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ABSTRACT

The purpose of the present paper is to present a theoretical framework for analyzing, criticizing
and orienting designs and implementations of history of mathematics in mathematics education in
order to address the questions of how integrating history of mathematics benefits students’ learn-
ing of mathematics and how uses of historical elements to support students’ learning of mathemat-
ics develop students’ historical awareness. To address the second question, a multiple perspective
approach to history of practices of mathematics is introduced together with a set of concepts that
can be used to identify and articulate different forms of people’s uses of history. To address the
first question uses of history and history of mathematics are linked to a competence based concep-
tion of mathematics education and Sfard’s theory of mathematics as a discourse. To illustrate the
framework and how it can be used, two examples, one from a university master’s program and
one from a Danish high school, of integrating history into mathematics education are presented
and analyzed.

1 introduction

Despite a range of well known arguments! for integrating history in mathematics classrooms, and
the inclusion of history in the national mathematics curriculum in some countries,? history does not
play a significant role in general mathematics education. This might seem strange for someone from
the outside, considering that mathematics has a history that goes more than 5000 years back, so the
past provides a huge reservoir of authentic mathematical texts and activities, and why not learn from
the masters?® However, as every one knows who has tried it, it is not so straightforward to integrate
history in mathematics teaching and learning.* On one hand there is the question of how integrat-
ing history of mathematics benefits students’ learning of mathematics, and on the other hand when

ISee e.g. Beckman (2009), Fauvel (1991a, 1991b), Fauvel and van Maanen (2000). See also the review article by Jankvist
(2009).

?Examples are Denmark and France.

3David Pengelley and Reinhard Laubenbacher have developed several courses where they teach with original historical
sources. These are described on their homepage http://sofia.nmsu.edu/ history/. They have published several papers and
books explaining their approach, see e.g. Laubenbacher and Pengelley (1996).

4See e.g. Siu (2007).
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historical elements are used to support students” learning of mathematical concepts, theories or tech-
niques, or to humanize mathematics, there is the question of in what sense such implementations
develop students’ historical awareness.”

In the present paper I will focus on these two issues. To deal with the second issue, I will in section
2) introduce notions from research in people’s uses of history and from the academic discipline of
history of mathematics. Recent research has shown that people use history in many different contexts,
with different approaches and for different purposes, i.e. we attach several, partly different meanings
to history. The task is not to announce one approach as the right one and discard the others, but
to unfold the differences between the various ways in which history is being used and understood.
The challenge is not to dissolve the complexity but to explore it; to clarify how history is (can be)
understood and for what purposes it is or can be used, in order to capture some of the multifaceted
ways in which history can benefit students” learning of and about mathematics.

To deal with the first issue, uses of the past and history of mathematics needs to be linked to
theories from didactics that connects to conceptions of mathematics education and to learning of
mathematics. This will be done in section 3) and section 4), respectively. Ideas from didactics of math-
ematics are introduced to discuss and analyze how and in what sense different approaches to history
can benefit teaching and learning of mathematics. In section 3) Mogens Niss’ proposal for a compe-
tence based understanding of mathematics education that addresses the question of what it means to
master mathematics is introduced.® In section 4) Anna Sfard’s theory of mathematics as a discourse
is presented and I will argue, that history of mathematics can function at the core of what it means to
learn mathematics.”

Together, these theories and notions will span a theoretical framework that can be used to place,
analyze and criticize implementations of historical elements in mathematics classrooms to understand
how history is used and in what sense it can benefit students’ learning of mathematics, as well as orient
designs of implementations such that learning goals and teaching intentions can be made clearer
and targeted — whether these goals are directed towards the learning of mathematics or of history of
mathematics. The framework allows teachers to make informed and reflected choices about how and
for what purpose(s) historical elements can enter mathematics classrooms.

To illustrate the theoretical framework and how it can be used, two examples of integrating his-
tory into mathematics education will be presented and analyzed in section 5). The first example is a
report from a project work carried out by a group of students in a university master’s programme in
mathematics in Denmark. The second example is an experimental teaching course on implementing
problem oriented project work in history of mathematics that was carried out in a Danish high school.

2 A multiple perspective approach to history of mathematics and
different uses of history
The notion of a “multiple perspective” approach to history is borrowed from the Danish historian

Eric Bernard Jensen’s (2003, 16-17) writings about historiography. The multiple perspectives enter,
because the underlying premise is that people are understood as being shaped by history and being

5For discussions of these two issues, see also Fried (2001, 2007).
®See Niss (2004) and Niss and Hejgaard (2011).
"See Sfard (2008).
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shapers of history. History is studied from perspective(s) of the historical actors, paying attention to
these actors’ intentions and motivations, as well as to intended and unintended consequences of their
actions. It is an action-oriented conception of history were people, their projects and their actions are
taken as point of departure for historical investigations to achieve a historical-social understanding of
how people have thought and acted at different times and in different cultures.

Such an approach to history can be adapted to history of mathematics, if we think of mathematics
as a cultural and historical product of knowledge that is produced by human intellectual activities.
The knowledge that is produced by a mathematician, or group of mathematicians, at a certain time
in history depends on the knowledge and mathematical culture available for these mathematicians
and it (might) shape or define guidelines for further developments of mathematical knowledge. In
this sense, such an action-oriented perception of history of mathematics can be pursued, where the
historian study the history of mathematics from perspectives of past mathematicians, their projects
and motivations, situated in certain contexts, at specific places, at certain times, and under particular
historical circumstances in order to understand and explain historical processes in the development
of mathematics. In the academic profession of history of mathematics, contextualized historical in-
vestigations of this kind are undertaken. One approach it to study concrete episodes of production
of mathematical knowledge within the “work place” of the involved (past) mathematicians, study-
ing the development of these mathematicians” production of mathematics from their practice(s) of
mathematics, trying to follow the development of these mathematicians” ideas and techniques.8

Besides the perspectives of the historical actors, the perspective of the historian also needs to be
taken into account. A historian’s research inquiry is always guided by some questions, problems, or
wonderings that she/he wants to answer, solve or understand. Hence, the choice of perspective(s)
is determined in a dialectic process between the historian’s perspective(s), i.e. what she/he wants to
understand regarding the historical episode in question, and the historical actors’ perspectives as they
unfold during the research process.

The strength of such a multiple perspective approach where the development of mathematics is
studied from different points of observation is that the historical analyzes are attached to concrete
episodes of mathematical research and research practices from where relations and connections can
be unfolded and explored. The perspectives can be of different kinds. In some instances the historian
might be interested in e.g. how other disciplines influenced the development of pieces of mathematics,
or how and why techniques of proofs changed, or if and how applications of mathematics influenced
its developments etc., asking questions such as why mathematicians introduced specific definitions
and concepts, which particular problems did they work on, what techniques did they use and why,
how did mathematical objects emerge and develop.’ These kinds of perspectives and historical ques-
tions regarding mathematical research practices relate to the content and inner core of mathematics,
and consequently, such a multiple perspective approach to history of mathematics studied from prac-
tices of mathematics has the potential to play a significant role for the learning of mathematics.

This approach to history of mathematics comes from the academic discipline i.e. how professional
historians of mathematics think and practice history. Research into people’s uses of history has shown

8See e.g. Leo Corry’s introduction (Corry, 2004) as well as the rest of the papers published in Science in Context, 17(),
2004. See also Epple (2000), Kjeldsen (2004), Kjeldsen and Carter (in press) to name just a few where also further references
can be found.

9See Epple (2004).
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that such an academic approach to history is jut one of many approaches. It has shown that people’s
historical awareness is formed in many different contexts, that people use history in many different
connections and for many different purposes, e.g. in movies, when we travel, in family histories, in
computer games, in school subjects, in museums, in memorial places and landmarks.!°

Jensen has written about people’s conception and uses of history. In this context, he defines his-
tory as follows: “when a person or a group of people is interested in something from the past and
uses their knowledge about it for some purpose” (Jensen 2010, 39). When history is viewed in this
broader perspective it becomes a complex concept—an umbrella term for a collection of related forms
of knowledge and practices that people uses in their life. The task is not to identify one form of history
as the right one, but to reveal similarities and differences in approaches and ways in which history is
understood and used.

For this purpose, Jensen (2010, 40-57; 141; 145) has introduced four pairs of concepts, which he
uses to identify and articulate different forms of people’s uses of history. They are: (1) lay history
and professional history; (2) pragmatic history and scholarly history; (3) actor history and observer
history; (4) identity concrete and identity neutral history.11 These concepts can be used as guideposts
when we want to understand and analyze our own and other’s conception and uses of history. They
address different aspects: methodological aspects of research in history, history as an academic field
of research and an ‘every day use’ of history, and the intentions of specific uses of history. Hence,
they do not mutually exclude one another, they overlap, and they can be present in various degrees
in concrete uses of history.

Lay history and professional history distinguishes between every-day (life world) uses and profes-
sional uses of history i.e. it is about differences in the context in which history is used. Lay people’s
(i.e. non-professional historians’) uses of history have become an object of research within the last
decades. According to Schorken (1981), professional historians consider lay history to be naive and
lay people think of professional history as lifeless and distant from the real world. Many mathemati-
cians including mathematics teachers read and use past mathematical texts for research, in teaching
and out of sheer interests for its history. History of mathematics is also an academic discipline with its
own research programmes, educational programmes, academic degrees and prices, journals, inter-
national conferences etc. Hence, the distinction between lay history and professional history makes
sense when it comes to conceptions and uses of history of mathematics and some of the historiograph-
ical debates exhibit this distinction. To give just one example, the historian of mathematics Grattan-
Guinness (2004, 163) complains that mathematicians are not sympathetic to history (as professional
historians of mathematics conceive of it) because “their normal attention to history is concerned with
heritage: that is, how did we get there? Old results are modernized in order to show their current
place; but the historical context is ignored and thereby often distorted. By contrast, the historian is
concerned with what happened in the past, whatever the modern situation is.” What Grattan-Guiness
draws attention to in this quote is a difference that is one of the characteristics between lay persons’
and professional historians” concerns of and with the past.

Pragmatic history is history studied from a kind of utility perspective. This is the case when his-
tory is conceived of as “the master of life” so to speak when we think, we can learn from history’s
mistakes that history can teach us better ways to live our lives, the historia magistra vitae conception of

0gee e.g. Ashton and Kean (2009), Eriksen and Sigurdsson (2009), Jensen (2010).
"My translation into English.
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history. A pragmatic historian will try to make history relevant in a contemporary context. Many pro-
fessional historians now a day dissociate themselves from a pragmatic conception of history which
they think inhibits our understanding of history epistemologically. They favour a scholarly approach to
history'?> where they maintain a critical distance to the past and emphasise differences between now
and then. History is about gaining insights into and understanding the past on its own terms. The
multiple perspective approach to history of mathematics as described above would be characterized
as a scholarly approach to history. The distinction between pragmatic and scholarly history overlaps
with the distinction between lay history and professional history in the sense that lay people often
have a pragmatic conception of history, whereas many professional historians now a days have a
scholarly approach, but there are situations were lay history is guided by scholarly interests and the
pragmatic approach to history has been a tradition within academic, professional history with the
scholarly approach being the dominant one from the mid 19th century (Jensen 2010, 48-52).

The notions Actor history and observer history are used to distinguish between whether people look
at a past episode retrospectively or in a forward-looking perspective. It is about people’s position
regarding a past episode. The term actor history is used to characterize approaches to history where
the past is used to orient one self and /or act in a present context. Jensen calls this an intervening use of
history. In contrast, history can be used in a retrospective perspective with an enlightening purpose,
in such cases Jensen (2010, 41) talks about observer history. As mentioned above, these concepts do
not exclude one another e.g. an observer history can be contained in an actor history. Jensen (2011, 8)
gives the example of a professional historian who uses a scholarly approach to understand something
from the past (e.g. a war) in order to spread information and enlighten people in the present (about
the relation to the country of the war).

History can be used in an intervening sense to form people’s identity and in such cases Jensen
talks about an identity concrete presentation of history. What is considered to be identity concrete or
identity neutral history writing depends on culture and time — a history writing that is considered to
be identity neutral in one culture might not be considered to be neutral by another culture, and what
is considered to be an identity neutral history writing at one point in time might be considered to be
identity concrete at another point in time (Jensen 2010, 52-57).

Besides the approaches to history covered in these four pairs of concepts, Jensen also includes the
so-called ‘living history’ concept as a playful approach to history. This form of history, where people
actively participate in historical scenes and experience life from reconstructed specific historical pe-
riods and settings (e.g. a late 14'" century market town) is a way of using history to help participants
develop historical awareness. According to Jensen (2010, 145), many people find the living history
approach appealing, because the playful approach with its focus on developments of skills requires
other learning strategies than the more intellectual approach that is used in much school teaching,
where students learn from books.

These notions provide a set of glasses—a lens—through which we can identify, articulate and
distinguish between different understandings and uses of history. Together with the multiple per-
spective approach to history of mathematics outlined above, they provide a theoretical framework
that can be used to characterize, analyze and criticize uses and practices of history and implemen-
tations of history in mathematics classrooms. They can also be used to orient designs and future

12This is my translation of the Danish word “leerd ”—which mean to be a scholarly person.



6 Uses of History for the Learning

implementations of history to clarify and target learning goals and teaching intentions.

In the next sections, history of mathematics will be linked to theories from didactics that connect
to conceptions of mathematics education and to learning of mathematics, in order to discuss aspects
of how and in what sense history can function in mathematics teaching and learning within these
theories.

3 A competence based mathematics education—and the role of history

By a competence based view of mathematics education, I refer to the understanding of mathematics
education as it has been developed in the Danish KOM-project (Niss 2004, Niss and Hejgaard 2011).
The project was initiated by the Danish Ministry of Education, and its understanding of mathemati-
cal competence form the basis for curriculum developments and descriptions in general mathematics
education in Denmark. The objective of the project was to identify purposes and learning outcomes
of mathematics education when the goal is to educate people to master mathematics.!® Instead of a
traditional curriculum of lists of concepts, subjects, techniques, results, etc., the project group identi-
fied eight main competencies and three kinds of second order competencies that were argued to span
mathematical competence.'4

The eight main competencies are divided into two groups: Four competencies that have to do with
abilities to ask and answer questions in and with mathematics, and four competencies that regard
abilities and familiarities with language and tools in mathematics, see Figure 1.

1. Thinking competency 5. Representing competency

2. Problem tackling competency 6. Symbol and formalism competency
3. Modeling competency 7. Communicationg competency

4. Reasoning competency 8. Aids and tools competency

Figure 1: The two groups of main competencies.

According to the Danish KOM-project, mathematics education should also provide students with
philosophical and historical insights of mathematics to achieve a balanced picture of mathematics.
The three second order competencies take care of that. They are (1) meta-issues of actual applications
of mathematics in other subject and practice areas, (2) the historical development of mathematics in
cultures and societies, its internal and external driving forces and interactions with other fields, and
(3) the nature of mathematics as a discipline (Niss 2004).

The intentions of the KOM-project behind the second order competency of historical awareness
and insights are in accordance with the multiple perspective approach to history of mathematics stud-
ied from its practice, as it is described above. Hence, the historical awareness that the KOM-project
wants to develop in students corresponds to a scholarly perception of history. Such an approach to
history also has potential to train and develop (some) of students” main mathematical competencies.

3Some find the word “competence” non-appropriate because it labels students as being non-competent if they do not
succeed in mathematics. The word competence was chosen because it focuses on abilities to cope with situations where
mathematics plays or can play a role (Niss 2004, 182).

4 A mathematical competency are developed and trained in relation to subject matters of mathematics. Ten subject areas
are identified in the KOM-report as subject matters in which to develop and train mathematical competence in general
education: The number domain, arithmetic, algebra, geometry, functions, calculus, probability theory, statistics, discrete
mathematics and optimization (Niss and Hejgaard 2011, 126-128).
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This can be achieved by using the multiple perspective approach to history of mathematical prac-
tices in mathematics education on a small scale, by focusing on a limited amount of carefully chosen
perspectives that address issues in concrete pieces of past mathematical activities, in order to have
students become aware of and reflect upon e.g. research strategies or the function and nature of spe-
cific mathematical concepts, arguments, problems, methods, results etc. from the historical episode
in question. In section 5) we will see an example where students, through such an approach to his-
tory, developed historical awareness in the sense of the KOM-project in a way that also invoked and
trained (some) of the students” main mathematical competencies. This is an example where observer
history is contained in action history.

4 Can history function at the core of what it means to learn
mathematics?

In the competence based understanding of mathematics education, history as such is part of mathe-
matics education through the second order competencies. Students” mathematical competencies can
be invoked and trained in the process of developing their second order competency of historical
awareness, but history is not essential for developing students’ first order mathematical competen-
cies. Therefore, in this section I will address the question whether history can function at the core of
what it means to learn mathematics?

Here I will draw on Sfard’s (2008) theory of Thinking as Communicating. The framework of mathe-
matical competence presented above deals with how we can think of mathematics education in terms
of what should come out of mathematics education, namely people who posses mathematical compe-
tence to some degree.' Sfard (2008) is concerned with human thinking in general and mathematical
thinking in particular.

Sfard views mathematics as a discourse where discourse “refers to the totality of communicative
activities, as practiced by a given community ” (Sfard 2000, 160). Learning mathematics then means to
become a participant in the discourse. Discourse denotes human activity, and the discursive interpre-
tation of learning emphasizes the social nature of intellectual activities. The activity of communicating
is regulated by rules. Sfard distinguishes between two types of rules: object-level rules and metalevel
rules. Object-level rules concern the content of the discourse. They are narratives about properties of
mathematical objects. Metalevel rules are rules about the discourse itself. They are implicitly present
and they govern “when to do what and how to do it.” (Sfard 2008, 201-202). They

“manifest their presence --*in our ability to decide whether a given description can count as
a proper mathematical definition, whether a given solution can be regarded as complete and
satisfactory from a mathematical point of view, and whether the given argument can count as a
final and definite confirmation of what is being claimed.” (Sfard 2000, 167)

To become a participant in mathematics discourse, to learn mathematics, it is necessary to develop
not only object-level rules but also proper metalevel rules. Hence, creating situations where metalevel

In the KOM-report it is suggested that progression in an individual’s mathematical competence is realised through its
growth in three dimensions: degree of coverage, radius of action and technical level, (Niss and Hejgaard 2011, 30).
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rules are exhibited and made explicit objects of students’ reflection is an essential aspect of mathe-
matics teaching and learning — and it is with regard to this history of mathematics can function at the
core of what it means to learn mathematics, because metalevel rules are contingent. These rules are
not necessary. They develop and change over time. This means that these rules can be investigated at
the object-level of history discourse.

According to Sfard, because of the contingency of metalevel rules, students are not likely to begin
a metalevel change by themselves. This is most likely to happen if the learner becomes confronted
with another discourse governed by metalevel rules that are different from the ones she or he has been
acting in accordance with so far. Sfard have termed such an experience a commognitive conflict, and she
defines it as “a situation in which different discursants are acting according to different metarules.”
(Sfard 2008, 256).

The scholarly multiple perspective approach to history of mathematics studied from its practice
as outlined in section 2) views mathematics as something that develops because of human intellectual
activities. Hence, there is no contradiction between this approach to history and a discursive view of
mathematics. As we have argued in Kjeldsen and Blomhej (2012), and as will be illustrated below, met-
alevel rules can be exhibited as explicit objects of reflection for students, by having students work with
historians” tools on historical questions about the practice of mathematics in concrete mathematical
episodes from the past. History provides a huge reservoir of authentic mathematical texts either pub-
lished mathematical articles, correspondences between mathematicians, manuscripts for talks, and
notes etc. Such sources can play the role as an “interlocutor”. Students can examine them in their
historical context and analyze the work of former mathematicians with respect to the way they for-
mulated mathematical statements, the way they argued for their claims, their views on mathematics
and so on. Hereby students can experience differences in meta-discursive rules between interlocutors
(the historical text, themselves, their textbooks and/or their instructor). In this way metalevel rules
can be revealed and made the object of students’ reflections. Whether commognitive conflicts occur,
depends on the chosen sources, and the metalevel rules that govern the students” own discourse. It is
of course essential to use a scholarly approach to history, i.e. gaining insights into and understanding
the past on its own terms. The so-called whig (or present-centredness) interpretation of history, where
the readings and interpretations of historical sources are constrained by our modern conception of
mathematics must be avoided.!® If past mathematics is translated into modern mathematics and “old
results are modernized”, as was quoted from Grattan-Guiness in the description of lay history above,
differences in discourse between the past and the present will (partly) disappear.

In the first example of the next section, some instances will be given, where metalevel rules were
made into explicit objects of reflection for students through the students” work with sources from the

past and historical investigations of an episode from the history of differential equations.!”

®The term whig history comes from Butterfield (1931). See also Wilson and Ashplant (1988) and Schubring (2008).

7In Kjeldsen and Petersen (forthcoming) another example is presented where learning and teaching situations were
designed using parts of the framework, with intention to make meta-discursive rules in mathematics objects of students’
reflection and to detect students” metarules. Here the past was used with a deliberate intention of intervening. i.e. it is an
example where observer history is contained in actor history.
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5 Two examples: analysis of a student project and an experimental
teaching course

In this section, two examples from teaching practice will be analysed and discussed within the frame-
work developed and presented in section 2), 3) and 4). The first one is a project work conducted by a
group of students in a university programme in mathematics and the second one is an experimental
teaching course that was implemented and studied in a mathematics classroom in upper secondary
school. Both of them function as examples of how concrete implementations of history can be ana-
lyzed to understand how history was used and in what sense it benefitted (or had the potential to
benefit) students learning of mathematics.

5.1 Analysis of a student project work from a university master’s programme in
mathematics

Roskilde University is a reform university that was founded in 1972 in Roskilde, Denmark. The uni-
versity implemented student centred, problem oriented and group organized project work as one of
its main pedagogical principles. All students of the university, no matter which study programme
they follow, participate in a group organized project work in every semester. The project work runs
throughout the entire semester. At the end of the semester each group hands in a report of 50-100
pages in which they answer the problem formulation that has guided their project work. Besides
the project work, students also follow regular courses. Course work and project work run in parallel
each semester, and they each take up half a student’s study load. A student has participated in 10
such projects when he or she receives his/her master’s degree.'® The project work analyzed below
belongs to the first semester of the master’s programme in mathematics.!”The theme of the project is
“mathematics as a discipline”, and the requirement is that the students should work with a prob-
lem through which they will gain insights into the nature of mathematics and its “architecture” as
a scientific discipline in a way that illustrates the historical developments of mathematics, its status
and/or its place in society.

The project report in question was written by five students. It has the title Physics” Influence on the
Development of Differential Equations. From their courses and project work in mathematical modelling
in their bachelor studies, the students had experienced that differential equations play a central role in
applications of mathematics in other sciences. They wanted to investigate how differential equations
were developed and what motivated that development. They knew that during the last part of the
17" century, mathematicians had begun to use infinitesimals to solve problems that were difficult to
solve with classic geometry. Many of these problems were physical problems, and, as the students
wrote in their report, physics is often mentioned in history of mathematics literature as an influential
factor in the development of differential equations. The students were curious to find out how and
in what sense physics had influenced the development of differential equations in the 17** and 18"
century. Their historical investigations were guided by questions such as: “How did physics influ-

8Readers interested in the special problem oriented project work are referred to Kjeldsen and Blomhgj (2009), Blomhg;
and Kjeldsen (2009), Salling Olesen and Hejgaard Jensen (1999). See Niss (2001) for further information and discussions
about the experiences with problem oriented student projects at Roskilde University.

