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ABSTRACT 
This article presents the results of an investigation on the construction of knowledge from the 
socioepistemological approach.  We are particularly interested in the study of the processes present in the 
articulation of conceptual mathematics systems to what we have called processes of mathematical 
convention and articulation (Martínez-Sierra, 2003, 2005).  More specifically, the aim here is to present our 
advances in the quest to identify the present processes of mathematics convention of the articulation of the 
trigonometric functions (TF) to the corpus of Eulerian analysis.  We will also present the interpretations that 
said analysis has allowed us to make in order to become aware of the conceptual breaks in the scholastic 
construction of the trigonometric functions. 
 
Key words: Socioepistemology, knowledge production, mathematical convention, function, trigonometric 
functions. 

RESUMEN 
En el presente artículo se ofrecen resultados de una investigación sobre construcción del conocimiento desde 
la aproximación socioepistemológica. En particular estamos interesados en el estudio de los procesos 
presentes en la articulación de los sistemas conceptuales matemáticos a los que hemos llamado procesos de 
convención y articulación matemática (Martínez-Sierra, 2003, 2005). De manera más específica lo aquí 
escrito tiene por objetivo presentar los avances en nuestra búsqueda por identificar los procesos de 
convención matemática presentes de la articulación de las funciones trigonométricas (FT) al corpus del 
análisis euleriano y presentar las interpretaciones que tal análisis nos ha permitido para dar cuenta de las 
rupturas conceptuales presentes en su construcción escolar de las funciones trigonométricas.  
 
Palabras clave: Socioepistemología, construcción de conocimiento, convención matemática, función, 
funciones trigonométricas. 

1. Introduction 
One of the theses used to develop part of the investigations from the socioepistemologic 
perspective in Mathematics Education in Mexico (Cantoral and Farfán, 2003, 2004, 
Buendía and Cordero, 2005) is that which argues that mathematics teaching and learning 
processes are specific to the concept or conceptual mathematics system they are dealing 
with.  To this can be added the consideration that chunks of mathematical knowledge were 
not constructed to be the objects of teaching; “school mathematics” is qualitatively distinct 
from “mathematics”.  Aided by the above considerations investigations have been 
developed which offer explanations on the particularities, as far as their conceptual 
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construction, of transcendental logarithmic (Ferrari and Farfán, 2004), exponential 
(Lezama, 2005; Martínez-Sierra, 2002, 2003) and the trigonometric functions (Buendía 
and Cordero 2005; Montiel, 2005).  

In addition, in previous works (Martinez-Sierra, 2005) we have developed some 
theoric notions which have been useful, on one hand, in the explanation of some didactic 
phenomena and, on the other, in the interpretation of knowledge production processes.  In 
particular, on the knowledge production plane we have provided evidence that certain 
pieces of knowledge, which we have called mathematics conventions, can be understood 
as the product of a process of mathematical articulation or process of knowledge 
integration.  In this same way, on the plane of explanation of didactic phenomena, we 
have realized that some of the conceptual breaks at school have their origins in the 
disarticulation of a certain part of the corpus of scholastic mathematics (Martínez-Sierra, 
2005). 

More specifically, the aim here is to present our advances in the quest to identify the 
present processes of mathematics convention of the articulation of the trigonometric 
functions (TF) to the corpus of Eulerian analysis.  We will also present the interpretations 
that said analysis has allowed us to make in order to become aware of the conceptual 
breaks in the scholar construction of the trigonometric functions.  

