fact, the table may as well have been 
rounded from Ptolemy. However, the more typical sine table represented by Āryabha‹a 
(Figure 6) is an entirely different matter. The most obvious difference is the base circle 
radius of 3438. This peculiar choice comes about by dividing the 360o of the circle into 
minutes of arc, and using each minute as the unit of length. This idea is foreign to the 
Almagest and any further developments, until radian measure was introduced much later 
in Europe. And, it solved Ptolemy’s fundamental problem: determining the geometrically 
inaccessible sin1° . In India this was easy: sines of small arcs are simply equal to the arcs 
themselves (Figure 7). 
 
The very idea of measuring inclinations by dividing an enclosing circle into one-minute 
units of length is foreign to us. But then again, so was the Greek approach: Ptolemy and 
friends did not use angles, but rather the arcs of circles. Even today, there are alternatives 
to what seem to us the obvious selection of angles to measure inclinations: Norman 
Wildberger, in his new book Divine Proportions: Rational Trigonometry to Universal 

Geometry, has replaced angles with what he calls “spread”; in Figure 8, the spread of 
lines 1l  and 2l  is measured as the ratio of the squares of the lengths of Q and R. This idea 

would simplify trigonometry considerably, but it will never catch on. For us, it’s just too 
strange. 
 
But the foreignness of India’s trigonometry goes well beyond this. Consider the method 
that Āryabha‹a used to calculate his sine table, in contrast to Ptolemy’s. The only textual 
evidence we have to reconstruct Āryabha‹a’s reasoning is this passage, which from a 
modern point of view can only be described charitably as “obscure”: 
 

When the second half [-chord] partitioned is less than the first half-chord, which is 
[approximately equated to] the [corresponding] arc, by a certain amount, the remaining 
[sine-differences] are less [than the previous ones] each by that amount of that divided by 
the first half-chord. 
 

Modern historians have found over 25 possible explanations of this passage; what we 

shall see here is one outlined by Āryabha‹a’s late successor Nīlakaṇ‹ha, around AD 1500. 
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Figure 8: Wildberger’s definition of “spread” 

 
 
Consider the first several values in an Indian-style Sine table (Figure 9); notice that since 
we’re measuring in degrees in this chart, the sines of these arcs are indeed very close to 
the arcs themselves (60 minutes each). Consider the first differences of these arcs, 
Delta(i); they change in a manner reminiscent of the cosine function. In fact, this is a 
reflection of the fact that the derivative of the sine function is the cosine. If we then 
consider the second differences (i.e., the differences of the differences), they are of 
course negative; but they grow in a fashion reminiscent of the growth of the original sines 
(since the second derivative of the sine is the negative sine). If we attempt to verify this 
by dividing through the second differences by the original sines, we see in the rightmost 
column of the table that we in fact arrive at a constant value of -0.00030461. 
 

What is this mysterious quantity? Nīlakaṇ‹ha, 1000 years after Āryabha‹a, shows that it is 

equal to [ ]2Crd(1) R  (where R is the radius of the base circle. By assuming that this 

column continues to be constant, Āryabha‹a is able to generate the next value of Sin(i) 
from the preceding ones, simply by working backward through the columns. Thus he can 
calculate an entire sine table, one entry at a time, if he knows the first value — which, of 
course, he does. 
 
The differences in the sensibilities between the Greek trigonometry represented by 
Ptolemy, and the Indian trigonometry represented by Āryabha‹a, are remarkable. In India 
we find a keen awareness of the successive differences between trigonometric table 
values, which led to this and many other insights — close to an understanding and 
manipulation of what we might call first- and higher-order derivatives. It took the 
Greek/Arabic/Western tradition 1400 years, until the work of François Viète, to 
rediscover it. In India this led eventually to iterative approaches to various problems, 
including some problems that could have been solved more simply by direct means. 
Conversely, we find in India a lack of concern for geometric precision and clarity: an 
absence of respect for the Euclidean dream, and even for direct solutions themselves.  
Indeed, the very notion of proof is missing from the work of Āryabha‹a and his 
colleagues. Thus while the content of the trigonometric conversation is related, the 
context imposes different goals, and hence different judgments on the texts. 
 