“Before entering into the master’s programme in mathematics, students have completed a three year interdisciplinary
science of bachelor’s programme where they have specialized in mathematics and one other subject.
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ence the development of differential equations? Was it as problem generator? Did physics play a role
in the formulation of differential equations as solutions to given problems? To what extent can the
influence from physics be traced in the first systematization of the theory of differential equations? ”
(Paraphrased from Nielsen, Nerby, Mosegaard, Skjoldager and Zacho (2005, 8))

To answer these questions, the students studied this episode in history of mathematics from its
practice from the perspective of how problems from another discipline (physics) influenced the de-
velopment of mathematics,® how they entered into mathematicians’ formulation of problems and
the techniques they used to solve the problems. The students chose two cases: the catenary problem
and the brachistochrone problem. The catenary problem is to find the shape of the curve formed by
a flexible string that hangs freely between two fixed points. The brachistochrone problem is to find
the path of fastest descend for a point that moves from one fixed point to another only influenced by
gravity. They read and analyzed three selected original sources from the 1690s that dealt with the
two cases: Johann Bernoulli’s solution of the catenary problem and of the brachistochrone problem
and Jakob Bernoulli’s solution of the brachistochrone problem.

The students studied and interpreted the three sources within the mathematical discourse of the
time, discussing them within the broader social and cultural context of the contemporary mathemat-
ical community. To mention just a few points: (1) the students discussed what was to be understood
by a mathematician at that time, (2) they explained that the borders between disciplines were much
looser than today and that mathematics and natural philosophy were much more intertwined, (3)
they outlined how mathematical results were circulated (or not) within the mathematical community
at the time, and emphasized the importance of competition which they linked to how mathemati-
cians functioned in society, (4) they took into account the perspective of the actors, by discussing the
content of the sources with respect to the Bernoulli brothers” intentions e.g. whether the purpose of
the brothers” work was to solve the problems of the catenary and the brachistochrone or rather to
investigate the effectiveness of infinitesimals as a new technique in mathematics in the 17" century.

If we use the framework presented in section 2) to analyze this particular implementation of his-
tory into mathematics education to answer the second question that was raised in the introduction
i.e. in what sense such an implementation develops students’ historical awareness, we can conclude
that for this particular implementation, the students had a scholarly approach to history with an en-
lightening purpose, i.e. observer history in Jensen’s terminology.

In dealing with the mathematical content of the sources, the students made a detailed analysis of
how the Bernoulli brothers derived the differential equations for the problems, how they formulated
the equations and why they formulated them the way they did, how and with which methods they
solved the equations. The students analyzed the sources with respect to what objects the Bernoulli
brothers were investigating and which techniques they used to produce knowledge about the objects.
All these issues are not only relevant for answering the students” historical questions, they are also
relevant for the learning and understanding of differential equations. In the following I will analyze
parts of the students” work within the framework presented in section 3) and 4) to answer the first
question that was raised in the introduction, i.e. how integrating history of mathematics can benefit
students’ learning of mathematics. I will not go into all the details of the students” project work. In-

»The students realized in the course of the project work that physics and mathematics were not separated disciplines in
the 17th century in the sense of how we consider them today, and that natural philosophy (as it was called) and mathematics
were much more intertwined.
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terested readers are referred to Kjeldsen (2011) for a discussion of mathematical competence, and to
Kjeldsen and Blomhej (2012) for a comprehensive analysis of the project work with respect to possi-
bilities for meta-level learning.

In the catenary problem, Johann Bernoulli used five hypotheses from statics. In studying his treat-
ment of the problem, the students had to mathematize these five hypotheses and to understand how
Johann Bernoulli used them to describe the catenary. In working out this part of Bernoulli’s text, the
students” problem tackling competency, reasoning competency, representing competency, parts of
their modelling competency?! and their competency to handle symbols and formalism in mathemat-
ics were evoked and trained. In order to understand Bernoulli’s mathematical representation of the
catenary, they had a) to fill out many gaps themselves and derive intermediate results using argu-
ments with similar triangles and from trigonometry, b) to introduce and understand the use of sym-
bols, c) to mathematize the hypotheses. Figure 2 displays a couple of pages from the students” final
report where they explain, how Bernoulli mathematized the hypotheses from statics and described
the catenary.
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Figure 2: Page 28 and 29 of the students’ report. The text is in Danish except from the quote from the
source on page 29.

Bernoullli described the infinitesimals dx and dy of the curve geometrically and he used the so-
called infinitesimal triangle to derive an equation between dx and dy. This part of Bernoulli’s text pre-
sented cognitive obstacles for the students. In order to understand Bernoulli’s arguments, the students

“'Modelling competency is understood in the sense of Blomhej and Kjeldsen (2010).
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had to read and understand the text within the mathematical discourse of the time which is difficult,
because the point of departure for them was their own mathematical discourse, which was different
from Bernoulli’s. As explained in section 4) it is precisely the contingency of metalevel rules of mathe-
matical discourse that is the reason, why history can serve as a means to reveal meta-discursive rules
and make them objects of students’ reflections. The way Bernoulli used geometry, statics and infinites-
imals to derive an equation for the infinitesimals of the catenary is very different from the way it was
introduced in the textbooks from which the students had learned about differential equations. Espe-
cially Bernoulli’s use of the infinitesimal triangle went fundamentally against the e — —conception of
rigour that the students” had been brought up with in their first year analysis course. The right page
(page 29) of figure 2 shows the students” explanation and discussion about the infinitesimal triangle.

In this part of the project work, the students’ competencies to think and reason mathematically
were trained and challenged in a new context provided by the history. The thoughts and reasoning
presented in the historical sources were very different from the way in which issues of infinitesimals
calculus are thought about and reasoned with in their analysis textbooks. For the students, the histor-
ical context provided an authentic piece of mathematics that could not be dealt with and understood
on its own terms by using standard methods from their analysis textbooks. This is an instance where
connections were created in the learning situation between the students” experiences with the in-
volved mathematics from their textbook and their historical experience—an instance that challenged
the students to use other aspects of their mathematical conceptions of infinitesimal calculus in new
situations provided by the historical context. To be more concrete, the students’ problems with un-
derstanding Bernoulli’s way of reasoning with infinitesimals provoked situations where the students
examined why Bernoulli’s method worked in this particular case, and it initiated discussions between
the students and the professor who supervised their project work about criteria for rigour and how
such criteria are determined. These were instances where the students experienced that standards for
rigour have changed over time, which is an example of the contingency of metalevel rules in mathe-
matics discourse.

Another instance for metalevel learning occurred when the students had to understand Johann
Bernoulli’s solution of the catenary differential equation. Figure 3 is a picture of a page from the stu-
dents’ report that belongs to the section in the report where they explained and discussed Bernoulli’s
method.

Bernoulli constructed the solution geometrically. This is not how the students were used to solve
differential equations and this part of their work initiated discussions between the group and their
supervisor about conceptual aspects of what a solution to a differential equation means. They became
aware that this, too, changes over time. It is a metalevel rule of mathematics discourse. The learning
and teaching situations were these kind of discussions emerged were created in the process of the
project work, guided by the students’ efforts to read and understand the historical sources in order
to find answers to their guiding questions. To illustrate how the students” “dialog” with the original
source made them reflect upon these metalevel rules, I have translated the following two paragraphs
from the students’ report. In the first paragraph, the students investigate and discuss what counts
as a valid argument, and in the second they reflect upon style of argumentation and generality in

mathematics:

“On page 26 we can follow how Johann Bernoulli transformed his physical knowledge into math-
ematics. Approximately half of Johann Bernoulli’s account for the derivation of the differential
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Figure 3: From page 37 of the students’ report. Bernoulli’s geometrical construction of the catenary.
The figure with the two shadowed areas was constructed by the students to illustrate a comparison
of areas that are involved in Bernoulli’s construction.

equation of the catenary was paraphrased in that section. Whereas he later became much briefer
in his derivations, he was very particular in this derivation. [--:]. We interpret this as if Johann
Bernoulli felt a need to document that precisely this transformation from physics to differential
equations was well founded. This was done with geometry which had a high degree of validity
in this period.” (Nielsen et al. 2005, 41)

“Bernoulli did not know the logarithmic function, so he could not describe the curve [of the cate-
nary] analytically. Even though he showed an incredible geometrical and mathematical intuition,
his construction [of the solution] did not lead to a general solution of similar problems.” (Nielsen
et al. 2005, 42)

I will give one last example from the project work that illustrates how the students” mathematical
competencies were trained. It is taken from the students’ comparison of the Bernoulli brothers” dif-
ferent ways of solving the brachistochrone problem. Johann interpreted the moving point as a light
particle that moves between two points. He used Fermat'’s principle of refraction and derived an equa-
tion involving the infinitesimals dz and dy. Jakob used a different strategy. He considered the problem
as an extremum problem, using that an infinitesimal change in the curve would not increase time, due
to the minimum property of the brachistochrone. Figure 4) shows two pages from the students’ re-
port, illustrating the two different approaches. The page to the left is from the students’ treatment of
Johann's solution and the page to the right is from their investigation of Jakob’s solution.

In this part of their project work, the students” mathematical thinking competency was evoked and
trained. The students experienced the characteristics of the nature of mathematics that makes it pos-
sible to generalize solution methods beyond particular, concrete problems. They wrote the following
about the differences between Johann's and Jakob’s approaches:

“ [---] makes it [Johann's solution] weak from a mathematical point of view. His solution cannot
be generalized because it was based on the physical situation. [-**] As indicated in section 4.5
Jakob’s solution gave rise to the mathematical discipline of calculus of variations. His method
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Figure 4: Page 49 and 63 of the students’ report. Johann’s (page 49) and Jakob’s (page 63) approaches
to the brachistochrone problem. The text is in Danish

could be used to solve other such kinds of optimization problems. [+**] in contrast to his brother,
Jakob was able to abstract from the mechanical framework of the problem of the brachistochrone.
He separated the mathematics from the physics.” (Nielsen et al. 2005, 75)

As the students explained, the technique Johann Bernoulli used to solve the problem was tied to
the physical situation. It could not be generalized. Its scope was limited to the actual situation. In
contrast, Jakob Bernoulli’s solution method was independent of the concrete situation and could be
used beyond that on other kinds of extremum problems—eventually leading to a new sub discipline
in mathematics, called the calculus of variations.

As we have seen, this project work created complex teaching and learning situations where a
scholarly approach to history was used that 1) developed the students’ second order competency
of having historical insights and possess historical awareness, 2) invoked and trained the students’
mathematical competencies, 3) exhibited metalevel rules of mathematical discourse and made them
objects of students’ reflections. The students wrote their report using IATEX and constructed the figures
in their report using MatLab. If we include such skills in the competency to handle tools and aids of
mathematics, the students were trained in all eight main competencies, as well as in the second order
competency of developing historical awareness and insights into the history of mathematics.

The historical context provided situations where the students came to reflect upon differences
between the sources” and their textbook’s way of conceptualizing differential equations and their so-
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lutions, differences of argumentation, style and rigour. On the object level of mathematics discourse,
this project work benefited the students’ learning of mathematics especially through their discussions
of why the Bernoulli brothers’ use of infinitesimals as actual quantities gave “correct” answers de-
spite the lack of rigour as we understand it today, where the concept of a function and of limit are
crucial, concepts the Bernoulli brothers” did not have at their disposal. Through these discussions—
dialogues—with the original sources, the students were forced into reflections upon their own under-
standings of the involved concepts on a structural level that went far beyond their initial operational
dominated conception of differential equations.

5.2 Analysis of an experimental course in problem oriented project work: Egyptian
mathematics.

The subject matter of the experimental course that will be analyzed in this section was Egyptian math-
ematics. The experimental course was developed in 2004 as part of an in-service course for upper
secondary mathematics teachers in the Danish high school. The objective of the in-service course was
to support mathematics teachers in developing, implementing and documenting problem oriented,
group organised project work in history of mathematics in upper secondary mathematics education.??
The in-service course began with a three day seminar during which the teachers in groups designed
and developed a problem oriented project work of their own choice with specific learning objectives,
course materials and products. Afterwards the teachers implemented their experimental course, i.e.
their problem oriented project work, in one of their classrooms. During the experimental course, the
teachers observed their students” group work in class. When the experimental course was finished,
the teachers wrote a report documenting the implementation of their experimental course. The teach-
ers” experiences with developing and implementing the problem oriented project work in history of
mathematics in their classrooms where then discussed on the basis of these reports during a two-day
seminar at the end of the in-service course.

The teacher, who developed and implemented the experimental course that will be analyzed in
the following, chose Egyptian mathematics for several reasons. First of all, there is a textbook on
Egyptian mathematics with sources translated into Danish.2 And second, the course was meant to
be interdisciplinary with history, and Egypt was suitable as a common theme that the mathematics
teacher and the history teacher could agree upon.?* The teacher’s design of the experimental course
was guided by his formulation of seven objectives for the students’ learning. Four of these dealt with
issues relating to independent study skills, and three of them concerned the history of mathematics
as it was required in the new (2005) curriculum for mathematics in Danish high schools. In the fol-
lowing I will concentrate on his learning objectives regarding history and mathematics, which were
the following: He wanted to

1. “have the students appreciate that mathematics has been different from what it is today

ZHistory of mathematics and design and implementation of group and project organized teaching was part of a new
curriculum in the Danish upper secondary school system (gymnasium) which was implemented in 2005.

BThere exists only very little materials in Danish with sources from episodes in the history of mathematics. Lack of
suitable resources is a major obstacle to introducing history for the learning and teaching of mathematics on a broader
scope.

#Only the mathematics teacher participated in the in-service course.



16 Uses of History for the Learning

2. develop the students” awareness that mathematical results have evolved, that mathematics
is not static, which is contrary to the way it is often presented

3. develop the students” awareness that mathematics develops in an interplay with culture and
society.” (Wulff 2004, 2-3; my translation)

The teacher designed the project work in three phases: First he gave an introduction to Egyptian
mathematics. He used two 45-minute lessons where he introduced the class to the Egyptian number
symbols, showed them how the Egyptians multiplied numbers by repeating doubling and how they
formulated problems. Second, the students were divided into groups of four. Each group worked with
a chapter from the textbook on Egyptian mathematics: fractions, Pesu (bread and beer) exercises; first
degree equations; two equations with two unknowns and second degree equations; the circle and
approximations of 7; the volume of a truncated pyramid; and computations of areas. Each group’s
work was guided by the problem formulation, chosen by the teacher: How and why did the Egyptians
calculate? Eight lessons of 45 minutes were used in class for the independent group work (and an
unknown amount of homework). During the group work, the teacher functioned as a consultant the
students could call on for advice. Third, each group had to share the knowledge they had acquired in
the group work. This was done in the form of a seminar where each group presented their work and
their answers to the problem formulation supported by a power point presentation.

I will not go into further details about the work done in the groups,?® but concentrate on using
the theoretical framework to analyze the implementation of the experimental course and the teacher’s
evaluation. In his report, the teacher wrote about objectives 1) and 2) that “they were all about gaining
insight into current mathematics precisely by studying the mathematics of another time” (Wulff 2004,
3). Hence, we are dealing with a use of the past from a utility perspective. In this part of the project
work, the teacher took a pragmatic approach to history. This is also consistent with the teacher’s atten-
tion in the classroom as he revealed in his report where he wrote: “ Already during the first module
[the first two lessons] came the classical question, why are we going to learn this? And we had a
nice talk about the intended learning issues [1), 2) and 3) above], during which the class apparently
accepted that historical mathematics, besides being interesting as such, could contribute to a more
nuanced view on current mathematics.” (Wulff 2004, 5). In the teacher’s evaluation of to what degree
the leaning objectives were realized, he thought that the students did not experience that mathemat-
ics develops over time, since the historical process of change was not dealt with in the project work.
The students compared Egyptian and modern mathematics, through which they became aware that
there were fundamental differences, i.e. the students experienced that mathematics has changed, but
they did not study the actual process of change and how such processes come about. For the third
learning objective, the teacher left the utility perspective and took a scholarly approach to history,
as he wrote: “here is where the subject of history can be involved. From a general knowledge about
Ancient Egypt and its society, students can discuss how society and culture have been driving forces
for the mathematics of that time. At the same time the historians” method of source criticism is an
essential tool for interpreting ambiguous and defective papyri” (Wulff 2004, 4).

The activities that guided the students’ work, i.e. reading the sources and working with exercises

presented in their respective chapters of the textbook on Egyptian mathematics can be interpreted as

ZInterested readers are referred to Kjeldsen (2012) where some examples from the topics the students worked with are
presented.
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a kind of “living history” approach. The students had to learn and simulate how ancient Egyptians
calculated, how they worked with geometry, posed mathematical problems etc. In doing so the stu-
dents used different learning strategies and came to reflect upon mathematics on a structural level
as can be seen from the following passage in the teacher’s report: “Many students wondered about
how “stupid” the Egyptians were. Why did they only use unit fractions? Why should a number be
expressed as a sum of different unit fractions? On the other hand their methods were very difficult
to understand; that is rather advanced, so in that respect they weren’t stupid at all. I think that many
of the students realized that current mathematics is not “just” like today, but is a result of a long de-
velopment, during which many things have been simplified. [+:*] This [that mathematics had made
progress] became especially obvious when the students constantly rewrote the Egyptian notation to
current notation with z’s, formulas, etc. After they had finished an Egyptian calculation they would
say: ‘but that just corresponds to -+’ followed by a solution of an equation in our way. It was very
inspiring to see how students, who normally were a bit alienated towards z’s and equations now
had taken those to themselves as their own, and all of a sudden perceived equations as an easy way
to solve problems. The students became aware that modern notation makes the calculations much
easier than they would have been otherwise” (Wulff 2004, 7).

The teacher evaluated the experimental teaching course as partly successful. All learning goals
except the last one (the third one above) were fulfilled. The last objective was suppose to have been
reached through the students’ work with answering the “why” part of the problem formulation — that
is, why did the Egyptians calculate. The teacher had hoped that through interdisciplinary work with
the students’ school subject of history and their history teacher, the students would have experienced
concrete examples of developments of mathematical ideas driven by needs of society. That didn’t
happen because the history teacher focused on other issues. The teacher reported that afterwards the
students seemed to posses a more mature and reflective attitude towards mathematics.?®

In this problem oriented project work, the teacher used past mathematics in different ways, from
different perspectives and for different purposes. He had the students deal with history of mathemat-
ics from its practice, having the students work with the content matter of past mathematical text from
the perspective of which techniques the Egyptians used and the kind of problems they worked with.
For parts of the learning objectives the teacher used a pragmatic approach to history and for other
parts he used a scholarly approach. The above quotes from the teacher’s report show that several
of the students” mathematical competencies were invoked and trained through this project work on
Egyptian mathematics, especially their problem tackling skills and their competencies to deal with
different representations of mathematical entities and to handle symbols and formalisms.

6 Discussion and concluding remarks

The theoretical framework presented in section 2), 3) and 4) draws on theories from mathematics ed-
ucation and from historiography adapted to history of mathematics and to history of mathematics in
mathematics education. It is composed in such a way that it can deal with two central questions in
research in integrating history of mathematics in mathematics education: 1) how integrating history

2The teacher finished the report approximately three months after his experimental teaching course had finished. Un-
fortunately, the teacher did not give examples of how and in what sense the students had a more mature and reflective
attitude towards mathematics.
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of mathematics benefits students” learning of mathematics and 2) how uses of historical elements to
support students” learning of mathematics develop students” historical awareness. The framework is
broad enough to accommodate the richness of the spectrum of implementations of history in mathe-
matics education, and it is narrow enough to function as a tool for analyzing, criticizing and orienting
designs and implementations of history for the teaching and learning of and about mathematics. The
framework captures (some) of the multifaceted ways in which history can benefit students’ learning
of and about mathematics.

The part of the framework that concerns historiography and different forms of history provides a
set of concepts that can be used to explore and identify how history is or can be understood. By linking
that part of the framework with the second part that concerns thinking about purposes of mathemat-
ics education and mathematics learning it becomes possible to clarify and distinguish between dif-
ferent purposes for integrating history in mathematics education in relation to the two central issues
presented above.

The framework was used to analyse the design and implementation of the experimental teaching
course in Egyptian mathematics. The analysis revealed that the teacher used different approaches
to history for different purposes targeted towards different learning goals — some directed towards
mathematics and some towards history of mathematics. He created a complex and rich learning sit-
uation were the students developed new learning strategies, enhanced several of their mathematical
competencies, and gained insights into the history of practices of mathematics. The analysis of the
project work on physics” influence on the development of differential equations that was carried out
by a group of five students in a university master’s programme in mathematics showed that the stu-
dents” used a scholarly approach to history for enlightening purposes. Their approach can be char-
acterized as a multiple perspective approach to history of mathematics from its practice, adapted to
mathematics education by focusing on the perspective of whether, how, for what purposes and to
what degree the historical actors were inspired by problems from physics. The analysis revealed that
in the process of exploring the three original sources, chosen by the students’, on their own terms,
the students identified, discussed and reflected upon differences between the historical actors” math-
ematical practices and the ones presented in their textbooks. Hereby, connections were created in
the learning situation between the students” experiences with the involved mathematics from their
textbook and their historical experience. These connections challenged the students to use other as-
pects of their mathematical conceptions in new situations provided by the historical context. The
multifaceted ways in which history can benefit students’ learning of mathematics became visible by
employing the second part of the theoretical framework. It showed that the students were trained
in all the main mathematical competencies, that they gained insight into history of mathematics in
the sense of the second order competency of the KOM-project, and that they came to reflect upon
meta-discursive rules in mathematics.

Finally, the combination of a multiple perspective approach to history of mathematics studied
from practices of mathematics and Sfard’s theory of thinking constitutes a foundation, from which
it can be argued that history can function at the core of the learning of mathematics. Since meta-
discursive rules in mathematics are contingent, they can be objects of historical investigations. The
analysis of the students” project in history of differential equations showed that, by having original
sources play the role as “interlocutors”, differences in metalevel rules in the discourse of the sources,
the students’ textbooks, and/or their instructor and themselves, can be revealed. Hereby metalevel
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rules are exhibited and can be made the object of students” reflections. This indicates that history
might be an obvious strategy for detecting students” meta-discusive rules and for students to de-
velop proper metarules. The first part is explored in (Kjeldsen and Petersen, forthcoming) where it
was possible to detect (some) improper meta-rules in students’ mathematical discourse through a
teaching module in history of the concept of a function that was implemented by the use of a matrix-
organization that provided the teacher with a window into students” meta-rules. The second part,
whether this caused a change in these students’ metarules, is another question. To answer this ques-
tion, more research is needed. However, knowledge about students” improper metarules can be used
by a teacher to target further teaching goals in ways that focus students” attention towards developing
proper meta-discursive rules.
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ABSTRACT

In this research, we comparatively analysed theoretical discourse in the research of mathematics
history and educational use of mathematics history in mathematics textbooks to discuss implica-
tion for mathematics education in culturally diverse school. Our analysis focused on two kinds
of documents: research documents of mathematics history published in Korea and Korean math-
ematics textbooks. Our analysis identified the tendency in which increasing numbers of Korean
researchers adapt the perspective of mathematics as cultural knowledge. Parallel to the emergence
of sociocultural discourse in the research of mathematics history, Korean mathematics textbooks
introduce materials from the history of mathematics produced by diverse cultural groups. How-
ever, the Korean mathematics textbooks did not fully exploit the potential of mathematics history
to bring up students” multicultural sensitivity. In Korean mathematics textbooks, use of mathe-
matics history is still largely framed by the Eurocentric perspective on mathematics. This research
has highlighted the significant discrepancy between the theoretical discourse of mathematics his-
tory and its educational use. This implies that it is essential to seek for ways of how to incorporate
the issue of diversity and difference in educational use of mathematics history in textbooks.