2.  Socioepistemological approach in mathematics education  
Socioepistemology is a systemic approach which enables the phenomena of knowledge 
production and diffusion to be dealt with from a multiple perspective by incorporating the 
study of interactions between the epistemology of knowledge, its sociocultural dimension, 
the associated cognitive processes and the mechanisms of institutionalization through 
teaching1 (Cantoral and Farfán, 2004).  More accurately, within the socioepistemological 
theory in mathematics education at least four large interdependent dimensions are thought 
to condition/determine the construction and diffusion of mathematical knowledge:  the 
cognitive, didactic, epistemological and social dimensions.  The latter, in turn, 
conditions/determines the first three.  The didactic dimension attends to those 
circumstances typical of the functioning of different didactic systems and of teaching.  
The cognitive dimension concerns the circumstances relating to our mental functioning 
and activity.  The epistemological dimension deals with those circumstances inherent in 
the nature and meaning of mathematical knowledge.  The social dimension addresses the 
circumstances shaped by the social standards and evaluations of the knowledge and the 
way in which these influence the other dimensions.  In this sense, the practices of the 
craftsman, engineer, physician or, more broadly, of an epoch or a culture, are considered 
inseparable constituents of scholar knowledge.  
 

                                                 
1 “La socioépistémologie procède d’une approche systémique qui permet d’aborder les phénomènes de production et 
diffusion de la connaissance dans une perspective multiple, qui intègre l’étude des interactions entre l’épistémologie du 
savoir, sa dimension socioculturelle, les procédés cognitifs asocies et les mécanismes de l'institutionnalisation via 
l'enseignement” (Cantoral and Farfán 2004, p. 139). 
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3. The process of mathematical convention in the construction of theTF 
A process of mathematical convention may be understood as a consensus-seeking process 
within the community that works to give unity and coherence to a set of knowledge.  The 
production of consensus is possible because the practice of systemic integration of 
knowledge exists in this community.  This means that there is a standard of activity to 
relate diverse pieces of knowledge and articulate them into a coherent and interrelated 
whole.  By nature this practice is found on the plane of mathematical theorization, 
understanding by this the elaboration of interrelated concepts which try to describe, to 
explain an object of study which is, in this case, the system of accepted knowledge.  This 
process of synthesis brings about the appearance of emergent properties unforeseen by 
earlier knowledge.  Mathematics conventions would be a part of these emergent properties 
(Martínez-Sierra, 2003, 2005).  

In the previous sense, then, a mathematical convention can be understood as an 
agreement by the community which works to give unity and coherence to a knowledge set. 
Two examples relating to exponents, taken from the history of mathematical ideas, will 
serve to illustrate our “convenience principle” on which rests our characterization of 
mathematical agreement (first example) and its character in relation to the reference 
knowledge set (second example). 

First example.  Towards the end of the XVI century it was known that the curves y 
= kxn

 (n = 1, 2, 3, 4,…), called by index n, had a property called “characteristic ratio”. This 
knowledge was a general part of the fundamental problem of the time of the mechanical 
and algebraic calculation of areas defined by distinct curves (Bos, 1975), and to the 
meaning that the areas preserve in terms of variation2. Taking as an example the curve y = 
x2  it was said that the characteristic ratio was equal to 1/3; since, if we take an arbitrary 
point on the curve, C (Figure 3) the area of AECBA defines a proportion of 1:3 with 
respect to the area of the rectangle ABCD, in the same way as the proportion between the 
area of AECBA and the area of AECDA is 1:2. In general, it was known that the 
characteristic ratio of the index curve n is 1/(n+1) for all positive whole numbers n 3. 
 
 

 
              

Figure 1.  Characteristic ratio of the curve y = x2 

 

                                                 
2 For example, it is well known that Galileo established his law of falling objects by grasping that the area 
defined by a speed-time graph was the distance traveled by the body. 