i Sin(i) Delta(i) Delta(i)-Delta(i-1) 
…divided by 

Sin(i) 

0 0      

1 59.99695387 59.99695387     

2 119.9756321 59.97867822 -0.018275653 -0.00030461 

3 179.9177646 59.94213248 -0.03654574 -0.00030461 

4 239.8050924 59.88732779 -0.054804694 -0.00030461 

5 299.6193732 59.81428083 -0.073046954 -0.00030461 

6 359.3423871 59.72301387 -0.091266964 -0.00030461 

7 418.9559417 59.6135547 -0.109459172 -0.00030461 

8 478.4418784 59.48593666 -0.127618038 -0.00030461 

9 537.782077 59.34019863 -0.145738031 -0.00030461 

10 596.958462 59.176385 -0.16381363 -0.00030461 

 

Figure 9: Indian sine table calculations 
 

 

 

Crossing Disciplinary Boundaries 

 
Indeed, if we consider the term “context” in a slightly different sense, we find another kind of 
transmission, one that never did occur in India but does happen with Ptolemy’s more direct 
descendants in Islam. Consider the following remarkable synthesis of spherical astronomy in 

Nīlakaṇ‹ha’s Tantrasaṅgraha, around AD 1500. It refers to the astronomical triangle, a figure for 
which each of its sides and two of its angles are important, named, astronomical quantities. In 
Figure 10, a is the Sun’s altitude above the horizon, δ is the Sun’s declination, and φ is the 
observer’s terrestrial latitude; meanwhile, the angle at Z is the Sun’s azimuth and the angle at N is 
the so-called hour-angle which tells the time of day. Like their plane counterparts, spherical 

triangles usually require knowledge of three elements to be solvable. This leads to 
5

10
3

 
= 

 
 

different possible combinations of knowns. Nīlakaṇ‹ha dispatches each of the 10 cases in turn, 
systematically, solving for the unknowns given values for the knowns. In fact, his solutions 
parallel what you might find in a modern textbook on spherical trigonometry. 
 
What Nīlakaṇ‹ha never does (and nor did any of his compatriots) is to abstract the mathematical 

theorem from the astronomical context. This raises a curious question: can Nīlakaṇ‹ha really be 
said to have solved the spherical triangle, as the textbooks do? This sort of situation happens time 
and again: for instance, al-Battānī, the 9th-century Muslim astronomer, is often given credit for 
the spherical Law of Cosines because he solved an astronomical problem in a manner 
mathematically equivalent to its use. But absent the apparently trivial process of abstraction from 

context, we must conclude that Nīlakaṇ‹ha and al-Battānī were not really proving, or even 
discovering, trigonometric theorems. The implications of their work differ from the obvious 
mathematical corollaries; successors picked up the crucial astronomical threads, but they did not 
state the general results and rebuild the mathematical foundations from them as we moderns 
might expect. In Islam the separation of the mathematics from the astronomy was to occur, but it 
did not start for another century and took more centuries to be realized in full. And incidentally,  



                               
 

Figure 10: The astronomical triangle 
 

 

there is a real interpretive danger here: simply by asserting that Nīlakaṇ‹ha and al-Battānī didn’t 
really demonstrate trigonometric theorems, we run the risk of implicitly devaluing their 
accomplishments, thereby allowing presentist values to skew our perspective. 
 
So, there are implied values that can be altered in transmission: both from one culture to another, 
and from one scientific discipline to another. These are often so subconscious that they can be 
overlooked, and without due diligence our unspoken points of view on these values can lead us to 
misjudging the accomplishments of the past. 
 