1 Introduction

Recently, due to the increasing influx of immigrants, Korea undergoes a rapid transformation into eth-
nically and culturally diversified society. This cultural diversification demands fundamental restruc-
turation of school education in Korea. In particular, nowadays an increasing number of immigrant
kids enter Korean school and, as a consequence, school need to be prepared for students with various
cultural backgrounds and to provide quality education that guarantees the equity in accessibility to
all students. In this context, it is necessary to examine whether Korean mathematics textbooks are
organized to be well-adapted into culturally diverse school. From the perspective, in this research,
we comparatively analysed theoretical discourse in the research of mathematics history and educa-
tional use of mathematics history in mathematics textbooks to discuss implication for mathematics
education in culturally diverse school.

“First Author
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Research of mathematics history has shown that mathematics is a sociocultural and historical
product and that mathematics has developed based on the dialogical relationship between diverse
cultural systems of mathematics. We analysed mathematics textbook since they are regarded as doc-
uments that embody the educational visions of the national curriculum. Also, textbooks are essential
teaching aid for teachers to plan and conduct their lessons in class. This implies that textbooks exert
considerable influence on the teaching and learning of mathematics in school. Thus, it is of signifi-
cance to investigate whether Korean mathematics textbooks are written to effectively exploit the po-
tentials of mathematics history to address the educational needs raised by the cultural diversification
in Korean school.

In addition to mathematics textbooks, we also analysed the theoretical discourse that has been
raised in the research documents concerning history of mathematics. This analysis focused on the
question of how the research of mathematics history in Korea has been changed in terms of its issues
and theoretical discourse. Then, we compared the results of the textbook analysis and those of the
research document analysis in order to investigate whether there are any connections or discrepancies
between the perspectives about history of mathematics taken by the textbooks and by the research
documents, respectively. Based on that, this research is to identify educational implication for the
educational use of mathematics history in culturally diverse school.

2 Use of Mathematics History in Culturally Diverse Classroom

In the community of mathematics education, it has been argued that history of mathematics can
play a valuable role in teaching and learning of the discipline (Fauvel, 1991). In fact, it is possible to
locate historical quotations on the use of mathematics history in mathematics teaching and learning
(Fasanelli, 2000). For instance, in his inaugural address as first president of the London Mathematical
Society in 1865, de Morgan said:

“I'say thatno art or science is a liberal art or a liberal science unless it be studied in connection with
the mind of man in past times---The mathematician needs to know what the course of invention
has been in the different branches of Mathematics; he wants to see Newton bringing out and
evolving the Binomial Theorem by suggestion of the higher theorem which Wallis had already
given. If he be to have his own researches guided in the way which will best lead him to success,
he must have seen the curious ways in which the lower proposition has constantly been evolved
from the higher” (recited from Fasanelli, 2000, p.35).

As this quotation suggests, mathematics educators have recommended that mathematics teach-
ers creatively use history of mathematics in a variety of ways to teach mathematics. Especially, in the
Korean national mathematics curriculum, educational use of mathematics history has been empha-
sized as one of methods for teaching and learning mathematics. Concomitant to this emphasis in the
national mathematics curriculum, there has been a corpus of studies concerning the educational use
of mathematics history.

In those documents such as national curriculum and educational theses, it is argued that history
of mathematics reveals the connection between mathematics and human life and civilization. Thus,

educational use of mathematics history can contribute to student motivation, the improvement of
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students’ affective attitude and beliefs about mathematics by highlighting the human aspect of math-
ematics. Moreover, it is considered that history of mathematics can be a good resource for mathemat-
ics teachers to plan their teaching because history of mathematics shows how mathematics has been
evolved in terms of curiosities, insights, tasks, methods, difficulties, and achievements that mathe-
maticians has come up.

Another educational significance of mathematics history lies in the fact that it brings up the is-
sue of cultural diversity in mathematics class. In fact, mathematics historians have revealed that the
mathematics is a cultural hybrid which has had a nomadic life across diverse civilizations (Joseph,
1993). This perspective adapts a fact that mathematics is totally integrated with other manifestations
of a culture. Culture as a strategy for societal action manifests itself through jargons, codes, myths,
symbols, utopias, and ways of reasoning and inferring. A community has historically developed prac-
tices such as ciphering and counting, measuring, classifying, ordering, inferring, modelling, and so
on, which leads to a unique system of an ethnomathematics (D’Ambrosio, 2010).

This relationship between culture and mathematics extends our understanding of the educational
significance of mathematics history. For instance, Horng (2000) comparatively analysed the methods
used by Euclid and of Liu Hui to find the greatest common divisor of two natural numbers. The analy-
sis has shown that ancient mathematics of the West and the East have approached common problems
differently and made different contributions to the development of mathematics. Horng (ibid.) con-
cluded that history of mathematics can be useful resource for teaching mathematics to students in
a meaningful way. That is, by introducing other possible forms of doing things through history of
mathematics, mathematics class can provide a context for students to approach mathematics from
diverse epistemological and methodological perspectives. Mathematics teachers may help students
appreciate the multi-dimensional splendour of the discipline and its relationship to other cultural
endeavours (Siu, 2000).

From this perspective, ethnomathematics such as Egyptian multiplication, Polynesian way of cal-
culating distance, or methods to measure land productivity used in traditional New Guinea are re-
garded neither as primitive nor as uncivilized. Rather, it is considered that these ethnomathematics
is the culmination of the communal consciousness that have historically developed in the context of a
community. Therefore, as students explore the history of an ethnomathematics, they learn the unique-
ness of each cultural system of mathematics and the relationship between ways of living and ways
of knowing. Grugnetti and Rogers (2000) argue that this multicultural approach to history of mathe-
matics would help students escape from ethnocentrism and extend their mathematical perspectives
beyond their own cultural backgrounds. The sociocultural perspective of mathematics challenges the
hierarchical relation between European academic mathematics and other cultural mathematics sys-
tems and then reconstructs an egalitarian power structure among all these ethnomathematics. Thus,
it is considered that research of mathematics history highlights cultural facets of the discipline and its
use may create a context for students to appreciate different ways of doing mathematics and to learn
how to communicate over the difference (D’Ambrosio, 2010).

So far, the discussion shows various potentials that history of mathematics can offer to school
mathematics. It is necessary whether our school mathematics exploits all the potential of mathematics
history for teaching mathematics to empower our students mathematically. From this perspective, we
have analysed research documents in order to identify theoretical discourse that provides implication
for educational use of mathematics history. Also, we analyzed Korean mathematics textbook in order
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to investigate how effectively Korean mathematics textbooks are organized to address the issue of
diversity. Based on the results of the comparative analysis, we will discuss educational implication.

3 Research Methods

3.1 Analysis of Theoretical Discourse in the Research of Mathematics History

In order to examine the research trends of thesis and articles about mathematics history published in
Korea, we used representative searching engine provided by KERIS(Korea Education and Research
Information Service). The reason why we chose the database of KERIS is that we focused on thesis
and articles about mathematics history pulished in Korea and KERIS, as a governmental organiza-
tion of Korea, has one of the most comprehensive database concerning research and publication of
educational issues. Via the webside of KERIS, we searched thesis and articles by various keywords
involving ‘mathematics history’, for example, ‘Oriental history of mathematics’, ‘mathematics history
of Chosun Dynasty’, and ‘“Western history of matheamtics” as well as ‘mathematics history” up to 2011.
As a result of the search, we could locate 648 theses and articles published between 1970-2011.

We first classified data according to publication date in order to grasp the chronological changes
in the issues of research. Then we classified them again into four categories according to research sub-
ject: General mathematics history (GMH), Western mathematics history (WMH), Eastern mathemat-
ics history involving Chinese and Japanese (EMH) and Korean mathematics history (KMH). If thesis
and articles do not limit mathematics history regarding its origins, we sorted them into GMH. We
counted materials dealing with Western mathematician, theories and approaches mainly to explain
some mathematical theorem and principles produced by European mathematics to WMH. If thesis
and articles deal with eastern mathematics history including Chinese, Japanese, or Korean mathemat-
ics history, we classified them as EMH. When as research document compared Western mathematics
with Eastern or introduced Eastern mathematical development, solving problem process and liter-
ature, we categorized them into EMH. Thesis and articles concerning to Korean mathematics were
categorized into KMH. Based on the categories, we analysed our data both qualitatively and quanti-
tatively and described the tendency of how the theoretical discourse in the research of mathematics
history has changed over the past five decades in Korea.

3.2 Analysis of Educational Use of Mathematics History

In order to investigate how mathematics history is used in Korean mathematics textbooks, we chose
three mathematics textbooks for the 7th graders. These textbooks were selected because they were
known as top ranked with respect to their portion in Korean textbook market. In Korea, a workbook
accompanies a main textbook. So we analyzed both main textbooks and their workbooks. When we
say “a textbook”, it usually refers to a textbook with its workbook together, unless we specify which.

Based on theoretical literature, we constructed a preliminary frame for analysis and then applied
it to the textbooks. Through the first pass of analysis, the preliminary frame was elaborated to fit
better for our analysis. The final frame for analysis consists of factors of two dimensions, of which
descriptions are following.
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A. Origins of mathematics

The first dimension of the analytic frame is concerned whose history of mathematics is dealt with
in textbook. We adapted the sociocultural perspective of mathematics so as to consider that Euro-
pean mathematics is not the only kind of mathematics. Based on the literature of ethnomathematics,
we began with two categories that are concerned with European mathematics and non-European
mathematics. After the preliminary analysis, we added the third category about the multicultural
connection among ethnomathematics developed in many other nations, ethnics, racial groups. The
multicultural connection refers to the pattern of use where the textbooks introduce materials from
the history of culturally diverse mathematics to make a comparison or to integrate them to create
a new of solving a problem. Therefore, this dimension consists of three categories: use of European
mathematics history(EM), use of non-European mathematics history(NEM), and use of diverse eth-

nomathematics history for multicultural connection(MC).

B. Contents of mathematics history use

We also identified categories based on what kind of content is adapted from the history of mathemat-
ics. If textbooks introduced episodes of famous mathematicians, important mathematic problems, or
historical anecdotes about mathematics, then we categorized them into C1. If textbooks present his-
torical solutions or strategies about mathematical problems, we categorized them into C2. If a material
from history of mathematics was used to provide a context for students to explore mathematical ideas
and to develop their own mathematical thinking, then we categorize it into C3. Lastly, if a material
from mathematics history is used to facilitate students to compare critically or to think creatively from
perspectives of various ethnomathematics, then we categorized it into C4. C4 provides a context for
students to approach mathematics from a multicultural perspective by comparing, deducing, creat-
ing based on the perspectives of diverse mathematics (Horng, 2000; Kim, 1999; Grugnetti and Rogers,
2000).

4 Findings

4.1 Theoretical Discourse in the Research of Mathematics History

We classified the collected research documents concerning history of mathematics and identified the
frequency of WMH, EMH and KMH. Table 4.1 presents the results.

TABLE 4.1: The results of the frequency analysis

: Type

Period WMH OMH WMH GMH Total

1970s 1 (01%) 1 (01%) 2 (03%) - -4 (05%)
1980s 4 (06%) 6 (09%) 5 (0.8%) 3 (05%) 18  (2.8%)
1990s 87 (135%) 5 (0.8%) 6 (09%) 10 (15%) 108 (16.7%)
2000-2004 176 (272%) 5 (0.8%) 11 (1.7%) - 192 (29.7%)
2005-2009 236 (364%) 1 (0.1%) 16 (2.0%) - - 250 (38.5%)
2010-2011 68 (105%) 3 (0.8%) 3 (05%) - - 76 (11.8%)
Total 572 (883%) 23 (35%) 40 (62%) 3 (2.0%) 648 (100%)
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When we examine the above table more carefully, the number of the research documents on mathe-
matics history increased rapidly over time. 88.3% of the research documents dealt with the history of
Western European mathematics. Those documents introduced Western mathematicians as founder
or developer of mathematical formula or algorithm. It can be said that those research adapts the Eu-
rocentric perspective regarding that Western mathematics is the only legitimate kind of mathematics.

However, we found somewhat different position in Park(1977)’s thesis, which contained study on
the history of Korean mathematics. She first compared the natural environment, industry, political
and social structure, and ideology of Korea with those of China because she thought that all of those
factors brought about different patterns of mathematical thinking and then examined the course of
Korean mathematics. She argued that it needs more to establish formation process than accomplish-
ments to understand truly mathematics of Koreans. This thesis shows that researchers of mathematics
history began to recognize the relationship between mathematics and culture at that time using the
concept of absolute mathematics. Especially, Park(ibid.) presented the necessity of research about
Korean mathematics and explained that every nation has its own unique mathematics because of
different climate, politics, economy, etc.

This point of view became extended in the 1980s. Researchers of the 1980s addressed viewpoints
theoretically that they should get away from Western European mathematics traditions and regard
mathematics as cultural heritage which belongs to every nation and ethnics by introducing the notion
of ethnomathematics. With reference to the notion of ethnomathematics, Kim(1986) mentioned that
every mathematics had contributed to the development of modern mathematics and that research
trends was shifting from the history of European mathematics history to the history of the national
and regional ethnomathematics. Hu(1997) also stated the differences around 1970 as follows: there
were not only increasing number of literature on mathematics history but tendencies toward pluralist
approaches reflecting a broad spectrum of mathematical concerns. Thus he referred lightly to liter-
atures on the mathematics development in diverse societies like ancient China, India and medieval
Muslim countries.

In the 1990s, theoretical researchers tried to establish the role and position of mathematics history
in the mathematics education and emphasized the cultural value of mathematics. This effort had a
great influence on the emergence of research on Korean mathematics history(Kim, 1999; Park, 2001).
In the 1980s and the 1990s, in order to identify the status of Oriental mathematics, researchers tried
to compare the Oriental mathematics and the Western mathematics by tracking their historical devel-
opment. Researchers also sought to find the characteristics in the history of Korean mathematics that
distinguish it from other Oriental mathematics, especially Chinese mathematics history. They were
concerned to the fact that school mathematics included the knowledge of modern Western mathemat-
ics as only truth. Even mathematicians regard “mathematics history” as Western European. This may
lead students to think that there is no traditional mathematics in Korea. In fact, many people regarded
Korean traditional mathematics as copies of Chinese mathematics. However, there are unique math-
ematics in Korea, so researchers investigated mathematical activities during the Chosun Dynasty in
which many of historical artefacts remain.

At first researchers investigated the Nine Chapters on the Mathematical Art, one of the oldest ancient
Asian mathematical books, which is a valuable material indicating that mathematics has existed with
us for long time. Although it is from China, it can be said as significant part of Korean mathematics
history in the regard that it influenced the formation of Korean mathematics. The Korean historical
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mathematical books, for example, Gu-il-jip, Iksan, Chugryangdohae, etc. emerged around 1700 (Koh &
Ree, 2009). The history showed how traditional Korean lived to reveal the existence of mathematical
culture. This prompted researchers to investigate Korean mathematics history. Since mathematics of
the Chosun dynasty accounts for a great part of Korean mathematics history, researchers explored
mathematicians, mathematical terms and literatures of Chosun Dynasty. In the beginning, they ended
up introducing anecdotes or life stories of mathematicians, and various problems. They extended the
boundary of research to include the inquiry of the historic-genetic principle and solutions of specific
problems.

In summary, research topics of mathematics history in Korea could be categorized into Western
European mathematics history, Chinese mathematics history and Korean mathematics history. Here,
most researchers of Chinese and Korean mathematics history have adapted the sociocultural per-
spectives of mathematics and emphasized issues about the cultural aspect of mathematical thinking
and reasoning. They argue that every ethnic group and nation has its own traditional mathematics
and that each group has contributed to the development of the world mathematics. In particular,
researchers of Korean mathematics history tried to distinguish Korean mathematics from Chinese
mathematics to emphasize the uniqueness of Korean mathematics.

4.2 Educational Use of Mathematics History

In order to examine the educational use of mathematics history in mathematics textbooks, we counted
the frequency of each code as the mathematical contents C1, C2, C3, C4 which are categorized into
European, non-European, and multicultural connection. In the following, we describe the salient fea-
tures in the use of mathematics history in Korean mathematics textbooks

TABLE 4.2: The frequency of each code in the use of mathematics history

EM NEM MC Total
67 31 39 137
(48.9%) (22.6%) (28.5%) (100%)
Cl 2 Cl c2 Cl 2 C3 4
46 12 7 2 15 4 11 1 28 2 4 5

(33.6%) (8.8%) (51%) (1.6%) (10.9%) (2.9%) (8.0%) (0.7%) (204%) (1.5%) (2.9%) (3.6%)

A. Use of anecdotes in mathematics history

In the analyis, we found that Korean mathematics textbooks use mathematics history in various ways.
Among those ways of use, the most prevalent pattern of use was to introduce episodes and annnec-
dotes of famous mathematicians. As shown in TABLE 4.2, C1(64.9%) is the most prevalent through-
out all the categories of the origins. In Korean textbook, mathematics history was most often used
by introducing historical mathematicians and their mathematical achievements, artefacts, or events.
They appeared on the first page of each chapter or as side readings in a chapter. This pattern of use
simply list information without extending to the development of related mathematical ideas. In ad-
dition, TABLE 4.2 shows that most cases came from the history of European mathematics in this use
of mathematics history.

Thus, the use of C1 may mislead students to think mathematics as an discipline that a few of genius
mathematicians, especially, European male mathematicians, have produced. C1 in non-European
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mathematics and muticultural connection introduced students about mathematics history of non-
European societies. For instance, one of the textbooks introduced non-European mathematicians
and female mathematicians as well as European mathematicians on the chronology of mathematics
histroy. Although C1 in combination with the history of diverse ethnomathematics may contribute
to revealing students that mathematics is universal knowledge. However, mathematics educators
should be cautious of whether this use of mathematics history successfully highlight the cultural
facet of each ethnomathematics.

Even though the textbooks attemped to connect ethnomathematics of diverse groups, they failed
to create a sound mathematical connection. For example, one of the textbooks presented coins of di-
verse countries and posed a problems asking the relationship between the size of the angles. This
question is rarely relevant to the purpose of expanding students” mathematical understanding of ge-
ometric shapes. Also, while the textbooks introduced annecdotes and artefacts from mathematics of
diverse groups, they did not successfully highlight the diversity in the way of developing mathemat-
ical concepts.

B. Prevalence of European mathematics history

The analysis has shown that European mathematics history was prevalent in mathematics textbooks.
The percentage of its use is 48.9%. It means that Korean mathematics textbooks were heavily oriented
toward the European mathematics knowledge. For instance, while the mathematics textbooks intro-
duced many mathematicians, they were mostly European male mathematicians like Euclid, Pythago-
ras, Decartes, etc. It is important to point out that the prevalence does not simply have a quantitative
meaning. Instead, it is concerned with a postion whose mathematics is representative and legitimate.
For instance, when the textbooks presented tasks to require students to explore mathematical ideas in
connection to history of mathematics, the tasks mostly adapted history of European mathematics to
guide students’ exploration. So Korean mathematics textbooks represent European mathematics as a
normative of students” mathematical development. This monocultural tendency contrasts to the the-
oretical discourse that Korean researchers of mathematics history has emphasized the understanding
of cultural identity in the research of mathematics history.

C. Use of multicultural connection in mathematics history

Although the use of European mathematics history was prevalent, Korean mathematics textbooks
tried to include historical materials from diverse cultural groups. As TABLE 4.2 shows, the percentage
of non-European cateogory is 22.6% and the percentage of multicultural connection is 28.5%. How-
ever, although the textbooks tried multicultural approach by introducing historical anecdotes and
artefacts from ethnomathematics of various groups, the mathematical achievement of non-European
groups was hardly acknowledged.

For example, some tasks presented problem solving strategies taken from the history of western
mathematics and from non-European mathematics and then asked students to compare them and to
write the strength of the western style strategy compared to those of non-western strategies. In this
way, most tasks in multicultural connection underestimate the ethnomathematics of non-European
groups and mislead students to a monocultural view of mathematics which assumes rationality and
efficiency of European mathematics as standard.
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On the contrary;, it is necessary to note that there were good examples of multicultural connection
in the use of mathematics history. For instance, there was a task that introduced different solutions of
the linear equation traditionally used in China and in Korea. The task asked students to discuss what
the advantages and disadvantages of the different ways of solving the problem are. The strength of
this task lies in the fact that it encourages students to faily compare mathematics of diverse cultural
groups and to explore their mathematical values, benefits and contributions.

In multicultural connection, the mathematics textbooks did not effectively exploit the potential
of educational use of mathematics history for bringing up students’” understanding of difference and
diversity. The tasks presented the mathematics history of diverse cultural groups in ways that implic-
itly or explicitly penetrate the taken-for-granted hierarchical relation between European mathematics
as superior and non-European mathematics as inferior. Thus, it is of essence to seek for ways of how
to introduce history of diverse ethnomathematics as highlighting their own cultural values and help
students extend their mathematical perspectives as experiencing different ways of doing mathemat-

ics.

5 Conclusion

In this research, we comparatively analysed theoretical discourse in the Korean research documents
of mathematics history and educational use of mathematics history in Korean mathematics textbooks
to discuss implication for mathematics education in culturally diverse school. Our analysis identified
the tendency in which increasing numbers of Korean researchers adapt the perspective of mathemat-
ics as cultural knowledge. In their research of mathematics history, they have developed a position
that each cultural group possesses its own unique system of mathematics and a cultural system of
mathematics grows through dialogical relation with other cultural systems of mathematics. This im-
plies that Korea has developed a unique and distinct mathematics and that Korean mathematicians
contributed to the development of world mathematics. The researchers have recommended to intro-
duce Korean mathematics history into school mathematics in order to help our students acknowledge
our traditional mathematics and develop high self-esteem of their cultural heritage.

Parallel to the emergence of sociocultural discourse in the research of mathematics history, the
analysis of the Korean mathematics textbooks shows that mathematics textbooks introduce materials
from the history of ethnomathematics produced by diverse cultural groups. However, the analysis has
revealed that there was a significant limitation in the way of using history of mathematics. Specifically,
Korean mathematics history was used as a tool to provide students with mere excitement, interest and
motivation. Its use rarely extended to the development of mathematical meaning. More importantly,
in Korean mathematics textbooks, use of mathematics history is still largely framed by the Eurocentric
perspective on mathematics. So the Korean mathematics textbooks did not fully exploit the potential
of mathematics history to bring up students” multicultural sensitivity.

The analysis of this research has highlighted the significant discrepancy between the theoretical
discourse of mathematics history and its educational use. This implies that it is essential to seek for
ways of how to incorporate the issue of diversity and difference in educational use of mathematics
history in textbooks. When history of mathematics is fairly used, it will help students appreciate the
cultural facet of mathematics and acknoweldge the unique strength and weakness of ethnomathe-
matics created by a certain cultural group. Through this kind of cultural exposure to different ways
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of doing mathematics, students may be encouraged to cross the boundary drawn by their own cul-
tural background. As crossing the boundary, they may be encouraged to deconstruct and reconstruct
knowledge hegemony taken-for-granted in society, and ultimately pursue freedom, equity, and peace
via learning mathematics, which is the most valuable contribution that history of mathematics can
make to mathematics education.
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ABSTRACT

Several countries including England, Scotland and Denmark have recently incorporated the
history of mathematics in their school curriculum. This raises questions on the nature of teacher
education and professional development programs in the history of mathematics courses and
workshops. What are the examples of recent courses in the history for mathematics for teachers?
In this paper, I present a case history of a mathematics course for teacher candidates at a Cana-
dian University. I specifically studied the modifications which the course has undergone since
its inception five years ago. The question at the center of this analysis is, in what ways has the
course developed? And what are the reasons for the changes? I carried out a content analysis of
the course’s outlines, plans, lists of resources and teaching and assessment materials in order to
study the changes and the possible reasons for the changes over the past five years. Interpreta-
tions of the results are framed by Furinghetti’s framework, the role of history of mathematics in
schools. I adapt the discipline of noticing as a method of inquiry. The discipline of noticing encour-
ages teachers and educators to reflect on their practices. Results display major changes in course
content, assignments and materials; while the course goals showed few changes. For example, new
topics, such as, historical numbers and historical mathematics problems were introduced. Further,
broader topics, such as, the evolution of specific concepts, vis-a-vis the narrower topic of history
of number development were introduced. The nature of the course participants and the increased
availability of multimedia texts appear to be the major reasons underlying the course changes.

