
 1

SOCIAL PRACTICE OF THE VARIABILITY NOTION 
AN EPISTEMOLOGICAL APPROACH 

 
Alberto CAMACHO, Bertha Ivonne SÁNCHEZ  

Instituto Tecnológico de Chihuahua II, México 
Instituto Tecnológico de Cd. Jiménez-CICATA-IPN, México 

camachoalberto@hotmail.com, ivonne_mx_2000@yahoo.com 

 

ABSTRACT 
In the navigation practice and the geography of the middle XVII century, the variable notion was 
recognized like a “mistake” that made the needle of the compass when deflect it about the magnetic 
north, in regard to true north [Juleu, 1723]. The deviation of this angle called “magnetic declination”. 
During that time the geometers gave to the variable for giving a mean to the magnetic declination, 
taking it like a “mistake”, was fundamental for the transition which followed the “variability” concept in 
the definition the a “theory of mistakes”, for one hand, and of the derivative concept, for the teaching, 
for the another hand. This paper establishes a brief historical development of the definition of 
variability, considering its genesis like a social practice such as suggest the socio-epistemology. 

 
1. Socio-epistemology and social practices 
The socio-epistemology is a theoretical approach of systemic nature that allows dealing 

with the phenomena production and diffusion of the knowledge from a multiple 
perspective. With this the study dimensions: epistemological, cognitive and didactic have 
been revalued incorporating one "sociocultural" component, and taking in account the 
conditions epistemological that prevail in the social environment [Cantoral & Farfán, 
2004]. From the sociocultural dimension, we think possible to do a study of the notion of 
"variability" recognized in the domain of social practices: procedural (1) and observation, 
these social practices happened throughout the centuries XVIII and XIX. Since it is 
assumed that the development of ideas is not produced only in internal form, but it is a 
social process, which is demonstrated through social practices, procedures and skills. We 
think that the notion of "variability" to determine elements that give a meaning to the 
concept of function that is taught in classroom. 

 
2. The social practice 
2.1 The combined method 
In 1760, Euler was describing small irregularities observed from the movement of the 

planets and that were caused by mutual attraction; opposite to the astronomers´ idea about 
conceiving these irregularities as the cause of the attraction of the sun towards the proper 
planets only [Euler, 1760, p. 164]. Likewise, he was worried for giving a complete 
explanation of the lunar and planetary disturbances exemplifying with the lunar eclipses. 
The lunar eclipses which were predicted placing to the planets up to a difference hour in 
regard to the proper phenomenon. In consequence, he wished to be precise in the position 
of the planets centering his attention initially on the Moon. These small forces with which 
the planets act one with each other were called them "disturbances". Such irregularities did 
not allow determine accurately the position of the planets in presence of events such as the 
eclipses. Before this description, Euler approached the problem of the "lunar disturbances" 
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to Mayer [1723-1762], astronomer and German geometer from the Gotinga's University 
(Göttingen). 

In 1750, Mayer defined a method with which was possible to combine diverse 
"equations of condition" that he was getting from the observation or experimentation of 
the procedural practices and observation, and then he could solve the problem of the 
disturbances that Euler informed him.  

The method in study, begun from 
the principle of doing a large number 
of repetitions of experiments so that 
establishing a "equation of condition" 
for each experiment in every stage was 
feasible. He presented the equations of 
condition of the following way: 
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The right system shows the instrumental mistakes, that are the difference between the 

observations of every experimentation exposed from the variables x, y, z, … m in regard to 
the dependent variable v, that means, if the mistakes of this type did not exist, they must 
be conceived null, which in the practice is false. 

As it is possible to observe, the number n of observations is larger than the number of 
unknown quantities. The system of values that result from the combination of all the 
equations was considered to be the more "acceptable", that means, the more independent 
system of the effect of the small "instrumental mistakes". Mayer's approach to solve the 
system consisted of changing the signs of equations in such a way that all the terms that 
contain x become positive, and to add later all equations. The same adding operation had 
to be repeated respect of each one of other unknown quantities getting as result so many 
equations as unknown quantities existed. For better understanding of the method of 
Mayer's combination, we consider necessary to approach the next example: 

We suppose that straight line is defined by BC in the figure 1, and we want 
"experimentally" to determine the values of the constants a and b from the equation: 

baxy += . 

 
Figure 1 

If the axis of the abscissas is divided in any number of parts Ad, db..., Ae, ec, and we 
measure these abscissas and its ordinates correspondents with a graduated arbitrary rule, 
we will have the following equations of condition: 
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Since b is positive in every equation, it is not necessary to change any sign. The 
addition is done and 05.163 −=+ ba  is gotten. 