3 In modern terms the notion of characteristic ratio is helped in that a( >0) )1(:1: 1
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In his investigations on the quadrature of curves, John Wallis (Struik, 1986) used 
the above to make the following reasoning, which is basically a way of agreeing that the 
index of       y = 2 x must be equal to ½ in order to unify the notion of characteristic ratio 
with the notion of index (a paraphrase of the reasoning is given here): 
 
 “As the curve y = x2 has a characteristic ratio of 1/3, the curve y = 2 x  should also have a 
 characteristic ratio and must be equal to 2/3 (it can be observed that the areas under both curves 
 complement each other to make a rectangle). Also, as the curve of index 2 has a characteristic ratio 
 it can be supposed that that a curve which has a characteristic ratio also has an index, so, what 
 index should the curve y = 2 x  have?  As 2/3=1/(1+1/2) the index must be 1/2”  

 
Second example. Wallis also interpreted negative numbers as indices4. He defines 

the index 1/x as -1, the index 1/x2 as -2, etc. He goes on to try to give coherence to these 
indices and to the notion of characteristic ratio (Confrey and Dennis, 1996). In the case of 

curve y = 1/x the characteristic ratio must be ∞==
+− 0

1
11

1 5. Wallis accepted this 

quotient as reasonable since the area under the curve 1/x diverges; which, it seems, was a 
known fact at that time. The above can be interpreted as the proportion between the area 
ABCEFA (Figure 4) and the area of the rectangle ABCD being 1:0. When the curve is y = 
1/x2 the characteristic ratio must be 1/(-2+1)=1/-1. Here, Wallis’s conception on the ratio 
differs from modern arithmetic of negative numbers. He doesn’t use the equivalent 1/-1 = 
-1, but instead constructs a coherence between diverse representations; that is the essence 
of a mathematical convention. Due to the shaded area under curve y = 1/x2 being larger 
than the area under curve 1/x, he concludes that the ratio 1/-1 is greater than infinity (ratio 
plusquam infinita). He goes on to conclude that 1/-2 is even larger. This explains the 
plural in his title. 

Arithmetica Infinitorum, of which the most accurate translation would be “The 
Arithmetic of Infinities”. 
 

 
Figure 2.  Characteristic ratio of curve y = 1/x 

 
The above leads us to center our attention on the processes of systemic integration 

of a knowledge set. Theoretically, from the beginning, this search for integration, which is 

                                                 
4 We would like to clarify that through the literature consulted it was not possible to clearly determine the 
motives that Wallis had for realizing said definitions; but it is supposed that they were taken from the 
agreements of exponents already in use at that time in the algebraic context (Martinez-Sierra, 2003). 
5 What we understand today as fractions were conceived in Wallis’s time as proportionality so that 1 is to 0 
(nothing) as ∞ is to 1. 
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a search for relationships, could take two paths: 1) rupture caused by leaving aside one 
meaning in favor of another which is eventually built for the task of integration; that is, 
changing the focus of the meaning, and 2) continuity by conserving the meaning in the 
integration task. The mathematical convention, then, as a product, can be interpreted as an 
emergent property to establish a relationship of continuity or rupture of meanings.   

In our examples of Wallis’s formulations, the search for coherence between the 
notion of index and the characteristic ratio (where the ratio/proportion has specific 
meanings which are different from considering it as a number) bring up two 
conventionalisms:  the index of           y = 2 x  as 1/2  and diverse kinds of infinity 
represented by 1/0, 1/-1, 1/-2, etc. This indicates the convenience and relative character of 
the mathematical agreement with respect to the integration of the notions of index and 
characteristic ratio and the algebraic and graphic representations. 

4. Articulation of the trigonometric functions to the corpus of Eulerian analysis 

4.1. Trigonometric quantities as geometric quantities 

According to Bos (1975) the main object of study in end of the 17th century mathematics 
was the curve.  A curve in a system of reference (independently of the conceptions of this: 
as the sketch of a rule of construction, as a point in motion, or as a polygon with infinitely 
small sides, etc.) involves the relations between distinct variable geometric quantities 
defined with respect to a variable point on a curve.  Such variable geometric quantities are, 
for example, (see Figure 3):  ordinate, abscissa, arc length, radius, polar arc, subtangent, 
normal, tangent, area between curve and axis, circumscribed rectangle, solid of revolution, 
etc. 
 