Keywords: History of mathematics, teacher education, course implementation, history of
mathematics-for-teachers tasks, practitioner research.

1 Introduction and Background

Several countries including England, Scotland and Denmark have recently incorporated the history
of mathematics in their school curriculum in order to motivate and develop students” mathematical
thinking (Marshall & Rich, 2000; Pope, 2010; Pritchard, 2010). This raises questions on the nature of
history of mathematics courses and workshops offered in teacher education and professional develop-
ment programs. What are the examples of recent courses in the history for mathematics for teachers?
In this paper, I study modifications undertaken on a history of mathematics course for teacher can-
didates since its inception at a Canadian University. This paper relates to four themes of HPM 2012
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meeting: Theoretical and/or conceptual frameworks for integrating history in mathematics educa-
tion; History and epistemology implemented in mathematics education; Classroom experiments and
teaching materials; and Topics in the history of mathematics education.

I developed a course the Historical-Conceptual Development of Mathematics, 18 hours, for ele-
mentary and senior teacher candidates in 2007 at a University in Canada. Since then, I have taught
the course for three terms to an average of 20 teacher candidates who elect to take the course a term;
increasingly a majority of the teacher candidates are from the secondary division. This elective course
was designed to draw from the history and traditions of mathematics to inform the understanding
and teaching of school mathematics. The course integrates the connections (and disconnections) be-
tween the historical and conceptual development of mathematics topics. It aims to: relate the history
of mathematical concepts to sequencing topics in the school curriculum; assist teacher candidates to
appreciate why concepts, such as integers, are better understood by learners in specific ways and not
in other ways (say, integer multiplication in abstract ways and not in concrete ways); and illustrate
the multiplicity of meanings and representations—including concrete, graphical and analytical—of
several concepts. The classes are designed in the format of short lectures, problem solving activities
of historical mathematics, acting out skits and plays, exploration of selected texts and documentaries,
anecdotal displays on both conventional and non conventional mathematicians, researching the evo-
lution of mathematics concepts in selected articles, and preparing creative teaching activities based
on the history of mathematical concepts.

The format of the course in 2011 consisted of short lectures, problem solving of historical mathe-
matics, acting out skits and plays, exploration of selected texts and documentaries, anecdotal displays
on both convention and non conventional mathematicians, researching the evolution of mathematics
concepts in selected articles, and preparing creative teaching activities based on the history of math-
ematics concepts.

In this paper, I study the course modifications that have occurred since the course’s inception. I
carry out a content analysis of the topical outlines, daily plans, readings lists and assignments in order
to study how these areas have evolved over the past five years. I also share some classroom tasks. The
question at the center of this analysis is, in what ways has the course evolved? And what might be
the main reasons for the changes?

2 Framework

A plethora of professional and scholarly publications exist on incorporating the history of mathemat-
ics into school and university mathematics. Questions; such as why, how and what of teaching history
of mathematics are addressed in the literature. Liu (2003), Bidwell (1993), Ernest (1998), Freudenthal
(1981), Furinghetti (1997) outline roles of learning history of mathematics in school teaching. The
roles range from students’ learning outcomes such as improvement in attitudes toward mathematics;
to pedagogical outcomes, such as opening up a window into studying aspects of students” mathemati-
cal thinking; through to broader humanistic roles that the history of mathematics plays in showing the
ways mathematics has been practiced over time, and even further to the argument that the history of
mathematics is part of mathematical learning. Further, several forms of teaching the history of math-
ematics are explored in the literature including biographies of mathematicians, anecdotal and visual
displays of mathematicians, their works and facts about their lives, and the exploration of original
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works and ancient textbooks (Bidwell; Fauvel, 1991; Kaye, 2010; Pritchard, 2010; Wilson & Chauvot,
2000). Several researchers recommend incorporating the history of mathematics in the teaching of
the subject matter; say as mini-lectures on any topic of interest. Despite the plethora of literature on
the importance of having history in a mathematics class, Marshall and Rich (2000) identified a lack of
“empirical studies that discuss the use of history to teach mathematics” (p.704). Swetz (2003) notes an
increased interest in offering history of mathematics in university mathematics departments. There
is need for empirical studies on classes, courses and workshop where history of mathematics forms
an integral part of learning.

Swetz (2003) observes that it is important to consider the goal of exploring the history of mathe-
matics when deciding which resources to be used say in university courses on the history of mathe-
matics. A course instructor might choose to focus beyond the Western origins of mathematics, whereas
another instructors might choose to focus on doing historical mathematics problems from varies
mathematics traditions. Furinghetti (1997) offers a conceptual framework for integrating history in
mathematics education. Furinghetti describes four approaches to teach the history of mathematics:
a) a history of mathematics for promoting the image of mathematics; b) a history of mathematics as
a source of mathematical problems; c) a history of mathematics as a different approach to concepts;
and d) a history of mathematics as a different approach to mathematical concepts. Furinghetti thus
links the role of the history of mathematics to how it is taught or incorporated in school mathematics
and in teacher education. Furinghetti further identifies two streams of intervention of the “history of
mathematics into mathematics teaching *--one stream is aimed at promoting mathematics, the other
[is aimed] at reflecting on mathematics; the first is linked with the “social” role of the discipline and
its image, the second mainly concerns aspects interior to the discipline, such as development and the
understanding of it” (p. 59). The study conducted by McBride and Rollins (1977), for instance, focuses
on the changes in students’ attitudes as a result of incorporating history into mathematics teaching.
This study by McBride and Rollins belongs to the former category of the social role. D’Ambrosio (1997),
on the other hand, promotes a cultural focus to the history of mathematics; he argues a cultural focus
broadens students” understanding of mathematics. D’Ambrosio’s focus aligns more with the latter
category of the mathematical role, specifically the ethno-mathematics role. Swetz (1995) and Siu (1995)
observe that exploring historical mathematical problems contributes to students” understanding of
the processes, origins and development of mathematics; these researchers illustrate the latter cate-
gory of the interior role to mathematics. Liu encourages incorporating the history of mathematics
into teacher education because it expands teachers” mathematical knowledge. Exploring the history
of mathematics in the context of the time, place, cultures and civilizations in which it was developed
reveals much about the nature of how mathematics knowledge was develops and is learned (Bidwell,
1993).

3 Methods

Mason (2002) defines the discipline of noticing, what at other times he refers to as, researching-from-
the-inside, as a method of inquiry for studying teaching and other practitioner practices. The disci-
pline of noticing involves working towards improving one’s ability to notice, mark, record, reflect, and
analyze specific aspects of their professional practice. Mason encourages making a record of brief
descriptions of a phenomenon while recording what one has noticed. These descriptions should be
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vivid and stripped off of any theory, judgment and personal views. He refers to such descriptions as
brief-but-vivid descriptions, accounts-of an incident. These brief-but-vivid descriptions form the data to
be analyzed. The data is then interpreted; the interpretations, explanations and application of theory
follow after and remain separate from the descriptions. Data analysis, akin to several qualitative meth-
ods, involves searching for common themes among a collection of accounts. Mason outlines several
aspects of noticing; which includes systematic reflection and the validating with others. Mason labels
the reflection on the changes the accounts-for. To Mason and Spence (1999), systematic “reflection-on-
action” promotes “reflection-in-action” (p.153). The discipline of noticing is useful at exploring more
possibilities for acting when similar situations arise in the future. The discipline of noticing supports
learning from experience and increases the possibilities to notice specific categories of a phenomenon.

In this paper, to study modifications which the course has have undergone since its inception, I
study the documents for the course, the topical outlines, daily plans, reading lists and assignments
specifications as the accounts of the course plans. I carry out the content analysis of both the 2007
and 2011 course plans to identify changes. Results of the analysis are summarized in tables. I share
written plans of the classroom activities as brief-but-vivid descriptions of the course activities. The
question at the center of this analysis is: in what ways have the course goals, content, teaching and
assessment materials changed over the past five years? And what are the reasons for the changes?

Mason (1994) observes that noticing is what teachers and educators do all the time. But to engage
in a conversation with and about what teachers and educators notice is what requires a deliberate
choice on the side of the teacher-or educator-researcher. Mason developed the discipline of noticing
as a practice for working with noticing. The techniques from the discipline of noticing adapted here
involves marking the changes over time by comparing and contrasting documents, offering a descrip-
tion of what the changes are, in Mason'’s (2002) terms, the accounts-of the difference, and then reflect-
ing on the changes. The reflection on the changes is intended to offer justifications of what I—as the
educator who is researching the development of her own designed and own taught course—thought
were the impetus for the changes, the accounts-for. It is the accounts-of and the accounts-for that are
at the center of the results and their interpretations. Presenting my reflections on the course at the
conference is a way of validating with others what I notice about a history of mathematic course for
teachers.

4 Analysis and Results

In tables 1 to 4, I offer analyses of the content in the course’s goals, content, teaching and assessment
activities, and daily class plans for the first year the course was taught, 2007; as well as the most recent
year the course was taught, 2011. Text that is italicized in the tables marks the differences between the
two years. Where no differences exist I have note, —same as in 2007—.

Table 1, where course goals for the two years are compared, shows one difference between course
goals in 2007 and 2011: a new goal was introduced in 2011 which emphasized the use of “understand-
ing and reflection” from the course to “inform professional judgment in practice”. All other five goals
remained the same as in 2011.
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Table 1: Comparing and Contrasting the Goals of the Course
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2011 Aims and Goals

2007 Aims and Goals

The course aims to

AN e

—Same goal as in 2007—
—Same goal as in 2007—
—Same goal as in 2007—
—Same goal as in 2007—
—Same goal as in 2007—
Encourage understanding and reflection on
student development, learning theory, ped-
agogy, curriculum and research on the his-
tory of mathematics, and to use such un-
derstanding and reflection to inform profes-
sional judgment in practice.

The course aims to

1.

Develop understanding of the evolution
of mathematical ideas historically.
Explore the implications of this evo-
lution on conceptual development and
across grades.

Explore the implications of this evolu-
tion on sequencing of topics, selecting
teaching models, and representations
for teaching mathematics.

Introduce a range of strategies for teach-
ing mathematics in ways connected to
history, culture and new discoveries in
mathematics.

Demonstrate how history of school
mathematics is usefully integrated in
school mathematics.

Table 2 shows a comparison of course content of the two years. Four differences are evident: (a)

mathematics.

an introduction of an overarching topic, Topic 1 on Introduction, overview and role of history of mathe-
matics in 2011; (b) a broadening of Topic 1 (2007 column) to include the history ---of geometry as well;
(c) an amalgamation of topics 2, 3, 4 and 5 (2007 column) on specific concepts into two general topics,
Historical mathematics problems and Evolutions of specific concepts; (d) the separation of the 2007 Topic
8 Mathematicians in School Mathematics into Selected mathematicians’ stories, lives and works and Women,
prodigies and other interesting mathematicians; as well as a shift from focusing specifically on, say, Frac-
tal Geometry ---Euclidean and non-Euclidean Geometries to describing a general focus on Selected new
mathematics discoveries . Further, a new topic was introduced in 2011, Topic 8, a brief history of school
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Table 2: Comparing and Contrasting the Course Content

2011 Course Content

2007 Course Content

. Introduction, overview and role of history of

mathematics

. History of Number and Geometry in

teaching and learning

. Western and non Western roots of the

school mathematics

4. Historical mathematics problems
. Selected mathematicians: stories, lives and

works in school mathematics

. Evolutions of specific concepts e.g. History

of zero, evolution of functions, and times of
multiplication

. Women, prodigies and other interesting

mathematicians

. Selected new mathematics discoveries and a

brief history of school mathematics

. History of Number developments
2. Western and Non western roots of

Mathematics

. Zero and Integers—Chinese rods and rela-

tion to use of colored chips

. Multiplication—development across grades

and variety of algorithms

. Fractions—Egyptians fractions and other

Fractions

. Babylonian Algebra—polynomial, Geome-

try and the Polykit and Algebra tiles

. Fractal Geometry, landscapes as Fractals,

Euclidean and non-Euclidean Geometries

. Mathematicians in School Mathematics —

Gauss and number theory; Pythagoras theo-
rem, its origin, proofs and the internet

. Patterning: Pascal; Fibonacci and number

sequences
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Table 3: Comparing and Contrasting the Course Materials

2011 Course Materials

2011 Course Materials

The course texts will include:

A. Selected chapters from history of mathe-
matics books, textbooks and magazines.
Examples include:

a. Joseph, Ghever Ghese G. (1991). The
crest of the Peacock: Non-European roots of
mathematics. London: Penguin Books.

b. Burton, David M. (2002). The history of
mathematics: An introduction. McGraw-
Hill Math.

B. Selected
sional/teacher journals articles. Examples

scholarly and profes-

include:

a. Using history in mathematics Educa-
tion. For the Learning of Mathematics, 11,
3-6.

b. Liu, P. H. (2003). Do teachers need to in-
corporate the history of mathematics in
their teaching? The Mathematics Teacher,
96, 416—421.

C. Selected web pages on the history of mathemat-
ics. Examples include:

a. The History of mathematics—BBC docu-
mentaries

b. History of Mathematics Wikipedia page

The course texts will include:

A. Selected chapters from books such as

Chapter 1, Joseph, Ghever Ghese G.
(1991). The crest of the Peacock: Non-
European roots of mathematics. London:
Penguin Books.

B. Selected chapters from textbooks such as

Howard, Eves (1990). An introduction
to the history of mathematics, 6th Edi-
tion
C. Selected articles from
Professional/teacher journals such as

Jarvis, D. (2007). Mathematics and the
visual Arts: Exploring the golden ra-
tio. Mathematics Teaching in the Middle
School, 12, 467-471.

D. Selected sections of Scholarly articles such
as

Section 1 and 6 of Furinghetti, F. &
Radford, L. (2002). Historical concep-
tual developments and the teaching
of mathematics: From phylogenies and
ontogenesis theory to classroom prac-
tice. In: L. English (Ed.), Handbook
of International Research in Mathematics
Education (pp. 631-654). New Jersey:
Lawrence Erlbaum. Available online

E. Selected websites such as

The MacTutor History of Mathe-
matics archive http://www-groups.
dcs.st-and.ac.uk/\~{}history/
Accessed January 4, 2007

F. Curriculum guidelines
G. Curriculum Textbooks

The major change evinced in Table 3 is a move towards an increased use of nontraditional texts,
especially to include visual-audio texts and texts published online. There was a resulting change of a
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reduction in the number of textual course materials listed.

Table 4: Comparing and Contrasting the Course Assignments

2011 Comparing and Contrasting
the Course Assignments

2007 Assignments and
Other Course Requirements

[.

II.

1.

Attendance, classroom contribution and
individual participation including small
group work. This will contribute 30% to-
wards the final grade.

One major assignment. You have a choice
among A, B and C. This major assignment
contributes 50% towards the final grade.

A. Mathematician assignment—Select a
mathematician; research and write
about one of his/her works and its
relevance to school mathematics. Up
to THREE pages double spaced.

OR,

B. Topical assignment—Select a math-
ematics topic or concept (e.g. inte-
gers, functions etc.); research and de-
sign a poster display that presents
some of its historical, conceptual or
curriculum (across grades) develop-
ment. Electronically designed posters are
preferred but the instructor is open to
other forms.

OR,

C. Small group performance project—in a
group of 2 or 3 please plan a performance
project that can be performed in class.
The project may take the form of a lesson
idea, a skit, a short video clip or any other
agreed upon form. Samples will be shown
in class.

Presentations of the major assignment in
seventh, eighth and ninth class. The presen-
tation will contribute 20% towards the final
grade.

II.

[

Classroom contribution and participa-
tion including homework, reading notes
and assigned readings 25%

Two written assignments, 2 pages dou-
ble spaced each.

¢ Topical assignment 25%—Select a
mathematics concept (e.g. integers,
fractions, angles etc.), research and
write about some of its historical,
conceptual or curriculum (across
grades) development.

¢ Mathematician assignment 25%—
Select a mathematician and re-
search and write about one of his
works and it’s the relevance of to
school mathematics.

III. A take home examination—25%

Three differences are seen in Table 4 which compares the assignment sections of the course: a)
an introduction of a performance project; b) the provision of choice among the assignments on a
mathematician, on a topic and a performance project; c) the inclusion of classroom presentation of
the major assignment; d) the replacement of the take home assignment by classroom presentations

based on a students” major assignment in the 2011 column.
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The daily plans changed due to the changes in topical outline and due to the change in nature of
participants. A majority course participants were from the IS division in 2011. This made it difficult to
compare the class plans of the two years. I only carried out a holistic comparison of daily plans in 2007
as compared to those in 2011. In summary, the analyses of the class plans show more course readings
are done in the context of in-class activities in 2011. Much of the teaching content and materials are
still the same in 2011 as in 2007, but some content (say, evolution of specific concepts) is covered more
in detail than other content (say, history of number) in 2011. Several more online, audio, and video
texts are used during class in 2011, and more time in class is planned for students to present their
work and assignments.

To exemplify the teaching materials, I share these in the context of selected tasks used in class.
These are presented in Figures 1 to 5. These task descriptions, showing the topic, materials, sup-
plemental materials, school classroom relevance and specific tasks, are adapted from the daily class
plans. Figure 1 is an example of a task in which I use online video clips from a 4 hour documentary,
The story of maths. Students listen to an archived radio program on the story of two mathematicians,
one from the European mathematics tradition and the other from the Indian mathematics tradition,
G. H. Hardy and S. Ramanujan in the task shown in Figure 2. Figure 3 displays a task in which part of
the video recorded lectures on Historical numbers, The Story of Euler’s e is utilized. Figure 4 describes
the task in which students, using a play script and additional materials, prepare to act a play based on
a mathematician, Evariste Galois. Figure 5, is an example of a classroom activity which involves re-
viewing selected articles to explore the life and times of a concept; in this case the multiple meanings
and representations of the concept, in this case functions. It is worth noting that course participants
submit exemplary assignments. These are also presented in class. Here I only mention assignment
projects. These include but are not limited to:

¢ A short 5 minute video on conversations between Robert Hooke, Gottfried Wilhelm Leibniz and
Sir Isaac Newton. This video centers on the Feud between Leibniz and Newton

* A comic strip based on selected mathematicians,

* A manuscript on Zero and another on Paul Erdos,

¢ A script of a skit centered on Emilie Du Chatelet, Hooke, Leibniz and Newton, and

¢ A brochure on Fractals, a song performance based on selected mathematician and mathematics

concepts, and a poster on prime numbers.
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Topic: Western and non Western roots of math

Materials: History of Math documentary by Prof. Marcus D Sautoy, which is orga-
nized by mathematics tradition. Sautoy, P. M. (Director). (2009). The story of maths [Motion
Picture]. Also available at http://topdocumentaryfilms.com/the-story-of-maths/

Task: In groups of 3 we are going to watch the first 14 parts covering 7 early mathe-
matics traditions. This is going to take us up to 25 minutes per group

Group 1: Part 3, 4 (stop at 7 minutes)—Babylonia —17 minutes

Group 2: Part 4 (at 7 minutes), 5, 6 Greece —25 minutes

Group 3: Part 7, 8—China—18 minutes

Group 4: Part 8 (start at 8 minutes), 9, 10 -Indian —22 minutes

Group 5: Part 10 (starts at 8 minutes), 11 —Islam —12 minutes

Group 6: Part 11 (Start at 7 minutes), 12, please skip 13, we viewed it.
during the previous class, 14—West and Europe - 23 minutes

(You may view parts 15 onwards in your spare time.)

Please view the video part indicated for your group with an intention to list on the
chart paper provided

® some stories,

* pictures or video clips,

math problems, topic or examples,

¢ mathematicians

¢ or general themes

Supplementary materials: You may supplement the information provided in the videos
with published literature from the selected chapters and chronological charts and maps
provided from books such as Joseph, Ghever Ghese G. (1991).

Classroom Relevance: These stories may be narrated, shown, connected to, mentioned or
simply utilized when teaching mathematics in your future classroom.

Figure 1. Use of a documentary in a history of mathematics-for-teachers task.
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Topic: Selected mathematicians: stories, lives and works in school mathematics: G. H.
Hardy and S. Ramanujan, A mathematical romance

Materials: Archived Radio Program,

Sautoy, P. M. (Composer). (2011). A brief history of mathematics: Hardy and Ramanu-
jan. [BBC Radio, Performer, & P. M. Sautoy, Conductor] London, UK. Accessed Feb
2011 at http://www.bbc.co.uk/iplayer/episode/b00ss1j4/A\_Brief\_History\_of\
_Mathematics\_Hardy\_and\_Ramanujan/ (14 minutes)

Supplementary materials: Selected sources include Google timelines and Google im-
ages; as well as selected pages from books such as Pickover, C. A. (2009). The Math Book,
from Pythagoras to the 57th dimension 250 milestones in the history of mathematics. New York:
Sterling.

Figure 2. Use of an archived radio program in a history of mathematics-for-teachers task.

Topic: Historical numbers: The Story of Euler’s e

Materials: A Video Lecture, Burger, B. B. (2007). Science and mathematics, Part 2,
history of numbers. (Taught by Prof. Edward B. Burger). Chantilly, VA: Teaching Company.

Task: We are going to view the lecture by Burger and review the pages provided in
order to write a brief one paragraph story about the evolution of the number e

Figure 3. Use of a video recorded lecture in a history of mathematics-for-teachers task.

Topic: Selected mathematicians: stories, lives and works in school mathematics: Evariste
Galois—A play

Materials: (1998).The life and times of Evariste Galois: A play in four scenes by the
second-year class of Mariono Moreno School, Argentina. Mathematics in Schools (Septem-
ber), 12-13.

Task: Half of the class is going to prepare to act out a play about the life of Evariste
Galoise Please review the script provided and prepare to act.

In groups of 4, the other half of the class is going to review the additional materials
on Evariste Galoise provided online, at the BBC I player website, and selected pages
provided.

Figure 4. Use of plays and drama in a history of mathematics-for-teachers task.

43
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The Life and Times of Functions: f, f(z)

Materials: 4 readings that give the time line and mathematicians involved in the life and
times of, f(z) are:

(a) Earliest uses of function symbols http://jeff560.tripod.com/functions.html ; and
(b)The history of the concept of functions and some education implications published in
The Mathematics volume 3 Number 2. Also Available at PROQUEST database (c) Historical
and pedagogical aspects of the definition of a Function by M A. Malik published in the
International Journal of mathematics education, science and technology, volume 11 number 4, pp.
489-492 also available at PROQUEST Database; (d) Functions (mathematics) at Wikipedia.
[In your groups (in 2011) or at home (in 2007)], please read one of the above articles assigned
to you. You may review and complete the chart. We shall take up the chart together as a
whole class.
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Different meanings Today
What do functions mean for
you?

Where is the function in the se-
quence 2,4,6,8, -+ ?

Functions were not explored
by Ancient Math Traditions
But some of their mathematics
areas might look like functions.
Name three such areas

o Cubics and cubic
roots

The Greeks studied dis-
tances and time but not
speed, a relation between
these two varying quantities.