Next, we change the signs of some equations, in such a way that every a is positive, 
and adding these equations we obtain: 85.1129 −=+ ba .  From this, we get a system of two 
equations with two unknown quantities, that when it is solved, it gets: a=-1.43750, b= 
+0.54375. 

When these values are plugged in the equations of condition, small differences raise 
because of the mistake of measurements called residues which are showed: 

-0.0187 +0.0063 +0.0312 

+0.0188 -0.0062 -0.0313 

 

Comparing the equation baxy +=  with the equations of condition, we observe that 
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The residues, called neee ,..., 21 , are analytical mistakes caused by irregularities or 
instrumental mistakes in practice. Mayer conceived the mistakes neee ,..., 21  as a 
"variation" that happens for every experimentation; so that :1e it is the first variation, 

:2e the second variation, etc. So that the set of variations or residues: neee ,..., 21   were 
recognized as the "variability" of the experimental observations. Therefore, the notion of 
variability takes an analytical meaning. 



 4

 
Gauss used the method of the square minimums to 
the correction of six elements in the orbit of the 
planet Pallas. See note (2). 

Figure 2 

In 1795, Gauss would formulate the 

method of the "square minimums" doing 

modifications to the model of Mayer's 

combination especially in the systems of 

condition equations. The obtained mistakes 

for every observation of variable and 

independent from the result circumstances 

(as the produced ones for external and 

irregular reasons such as the effect of the 

air producing a less clear vision, or those 

due to the instruments of measurement), 

were called "irregulars" or "fortuitous", and 

able to be calculated.  

 

He defined in contrast "constant" or "regular" mistakes that in observations of the same 
nature produce an identical mistake depending on circumstances and due to observations, 
which remain excluded from the research realized by Gauss and of the application of his 
method. 

He showed his "Theoria Motus Corporum" to the Royal Society of Gotinga; he proved 
the application of the method of the minimums squared for the correction of six elements 
(mistakes) in the orbit of the planet Pallas utilizing twelve equations (see figure 2). 

The variations or corrections were attributed differential coefficients: 
,,,,,, didddddL Ωϕπι . Because of the difficulty to satisfy every equation, Gauss looked a 

way to reduce them as much as possible according to the same principle expressed by 
Mayer (Gauss, 1855). 

If the linear functions are considered: 
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According to the fundamental principle of the square minimums, every unknown 
quantity must be determined so that the sum of the squares of the "mistakes" could be 
minimal ...32 +′′+′+′= wwwa  

Recapturing the notation of the model of Mayer's combinations, and with an adjustment 
to the method of the Gauss's square minimums, we can obtain: 
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In the previous systems of equations, the sum of the squares of the mistakes is given 
for: [ ]eeeee n =+++ 22

2
2

1 ... . To determine every unknown quantity, the auxiliary [ ]ee  must 
be null in regard to each one of these. For example, in regard to x: 

0...2
2

1
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dx
dee

dx
dee

dx
dee n

n …(1) 

Then:  

1
1 a

dx
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=            2
2 a

dx
de

=           ... n
n a

dx
de

=  

Substituting in (1): 

0...2211 =++ nneaeaea  

called normal equation of x. 
If we use the same procedure for every unknown quantity, we will have: 

0...2211 =++ nnebebeb  
0...2211 =++ nnececec  

Applying the following rule for each of the unknown quantities in the equations of 
condition, we will obtain the normal equations that are the same number of unknown 
quantities: 

"(…) multiply every equation of condition by the coefficient that contains one of the 
unknown quantities taken with its own sign, and then equal (come to an agreement) to 
zero the algebraic sum of the products". 
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Normals equations 

This shows the characterization of the method of Mayer's combination that Gauss did. 
Legendre published in 1805 in French the "Nouvelles methodes pour la determination 

des orbites des comètes", and some years later he applied his method of the Minimums 
Squared in the resolution of the attraction of ellipsoids homogeneous solving several 
cases. From this, he obtained a system of equations of the form: 

.etcfzcybxaE ++++= , where a, b, c, f, etc., are the unknown coefficients that vary of 
an equation to other one, and x, y, z, etc., are determined for each equation for the 
condition of the value E (mistakes), which it is a null or too small quantity. 
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He used the sum of the square of the mistakes ."22´2 etcEEE +++ , to solve the system 
of equations (Legendre, 1805, pp. 79-88): 
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For a certain quantity x, the sum of the squares of the mistakes will be: 
.)()"()( 222 etcxaxaxa +−′′′+−+−′   

If we equal to zero and then clear, we obtain: 

n
etcaaax .+′′+′+

= .  