"The relation between variables [ordinate, abscissa, radius, subtangent, among others] were 
expressed where possible by equations.  This was not always possible, since just before the 
end of the 17th century there were no formulas for transcendent relations and these were 
expressed by means of explicative prose that basically expressed the geometric method for 
the construction of the curve” (Bos, 1975).   

 

 
x: abscissa, y: ordinate, s: arc length, r: radius, a: polar arc, σ: subtangent, τ: 

tangent, v: normal, OPR: area between the curve and the abscissa 
 

 
Figure 3.  Variable geometric quantities defined in relation to a variable point on a 

curve 
 

The search for relations between geometric quantities triggered the search for 
diverse methods for its achievement.  This produced, among other aspects, different 
infinite series which established the relations between the quantities.  For example 
Gregory, (Malet, 1994-1994) establishes, around 1670, that in the cycloid MOPA (Figure 
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4) that is generated by point A and called DA=r and Dβ=b, the ordinate PQ of any point 
on the cycloid can be expressed in terms of the abscissa a = OQ by  
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Figure 4. Geometric quantities present in a 

Cycloid according to Gregory (Malet, 1994-1994) 
 

In the same sense Babini (1978, p. 121), affirms that among the series sent by 
Gregory to Collins, in correspondence dated in 1671, are the following equations to find 
the arc, given the tangent, and the tangent given the arc (where r is the radius of a circle, a  
the arc and t the tangent):    
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Around the same time Newton (1669), through his method of fluxions, found the 
relations between an arc (z) and its corresponding sine (x) in a circle of radius 1 (Figure 5). 
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Figure 5.  Series that relates an arc (z) and its corresponding sine (z) (Newton, 
1669) 

4.2. Trigonometric quantities as analytical variables   

Montiel (2005) mentions that it was, perhaps, the new uses of the trigonometric functions 
that took away their geometric character, described above, since they went from being 
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considered lines of circle to quantities that described certain phenomena, particularly 
periodic movements.  As soon as the study of motion was underway and adequate 
mathematical instruments became available, and insofar as his laws began to be 
introduced as the foundation of physics, it became apparent that it was not possible to 
continue considering the determined number or its geometric equivalents (point, straight 
line, circle, etc.) as the only object of the investigations (Loi, 199l cited in Montiel, 2005).  
In other words, the mathematical entity was no longer the number: the law of variation, 
the function, became the center around which science was organized.  According to Katz 
(1987):  
 

“…no textbook until 1748 dealt with the calculus of these functions. That is, in none of the 
dozen or so calculus texts written in England and the continent during the first half of the 
18th century was there a treatment of the derivative and integral of the sine or cosine or any 
discussion of the periodicity or addition properties of these functions. This contrasts sharply 
with what occurred in the case of the exponential and logarithmic functions. We attempt here 
to explain why the trigonometric functions did not enter calculus until about 1739. In that 
year, however, Leonhard Euler invented this calculus. He was led to this invention by the 
need for the trigonometric functions as solutions of linear differential equations. In addition, 
his discovery of a general method for solving linear differential equations with constant 
coefficients was influenced by his knowledge that these functions must provide part of that 
solution.”  (Katz, 1987, p. 311) 

 
In this way, Euler, in his book Introductio in analysin infinitorum (Euler, 

1738/1845) provides a treatment of what can be called the precalculus of the trigonometric 
functions.  He defines them numerically, discusses several of their properties including 
formulas of addition and the development of his series of powers, with which he gave 
them the status of function6.  In the first volume, Chapter VIII, Des Quantités 
transcendantes qui naissent du cercle (Figure 6), he defines the trigonometric functions as 
transcendent quantities that are born from the circle and points out that π is the 
semicircumference of a circle (of radius 1) and in consequence is the length of the arc of 
180° and then he establishes sin 0π =0, cos 0π = 1, sin 2π =0 and cos 2π = 1.  
 