Arabs
traditions

and other earlier
did not study

motion.

Euclid
of points, lines and planes by

studied geometry

construction, devoid of any
motion and formulae

Evolution of functions

The evolution of functions in
mathematics is a recent con-
cept dating to the end of the
17" century

Early notion of Function
17th and 18th century

Galileo (1564-1642)—(in his
quantitative study of Nature
(1571-1639)
measured quantities

with  Kepler
and
sought to identify patterns
and regularities. The study
of falling bodies, motions of
planets, motion along curves
lead to the rigorous study of
proportions, polynomial and
trigonometric equations

Descartes (1596-1650) and
Fermat (1601-1665)
duced analytic geometry—

intro-

curves in a plane described
by equations.

Descartes stated an equation
in two variables & geomet-
it by
a curve. He used this to

rically represented

show dependence between

(z,y).
curves by

variable quantities
He described
motion/locus and formulae.

(1642-1727) —

showed functions in infinite

Newton
series. He devised some
terminology:  Fluent for
independent variable, relata
quantitas  for  dependent
variables and genita for

constants

USE-Explore-Define-Apply

D’ Alembert (1717-1783)—
vibrating string theory;
(1768-1830)—heat

flow in material bodies.

Fourier

Dirichlet (1805-1859)—
studied Fourier series
defined function as a

unique correspondence

between variables repre-
senting numerical sets thus
separated it from analytic

representation by formulae.

This fact is contested by
George Hardy who re-
viewed Dirichlet’s work and
did not find any mention of

this by Dirichlet.

Dirichlet
with functions that could

also worked
be discontinuous at some
points. As well this defi-
nition was for a long time
rejected for being too broad.

(1845-1918)—
the-
the

correspon-

Cantor
his

ory

work on set
contributed to
definition by
between

dences sets,

numerical or non numerical

1917
defined function as a rule of

Caratherdory in

correspondence from set A

to real numbers.
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Functions have origins in
intuitive geometry and intu-
itive calculus

To begin with functions

were used to designate

correspondence between
geometric objects e.g. curve
and its quantities, the slope,
tangent, gradient, the area

under a curve, limits, etc.

What other contexts or topics
are functions used in

Viete (1540-1603) with his
influence in the creation
of Algebraic symbolisms
increased expressive possi-

bilities in mathematics.

Graphing calculators and
computers might be very
helpful when studying func-
tions.
Discuss the assertion in
light of the evolution of
functions

Origins of function terms:
Set theory—Domain-range;
Computing—algorithm,
input, output; function ma-
chine;

Cartesian geometry— for-
mulae, plots, gradient and
graphs

Calculus—

mathematics—
t-tables;

Applied
tables of values;
differences;

PTO

Modern function Defini-
tions

The
traced back to Gottfried
Leibniz (1647-1716) in 1673
(others say 1694). He used
it in Calculus to describe

word function is

quantities related to curves
(graphs with no corners),
the gradient/
slope of a curve at a point.

specifically

Bernoulli (1718) defined
function as a quantity com-
posed from variable and

constant.

More study of curves by
the use of algebra and the
use of analytical expressions
became necessary thus fuel-
ing the need for function as
a tool.

Leibniz and Jean Bernoulli,
in their correspondences,
adopted function to further
study curves by using alge-
bra

In mid 18" century, the
word function would later
be used by Leohard Euler
(1707-1793), a former stu-
dent of Bernoulli to describe

an expression or formulae,

PTO

(1908) defined
a function in the modern

Hardy in

terms as “a relation between
two variable = and y such
that to every value of x and
any rate correspond values
of y.”

1939 de-
fined function as a rule of

Bourbaki in

correspondence between

two sets.

Later in computation theory
a function came to be under-
stood as a computation.

In computing science as
an  Algorithm—including
recursive functions/ spread
sheet
analytic functions such as

functions or non-

the one that maps natural
numbers onto 0, 1, 1, 2, 3, 5,

8, cee

Partial functions defined as

functions for which some
z-values have no y-values
defined.

How is a function defined
in the curriculum?
Narrowly or broadly?

Clearly functions are now
formal mathematical objects
and physics tools. The func-
tion concept moved away

from its origin in calculus.

PTO
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Algebraic— equations, ex-
pressions, or generalizations;
Motion Geometry— Trans-
formation, mappings; object
and image?

I recall learning functions
in the context of domain and
range, mappings in grade 8,
what earliest meaning of func-

tions do you recall learning?

Euler later proposed an
alternative  definition to
broaden the definition—but
this was ignored in favor

of the analytic expression

definition for the whole of
the 18" century.

Beginning the 19"" century
onwards definitions would
be elaborated
by  scientist/mathematics

especially

who sought its use in other
theories.

As well the

formalize of mathematics

impetus to

using set theory during the
19" century helped.

It is
and Lobachevsky broad-

claimed; Dirichlet

ened and formalized the

definition of a function.

Now functions are used
in many areas including
Dynamical systems—partial

differential equations,
topology, and prob-
ability functions in

stochastic models.

What other Mathematics topics
and symbols is Leibniz famous

for

How many years did it take
between early inventions and
more formalized acceptance of
functions?
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Lessons for teaching (generated from classroom discussion)

Mathematics concepts evolve over time.

Meanings and representations of concepts vary—some are more elementary than others.
Studying several contexts for functions (e.g., sets, machines, speed and velocity, graph-
ing/analytic geometry, series) might guide us in not mixing meanings of a concept when
teaching it.

In mathematics, multiple representations might help get to several meanings of a concept.
Rigor and generalizability were valued during later traditions of mathematics.

Need/or relevance to use a concept influences recognition or acceptance of a concept.
Practical uses of mathematics are important as mathematical and scientific uses of mathe-
matics.

Figure 5. An example of a task to illustrate the origin of multiplicity of meaning of functions.

5 Interpretations

In this section I account for, to the extent that it is possible, the possible catalysts for the differences
shown among the course aims, content, teaching and assessment materials over the course of the 5
years. My reflections are first and foremost informed by the literature reviewed and theoretical frame-
work identified. But they are also informed by my experiences teaching the class and by the survey and
written feedback solicited from the students at the beginning of the term, half-way through the term
and at the end of the term. At the beginning of the course, in 2007 and 2011 I requested students to
complete a questionnaire about themselves and their expectations from the course. Half-way through
the term I solicit for written feedback on the course, and at the end of the course the students com-
plete university wide course and instructor evaluation. Teacher candidates’ abilities and expectations
as well as the availability of a variety of useful and captivating resources appear to have been the
major impetus for the changes.

The difference between goals was primarily in order to match the program requirements which
were introduced since 2011. The goal in 2011 focused on professional judgment in practice. The reduc-
tion in course readings and the coverage of more readings in class were another difference accounted
for in the 2011 program: Elective courses were to reduce the amount of readings and assignments
offered beginning 2010.

Several difference show changes to do with the course itself. The difference in course content re-
flects a move toward the amalgamation of topics on specific mathematics concepts such as evolution
of functions toward general topics such as on the evolution of specific topics. On the other hand, the
separation of a topic on mathematicians into mainstream mathematics and other mathematicians was
evoked by the need to explore mathematicians that represented various groups of course participants
including but not limited to gender, race and age. Also, the introduction of women, mathematicians
from other cultures and prodigy mathematicians was intended to introduce the cultural and social
justice aspects into the course. The introduction of the new topic historical mathematics problems
such as those on prime numbers, equations, matrices, and the golden ratio, was evoked by the possi-
bility of exploring mathematics in historical texts that are of direct relevance to school mathematics.
Along these lines of relevance to school mathematics, a new topic on the history of school mathemat-
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ics was introduced. This topic was intended to make connections between the history of mathematics
and pedagogical and curriculum reforms supported by the Ministry of Education and School Boards
in the province.

The experiences teaching the course for two years meant that I increasingly, through my explo-
rations as well as my interactions with students in the course and with history instructors, became
aware of nontraditional texts and non-traditional approaches in the area. Also, some new texts were
published after the first year of the course. For instance, the story of mathematics documentary was
produced in 2009. Further, students” ongoing informal feedback during and after classes, and formal
written feedback half-way during the course and at the end of the course indicated that teacher can-
didates, given their overall course load, found less traditional course materials to be more captivating.
The inclusion of multimedia and online texts is at the same time accounted for by the increase in non-
traditional texts readily available online as well as improvement in classroom technologies available
at the university over the past three years.

The differences seen in the assignment materials of the course are mainly due to the three reasons:
to reduce on the course load for students, to give choice for the students to explore topics of interest,
and to leave room for the students to use formats of interest, especially those that were in line with
the non-traditional texts explored in this class and in other mathematics methods classes.

6 Conclusions

My sense is that the changes implemented, since the course was introduced, have made the course
more interactive for the students and has given them more choice to explore their topics of interest
in formats that are more appealing to them. Several of the students who still find course readings
and assignments that are in the format of manuscripts appealing still get the opportunity to use these
formats. Most importantly, the results show that the course is evolving from the social role of using
history for the purposes of promoting mathematics and improving on its image towards the mathe-
matical role of encouraging teacher candidates to reflect more an understanding of mathematics, its
origin and history more deeply (Furinghetti, 1997). The mathematical role of teaching the history of
mathematics appears more appropriate for a course in which a majority of the members who elect to
take the course are increasingly those that have interest, comfort and strengths in mathematics. Should
the course have consisted of majority class members who profess discomfort and lack of strength in
mathematics, the course’s focus would have been interventions, using the history of mathematics, as
described by Kaye (2010). Further, the inclusion of more diverse texts and the amalgamation of topics
is supported by the possibility, as noted by Pritchard (2010), of the availability of thoughtful radio,
television, and other multimedia texts on the history of mathematics. A major lesson for me from
this analysis is that although the course goals remained the same, an instructor’s interaction with the
available resources and with the students was the key at forming modifications in the written plans
of the course.

For further inquiry, it would be interesting to assess the course on the basis of the activities, re-
sources, approaches, foci that have been noted in the literature on the use of history of mathematics
in education. Further reflections on this, in addition to a content analysis of the course as planned,
could also focus on the course as taught and experienced by the students.
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ABSTRACT

In this paper, I propose a study in which I take on this challenge and explore how cultural
understanding, replacement and reorientation occur in the course of an experimentation in which stu-
dents read and discussed a text by Pierre de Fermat as part of their calculus class. The data were
collected within a study concerned with the metamathematical reflections (historicity of the con-
cepts, rigor, intrinsic and extrinsic driving forces, etc.) students may develop when taking part in
such activity. Two groups of students took part in the study (audio-recorded), and twenty-one in-
terviews were conducted and transcribed. Using this set of data, I now confront them with Barbin
and Janhke’s three arguments regarding the use of history in the mathematics classroom and, in
the same movement, confront the theoretical framework with the these data so to see how they
could actually enrich one another.

Keywords: empirical studies, cultural understanding, replacement, reorientation, use of pri-
mary sources, learning and teaching calculus

1 Introduction

For several decades, many thinkers, researchers and teachers focused on the “how” and “why” of
using the history of mathematics in mathematics education. Early in the 20th century, educators (Bar-
well, 1913), philosophers (Bachelard, 1938) and mathematicians (Poincaré, 1889; Klein, 1908; Toeplitz,
1927; Polya, 1962) became interested. Until recently, it seemed like everyone, teachers and researchers,
agreed that history was good and saw it as a motivating and effective tool for the learning of mathe-
matics (Charbonneau, 2006). This enthusiasm has led to numerous studies concerning the use of the
history of mathematics.

However, for 10 years now, the field of research around the use of history is being restructured.
New and serious questions are born following the publication of the History in mathematics education—
The ICMI Study (Fauvel & van Maanen, 2000). True health check of this area of research, the book
brings together the beliefs, questions and concerns of researchers. This book invites researchers to
take a step back from their beliefs. For example, the efficiency and relevance of many examples of
application of history in class were questioned (Siu, 2000; Bakker, 2004). Some researchers stress the
importance of being cautious when studying the historical aspects of mathematical concepts, they go



74 Bridging Theoretical and Empirical Account

as far as doubting the students and teachers ability to study these concepts from a historical point
of view. (Fried, 2001; Charbonneau, 2002; Jankvist, 2009a). Others also question the “transferabil-
ity” of positive experiences reported by practitioners from different academic levels (Tzanakis, 2000;
Schubring, 2007). More broadly, we question the general way of conducting research in this field, in
order to try to go beyond “the stories of practices”. Thus, the lack of serious and systematic empirical
studies questioning the possible contribution of history of mathematics in mathematics education is
still around the table (Lederman, 2003; Siu & Tzanakis, 2004; Siu, 2007; Jankvist, 2009b).

2 Questions and research problem

Even today, if several studies inform us about positive experiences around specific activities involving
the history of mathematics in the classroom (see Greenwald, 2005; Arcavi & Isoda, 2007; Hoyrup, 2007;
Blomhej & Kjeldsen, 2009), few of them, according to several (eg. Furinghetti, 2007; Charalambous,
Panaoura & Philippou, 2008; Jankvist, 2009b; 2010; Guillemette, 2011), are making real analysis of
how history is used, and how learners benefit from it.

2.1 Two types of studies

Looking through the scientific literature since the 1990s, one can classify the studies on the use of his-
tory in the mathematics classroom into two categories. There are those that usually take the form of
stories of practices analyzed. These generally include initiatives of mathematics teachers of different
academic levels who tried try to introduce history in various ways in their courses. However, most
remain unsatisfactory from an experimental standpoint, because few of them present a framework
for analyzing their data. They offer interesting reflections on the phenomenon, but they don’t drive
a precise analysis following a data collection methodologically established. In this sense, Gulikers
and Blom (2001) observe that those cases are often isolated, creating a gap between “practical expe-
riences” reported by some studies and theorical considerations reported by speculative reasearch.
This brings me to the second type of studies, those who deal mainly with theoretical considerations.
Their contribution is important because they provide ways of seeing and distinguishing that help us
to look deeper on the arguments and methods regarding the use of history (Jahnke & al. 2000; Fried,
2007; 2008; Jankvist, 2009c). Having said this, despite the important contributions of these two types
of studies, there is a need for empirical systematic studies on the mathematical learning process that
unfold within the introduction of history of mathematics.

Moreover, these “practical experience” or theoretical considerations are rare. In his research, Jank-
vist (2007; 2009a) attempted to identify, from 1998 to 2009, all empirical studies published in English-
language journals (Educational Studies in Mathematics, For the Learning of Mathematics, Mediter-
ranean Journal of Research in Mathematics Education and Zentralblatt fiir Mathematik der Didaktik,
as well as master’s and doctoral theses and conference proceedings). In his work, he refers to empiri-
cal researches as “large scale quantitative studies to small scale qualitative studies, from experimen-
tal investigations to a teacher testing out a course using methods of questionnaires and interviews”
(Jankvist, 2009a, p. 38). The studies he selected showed, in one way or another, empirical data on
which the authors based their observations and conclusions. He found a total of 81 studies. On the
other hand, he emphasized that throughout the 78 studies appearing in the HPM2004 & ESU4 (Fur-
inghetti, Tzanakis & Kaijser, 2008) conference proceedings on the history of mathematics in mathe-
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matics education, only about 10% of them derive from empirical studies. That being said, he noticed
an upsurge in the number of these studies since the middle of the decade, showing a change initiated
in this field of study concerning this type of research.

Trying to bridge theorical framework and empirical account, my works is placing itself in this
movement where researchers are looking to describe and explore what happens when using history
for the learning of mathematics based on a conprehensive perspective.

The theoretical studies on the use of the history of mathematics in the class, discuss, among other
things, the question of “why” history is used. From this central question emerge many arguments to
justify the presence of history in the mathematics classroom. Two classifications stand out, on the one
hand, Barbin (1994) and Janhke (2000) and, on the other hand, Jankvist (2009¢c). In the following, I
present how each researcher dissected the question in their own way.

2.2 Jankvist and the “whys” of using history

Jankvist (2009¢) divides the arguments for the use of history in two categories.

First, history can be seen as an effective and motivating cognitive tool that can assists and supports
the teaching and learning of mathematics. Motivational factors, the humanization of mathematics,
cognitive support for the student, the deepening of epistemological refexion for teaching, access to
various problems and enriching the didactic reflexion around epistemological obstacles are clear ar-
guments associated with this history perceived as a tool.

Second, a certain type of discourse that proclaims the teaching of the history of mathematics “as
such” is a contribution to learning mathematics, in the sense that it teaches us what is mathematics.
Jankvist does not hesitate to speak of the learning of “the sake” of mathematics through the history of
mathematics (Jankvist, 2009¢, p. 239). In this sense, the history of mathematics is seen as a goal in itself.
It shows that mathematics evolves in time and space, and is “not something that has arisen out of thin
air” (ibid.). Mathematics are a human activity wearing multiple facets trough cultures and societies.
Its evolution is the result of intrinsic and extrinsic motivations animating the mathematicians in their
day, are arguments that are part of a vision of history seen as a goal. These are arguments that are
part of a vision of history seen as a goal.

Jankvist categorized the arguments that support the presence of history of mathematics in the
classroom by observing the teachers” intention. If the intention relates more specifically to enrich the
conceptual understanding of mathematical objects, the arguments are associated with the history
seen as a tool. If the intention is mainly metamathematicals reflections (that is to say, the reflections
that affect the historicity of the concepts presented, the historicity of the notation and the rigor asso-
ciated, the mechanisms underlying the discovery of concepts, the intrinsic and extrinsic forces that
drive mathematicians discoverers or the links between the development of these concepts and the
development of societies and cultures) the arguments are then associated with the history seen as a
goal.

2.3 Barbin and Jahnke and the “whys” of using history

For its part, Jahnke (2000) also questioned the arguments concerning the use of history, specifically
concerning the use of primary sources. He highlights three main hypotheses. A first assumption is
that history can provide a cultural understanding of mathematics. As he says: “The integration of
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the history of mathematics invite us to place the developement of mathematics in the scientific and
technological context of a particular time and in the history of ideas and societies” (id., p. 292). Thus,
the history of mathematics is a way to place mathematicals objects studied in an historical continuum
and an historical and social context, this enables us to see their progress and identify issues that have
generated their development. Also, in this perspective, the links between the objects studied take
a different shape from the simple sequence of concepts within a curriculum or ways in which the
concepts of the discipline are typically organized.

The second assumption is that the integration of history leads to a replacement of mathematics,
that is to say that “it allows mathematics to be seen as an intellectual activity rather than as just a
corpus of knowledge or a set of techniques” (ibid.). These first two assumptions are related to the need
to humanize mathematics, to emphasize its historicity and to emphasize the evolutionary aspect. Itis a
dimension frequently mentioned in literature (see Furinghetti, 2004; Tang, 2007; Blomhej & Kjeldsen,
2009; Guillemette, 2009; Jankvist, 2010).

The final assumption is that history of mathematics brings a reorientation. In this sense, “the his-
tory of mathematics challenges one’s perceptions through making the familiar unfamiliar. Getting to
grips with a historical text can cause a reorientation of our view” (Jahnke & al., 2000, p. 292). From
this perspective, history allows students to question their own assumptions and experiences related to
mathematical objects by the encounter and comparison of another mathematical comprehension, one
from another era. These concepts of reorientation, cultural understanding and replacement were first
developed by Barbin (1994). Concerning reorientation, she stressed that “the history of mathematics,
and this is perhaps the main attraction, has the virtue of allowing us to wonder what is obvious”
(Barbin, 1997, p. 21, my translation).

With regard to research, if more fuel the discussion of these various arguments, they have seldom
faced experimentation. The research, in terms of understanding how to operate this cultural under-
standing, this replacement and this reorientation in the learner and how it is articulated with the
presence of historical elements in the mathematics classroom, is still in its infancy (Furinghetti, 2007;
Siu, 2007; Charalambous, Panaoura and Philippou, 2008; Jankvist, 2009b). There is a real need to bet-
ter understand these phenomena and what can potentially happen there. In a broader perspective, we
must close this gap, raised by Guliker and Blom (2001) between the empirical studies and theoretical
one.

Jankvist categorization between history seen as a tool and history seen as goal allows, firstly, avoid-
ing a widespread confusion between arguments and methods and, secondly, facilitates the observa-
tion and the analysis of the relations between these two aspects of research. The categorization of
Jankvist therefore aims to facilitate and guide the work of the researcher. On the other hand, the
three arguments brought by Barbin and Janhke give a broad perspective of the potential benefits for
the individual’s learning and for the mathematics classroom.

Overall, this feed deep thought in the discussion about the “whys” of the use of history in the
mathematics” classroom. From these theoretical considerations and assumptions, questions emerge:
in wich particular manners the use the history in mathematics education can develops the compo-
nents of cultural comprehension, replacement and reorientation for the learners? In particular, how
are those components articulated with the use of primary sources in the mathematics classroom?



David GUILLEMETTE 77

2.4 The “hows” of using history

Some researchers have considered the more specific “how” of the use of history. This is the case of
Fried (2001; 2007; 2008), who highlights the difficulty of properly addressing the history of mathe-
matics in class. He wants the history to be taken seriously and argues that its study should be very
attentive. Otherwise, to Fried (2001), there is high risk of distortion of history, because history could
be contaminated with a modern vision of mathematics that crushes the historicity of the concepts and
sterilizes its exploration. The risk of anachronism and false readings of a progressive history are very
high. Too often, historical aspects take the shape, as he said, of anecdotes and historical vignettes.

Concerning the “how”, Jankvist (2009¢c) show three categories: the illumination approaches, the
modules approaches and the history-based approaches. The first is the introduction of isolated facts
of historical vignettes or anecdotes. A good exemple, described by Jankvist (ibid.), is the case of Lind-
strom (1995) who, at the end of each chapter of his book, added a small section on the development
of the history of the concepts covered. The modules approaches offer problem-learning situations or
sequences of lessons, varying in duration, based on the history of a specific mathematical topic. It
is clear opportunities in the history that are supported mathematically and didactically and which
may include the use of primary and secondary sources like reading historical texts or developing
research projects by students and others. For the history-based approaches, it is based on the histori-
cal development of the mathematical object studied for the developement of a complete sequence of
lessons. Directly or indirectly, the history is found in the mathematics classroom through the strate-
gies adopted by the teacher, his attitude towards the presentation of the studied subjects, the issues
raised from the historical context or the sequence of concepts discussed. Essentially, this third cate-
gory includes practices based on genetic approach following the work of Toeplitz (1963) or, otherwise,
Freudenthal (1991).

Thus, Jankvist (2009¢) suggests that these different approaches, which include several specific
methods of use, do not have all the same goals and that their scope is different from one another.
In this sense, Fried (2007) states that reading historical texts appear as a preferred method when it
comes to use history in a rigorous and serious ways. However, this difficult reading activity would
imply a double perspective. To illustrate it, he stressed that the aim of the historian is to delve into the
era of the mathematician, to perceive his idiosyncrasies and to situate his work within a continuum
of mathematics development. The look of the mathematician, meanwhile, attempts to decode the
obsolete symbols, returning them to the modern language and grasp the essential mathematical sens.
He calls diachronic the reading of the historian and synchronic the reading of the mathematician,
terms borrowed from the linguist de Saussure (1967/2005). He said that synchronic reading is too
often reinforced by teachers. Also, the teacher’s role is precisely to tip the student constantly between
these two visions. This continuous back and forth work helps the learner to be aware of his own
conceptions of mathematics, his personal insights and his ability to confront it constructively with
those of others (self-knowledge). That is why the reading of historical texts appears as the preferred
approach from the perspective of the learner to generate the three components of Barbin and Jahnke
& al.