Where n it is the number of observations, being x, y, z, the common variables to the 
point. The sum of the square of the distances is equal to a minimum 

222 )()()( zcybxa −′+−′+−′  (see figure 3). 

 
Figure 3 

2.2 The variability in the procedural practices  
In the procedural practices, the variability represented the totality of the instrumental 

mistakes that were done in the experimental observations. Nevertheless, this type of 
mistakes, had a treatment close to the own instruments looking for being compensated, 
which Mayer did not approach. 

Throughout the century XIX, the procedural practices were characterized by the use of 
instruments of observation such as: telescopes, transit-man, levels or equi-altimeters, 
barometers, altimeters, etc., which suffering of precision in the capture of information due 
to the lack of a technology as currently. Therefore, in the levels or equi-altimeters (levels 
mounted on a tripod, with which it is possible to determine the vertical irregularities of the 
land), and in the focusing, the position of the axis of collimation (the cross recorded in the 
lens) was considered to be invariable. Nevertheless, since the cross, seen plane, was 
recorded over a curved lens, the irregularities in the focus lens produced a set of deviations 
in the rectilinear form of the axis of collimation. Such irregularities were known like 
“variability of the axis of collimation” (Jordan, 1876). See figure 4. 
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Disposition of the 
threads in the 

collimation axis 

Aproximated reading 
1.36 

Final reading 
1.3648 

Figure 4 

 

For the same epoch, the aneroid 
barometers or mechanical barometers of 
pocket had the disadvantage of the readings 
variation when they were being compared 
with ones of a guide barometer of mercury. 
This readings variation was giving wrong 
lectures of the corresponding height on the 
level of the sea. The inevitable shakings of 
the field works and trips, transport, etc. 
were producing variations of the pressure 
indicated by the aneroid, which could be 
determined comparing them with a 
barometer of mercury. 

In the table I we give an example of the 
variability in the pressure alterations that 
resulted from the diverse successive 
comparisons of aneroid, that W. Jordan 
used in 1873 during an expedition to Libya, 
with the barometer of mercury. 

The aneroid Cassella No. 1641, that 
presented the minimal variations, was a 
small instrument of the size of a pocket 
clock, and during the trip a Jordan’s 
colleague took it in his pocket of the 
trousers. 

 
Place and 

Date 

Naudet 

39305 

Goldschmid 

600 

Casella 

1640 

Casella

1641 

Chevallier

Cairo 

5 Dec 

1873 

+2.8 

mm 

+14.0 mm +5.0 mm. +1.3 

mm 

… 

Siut 

12 Dec 

1873 

+2.5 +13.3 … … … 

Marac 

20 Dec 

+2.8 +13.1 … … … 

Fárfara 

1 Jan 

1874 

+4.5 +13.8 +5.0 +0.7 +8.5 

Dachel 

10 Jan 

1874 

+5.0 +13.2 +7.2 +1.6 +9.6 

Dachel 

16 March 

1874 

+1.4 +11.0 +9.2 +0.9 +10.7 

Charge 

25 March 

1874 

-0.3 +9.4 +9.6 +1.0 +10.2 

�ssen 

1 April 

1874 

+0.8 +8.1 +9.4 +0.4 … 

Cairo 

16 de 

Abril 

1874 

+0.6 

 

 

 

… 

 

 

+8.7 

 

 

… 

 

 

… 

 

 

Minimum 

variation

-5.3 mm -5.9 mm +4.6 mm -1.2 mm +1.7 mm

Table I 

Jordan´s colleague concluded that this way of transporting the small aneroid protects 
them from the irregular variations. The big and heavy aneroid, that was necessary to 
transport in the camels, suffered big and inevitable shakings due to the movement of these. 

In 1887, Reinhertz studied the phenomenon of the variability of the aneroid. He called 
the variability as "remaining elasticity", and he was referring to an elastic body as a leaf of 
wharf holds for an end; it is doubled by other one; it does not return to its primitive 
position when the force that produced the deformation stops instantaneously, but it reaches 
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its original position after several small movements. This property of the elastic bodies, 
Reinhertz called it the "remaining elasticity". 

For example, two similar instruments with a change of pressure of 100 mm and diverse 
speeds produced the following remaining deviations: (See table III) 

Speed of change 0.2 mm 0.5 mm 1.0 mm 2.0 mm 

Remaining deviation 0.38 0.60 0.74 1.01 

Table III 

From here, it can be deduced that when verifying the scales it must be produced the 
changes of pressure to the same speed. That means, very slowly with a ratio of 1 mm. in 
four or five minutes approximately. The test of the aneroid scale whose graduation is 100 
mm. will need, therefore, an entire day. 