 
Chasing Elusive Theorems 

 
We appear to be heading towards a quandary: what, then, does it mean, precisely, to 

originate a theorem? What would Nīlakaṇ‹ha have to do before we can say that he solved 
the general spherical triangle? Clearly the theorem would need to be disentangled from 
its immediate scientific context, and either stated generally or have been capable of being 
transposed to different situations. But even this condition can be posed without fear only 
if Indian mathematics shares with us the same values with respect to clear, abstract 
mathematical statements, which seems unlikely. With fading hope, one might ask for the 
earliest proof. But there are countless examples of the nebulous and changing meanings 
of proof over the centuries. Would the 15th-century Indian derivations of Taylor series 
expansions of the sine and cosine, playing fast and loose as they do with infinitesimals, 
qualify? And what of results used heavily in pre-modern China, where the very idea of 
proof is alien to most mathematical practice? 
 
There is a flip side to this coin. A theorem that appears completely abstracted from 
physical context might also, by this abstraction, lose its significance. Consider Euclid’s 
Elements II.13, which states in no uncertain terms the planar Law of Cosines (Figure 11). 
But it did so almost two centuries before trigonometry was even conceived, and was used 
for geometric purposes rather than for mensuration. We appear to be in a bind: in order to 
determine what we mean by “the discovery of the Law of Cosines”, we cannot ask for the 
result to exist solely within some context, but also we cannot ask for the result to be  

Z

N

East

NorthSouth

e
q
u
a
to
r

90 -
o

φ

9
0
-ao

90
-o δ



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: The Law of Cosines in Euclid’s Elements 

 
 
abstracted from its context. It seems to me that we can judge its discovery only by its 
subsequent use and interaction with other theory. And this leads to the rather strange 
statement that the Law of Cosines was discovered not when it was first stated, but rather 
when someone first turned its attention away from pure geometry and toward arc and line 
measurement. Put starkly, precisely the same text in one context might qualify as a 
discovery, and in another it might not. The only alternative that I can see to this 
conclusion is simply to dismiss the issue of the discovery of theorems altogether, a rather 
drastic solution. 
 
There is yet more to the predicaments one encounters when tracing the history of 
theorems. Consider the following example, taken from 14th-century Venice, where 
trigonometric methods were first used for the purpose of seafaring. In order to restore the 
correct headings for vessels that had been forced off course, a number of navigators were 
equipped with small tables known as toleta de marteloio. Imagine a ship attempting to 
travel due east in Figure 12, but being forced to travel off course for some time. The ship 
must then determine a new heading in order to arrive safely at its destination. Among the 
quantities defined here are the alargar, the distance the ship is off course for every 100 
miles sailed; and the ritorno, the distance the ship needs to arrive at its destination for 
every 10 miles that it is off course. Each term in the table (Figure 13) corresponds to 
some multiple of a standard trigonometric function: for instance, the alargar is 100 times 
the sine, and the ritorno is 10 times the cosecant. 
 
Of course we have here the same contextual problems I raised before, but I’d like to 
focus our heading in a different direction. Consider the following typical problem 
described by Michael of Rhodes (Figure 14). A ship needs to travel 100 miles eastward  
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Figure 12: Definitions of terms in the marteloio 
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2 38 92 26 24 
3 55 83 18 15 
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5 83 55 12 66  11//22 
6 92 38 11 4 
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8 100 0 10 0 
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Figure 13: A typical toleta de marteloio 

 

 
 

                                  
 

Figure 14: A typical marteloio problem 
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from A to B, but is forced to travel an unknown distance AC in the direction 2α =  
quarters south of East (2/8 of a right angle). To correct its heading, it must travel in the 
direction 7β =  quarters north of East. How far did the ship travel from A to C? 

 
Michael’s solution takes two steps. First, he considers ABD∆ , and notes that AD is the 
alargar of β. This is a twist on the original meaning of alargar, to be sure: an abstraction 
of the geometric meaning from its original context. Incidentally, this gives us some 
reason to assert that the navigators really thought of the alargar as an independent 
function rather than solely as a distance off course. Now that AD is known, Michael turns 
to ACD∆  and finds that AC is equal to AD times the ritorno of α β+  (up to a couple of 

constants). In modern notation, 
 
                                                                                              . 
 