 
Figure 6.  Transcendent quantities that are born from the circle (Euler, 1738/1845. p. 93) 

 

                                                 
6 We remember that for Euler “A function of a variable quantity is an analytic expression formed arbitrarily 
with this variable and with numbers or constant quantities” Euler (1738/1845, p. 3) and that when he 
establishes: “...analytic expression formed arbitrarily...” he is accepting the use of the usual algebraic 
operations such as addition, multiplication, differences, quotients and transcendent operations like 
exponential, logarithmic and trigonometric.  He also admits the extension of these to the infinite and the 
solution of algebraic equations – including to the infinite – where the constants can be included in complex 
numbers.  
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Euler does not mention, why, for example, 1cos −=π .  The information we have 
up to now only allows us to speculate that perhaps Euler used the sine formula of the sum 
of two arcs: & BABABA sinsincoscos)cos( −=+  to build the convention 1cos −=π . 
One possible reasoning is the following:  

 
Supposing we want to assign a meaning to the symbol πcos .  What meaning will it 
take?  If we take the formula  

BABABA sinsincoscos)cos( −=+   
as our knowledge base, which we want to preserve, it must follow that 

110
2

sin
2

sin
2

cos
2

cos
22

coscos −=−=×−×=⎟
⎠
⎞

⎜
⎝
⎛ +=

πππππππ   

for which we must agree that 1cos −=π .  
 

The previous conjecture is supported when we note that in a following article Euler 
makes a series of calculations based on the sine and cosine formulas of the sum of two 
arcs (Figure 7).  

 
Figure 7.  Use of the sine and cosine formulas of the sum of two arcs (Euler, 1738/1845, p. 93) 

 
In the same sense we have been able to interpret that the articulation of the 

trigonometric functions to Eulerian analysis was possible through the “analitization” of the 
quantities that are born from the circle through the following relations:  
 

(A)   1cossin 22 =+ zz  
(B)   zyzyzy sincoscossin)sin( +=+    
(C)   zyzyzy sinsincoscos)cos( −=+   

 
Using the above relations Euler breaks down (A) into  
 

(D)   ( )( ) 1sincossincos =−+ zizziz  
 
And using (B), (C) and (D) he finds the relation  
 

(E)  ( )( ) )sin()cos(sincossincos zyizyyiyziz +++=++  
 

Using (E) he finds that  ( ) ( )
2

sincossincoscos
nn zizziznz −++

=  
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Finally (Figure 8) developing the above powers and using the notions of “infinitely large 
whole number” and “infinitely small quantity” he finds that  
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So that the cosine emerges as a function in Euler’s sense.  
 

 
Figure 8.  Use of sine and cosine formulas of the sum of two arcs (Euler, 1738/1845, p. 97) 

 
Insofar as the process through which the trigonometric functions were made part of 

differential and integral calculus, this was grounded in the development of powers and the 
relations of sine and cosine of the sum of two arcs (Euler, 1755).  Let us take an extract 
from Institutiones Calculi Differentialis (Euler, 1755) where the differential of the sine 
(Figure 9) is calculated using (B) the series of powers of sine and the consideration that 
sine (dx) = dx if dx is infinitely small.  
 

 
Figure 9.  Use of sine formulas of the sum of two arcs for the calculation of the sine differential (Euler, 

1755. p. 140) 
5.  Conceptual breaks in the scholar construction of the TF 

 
From the point of view of the articulation of scholar mathematics we have been 

able to affirm that there are different conventions in the scholar structure of the 
trigonometric functions that can be interpreted, in turn, as carriers of conceptual breaks:  
1) the transit from degree-radian-real for the trigonometric functions and 2) negative 
angles and angles greater than 360º.  In this respect we have been able to interpret that in 
scholar construction of the trigonometric functions in the Mexican education system, the 
definition of negative angles and angles greater than 360º  and the transit to e use of 
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radians are the product of a “scholar mathematics convention” for the definition of the 
trigonometric functions as real variable functions.   