From these theoretical considerations and assumptions, one could ask: in which particular man-
ners the use of primary sources can develop the components of cultural connotations, repositioning
and reorientation for the learners? In particular, how are those components articulated with the read-
ing of both synchronic and diachronic ancient texts in a mathematics class?
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3 Collecting data, preliminary analyses and research perspectivs

Some preliminary data from my master degres” work (Guillemette, 2009) can give some clues. As
mentioned above, the data were collected within a study concerned with the metamathematical re-
flections (historicity of the concepts, rigor, intrinsic and extrinsic driving forces, etc.) students may
develop when taking part in historical text reading activity. In the next section, I will describe the
context of this study and how the data were collected. Using this set of data, I will thereafter confront
them with Barbin and Janhke’s three arguments.

3.1 The use of an historical text

In this study, an activity based on the reading of a text by Pierre de Fermat was built and lived in a
classroom. The text concerned the method of maxima and minima of Fermat. It is a well-known text
through which Fermat provides an elegant method of solving optimization problems using similar
principles of calculus that emerged at the time. The following text was used in class: Method for find-
ing the maximum and minimum (on the method of adegalation, 1629/1637) (IREM de Basse-Normandie,
1999). This text present high potential for getting into anecdotes and stories surrounding the charac-
ter. Moreover, the mathematical elements and the approach used by Fermat can be easily articulated
with the elements of the calculus course that was taking place.

Fermat offers in this text a general method for finding the minimum and maximum of polynomial
expressions. First, he proposes to put the problem in equations: “We first express the minimum or
maximum using terms that may be of any degree”. Then, he substitutes (a + ¢) to the “primitive
unknown a”. Here, Fermat employs infinitesimal objects intuitively and without justification. He then
“adegalise” the two expressions, the one using a and the other using (a+e). For Fermat, they are nearly
equal since e will be treated as an infinitesimal value.

In this equation, we find terms that are in e or powers of e : “affected of ¢”, as he puts it. He can
then divide each member as many times as he wants by e to obtain at least one term without e. He
then considers the value of e as 0 and thus eliminates the terms in e or e powers. Solving the remaining
equation provides the maximum or minimum which sought.

In the piece chosen, Fermat gives an example of application of his method: “Lets divide the line
AC with E, so that the rectangle AEC is maximum”. He puts mAC = b and a the length of a segment
generated by the point E (AE or EC). The other segment will be b — a. He then seeks to maximise
ba — a?.

By following his method explained earlier, he replaces a by a + e as the first segment length. The
second segment becomes b — a — e and ba — a? + be — 2ae — ¢* the new product. Thus, we have:
ba — a® ~ ba — a® + be — 2ae — €2 (Adegalation), be ~ 2ae + €2, b ~ 2a + e (Dividing each member by
e), b = 2a (Eliminating the terms in e). Thus, the area of the rectangle will be the maximum if b = 2a.
This conclusion is not followed by any justification.

In summary, Fermat was looking to maximise the function f(z) = z(b — z) = bz — 22, where
f(z) is the area of the rectangle posing z, the length of a side of the rectangle, and where b is half the
b

perimeter of that rectangle. Today we would have f/(z) =b—2zand f'(z) =0 & b-20 =0 2 = 3.
b

Of course, because f” (2) <0, (%, f (%)) is a maximum of f.
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More precisely, by moving closer to Fermat’s method, we have: f'(z) = lim

e—0 e

<f(f6+6’) - f($)>

0 = lim
e—0

<f(f0 + ei - f(l’)> (with f'(z) = 0)

_ 2 _ 2y ) B 9
- Ozhm<(bx e x)) = 0:hm<2€“be€>

e—0 e e—0 e
b
& O0=lm(-2x—e+b) < 0=-2x+b and & z=_
e—0 2

3.2 The experiment

Based on Fermat’s text, I built an activity that was conducted with preuniversity students in a cours
of calculus. The activity consisted of three parts: a brief overview of socio-historical context and the
mathematics at the time of Fermat, an individual reading of the text and a return in large group
around that reading.

The socio-historical and mathematical context was presented from a PowerPoint document. It
contained many evocative images of the socio-historical and scientific climate of the time of Fermat.
This document presented several pictures of Fermat, various mathematicians of the time, the city of
Paris and Toulouse and old documents. I have included various biographical elements of Fermat,
concerning his correspondence with various scientifics of the time and references to his last theorem
and the entire movement around it. The emergence of the Academy of Sciences and the tendency
of scholars of the time for seeking global methods for solving a set of problems were mentioned.
Subsequently, students were asked to read the extract individually. I circulated in the classroom to
address different questions and guide students in reading. The final phase of the activity was a large
pleanary. Students could then share and respond after reading the excerpt. I resumed the process
of Fermat and tryed to conciliate it with modern methods, to highlight some idiosynccrasies of the
mathematicien and to situate his work within a continuum of mathematics development.

The activity was experienced twice, first in a class of 30 students in the sector of natural sciences,
and secondly in a class of 11 students in the sector of social sciences and humanities. These two phases
of experimentation allowed me to confirm the feasibility and effectiveness of the reading activity and
to be more comfortable conducting the activity and the individual interviews that followed.

3.3 Collecting data

Short interviews were conducted individually immediately after the workshop. Thus, among the 30
students in the first experiment, nine volunteered for interviews. For the second experiment, the 11
students were interviewed.

These were semistructured interwiews conducted by myself for about 10 minutes individualy. The
discussion was around different questions: Overall, what struke you the most during this training
workshop? Which elements from the presentation in the introduction hit you? What elements struck
you during reading the text? And during the plenary phase? What did you learn about mathematics
in general? What did you learn about calculus? What do you think this kind of reading can bring to
a mathematics course? Do you think such an activity belongs in a mathematics class? All interviews,
and the wokshops in class were audio recorded. All this was transcribed and constitued the data of
the study.
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3.4 Preleminary analysis and research perpectives

This research allowed me to observe metamathematical reflexions that emerged from pre-university
students whom take part of such activity. Those metamathematical reflexions in question were those
who, through a mathematical activity, concerned the historicity of the concepts presented, the his-
toricity of the notation and the rigor associated, the mechanisms underlying the discovery of the
concepts explored, the intrinsic and extrinsic forces that drive mathematicians and the links between
the development of these concepts and the development of societies and cultures.

The transcripts of the interviews as well as the transcript of the activity helped to establish valuable
data regarding the emergence of metamathematical reflections in connection with a reading of ancient
texts. However, as I said above, it seems interesting, a posteriori, to try to highlight, through excerpts
from the transcript, the three arguments concerning the use of history in the mathematics classroom:
cultural understanding, replacement and reorientation. For example, the following two extracts which
are the reactions of students who have experienced the reading activity:

”You say to yourself, ah! Math is going to be bad! However, you have inform us of the entourage of
his discoveries, it seems that we know more from the inside. You know, you get the character and
taste how his business is found. You know, math, just numbers, at least here you have something
back [+++] It is less abstract ”(id., p. 67).

"Then that happened to him --*in the air as well and we finally we can do it with our limites and
optimization to reach the same answer as him *:*I do not understand, he still did it and now we
can justify it ”(id., p. 50).

Itis possible to consider these reactions in the three components introduced by Barbin and Jahnke.
Indeed, it is conceivable that the learner behind the first quote demonstrates a cultural understand-
ing of mathematics by saying “we know more from inside”. He seems, somehow, to have anchored
the concepts discussed in a socio-historical and cultural context. His look changed as he seemed to
perceive the “entourage of discovery”, which allowed him to take a fresh look on mathematics. It is
also conceivable that the activity of reading, for this same student, would have led to a replacement
of the mathematical objects in question. He mentioned that with this kind of activity mathematics
is not “just numbers”. It appears less frozen in time, unchanging or reified. In this sense, mathemat-
ical activity appears to be a true human activity. Objects and concepts discussed don’t come from
heaven, but are developed by men in particular intrinsic and extrinsic motivations and they are the
fruit of long and sometimes tortuous reflections. Finally, it is possible that a shift has taken place in
the learner, considering the second quotation. Indeed, he was surprised by the intuitive approach of
Fermat to such an extent that he felt the need to reclaim the concepts in question to better understand
it. He asked and attemped to highlight the links between the two forms of understanding, his and
Fermat.

This preliminary analysis of data from a particular research project, that are perceived by sim-
ple outlines, can provide clues about what each of the assumptions may mean. The fact remains that
the contours of these theoretical considerations remain unclear and a refinement is needed. Many
questions remain, for example: Does a cultural understanding implies necessarily a replacement of
mathematics? Is there a form of gradation between each component? Is cultural understanding nec-
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essary for a shift to occur? More broadly, are these assumptions sufficient to interpret benefits for

learners?

4 Conclusion

This first level of interpretation, on the one hand, provides a partial understanding of the phenomena
in question and, secondly, clearly underlines the need to enter more deeply and more systematically
in the analysis. In this sense, it seems necessary to build new experiments to investigate more pre-
cisely the impact of the introduction of history in the mathematics classroom to better illuminate
the arguments in favor of this introduction. Thus, we must find effective ways to make the learners
“talk”: different kinds of interviews, written reflections, questionnaires, mathematical productions,
etc. Through the systematic analysis of the experience of the class, it will be possible to fully grasp
and understand the issues surrounding the introduction of history in the mathematics classroom.
This understanding will provide tools to deal effectively with objects of study in this field of research.
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ABSTRACT

This paper is a kind of guide for a historical introduction to the beginnings of probability and
statistics (limited to the end of XIXth century), through the “Reading of Master”, introductive
to a mathematical course on these subjects. We provide the minimal historical bibliography. We
claim that in many historical masterpieces everyone could recover the original meaning of notions
and computations, understand the constitutive relations between probability and statistics, and so
avoid the confusion of interpretations made very often today. Indeed, any given practice of statis-
tics or probability is a tailpiece of a historical sequence of fixations, hesitations, remorse, errors, of
“mathematical pulsation”, and this sequence is their true meaning. To be aware of that it is neces-
sary, as well for new future developments as for applications. Especially it is important to know
the history of major misuses and difficulties of probability and statistics in past.

History teaches us that statistics lay on several notional difficulties, as: what are hazard and
chance, their dynamics, what are stochastic process and random variable, what are the good pro-
cesses for limits or infinite gluing of data, from where data do come, what are the good descriptions
of populations, characters and samples? All these subjects could be elucidated from classical books.
So when doing statistics we have to construct interpretations of results with a serious critical open
eye.

We propose to emphasize this historico-epistemological point at the beginning of any course
in statistics, especially for the benefit of future mathematics teachers.

1 Introduction

1.1 Reading the Masters

This paper provides an historical introduction to probability and statistics, via the “Reading of Mas-
ters”. Today we can observe a lot of misuses and misunderstandings of statistics. At first of course
these misuses are due to a general ineptitude induced by a bad understanding of the true nature of
any given mathematical tool, and the false conception that such a tool could be used blindly. But they



86 Misuses of Statistics

came also from specific difficulties of statistics, which can be understood by its history, and the read-
ing of the decisive historical works. We propose a minimal list of such references to read or to consult.
Our explanations here are directly related to these historical materials.

1.2 Starting with elementary problematics, and coming back to history

Clearly it could be difficult to read directly the original papers, even if we know that some good ex-
planations are written there. A preparation for such a reading could be at first to study directly two
or three very elementary and very good books, as (Granouillac, 1974), (Moroney, 1974), (Lévy, 1979),
about very concrete problematics of today in statistics, and with (Boll, 1941,1942) on probability. Sec-
ondly we recommend to begin the study of an important historical material, the book (Bertrand, 1889),
which is very intuitive, with a lot of significant exercises. Thirdly, we could read historical analysis as
(Desrosieres, 1993) and (Edwards, 2001) on statistics, and (Barbin & Lamarque, 2004) on both statis-
tics and probability. This last book is synthesized in (Barbin, 2004) in a preface explaining that the
type of problems is not the same in probability and in statistics. For example on the question of the
relation between causes and events: for Laplace the problem of causes is a question of probability (of
causes), whereas for Cournot the problem is to investigate statistically on causes by analysis of effects.
Also there are differences between decision and prediction, extrapolations and results, modelling and
exploring, etc.

1.3 Two sources, one pulsative mathematical subject

Two subjects seem to be different and not to come from the same source: on the one hand the question
of probability or “geometry of the hazard” (Pascal, 1654) regarding uncertainty (Pascal), or likelihood
(Leibniz), for applications to equitable judgements, and on the other hand the question of statistics,
analysis of data for a state, concerning health, trade, taxes etc., and beneficial decisions in these areas.

But the exploration of the history shows that from a mathematical point of view the two subjects
became much related and intertwined; comings and goings between the two subjects is vital in their
historical developments. It is perfectly possible to teach separately probability and statistics; but our
claim is that the true mathematical subject is in between, and a deep understanding of the correct use
of both theories assume a main attention to this “pulsation” (For the idea of “mathematical pulsation”
see (Guitart, 1999)).

2 Average, probability and expectation

Today the scientific subject of probability and statistics is the construction of the laws of chance and of
distributions of data and their use for analysis in various other sciences, for presentation and analysis
of phenomenon and data, for explanation and prediction. In such a scientific use, mainly as a ‘logic’
to guide experiments and observations, four implicit credits or beliefs are to be examined: the belief
in the ‘average” as meaningful and significant in reality, the belief in the existence of a real structural
organisation for any experimental data, the belief that the average is the natural minimal summary
of the organization, and the belief that the variation in statistical data is an effect of chance and so it
is a matter of probability.
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2.1 Addition, proportion, multiplicity and average, percentage

If a multiplicity of n weighted data (p;, z;) is given, then the pondered average or pondered mean
value is (p, m) with

(p,m) = ((p1+ - +pu), (Pr21 4+ + pazn)/(P1+ -+ Pn))-

The average or mean value is m. Almost all concrete applications of probabilities and statistics could
be enough directly reduced to computations of such convenient averages. And a lot of misuses come
from the oversight that the average is not so natural and obvious.

The fact to adopt an average in place of a multiplicity of values is not a mathematical principle, but
an empirical decision, related to the fact that it amounts to compute proportions, or linear functions,
and indeed it is the simplest of arithmetical rules. It could be justified also by the fact that the average
minimizes the weighted sum of square distances to the given data. But simplicity does not imply
adequacy. The basic objection to average m of the x; is that if f is a function of x, with y = f(z), why
it is not better to compute an average M of the y;, and then to take, in place of m, the value f “L(Mm)?
For example why not to compute the average of 22 rather than the average of the z;? So it is left to the
user to choose the good average (on x or on f(x), and, furthermore, with which weightings). A good
discussion on this point is in (Bertrand, 1889).

It is clear that 2 + 3 = 5 is a theorem, and that 2kg + 3kg = 5kg is a scientific law in physics
of pondered bodies, experimentally proved through the Law of Lever or by the determination of
barycenters (Archimedes). But on the other hand 2$ + 3$ = 5% is not a theorem or a scientific law: It
is a convention for an exchange accepted today by everyone to enter in the game of finance and trade.
So everybody accepts this rule at the root of his practise with money, estimation of salaries, debts
etc. Looking at the history of money and bank, it is easy to understand how this rule did not always
exist. In fact this rule imposed the transformation of objects of exchange as magnitudes, comparable
and additive. Then the exchange could be performed just as balancing in calculus, and henceforth the
calculus became the obvious medium of trade. A similar point is in the principle of vote (for decisions
in justice, for election of representatives, to choose a product in a market, etc.): the votes are added,
and the convention is that the decision is taken according to a numerical calculus (for instance the
principle of majority). It is recommended to read (Condorcet, 1785).

In fact these reductions to arithmetical practices of liberal market and liberal democracy could be
seen as application of a meta-rule of “reduction to average”. So for the addition of dollars we have:
(2% + 3%)/(2 + 3) = 1$. A good reading here is (Cournot, 1835).

A first source of errors with an average is the ignorance of the concrete source of where it comes
from (kg, $, votes, etc.): then a true criticism of the result is impossible. And then the worst conse-
quence is that different averages, and percentages, in different heterogeneous areas, are compared,
and do conduct to fallacious correlations and illusory understanding.

2.2 Probability and expectation

Usually it is considered that probability theory starts with the work of Pascal on games (Pascal, 1654),
its correspondence with Fermat in 1654, and, that the first treatise is the booklet of Huygens, in 1657:
“du calcul dans les jeux de hasards” (Huygens, 1657). At this stage, we get the notion of expectation,
while the notion of probability will be introduced explicitly later. The expectation models what is
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equitable, in presence of a true random situation; it is not what is good, what is beneficial. The analysis
by Pascal could be formulated today, in a very anachronistic way, as the analysis of a stochastic process,
as the description of conditional expectation (the introduction of the idea of “martingale”); none of
these words is from Pascal” s work, but this interpretation is plausible. On the other hand we can insist
on the fact that it is not a calculus of probability, a proportion, the quotient of number of favourable
cases by the total number of cases [according to Laplace’ s view (Laplace, 1812), (Bertrand, 1889)]. A
fortiori it is not a calculus of probability via frequencies!

In modern terms, the expectation E(X) of an alea X (a random variable concerning a stochastic
process) could be defined as the average of the possible values z; for X, weighted by the probability
p; that X takes the value x;. It is the average of the possible values, but it is not the most probable
value.

So, on the one hand, historically the expectation is a primary notion, preceding the notion of
probability, and a fortiori preceding the notion of frequency; and on the other hand, in its modern
expression, this notion seems to be a derived notion, constructed with the notions of probability (the
pi), of statistical distribution (the ), of average. This too analytical view could be a source of misun-
derstanding.

2.3 Relativity of probability during the time of the process, logical aspects

A difficulty, well illustrated in the Bertrand’ s treatise (Bertrand, 1889), is the question of relativity of
chance in time, a priori and a posteriori probability, reversions from probability of effects to probabil-
ities of causes, in relation to the converse Bayesian calculus (Bayes, 1763) as reformulated by Laplace
(Laplace, 1812). The relativity is also a question of dynamics in a stochastic model (question of mar-
tingales), and is related to incomplete information. The difficulty is that these relativities are not often
announced explicitly in a concrete problem.

These relativities have also to be mixed with some logical questions, when we compute the prob-
ability of a logical combination of random events or variables. This logical point is treated in (Boole,
1854), and is at the basis of the Kolmogorov axiomatics in (Kolmogorov, 1933, p.2). So the modern
axiomatic, with a set £’ of elementary events, a probability function P on a field F' of subsets of E,
with random variables seen as functions X on E, etc.) is able to support these aspects.

3 Statistics, combinatorics, asymptotic calculus, normal law

3.1 Statistics versus probability

Let us start with a warning: from a mathematical point of view, in principle, statistics need not to be
constructed through a probabilistic interpretation. For instance the approach by Jean-Paul Benzecri
in his factorial analysis of correspondences is based on a geometrical analysis of the shape of a cloud
of experimental data. The observation of symmetries, of repetitions of a motive, of frequencies of a
phenomenon, is not necessarily related to a causal interpretation in terms of chance.

Nevertheless, very often it is the case that the variation in a data set is a consequence of chance: in
these cases (and in these cases only), the frequency (a notion in analysis of statistical data) could be
related to the probability (a notion in doctrine of chance).
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The key point is the following. Starting with an elementary reproducible stochastic process, we
imagine as an experiment that this process works several times, and we look at the sequence of re-
sults. This sequence is a statistical data, with frequencies, etc., and of course, in such a sequence, the
variation is due to the stochastic nature of the elementary process, and we can ask for a mathematical
relation between the probability of the elementary process and the frequency in the sequence.

So, the probabilistic interpretation of statistics consists in the converse: given a sequence x; of
data, we pose the hypothesis that it is produced as iterated values of an unknown random process X,
according to a probabilistic law which is to be revealed.

The difficulties with this point of view become very serious in several directions. The informa-
tion (the z;) could be incomplete (in fact a sample in a population). The true nature of the process
underlying X could depend in fact on the possible modification in time of this process according
to its repetition (the various X; are not independent). And when we would like to correlate and to
compare several sequences x;, y;, associated to random variables X and Y': the underlying stochastic
processes associated to X and to Y are not necessarily the same, or at least easily correlated. In order
to surmount these difficulties we could read analysis on the theory of measurement (cf. § 3.4).

3.2 Probability and frequency, weak law of large numbers of Bernoulli

A central difficulty comes from the confusion between a priori probability and frequencies. In fact,
history shows that these two aspects are closely interconnected at the heart of the subject: this inter-
connection finds its mathematical expression in the law of large numbers. We learn this from Laplace
and Bertrand’ s books (Laplace, 1812), (Bertrand, 1889), where they discuss hazard and chance.

The weak Law of Large Numbers is a mathematical result expressing that the mathematical model
of probability is consistent with the frequency interpretation of probability. Informally, and in a
rather vague way, this law says that: when the number N of independent repetitions of an elemen-
tary stochastic process increases, then the observed frequency fy of favourable issues “probably ap-
proaches” the probability p of the favourable issue, that is to say that the probability Py (e) that the
difference p — fxn exceeds a given positive number e converge to 0, as N increases indefinitely. It is a
fundamental result by J. Bernoulli (Bernoulli, 1713).

This beautiful result constructs a relation between three terms: an unknown probability p, an ob-
servable frequency fx, and another unknown variable probability Py (e); the beginner has to be care-
ful to distinguish among these three terms.

3.3 Asymptotic calculus, de Moivre’s Normal Law, Central Limit Theorem

After the treatise of Huygens, three decisive steps in probability where the books by (Bernoulli, 1713),
(de Montmort, 1708), (de Moivre, 1718). There the combinatorics is well developed, with a thought
towards the statistics of (Graunt, 1662) and (Halley, 1694), around the Binomial Law, and even is
pursued towards asymptotic calculus (e.g with the formula of de Moivre-Stirling) and the normal
law.

At first we reach the delicate question of the natural extension from finite combinatorics towards
probabilities and statistics considered as potentially infinite combinatorics. Hence the asymptotic cal-
culus and variations on limits which has to be defined and put forward. So to use the law of large

numbers is not trivial.
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The “Normal Law” (so named only in the XIXth century) was discovered by de Moivre, as a limit
case of the Binomial Law (Freudenthal, 1957). It was also studied again by Laplace and Gauss, and
so it is also known as the “Laplace-Gauss Law”. Its graph is the so called “Bell Curve”. It is related to
the elaboration of so called “Central Limit Theorem”, a deep improvement of the weak law of large
numbers, resulting from works of de Moivre, Laplace, Gauss. This is to be read in (Laplace, 1812),
(Bertrand, 1889). Today, this Central Limit Theorem is considered by probabilists as the central object
of probability theory.

3.4 Measurement: Least Squares Method

The theory of measurement by the method of Least Squares could be studied through the works
of (Mayer, 1750), (Legendre, 1806), (Gauss, 1855). In Mayer a very interesting empirical method of
grouping observations is used, for the analysis of astronomical observations of the Moon. But the
more decisive step was the emergence of the so called Least Square Method. The first justifications of
this method (Laplace, Gauss) passed through the Normal Law and the Central Limit Theorem. But in
fact in (Legendre, 1806) and in the second attempt of Gauss (Gauss, 1855), the justification is outside
the scope of probability, even if related to the Bell Curve. It is very instructive to read the story of this
subject (Bertrand, 1889), (Derosiéres, 1993).

3.5 The Average Man

In the XIXth century we get the theory of standard deviation with respect to the average, the devel-
opment of various statistical or probability laws, motivated by various domains of applications. The
development of the subject of probability and statistics is mainly about applications of the method of
least squares and the Bell Curve. It is instructive to read various utilizations of this material.