On the other hand, a large number of experimental works were carried out looking for 
precision of the barometric levelling. The theoretical law of the mistakes of a leveling of 
this type had been deduced from the fundamental expression that Laplace defined as: 

( )( )tbBKh α−−= 1loglog :, where h it is the height of a position over the sea level, B and b 
are two consecutive pressures, t is the temperature, and α and K are constants. 
Differentiating each of the involved variables, all three partial corresponding "mistakes" 
are obtained, as: 

( )tdB
K

dhB αμ
+= 1 , ( )tdb

B
Kdhb αμ

+= 1  and dthdht α= . 

2.3 The variability in the classroom 
Francisco Díaz Covarrubias, Mexican engineer, quotes the method of the Mayer's 

combination in diverse paragraphs of his book "Infinitesimal Calculus ", written in 1873. 
He did indistinct use of the method of Mayer in his texts of "Topography", "Astronomy", 
etc., which speaks about the large knowledge of the method that Diaz Covarrubias had, 
and from which, surely, he took the definition of variability that added in his calculus 
book. 

Camacho [2007] mentioned the utility of the notion of variability in the form in which 
Díaz Covarrubias incorporated it to the elementary definitions of "curve" and "curvature", 
which would support the concept of derivative. Camacho does the description of the 
definitions that Díaz Covarrubias approached of the following way: 

“Any curve can be originated by the movement of a point (…) “ 
The point that describes the curve, he gave the name of "generator" [Díaz Covarrubias, 

1873, 21]. 
It allowed inferring that the different direction changes of the generating point are 

diverse between the curves; all of them had the "variability" as common property. In this 
reflection, Díaz Covarrubias established the curvature of the curves in a completely 
geometric model taking it like: “(…) the representation of the variability of the 
directions", or the different "changes" of the generating point on the curve. Emphasizing 
that these changes are produced having imagined the curvature as a process that is 
produced on happening from a rectilinear state to curvilinear state, or from a constant to a 
variable. To this respect, the variability assumes two possibilities: the first one is that can 
be conceived in a completely rectilinear state of constancy, and the second one, more 
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complex, is the continuity of the curve. In other words, the condition of constancy 
"catches", forming a part of, the variability or movement of the phenomena of study. 

The approach of the variability of Díaz Covarrubias, is similar to that one W. Jordan 
emphasizes in the problem that he attended for the lens of the equi-altimeter from the 
objects in play, that means, the line and its transition towards the configuration of the 
curve. In fact in both cases the variability is contemplated under the same principle: "cross 
is conceived flat, recorded on a curved lens". While for Díaz Covarrubias the variability is 
defined by different changes that straight lines suffer to form the curve. 

The linear mistake that is produced for the distortion of the focus, it is a variation in the 
context of Jordan; while in Díaz Covarrubias, the mistake or variation is found in the 
approximation of the polygonal of straight lines that tends to the curve, consequently, the 
occurrence of the variability. Nevertheless and similar to Díaz Covarrubias, the mistakes 
or variations assumed a meaning of variation for Gauss and Legendre in the form of the 

derivative 1
1 a

dx
de

= , since one saw previously. 

 
3. Summary 
In summary, the models of combination for the compensation of the variability 

condensed in the mistakes determined by the above mentioned methods, it was outlined 
initially as a social practice arisen in the attempt for solving practical problems of the 
astronomy of position, and led to Gauss to re-formulate later the method of the minimums 
squared establishing in this way a" theory of the mistakes ", which is current at the 
present. Gauss gave to the method of the square minimums a bias towards the theory of 
the probabilities in which he would define the function of normal distribution known like 
"Gauss's bell”,: 

( ) ( )( ) ∞<<∞= −− xexf x -  
2

1 2
2
1 /σμ

πσ
, 

This normal distribution is used for the study of the test of statistical hypothesis which 
are useful in the methods of quantitative investigation. Since it is possible to estimate, the 
variability was placed initially in the experimental methods with high degree of 
empiricism, and, gradually, was giving place to concepts that, nowadays, are a reference in 
the mathematics and its education. 

The variability notion complements a cycle that is a central axis of the meaning 
associated to the function concept. It assumes the next: 

Variable→ Variation→ Variability→ Function. 

This cycle is fundamental in the teaching of this concept. 
 
Notes 
1. For procedural practices we understand those civil activities and methods of the 

engineering such as those developed through of the topography, astronomy, etc. 
2. Figure taken from the French edition of the Méthode des moindres carrés: (Method 

of the square minimums) of 1855. 
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