This last aspect, in relation to the scholar use of radians as a step prior to the 
definition of the real domain of the trigonometric functions, brings about a series of 
conceptual breaks that are the origin of a varying number of didactic phenomena in 
relation to the status of the trigonometric functions in the framework of Differential and 
Integral Calculus.  In general terms, we consider the didactic phenomena mentioned to be 
subsidiaries of at least two social practices7 that are reproduced in school settings.  The 
first consists of considering radians as another system of measurement of angles that 
fulfills the same functions as the sexagesimal or any other measurement system.  This 
practice is easily detected in textbooks in those sections dedicated to practicing the rules 
of transformation of units from one system to another.  The second practice we have 
detected consists of the dethematization (that is, considering them as an object of study 
from the conceptual point of view) of the transit of radians to real numbers as an argument 
of the trigonometric functions.   

The two practices above determine starkly different conceptions that students and 
teachers have at Mexican middle school level (students between 12 and 15 years) in 
relation to the trigonometric functions.  An example of such conceptions is that which 
causes the belief that the domain of the trigonometric functions is dimensional with the 
unit in degrees or radians.  This conception makes it impossible, on mixing the values of x 
with real numbers and quantities in degrees, to properly interpret diverse frequently used 
expressions in Differential and Integral Calculus, for example:  xxxf sin)( += , 

xxxf sin)( 2 += , 1

0

1

0

cos)(sin xdxx −=∫  o 1sinlim
0

=
→ x

x
x

.  

 
The methodology we have followed to identify and classify the phenomena 

mentioned has been the realization of different analyses such as textbook analysis and the 
analysis of interviews with teachers and students in Mexican middle schools.  Below we 
show some evidence to support the foregoing affirmations8.  
 
5.1  Breaks present in middle school textbooks.   
 

After analyzing different textbooks used in Mexican middle school (MMS) 
education we can identify the presence of a common pattern in the construction of the TF 
which consists of following the transitions degrees →radians →real in the domain of the 
TF (See Figure 10).   

                                                 
7 Socioepistemology shares the inclusion of a social  and cultural vision in the discipline and specifically 
contributes to the search for “that” (which we call social practice) which being present in culture and thought 
is not part of scholar knowledge; it does, however, make possible its construction and diffusion. 
8 See (Méndez, 2008) for more details.  
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Figure 10.  Pattern in the construction of the  

in textbooks 
 

There are two important points to bring out from the textbook analysis.  The first is 
the observation that the reason for the sudden appearance of radians as a measurement of 
angle is never made explicit.  The second consists in observing the dethematization (that 
is, considering them as an object of study from the conceptual point of view) of the transit 
from radians to real numbers as an argument of the trigonometric functions (see Figure 
11).  This can be perceived in the phrases presented in the textbooks, for example: “it is 
commonplace to omit the word radians”, “when the value of an angle is used in radians, 
the units are not normally given”, “for convenience and simplicity we will omit the word 
radians”.   
 

 

 
 

Figure 11.  Textbook pattern in the dethematization of the 
transit from radians to real numbers  

 
5.2  Breaks present in MMS teachers 
 

Based on the findings from the textbook analysis an interview was designed with 
four teachers from different MMS institutions.  The interview had two phases.  The first 
phase consisted of five activities aimed at detecting the teachers’ conception of the domain 
(the value of x in its different possibilities as degrees, radians, or real numbers) and images 
of the trigonometric functions.  The second phase of three activities was aimed at 
detecting the teachers’ conceptions of the significance of operations between the 
trigonometric functions and algebraic functions.   