In these applications, a basic difficulty is the confusion between data of several measurements
of a given object and values of a given character in a given population. It is perhaps the root of the
difficulties with probabilistic justification of the mean square method, and this confusion is exces-
sively admitted by (Quételet, 1835). With his construction of the “Average Man”, Quételet’s basic
assumption is the following: there exists an ideal man, and each concrete human is a measure of
this “Average”; furthermore this measure is a random variable, made by chance, and according to a
normal distribution.

4 Conclusion

In this brief approach, we stop at the end of the XIXth century, even omitting Galton, Pearson, and
then Fisher, and so the true birth of modern statistics in the 1920’s, through the theory of samples.
There, the central question would be the construction of a good poll: how to construct a representative
sample (Fisher), in such a way to get reasonable predictions? Clearly, on the question of the probability
that a poll is a good one, the statistics get a new link with probability. We have also omitted the birth
of the statistics of laws which are very different from the normal law, and the statistics of extremes
(Levy, Gumbel). So, in some sense a theory of exceptions (improbable values) was created, and this is
again a new link between statistics and probability.
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Nevertheless, today the calculus of probability is in a “pulsation” in itself, between two presen-
tations: on the one hand “a la Kolmogorov” with an E, F, P etc., and on the other hand as a direct
manipulation of random variables and of their laws. This has been observed judiciously in (Mazliak,
2002). We think that this pulsation is easy to perceive in History.

And furthermore, on reading the classics, we realized here (although stopping in the XIXth cen-
tury) that between probability and statistics, another real pulsative knot had been constructed by
History. We think that it is important for future teachers to know that; especially this could help
them not to reduce the idea of probability to the idea of frequency; otherwise it will be a real fault
with respect to the true nature of the subject. Here is the fundamental misuse of statistics, to forget
its link with probability as an a priori theory of chance.
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ABSTRACT

The mathematical content of the “Ladder and Box” problem (e.g., Monte Zerger (1987), The “Lad-
der Problem”; David Wells (1992), The Penguin Book of Curious and Interesting Puzzles, p. 130) is
to find the legs of a right triangle when its hypotenuse and the sides of an inscribed rectangle
are known. This puzzle is of recent origin (early 20th century), but the underlying mathematical
problem has been traced back to geometric constructions using Nicomedes’ conchoid, ca. 180 BCE
(Audun Holme (2010), Geometry: Our Cultural Heritage). It also occurs in Newton’s 1720 Universal
Arithmetick, translated from the Latin by Raphson (Problem XIV, p. 112, with Figure 27 between pp.
122 & 123), and in Thomas Simpson’s 1745 A Treatise of Algebra, problem XV, p. 250. The problem
was challenging even in the case of an inscribed square; and for an arbitrary rectangle, its algebraic
description uses a fourth degree polynomial (e.g., Karlheinz Spindler (1994), Abstract Algebra with
Applications: Vector Spaces and Groups). The methods that have been used to solve it have changed
over time, from a geometric construction using special curves, to solving a biquadrate polynomial
equation by an algebraic technique. At present it can be reduced to a simple trigonometric equation
that can be solved by numerical methods implemented on a graphing calculator, which makes it
an easy exercise. But besides the change in the technique of solving problems, the very concept of
a “solution to a mathematical problem” has also changed over time; and at present it has several
meanings that are used in different contexts. We will describe these changes in technique and in
the meaning of a solution, and we will show that the “Ladder and Box” problem is still a very
interesting problem that can be used either in algebra classes or in introductory calculus classes,
because it shows a “practical” question that can be easily solved by rather sophisticated mathe-
matical methods.

Outline

1. Introduction: A “new” problem with historical roots and its mathematical formulation

2. A modern solution using a simple trigonometric equation

3. How the problem has been solved historically, and what it meant at each time “to solve
a problem”

4. Final remarks

“First Author



04 The “Ladder and Box” Problem

1 Introduction: A “new” problem with historical roots, and its

mathematical formulation

399, The Ladder and the Box A ladder, 4 metres long, is leaning

against a wall in such a way that it just touches a box, 1 merre by 1
metre, as in the figure. How high is the top of the ladder above the
flaor?

4m

im

The ladder and box problem, from Wells, p. 130.

The “ladder and box problem” (the above example from Wells, 1992, p. 130) is relatively new; it first
appeared in A. Cyril Pearson’s 1907 20th Century Standard Puzzle Book (London). But its mathematical
underpinnings have been traced back to Nicomedes (~ 180 BCE), as well as to Isaac Newton (1720)
and Thomas Simpson (1745). The problem is to build a right triangle, given a right angle, and an
inscribed rectangle (above, the rectangle is a square), together with a segment s, representing the
length of a hypotenuse.

2 A modern solution using a simple trigonometric equation

At present the lengths of the legs of the right triangle can be found analytically by solving a simple
trigonometric equation that is easy to derive(Figure 2):
So we have:

sy *sin(z) =b
sg xcos(z) =a
S1+ 82 =35
By eliminating s; and s, we get
b/ sin(x) + a/cos(z) = s
Both solutions to this equation can be easily found, for example, by using SOLVER on a graphing

calculator. Then the required height A is

h = s x sin(x)
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wall S5

ladder of length s

X

width = a

height = b 51
box

Diagram for a modern solution, from

http://sofia.nmsu.edu/"breakingaway / Lessons/LABP /LABP.html

Note that there are two solutions. The ladder can reach the wall either high or low.
(http:/ /sofia.nmsu.edu/"breakingaway /Lessons/LABP /LABP.html)

When b = g, this trigonometric equation can be reduced to two quadratic equations that can be
solved using only square roots:

Let y; = sin(z) and y, = cos(x). So we have R
Y Y2
Therefore we have:
yi® + =1

a
yl*yzzg*(y1+y2)

Because (y1 + y2)” = y12 + y2% + 2 * y1 * y2, we have

2%a

(1 +12)% = . *(y1+y2) +1

Let z = y1 + y2. We can find two values, 21, 23 of z by solving for z the following quadratic equation:

2%a
22 = xz+1
c

Now for each z; we have

Y1 +y2 =%

a
Y1 *¥ Y = — * 25
C
So y1 and y» can be found by solving for y the following quadratic equation:
Yyt oz =0
C

For similar, but different, ways of solving this problem, see Simpson’s 1745 solution in 3.b. below;
and see also Uspensky (1948), p. 96, example 2; and Fisher (1972), pp. 97-98.
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3 How the problem has been solved historically, and what it meant at
each time “to solve a problem”

a. Geometric solutions
b. Algebraic solutions
c. Solutions as puzzles or as recreational mathematics

The problem is interesting from the point of view that its general case, finding a solution for an ar-
bitrary inscribed rectangle with sides a and b, was considered to be very difficult. (It cannot be con-
structed with straight edge and compass, and the polynomial equation expressing the lengths of the
legs in terms of a, b, and s, has degree four.) The main simpler version of the problem is when the
rectangle is a square, which admits other techniques that don’t work in the general case. The other
special cases of the problem in which one can rather easily find the lengths of the legs of the required
right triangle are when all the numbers involved, namely, the sides of the rectangle, the triangle’s
hypotenuse, and the two legs to be found, are rational. They often pop up in puzzle books and recre-
ational mathematics, because they can be solved by “guess and check” methods.

a. Geometric solutions (at the time of the Greeks).

We credit this information to Audun Holme, Geometry: Our cultural heritage (2010, chapters 2, 3, and 4).
For an arbitrary rectangle, the problem cannot be solved by a straight edge and compass construction.
But it can be solved by using Nicomedes’ conchoids, and tools related to it. Here is a diagram of such
a tool:

A tool for drawing the conchoids. from http:/ /perseus.mpiwg-

berlin.mpg.de/GreekScience/Students /Tim /Trisection.page.html

The tool above will draw both parts of the conchoid. Below we show both parts, with the “loop”
above rather than below the directrix (the horizonal line PQ)(Figure 4).

But because for our problem we need only one point on a curve, a simple marked ruler suf-
fices(Figure 5).

At that time the solution to this problem was a step-by-step description of a geometric construc-
tion using only specified “tools”. But these “tools” seem to represent rather abstract operations. For
example, using a ”“straight edge” meant that you can construct a unique straight line passing through
any two given points, and using a “marked ruler” meant that you can put a point on a conchoid, given
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The conchoid with the “loop” above rather than below the directrix, from
http:/ /www.daviddarling.info/encyclopedia/C/conchoid.html

S
directrix

A ladder against a wall (showing the conchoid’s “loop”), drawn by authors
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a point on its directrix and its pole. No numbers were involved in any construction. The length of a

segment was not a number, but the segment itself.

b. Algebraic solutions

Both Isaac Newton in Universal Arithmetick (1720) and Thomas Simpson in A Treatise of Algebra (1745)
analyzed a large number of geometric problems, showing how they can be solved using algebraic
techniques. These solutions did not involve analytic geometry, because no coordinate systems were
involved. Instead, the relationships among segments, such as proportions, were translated into equa-
tions involving lengths of those segments. Then, step-by-step procedures of solving these equations
were shown. Both authors considered only the special case (where the rectangle is a square, a = b),
because it leads to a biquadrate*! equation.
Below is the problem in Thomas Simpson’s 1745 book.

250 A Treatife of ALGEBRA,

PROBLEM XV,

The Sideof the inferibed Square BEDF ,and the Hypﬂiajﬁ
AC of a right-angled ‘l"'r"mgbABF!J being given ; tode-
termine the other twe Sides of the Triangle AB and BC.

Let DE or DF =a, AC=#, AB=x and BC=y;
C thenitwillbeas x:y:: »

—a (AF) : @ (FD) whence
we bave ex= yr— ya, and
D confequently say=ax < ay.

E  Alfo we bave AB*4BC*=
EC‘, ar}:‘-f- =48 (by
u.47.1), to which Equa-

tion b:hc doﬁl.;dol'hl‘l::

former ndded, L

£\ ' B arifes #* 4 22y 4y = P2}
2ax+4 22y, that is x  y)° =" 4 2a x x4, and con=
fequently x4 y)* — 2a x ¥ 4y =4*; wherefore, by con-
fidering x~fy as one Quantity, and compleating the
Square, we bave 4y —zax xFyfar=54a;
whence ¥ y==a =4 4-a*, and x4y =+ 0" f b 4a;
which put é:, and then, by fubfticuting ¢ —x inftead

of its Equal (y) in the foregoing Equation, xy=ar 4 ay
chere will arife ex—u3==ac; whence x will be found =

16 4 Viee——ac and y=ic =4/ icc~as,

The problem as shown in Simpson (1745), p. 250.

In all cases a solution was a step-by-step algebraic procedure for computing the required num-
bers. But the solution showed only the method of finding the numbers. No specific numbers were
involved, either in the formulation of the problem or in the procedure. A method of showing alge-

! A biquadrate, or biquadratic, equation is a quartic equation that can be solved with only square roots (no cubic roots
are needed).
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braic procedures by starting with a specific case with numerical coefficients, and only then showing
a general procedure, which is common in modern algebra textbooks, was never used by Newton or
by Simpson.

In applied mathematics, solutions to problems often include specific numbers. But they are almost
never limited to numbers. Rather the opposite is true. In applied problems we usually want to know
more about the solution, than we do in purely theoretical problems.

In a lecture she gave in 1969, Mary Cartwright talked about the fact that even when one looks just
for a number, that is not all one wants to know, especially if one is an applied mathematician. She
wrote about solutions to differential equations, “ :**(one) really wants to know something about the
solutions in general. Is there a periodic solution? Is it stable? Will it remain stable if I change a certain
parameter? Will the period be longer or shorter?-:-” (Cartwright, cited in Ayoub, 2004.)

c. Puzzles and recreational mathematics

Here is the solution of the ladder and box problem in Pearson, 20th Century Standard Puzzle Book,
London (1907).

THE TWENTIETH CENTURY No. CIIL.—CLEARING THE WALL
: If a 52-feet ladder is set up so as just to clear
STANDARD PUZZLE %gﬁ:{den waﬂﬂ:z feet high and rs feet from the
uilding, it will touch the house 48 feet from the
BOOK ground, *

THREE PARTS |N ONE VOLUME

ETMITED u¥

A. CYRIL PEARSON, M.A.
Vraa Cheis Prablews, * Auigrama, Aucient aud Modeen* e,

PROFVSELY FLEUSTRATED

SECONT IMPRESSION

Our diagram shows this, and also, by a dotted

LORDON line, the only other possible position in which it

GEORGE ROUTLEDGE & SONS, LTD. could fulfil the conditions, if it were then of any
NEW YORK: E P, DUTTON & CO practical use.

Figures 7 and 8: from Pearson (1907), title page and p. 103.

(Pearson gives two solutions.)

Recreational mathematics is for amateurs. Problems are formulated, not in general, but in specific
terms, and they are usually embedded in some kind of a story. The solution to the box and ladder
problem is just a number, independent of the method used to find it. Also, in recreational problems,
irrational numbers occur very rarely, and this explains why box and ladder problems have rational
numbers as data and usually have rational solutions. All these examples fall into one category, which
requires finding a rational root of a polynomial equation with rational coefficients. And this problem
can be solved by Euler’s method (which really is a “guess and check” method with a bounded num-
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ber of guesses). But we did not find any author who discusses Euler’s method in the context of this
problem.

4 Final comments

In current mathematics, the modern meaning of solving a problem is really not much different from
the meaning used by Newton and Simpson. We expect to see a general mathematical procedure to
solve some reasonably large class of problems. And in applied problems we may also require some
numerical values of the variables. The main difference is that the range of problems that can be solved
is much larger and the use of technology is getting more and more prevalent.

But the use of technology brings some important changes. Now a person who solves a problem
doesn’t need to know how the problem is solved. So a student who solves the box and ladder problem
by writing the equation,

b/ sin(x) + a/ cos(z) = s

and solves it on a graphing calculator for specific values a, b, and s, does not need to know anything
about Newton’s method, which provides solutions to these kinds of equations.

A comment about school mathematics

School mathematics is a special case. (By school math we mean all K-12 math and college math for non-
math majors, that is not part of their professional training.) The concept of solving a problem in school
mathematics is just like in recreational mathematics. Problems are embedded into some narratives
(story problems) that are rarely realistic. What is required is usually just one or a few numbers, and the
correctness of the answer is judged by their values. And also many educational researchers discourage
teaching general procedures, and encourage improvisation as being more creative. This trend goes
against the millennia-long trend in the development of mathematics that is going toward general
solutions, which not only provide a numerical answer, but also explain how it can be done, and even
why it should be done in this way and not in another way. But on the other hand, students are still
drilled in very specific arithmetic procedures with very narrow ranges of application (for example,
addition of common fractions with different denominators) that were designed a hundred years ago
for accounting and other practical purposes.

The “box and ladder” problem in modern classrooms

The problem we have described is just one in a group of “ladder” problems (see http:/ / www.mathem-
atische-basteleien.de/ladder.htm#Sliding%20Ladder%20Problems). Others are the “Sliding ladder”
as a geometric problem (e.g., Gutenmacher & Vasilyev, 2004, pp. 1-3, 113-114), the “Sliding ladder”
as a dynamic calculus problem (e.g., Foerster, 2005, p. 178), and the “Two crossed ladders” problem
(e.g., Gardner, 1979, pp. 62-64; Wells, 1992, p. 131).

With its rich history the “box and ladder” problem can be placed in several strands of high school
mathematics.

In geometric constructions done either by hand or with computer software, the problem demon-
strates the role of “basic tools”, namely, the class of curves that can be drawn. In algebra its square box
version is a very challenging problem that can be solved by the use of quadratic equations. Finally,
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the general problem can be solved easily with calculator technology (see 2. above). But this presents

a dilemma. Traditionally, solving such problems in school is not a goal in itself. Instead, it is only

done to teach students some techniques and to help them understand more general principles. Does

this mean, for example, that we should not use the TI-84 SOLVER program unless we teach students

Newton’s method for solving equations, which underlies SOLVER's software?
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Sophie Germain (1776-1831)

1 Introduction

I will describe the pedagogy of a number theory course taught entirely through studying original
sources, primarily Sophie Germain’s early nineteenth century research manuscripts and letters on
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Fermat’s Last Theorem. The course was taught as a mystery, with students as the detectives. A more
detailed paper, with greater emphasis on the mathematical content of the manuscripts and the course,
is in progress [10].

In all my courses, I aim to have my students study their mathematics directly from primary histor-
ical sources, and I have also moved away from lecturing to a classroom active with “guided inquiry”
and “just-in-time” discovery. My goal is to dispense with textbooks presenting a purely modernized
treatment, which often focuses on answers to questions not asked. I wish to base my courses on stu-
dent discovery through primary sources aimed at answering meaningful questions [1, 2, 12]. Here
I analyze how a method of “guided discovery” to learn mathematics “as needed” interacted with
studying Germain’s original manscripts in number theory, and discuss the student response.

2 A number theory course a la Sophie Germain

-
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Beginning of Sophie Germain’s Manuscript A

Sophie Germain (1776-1831) was the first woman to do important original mathematical research
[3]. In number theory she has been known only from a single unpublished result (today called “Germain’s
Theorem”) toward proving Fermat’s Last Theorem!. Recently, Germain’s unpublished manuscripts
and letters have revealed that she pursued an ambitious “grand plan” to prove Fermat’s Last Theorem
[3,4, 6, 7]. I wondered if one could try teaching number theory largely with Germain’s manuscripts.

Recently I was able to teach the standard beginning one semester number theory course at New
Mexico State University. The course is at the advanced undergraduate and beginning graduate level.
But as a first number theory course, the prerequisite is only a little abstract algebra, and I relied only

on student facility at proving theorems.

n the seventeenth century Fermat claimed that for a natural number n > 2, there are no natural number solutions to
z" +y" = 2". He was finally proven right by Andrew Wiles at the end of the twentieth century [6].
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Let us compare the topics in a first course with Sophie Germain’s research manuscripts. Ger-
main was writing for experts, and was one of the first to utilize Gauss’s congruence view. To under-
stand her manuscripts and letters on Fermat’s Last Theorem requires knowing unique factorization,
Pythagorean triples, modular arithmetic, Fermat’s Little Theorem, Lagrange’s Theorem on the num-
ber of modular polynomial roots, modular roots of unity, and primitive roots modulo a prime. These
are the topics of a first number theory course, along with the Quadratic Reciprocity Law. Conversely,
if one understands the topics in a modern first course, one is equipped to understand Germain. Her
research foundation is essentially what constitutes a first course today.

Germain was writing for readers such as Gauss and Legendre, so she did not develop any of the
above topics in her manuscripts. Rather she assumed that her reader was already familiar with them,
and used them freely in her writings. Thus it is more accurate to say that I taught “to” Germain’s
writings, not “from” them.

I told my students that their challenge was largely to understand Germain’s progress towards
proving Fermat’s Last Theorem. This would be a detective story, because between any two Germain
sentences there might be weeks of students learning what they needed in order to make the next leap.
I planned to guide my students to learn all the topics in a first course by struggling to understand Ger-
main’s writings, with ancillary primary sources providing supplementary material on the Quadratic
Reciprocity Law [5].

Next I provide just a small sample of Germain’s writings, to give a sense of what students were
challenged with, and what her grand plan was for proving Fermat’s Last Theorem. A much more
detailed picture of the source material and how it created the course content is provided in [10].

Already in the first few lines of Manuscript A of [7] (Figure 2) Germain gives away the big picture
of her overall plan for proving Fermat’s Last Theorem.

OXDXDXXDXDXIXDO

Sophie Germain, from Manuscript A

Remarks on the impossibility of satisfying in whole numbers the equation zP + yP = 2P.

The impossibility of this equation would follow without doubt if one could demonstrate the following
theorem:
For every value of p other than p = 2, there is always an infinity of prime numbers of the form Np+1

for which one cannot find two p-th power residues whose difference is unity.
OXDDDIXIXDDO

Just this much provokes the first several weeks of course study, including unique factorization,
Pythagorean triples, residues, power residues, and inverses modulo primes. Students spend a lot of
time deciphering and proving this claim.

In a nutshell, Germain’s reason for her claim is what I call her

Basic Lemma. Suppose 2P + yP = 2P, and that 0 is a prime satisfying

Condition N-C. There do not exist two nonzero consecutive p™ power residues, upon division by the prime 6.
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Then one of z, y, z is divisible by 6.

From this lemma, which students can prove, it is clear that if there are infinitely many primes
8 = Np + 1 satisfying Condition N-C, then since each of these would divide one of z, y, 2, no such
x, y, z can exist. Germain believed that infinitely many such primes 6 existed, thus proving Fermat’s
Last Theorem. This was her grand plan, and most of her work was devoted to carrying it out.

Germain’s extensive manuscripts, and her letters to Gauss (Figures 2, 2) and Legendre [7], lead
to a multitude of student questions and investigations. These require Gauss’ congruence viewpoint,
and the existence of primitive roots for a prime modulus, which Germain uses heavily in her detailed

analysis.
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Germain’s 1819 letter to Gauss

Students also study Germain'’s proof in her manuscripts of the unpublished “Germain’s Theorem”
on which her reputation formerly rested. She proves what we today call Case 1 of Fermat’s Last The-
orem under certain hypotheses, and also something more powerful, a “large size” theorem, “the
necessity that the same numbers z, y, and z would be extremely large numbers”. However, there is a
flaw in Germain’s proof of the large size of solutions, and one of the challenges to students is to find
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“Here is what [ have found” from Germain’s letter to Gauss
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and understand this.
In sum, understanding Germain’s manuscripts ultimately entails almost all the topics of a first
number theory course.

3 A pedagogy of just-in-time guided discovery

I integrated student study of Germain’s manuscripts with non-lecture pedagogies [11]. The following
pedagogies meld, and support each other. However, I will discuss them individually, including how
they integrated with Germain’s primary sources.

* A question and inquiry based curriculum, with discovery guidance:

I wanted a curriculum driven by student investigation of meaningful questions, not by an in-
structor or book providing answers to unasked questions. Germain’s manuscripts were perfect
for this, with the larger question of Fermat’s Last Theorem motivating understanding Germain’s
work, leading to numerous questions as she pursues her goal. Students are faced with numerous
questions about how Germain knows the things she claims. I endeavored not to prove anything
for students, but rather for them to learn everything through their own discoveries, with just
the right tasks and guidance from me. I tried always to keep students in the driver’s seat, with
me charting the path.

The experience indicates that a question based curriculum of guided discovery fits well with pri-
mary sources. Historical sources were usually written for experts of the period, not as teaching
materials, and naturally evoke a wealth of questions. What could be more perfect? My challenge
was to provide the right tasks and guidance.

* Just-in-time (or just-as-needed):

I wanted motivation for new understanding always to come from investigation of Germain’s
writings. My goal was that students should always learn new things just-in-time, or even more
strongly, just-as-needed. The drive for exploring something new should come from keeping
one’s eye firmly on the ball, namely Germain’s research program. Only when students were
stuck on something from Germain would I guide them to some new result that they needed to
learn. My only exception would be sometimes to have students generalize something that had

been discovered first for understanding Germain.

I found that all desired course topics arose just-as-needed in understanding the manuscripts,
though perhaps in different order than in a modern textbook. I forced myself to adhere to the
just-as-needed maxim, and the result was highly satisfying. Students were always motivated by
what was needed at each moment to advance with Germain.

Primary sources are good for a just-as-needed pedagogy, since the barriers requiring new knowl-
edge rise up naturally while studying a bigger picture.
* No textbook in common:

I decided not to have a common textbook between me and my students, even as a supplement.
There was a danger that I or my students would begin referring to the book in class interactions,
and the focus would then shift away from Germain. By not having a common book, I would force
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myself to prepare assignments with all eyes always on Germain’s manuscripts, and thereby
reinforce both the guided discovery and just-as-needed pedagogies.