 Now the alargar is (more or less) the sine, and the ritorno is (more or less) the reciprocal 
of the sine. So, Michael’s solution is effectively the planar Law of Sines, applied to AB 
with C∠ , and AC with angle β.  
 
Or so the historical literature on this topic would have you believe. But this isn’t really a 
fair conclusion. In every similar instance, Michael again and again determines AD, before 
then proceeding to AC. So there is no direct awareness in Michael’s mind, as far as we 
can tell, about the ratios of sines and angles in the combined triangle ABC. He is capable 
of solving anything that the Law of Sines can solve, but the actual relationship is 
disguised by the intermediate step of calculating AD. 
 
Now imagine a plausible sequel to this episode, that Michael and his successors gradually 
over time turn this calculation into an algorithm. The intermediate calculation of AD 
gradually disappears into the formula, until finally all that remains is the calculation, 
identical in every appearance to the Law of Sines. In this imagined process, it seems to 
me that, if anything, knowledge has been lost: the original geometric content is blurred or 
forgotten. But what would appear in our hypothetical text might register to a reader as a 
gain: a rather clear, unambiguous statement of the Law of Sines. 
 
So, what precisely does it mean to know the Law of Sines? Is it the clear geometric 
statement that we see in modern textbooks? This strikes me as presentist. Is it a pattern of 
calculation that solves triangles accessible to the Law of Sines? Our hypothetical example 
seems to cast doubt that such a calculation really would signal sufficient awareness of the 
theorem. Is it simply a geometric demonstration of the result? This ignores the problem 
of the “intermediate step” that we’ve just seen. I don’t have an easy answer to this, and I 
doubt that there is an answer that would satisfy everyone in this room. We’re left here 
with an ambiguity that affects the history of mathematics at least as sharply as it does the 
history of other disciplines.  
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Conclusion 
 
I’ve burdened you with some weighty questions here: to what extent and in what ways 
does culture affect mathematics, at levels as high in the curriculum as trigonometry? How 
should one judge and respect the scientific context in which the mathematics emerged? Is 
there even such a thing as the discovery of a mathematical theorem? Questions such as 
these, I hope, will cause us to reflect on precisely what mathematics is. Is it a set of 
universal truths, or a societal construct of the mind, or somewhere in between? Of course, 
this latter query is another version of the old saw: is mathematics discovered in a Platonic 
world out there somewhere, or is it invented in an individual or group mind? 
 
Our answers to these questions obviously will impact the approach we take to 
mathematics education: for instance, should we take a traditional logical approach, or 
should we adopt social constructivist strategies? How do we rate algebraic performance 
and ability to achieve correct solutions versus explanatory clarity and group work? But 
I’d like to suggest a slightly different take on all of this: beyond using our answers to 
inform what we take to our students, we might want to consider taking the questions to 
them as well. 
 
Everyone has their pet peeve about student attitudes in their mathematics classes. Mine is 
that they see mathematics as an algorithmic game. To them it is a task to accomplish 
rather than a playground to meander through: where the primary mission is not to take 
away a lesson that will benefit them in the long term, but to survive with a decent grade 
in the short term, to climb to the next rung of the academic ladder. But how does this 
attitude arise? In order to increase examination performance, we strip away as much of 
the context as we can. You don’t need context to get the right answer. Show students how 
to play the game, and they’ll play it in exchange for good grades. Instead, I propose that 
we give our students the same hard questions that I’ve been raising with you. Have 
students debate whether mathematics really is different when practiced the Greek way or 
the Indian way. Have them struggle with the relation between mathematics and its 
scientific context. Have them wrestle with what it means to discover a theorem. The 
sooner that students realize that there are difficult interpretive questions also in 
mathematics, the sooner that they will begin to recognize that mathematics is an 
inextricable part of the intellectual development of our and other cultures — not a 
symbol-pushing game played on the sidelines of history. This sort of understanding leads 
to broader and more significant cross-disciplinary thinking, and just as importantly, it 
leads to de-mystification. Use deep questions to make mathematics more ambiguous, and 
paradoxically, the meaning and significance of mathematics will be made all the more 
clear. 
 
 