The main sign of a conceptual break was found when teachers were faced with 
deciding in what moment to utilize the sexagesimal, the cyclical or real number system to 
measure angles.  For example, in one of the activities a teacher assigns real values to x, 
whereas in the x of the sin x he assigns values in degrees in spite of both expressions 
constituting a single expression, that being an addition or a reason.  Towards the end of 
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the activity he realizes that he has given values to x in one system and in another and 
thought it impossible to do so.  Nevertheless, he makes no correction to the activity given 
that he was still not convinced which angular measurement he should use at what time 
(see Figure 12).  Similarly, the confusion over which angular measurement to use in 
certain activities was such that in several the teachers simply did not answer arguing that 
these topics are not dealt with in MMS and mentioning that they are complex themes 
which, due to lack of time, can only be seen as theorems or characteristics of the TF.   
 
Activity 2.1  How would you explain to a student the construction of the graph of the function 
 y = f(x) = x + sin(x)? 

At this point the interviewee tries to clarify that 
the values of x are in degrees, so he adds the 
symbol ° (for degree) to the last two expressions, 
nevertheless he does not do this in the expression 
of x but only in the expression sin(x) 

 

He gives values to x without determining if they are 
degrees or radians and he begins to substitute the values 
of x in y = x + sin(x) 
 

 

Finally, trying to explain his use of degrees he 
realizes that he would be adding a real number to 
an angular measurement expressed in the 
sexagesimal system.  He then says that this can’t 
be done and that the values of x were, from the 
start, real numbers. 

He draws the expression in y = x + sin(x) in the 
following way.  

 

 
Figure 12.  Assignation of values to the variable x 

 
6.  In conclusion 
 

In the framework of the study of the processes present in the articulation of 
conceptual mathematics systems which we have called processes of mathematics 
convention and articulation (Martínez-Sierra, 2003, 2005), we have presented the 
advances in our quest to identify the processes on mathematics convention present in the 
articulation of the trigonometric functions to the corpus of Eulerian analysis and presented 
the interpretations which this analysis supports to illustrate the conceptual breaks present 
in scholar construction of the trigonometric functions.     

Insofar as the studies on the articulation of the trigonometric functions to the 
corpus of Eulerian analysis we have demonstrated the presence of mathematics 
conventions that enable the achievement of such articulation.  In particular, through 
analysis of Euler’s work (1738, 1755) we have been able to interpret that the articulation 
mentioned was possible through the “analitization” of the quantities that are born from a 
circle through the following relations: 1) 1cossin 22 =+ zz , 2) 

zyzyzy sincoscossin)sin( +=+  and 3) zyzyzy sinsincoscos)cos( −=+ . Based on 
this, Euler (1738) could develop a series of powers to the functions sin and cos and so 
elevate them to the quality of functions (in the Eulerian sense) and also, for the first time, 
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(Katz, 1987) the trigonometric functions became part of differential and integral calculus 
in (Euler, 1755) based on the development of powers and the above relations.  

In the same vein, but from the point of view of the articulation of scholar 
mathematics, we have been able to interpret that in the scholar construction of the 
trigonometric functions in the Mexican education system, the definition of negative angles 
and angles greater than 360º and the transit to the use of radians are the product of a 
“scholar mathematics convention” for the definition of the trigonometric functions as real 
variable functions.  

This last aspect, in relation to the use of radians in school as a step prior to the 
definition of the real domain of the trigonometric functions, brings about a series of 
conceptual breaks which are the origin of a varied number of didactic phenomena in 
relation to the status of the trigonometric functions in the framework of Differential and 
Integral Calculus.  In general terms, we consider the didactic phenomena mentioned to be 
subsidiaries to at least two social practices that are reproduced in school settings.  The 
first consists of considering radians as another system of angular measurement that fulfills 
the same functions as the sexagesimal or any other measurement system.  This practice is 
easily detected in textbooks in those sections dedicated to practicing the rules of 
transformation of units from one system to another.  The second practice we have detected 
consists of the dethematization (that is, considering them as an object of study from the 
conceptual point of view) of the transit of radians to real numbers as an argument of the 
trigonometric functions.   
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