However, I did not want my students to feel too anxious at a lack of resources, so I asked each
student to choose a book of their own to have as a comforting security blanket, and said I would
be happy to discuss their book material with them at any time. This seemed to work very well.

I found that having no single textbook in common fit extremely well with primary sources,
since it kept the focus on the primary sources, while providing a comforting sense of security
for students.

* Mystery detectives:

I designed the course with student as detective, learning mathematics as needed to follow Ger-
main’s trail to prove Fermat’s Last Theorem. The primary sources were well suited to this, partly
because they were research manuscripts, so one could see problems being solved firsthand, and
one needed to learn all the background to keep up with the trail. I believe many courses could be
designed around primary sources as a detective mystery for solving big, interesting questions.

* Reading in advance, preparatory work for an active classroom, then work to complete at home:

I'have a three part non-lecture pedagogy to obviate lecture, described in detail at [11]. Students
have three types of work to prepare for each class day, staggered over three consecutive units of
material. First (Part A), they read new material for two class days hence, write questions about it
or respond to my questions, and I receive these and read them, to help me prepare for that future
class; my direction of in-class activity will be guided by these reading responses. Second (Part
B), students prepare a mathematical assignment of medium level “warm-up” exercises, on ma-
terial already previously read, to bring to class. Class time is spent first discussing the responses
I received earlier to the reading, and then mostly on the warm-up work they have prepared for
that same unit. It is discussed and dissected in groups, and as a whole class, presented on the
board, etc. Third (Part C), an assignment of higher level “final” exercises is completed at home
on material already worked through in class, for careful marking by me, and indicates the level
of understanding reached by the student. New Parts A, B, C then continue for the next class day,
each on different units of material.

I found that this worked every bit as well in this course, with the Germain sources, as in my
other courses. It fit particularly well with wanting to put students in the driver’s seat to decipher
Germain.

Here is an example of homework assigned on a single day early in the semester. It includes reading
and writing in advance (6A) on new material for two class days hence (unit 6), warm-up exercises
(5B) for the next class day (unit 5 in-class work), and final work (4C) to complete at home after today’s
classroom activities (unit 4) focused on the previously assigned Part 4B.

Homework 6A/5B/4C
Please write these three assignments on separate sheets
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6A: Hand in at beginning of class next time.
Read and write your questions on the next paragraph(s) of Germain’s manuscript A: “If for prov-

ing that ...” through “even more satisfying results”.
5B: Prepare these to discuss together and present in class next time.

1. Look up the classification of Pythagorean triples, i.e., natural number solutions to the equation
2% + y? = z2. Their complete classification has been known for a long time. Write down the
details of classifying primitive Pythagorean triples, i.e., those where z, y, z, have no common
divisor.

4C: Hand in at beginning of class next time.

1. State and prove a theorem to justify Germain’s claim that

Now since nothing prevents the successive assignment of an infinity of values to N, one can conclude
from what precedes that there must exist an infinity of values of p for which the equation xP 4¢P = 2P

is impossible.

In other words, state a hypothesis making explicit what she claims in the preceding, and show
how it would prove Fermat’s Last Theorem for infinitely many values of p, by showing how it
would lead to her italicized theorem at the beginning of Manuscript A.

4 Conclusion

I found that guided discovery to learn mathematics “as needed” interacted extremely well with
studying original sources. What were the particular challenges for me?

First, I had to prepare just the right assignments, and guidance for students, and be flexible based
on what happened in the classroom. From non-lecture teaching I was already used to adjusting asI go
along, and I knew Germain’s manuscripts well, so I was mathematically equipped for this pedagogi-
cal task. The Germain manuscripts were conducive materials, always providing questions to further
challenge my students.

Second, I had to resist the temptation to introduce new phenomena before they actually arose in
Germain’s writing. I found that as the topics arose naturally in Germain’s manuscripts, I gained the
resolve to let “just-as-needed” perform its function. Students were constantly motivated by each new
challenge towards the big goal.

Teaching number theory to Sophie Germain’s manuscripts was the most exciting teaching expe-
rience I have ever had, and the students rose to the challenge, embracing the experience from the be-
ginning. We also read and discussed the book Sophie’s Diary [8, 9], a fictional diary by Sophie Germain
during the ages 13-17, teaching herself the mathematics she will need to gain the serious attention of
Lagrange at age 18 (as she did in real life), battling societal and familial pressure not to study math-
ematics because of her sex, and living in the middle of the French revolution outside her door in the
heart of Paris.
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I am writing a book for the course based on Germain’s manuscripts, with tasks and guidance
for student and instructor to follow Germain’s path. I endeavor to leave almost all the proofs to the
student, with ample guidance and optional further exercises.

Number theory cookies

My students should have the last word. But first, I explain the final exam period, where groups
presented their work on proof and applications of the Quadratic Reciprocity Law. Students brought
homebaked number theory cookies (Figures 4, 4). Try deciphering the icing on the cookies, which
include ingredients of Germain’s plan for proving Fermat’s Last Theorem, quadratic reciprocity, Louis
XVI at the guillotine, and an escargot.

Here are selected student comments from anonymous course evaluations:

“I have seen so many connections this semester between what we do in this course and the other
math classes I've been taking, more than I have in any other course. I will definitely continue to study

| 7.«
. 7

number theory on my own because of this class much more challenging than I expected”; “I will

hold on to these papers forever”; “I loved this class”; “It was really cool to read and learn directly
from primary sources like Germain’s manuscripts and letters! ”; “I really liked the high level of stu-
dent participation”; “Dr. Pengelley’s way of teaching will influence my way of teaching in future.
What I learn is to be a good teacher, teacher need to work hard more than anyone else. To make stu-
dent active learner, the role of teacher is very important.”; “I truly enjoyed learning number theory
in a historical context through Sophie Germain’s manuscripts, while also learning the material of a
normal number theory course. I also really liked reading ‘Sophie’s Diary” and thought it promoted

”. «

some good discussions”; “the fact that every class was conducted in a way that invited open discus-
sion meant that I was comfortable adding my thoughts or asking questions”; “I really like the way
historical sources were incorporated into the course, and that Dr. Pengelley has personally translated

manuscripts from French and used them to help us learn number theory”.
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More number theory cookies
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1 Introduction

When did Taiwan start to develop the HPM? The date is hard to be definite. However, 1996 must be
a decisive year. In this year, Prof. Horng Wann-Sheng accepted the task to host the conference HPM
2000 Taipei and initiated HPM Taipei Tongxun in order to promote HPM in Taiwan. There are two
vital impacts on mathematics education of Taiwan. First, HPM Taipei Tongxun, now renamed as HPM
Tongxun, has become the most important platform for high school mathematics teachers to acquire
as well as to share knowledge, information, teaching skills, teaching experience, and materials of the
HPM.!

Secondly, the HPM 2000 Taipei attracted many mathematics educators of every level in Taiwan,
so that they became more familiar with the HPM and started to be involved in the HPM. For instance,
there are one doctoral and thirty-two master’s dissertations on the HPM in high school in the period
between 2001 and 2011. In contrast, there are only two master these before 2001. Furthermore, authors
of these dissertations are all in-service or pre-service teachers of mathematics, and they did their
research and experiments in actual classrooms. Besides, from 2000 onwards, there are many articles
about HPM, especially concerning historical materials and using history of mathematics in classroom.
Now HPM comes to be a meaningful and legitimate subject in Taiwan.

In what follows, I will introduce some experiments and examples of using history of mathematics
in high school, and share my own experience as well. Before that, I have to clarify that by “experiment”
I mean in this article does not necessarily refer to a formal or an academic one, it may be an example

or experience of a teacher using history of mathematics in his or her class.

2 Experiments and examples of using history of mathematics

2.1 Research projects conducted by Prof. Wann-Sheng Horng

In Taiwan, Prof. Wann-Sheng Horng is the first scholar to investigate how history of mathematics
integrated with education of mathematics in all possible aspects. He led his team completing several

'In Taiwan, high school includes junior high school and senior school. The former is for students aged from 13 to 15,
and the latter from 16 to 18.
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research projects, like “Ancient Mathematical Texts used in the Classroom”, “Teacher’s Professional
Development in Terms of the HPM” and so on. Since most members of Prof. Horng’s team are teach-
ers of high school mathematics, these research projects combined practical experience and aimed at
realistic applications.

On the project “Ancient Mathematical Texts used in the Classroom”, they have developed as many
as twenty-nine teaching projects and worksheets/work-cards in terms of the HPM. “However, the
participants were not aware that in this connection a subtle reconciliation of historical reflection with
cognitive approach was necessary.” (Horng, 2004) Jing-Ru Chiu and I took part in this project, and
we designed three teaching projects and brought them into use in her classes. What we learned in
the end of the project is that it is quite difficult to make a transition from history of mathematics
to what students have learned or are going to learn. There are many interesting topics in history of
mathematics, but what teachers think interesting is not necessarily suitable to students. For example,
we developed a teaching project of Egyptian fractional numbers for 7th grade students. In the first
class, students were all highly attracted by how ancient Egyptians wrote integers and used them to
do addition, subtraction, multiplication, and division. Nevertheless, in the second class, students got
confused with the reason why they needed to learn so complicated and useless Egyptian fractions.
With these teaching experiences, we came to realize that Egyptian fractional numbers were fascinating
to us, but they did not make much sense to some students. We appreciated the significance and the
unique style of Egyptian fractions and their representations and arithmetical operations, but students
did not. Moreover, did 7th graders need to know what Egyptian fractions were all about?

Through this research project we have learned that history of mathematics do bring to teachers
as well as to students some benefit such as motivating learning of mathematics, appreciating cultural
aspects of mathematics, seeing mathematics as human-being activities, and so on. However, history
of mathematics is a double-edged sword, and it will do harm to math classes if teachers use it without
second thought. How to use history of mathematics in teaching is a significant theme to which many
papers have contributed. I will not go into the details. Instead, I am going to tell a story that has a
significant impact on me for a long while.

When Jing-Ru Chiu and I participated in the research project, she was a junior high school teacher
with practical experience of teaching mathematics. By contrast, I was a graduate student with lots
passion in HPM but with little practical experience. When we cooperated to design teaching projects,
we usually stood at the two ends of a balance. I wanted to put more and more history of mathematics
into the teaching project while she concerned primarily not only about performance of teaching but
about outcome of students’ learning as well. Frankly speaking, at that moment I thought she was not
capable enough to use history of mathematics in teaching. Nevertheless, in the end of this two-year
research project, I had learned a lot from her about how to provide students proper and accessible
materials related with history of mathematics.

2.2 Dr. Su Yi-Wen’s doctoral dissertation

Dr. Su Yi-Wen'’s doctoral dissertation, Mathematics Teachers” Professional Development: Integrating His-
tory of Mathematics into Teaching, is one of the major outcomes of Prof. Horng’s research project,
“Teacher’s Professional Development in Terms of the HPM”. It is about her school-based research
during a two-year period. There were four participants including Su herself in the research, and they
were all mathematics teachers in the same senior high school. They developed a HPM model for de-
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signing teaching materials (see the diagram below, cited from Su, Yi-Wen, 2006) and finally completed
teaching worksheets for eight topics: complex numbers, Heron’s formula, circles, the mathematical
expectation, metrics, transformations of translation and rotation, the concept of limit, and applications
of limit. The overall process of completing teaching worksheets can divide into four parts.

3

Topic Seleetion
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B i v T
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First, after selecting a topic of senior high school mathematics, each participant needed to read
relevant papers or books on history of mathematics and mathematics education. He or she not only
analyzed the logical, cognitive, and historical aspects of the selected topic, but also took students’
learning and conceptual development of mathematics into consideration. Then he or she discussed
those with other participants and started to design teaching materials. The second part was imple-
menting designed teaching worksheets /materials into class. Next, the designer shared his/her reflec-
tions on performance and responses from students with other participants, and looked for advices
from others. Finally, the designer wrote a final report on his/her worksheets, and proposed sug-
gestions for future users. Hence, teachers who are interested in these worksheets can easily get into
practice through these reports.

After making a comprehensive survey of these reports, I discover several interesting things from
designers’ reflections and suggestions:

(1) What students are going to learn is mathematics, not history of mathematics

In each report, I see many positive responses from students. However, not every student approved
of history of mathematics. Some thought learning from history of mathematics was inefficient, and
some thought history of mathematics made mathematics even more difficult to learn. Therefore,
the designers remind readers that the key to integrating history of mathematics into teaching is
selecting proper historical materials and adapting them into accessible materials for students.



118

(2) History of mathematics inspires students not only in mathematics, but also in personality.

Prof. Wann-Sheng Horng has pointed out that telling historical stories can inspire students in per-
sonality. After finishing the research project, “Meta-Development of Teachers’ Beliefs and Knowl-
edge on History of Mathematics”, Feng-Jui Hsieh concluded that one of the significances of inte-
grating history of mathematics into instructions is to develop positive values in life. (Su, Yi-Wen,
2004) In the report on metrics, the author/designer told a story that he successfully helped a de-
pressed student getting through his hard time by means of the story of Cayley and Sylvester. After
listening to the story, the student actively fitted into his class and organized a study group. In a
period, all members of the group progressed in studies.

(3) Responses from students helped the designers” professional development.

In all of the reports, authors/designers expressed their pleasure and satisfaction with most stu-
dents approving of learning mathematics through the worksheets. Those feedbacks encouraged
them to design worksheets for the other topics. This virtuous circle enhanced their professional ex-
pertise in terms of the HPM in an efficient way. Yi-Wen Su puts it that “by the end of the two-year
project, it is obviously that the participants, in particular, T;, have enhanced their professional
expertise in terms of the HPM in following ways, namely, (i) they can begin to write popular
mathematics articles; (ii) they are more reflective into their teaching than ever; (iii) they are able
to integrate their mathematics knowledge into a broad picture; and (iv) he starts to care about the
students’ thinking. As a conclusion, the outcome of the project indicates that HPM approach can
help the participants’ professional development in an efficient way and can be another way for
the in-service training.” (Su, 2006)

2.3 Jun-Hong Su’s Award Winning Teaching Projects

Jun-Hong Su is an experienced teacher of high school mathematics, and he wrote many articles about
the HPM in varied publications for high school teachers in Taiwan. In addition, he designed several
teaching projects in terms of the HPM, and won the first prize of the contest of teaching projects of
high school science in 3 consecutive years, 2006, 2007, and 2008. The SpringSoft Education Foundation
held this contest from 2005 to 2008. It asked participants to use the PowerPoint software to design
and to present their projects. Su combined his experience of teaching mathematics and knowledge
of mathematics history to win the prizes. The topics of these three teaching projects are the cosine
formula, irrational numbers and conic sections.

The teaching project of the cosine formula has a distinctive feature that it deeply connects to
the Pythagorean Theorem. It not only shows the connection between the cosine formula and the
Pythagorean Theorem, but also illustrates that we can modify Euclid’s proof of the Pythagorean The-
orem in Elements to prove the cosine formula. See Figure 1. It is analogous to the diagram with which
Euclid gives his proof except that the triangle ABC is not right-angled. We have rectangle AJ equal
to rectangle AK, and rectangle BL equal to rectangle BK. Therefore, the sum of square AD and BH
exceeds square AF by the sum of rectangle CJ and CL. Actually, rectangle CJ and CL are both equal
to AB - BC - ZABC, and then we have the cosine formula:
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Figure 1

AB® = AC’ + BC” —2-AB-BC- ZACB
Su expects that through this proof, students can regard the cosine formula as an inherent logical
entailment of the Pythagorean Theorem.

Su’s second teaching project aims to make students truly “perceive” irrational numbers. Students
are told that irrational numbers are numbers that are not rational numbers. However, this kind of
definition or explanation gives students almost nothing as to what is irrational number. In order to
improve the situation, Su introduces the concepts of “commensurable” and “incommensurable” of
Euclid’s Elements. First, he shows the connection between rational numbers and commensurable mag-
nitudes, and uses the Euclid algorithm to find the greatest common measure of two commensurable
magnitudes. Second, he demonstrates the diagonal and the side of a square are incommensurable to
explain the square root of 2 is irrational. (See Figure 2) Finally, he concludes that irrational numbers
are those numbers that cannot be written to be fractional, ratios of two integers.

A D

jos]

Figure 2

The third teaching project is about conic sections. The first part of it is Dandelin’s theorem, and the
most interesting thing is that Su uses the software, Cabri 3D, to display Dandelin spheres dynamically.
The second part focuses on the meaning of the latus rectum, which Apollonius (ca. 262 BC 190 BC)
called the upright side. In Taiwan, we have definitions of latus rectum for conic sections and formulas
for calculating their lengths in senior high school mathematics textbook. However, that is all, nothing
more. Therefore, students only memorize them without knowing how actually they meant. Hui-Yu
Su, the editor of HPM Tongxun, wrote an excellent article to expound the original connotation of the
latus rectum related to naming conic sections as parabole, elleipsis, and hyperbole in Apollonius’ Conics.
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Moreover, in the light of their original meaning, parabola, ellipse, and hyperbola may all have the
same form of analytic expression, y* = pz + §x2. (See Hui-Yu Su, 2005) This article inspired Jun-
Hong Su to integrate it into the second part of this teaching project (see Figure 3 below).

2.4 My Own Teaching Projects

Since 2007, I have designed several teaching projects, and two of them, tables of logarithm, and
Cramer’s rule, are illustrated in the following paragraphs. I used them in my classes of National Tainan
First Senior High School.?

2.4.1 Tables of Logarithm

In Taiwan, every student has to learn logarithm in his or her first year of senior high school, and to
memorize the number 0.301 as an approximation of log2. One day a question crossed my mind that
if a student asked me about how to find out the approximation of log2, what my answer would be.
The only method I remembered then was to approximate it by using Taylor’s Formula, but Taylor’s
Formula is beyond what my students has learned. In addition, using Taylor’s Formula to explain
the “genetic” development of logarithms tables is anachronistic. Therefore, I looked into the history
of logarithm and found something worth showing to students. Consequently, I designed a series of
worksheets of logarithm tables and used them in my classes. Responses from my students were quite
positive, so I wrote two articles about this topic, my worksheets and my students’” feedbacks. Some
teachers told me these articles not only inspired them but also intrigued them to take my worksheets
into use. Those flatter me a lot indeed.

When I developed my worksheets of logarithm tables, I took some ideas and materials from two
articles concerning using history of mathematics to teach logarithm in HPM Tongxun. They are “Shu
Xue Shi Rong Ru Giao Xue: Yi Dui Shu Wei Li” (integrating history of mathematics into teaching:
take logarithm for example) and “Dui Shu Sui Bi” (some things about logarithm) written by Jun-
Hong Su and Zhi-Yang Horng respectively, who are both senior high school mathematics teachers.
In his article, Su offers four worksheets of logarithm. His first worksheet is devoted to Nicholas Chu-
quet (1455-1488) while the others Napier’s logarithm. My first worksheet essentially bases on his first

“Founded in 1922, National Tainan First Senior School is one of the most academically competitive senior high schools
in Taiwan. It has 57 classes with around 2,300 students, and only around 10 students are girls. Roughly speaking, nearly
each student’s percentile ranke of academic performance in the Basic Competence Test for Junior High School Students is
above 94%.



121

one. In Horng’s article, he applies logarithm to find the relation between orbital periods and radii of
planets, and in this way, the third Kepler’s law of planetary becomes easier to follow. I adapted this
application for my last worksheet.
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Except for the first and the last worksheet, the remaining included two parts. First, Henry Briggs
(1561-1630) suggested John Napier (1560-1617) to change the logarithm into what we use today, and
utilized his brilliant method to calculate approximations for the logarithm tables. The cited right tab-
ulation is from Ian Bruce’s translation of Briggs” Arithmetica Logarithmica, and there is a mark I made
to show an error in the tabulation. This tabulation illustrates how Briggs approximated log2. The sec-
ond column represents the degree of 2!%°. Take 100 for example, the number 12676,50600,22823 in the
first column is the first fifteen digits of , and the number 31 in the third column indicates there are
31 digits of 2!% . Then Briggs multiplied 12676,50600,22823 by itself to get the first fifteen digits and
the total number of digits of 22 . Briggs did not stop doing multiplication until he got the number
30,1029,9956,

6399, which is the total number of digits of 2'9"*. Then Briggs obtained an approximation of log2 with
high accuracy.

In what follows let me explain the procedure in today’s notation:
910M _ 7y 5 1(30,1029,9956,6399—1
1< N <10 = 10 -log2 = (30,1029,9956,6399 — 1) + log N = log 2 = 0.30102999566398

In my classes, I took 2!% = 1024 to show my students how to find an approximation of log2:

210 = 1024 = 1.024 x 10* = 10 - log 2 = log 1.024 + 3 = log 2 = 5 - 1og 1.024 4+ 0.3 = 0.3

Then I challenged them to get the approximation as accurate as possible by using electronic calcula-
tors. Actually, most calculators cannot show more than 13 digits which is the number of digits of 240,
Moreover, the approximation of log 2 coming from 2%° is 0.3 which is as same as the approximation
coming from 2!°. This outcome somewhat depressed my students. Therefore, when they knew what
Briggs had done without an electronic calculator, they all felt amazing and admired Briggs for his
clever method and persistence as well.

Secondly, establishing logarithms tables was a slow, laborious job in the time without electronic
calculators yet it brought much convenience for posterity though. I wanted my students to experience
the process, so in the third worksheet of my teaching project, I asked them to calculate the approxi-
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The first five The number of | The first five The number of
digits of 7" n digits of 7" | digits of 7" n digits of 7"

49 2 2 200

2401 4 4 400

8 7 800

10 9 1000

20 2000

40 4000

80 8000

100 10000

mation of log 7 by following Briggs’ way, but used electronic calculators and wrote down the first five
digits of 7" (see the tabulation). Even using electronic calculators, they still spent some time to finish
the task. Through this activity, they profoundly realized that to complete tables of logarithm was a
huge task and people in that time definitely were in need of these tables for otherwise they would not
need to do it. The following are my students” feedbacks:

* The method is amazing and unexpected!

* Briggs spent so many years on calculation and surprisingly, he could acquire so precise approx-
imations without an electronic calculator. This shows that he was extremely persistent.

* It was very fortunate that Briggs altered Napier’s logarithm with base 1 —10~7. Briggs benefited
later students. Thank you Briggs!!

* 1 finally realized that completing logarithm tables was a huge task, and surveys of astron-
omy and navigation would become easier with these tables. We should learn the predecessors’

method well.

* Ithought every concept of mathematics was easy to construct. Now I know that each concept we
thought it as a matter of course came from hard work of mathematicians who even had devoted
his whole life to it.

* It is more attractive to us to present mathematics in this way, and let us know development,
application, and interesting things of mathematics.

2.4.2 Cramer’s Rule

Hui-Yu Su, the editor of HPM Tongxun, selected 90 articles from volume 1 to volume 10 of HPM
Tongxun, and sorted them by topics of senior high school mathematics. Actually, there are more than
120 articles relating to these topics in HPM Tongxun so far. Although the amount is huge, there are
still some topics lacking research articles. Therefore, Su asked for them. As a deputy editor of HPM
Tongxun, I chose the topic of Cramer’s rule and designed a teaching project that I drew upon in two
of my classes.

Nowadays, Cramer’s rule is presented in the form of determinant. This, however, is completely dif-
ferent from the original version in Cramer’s Introduction a I'analyse des lignes courbes algébrique (1750).
In what follows, I take for example linear equations with three unknowns to explain Cramer’s original
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Ay ~ Asareconstants, Z; ~ Z3, Y1 ~ Y3, X; ~ X3z are coefficients of unknowns z, y, x respectively

 A1Yo X3 — A1Y3Xo — AY1 X3 + AoY3 Xy + A3Y1Xo — A3Yo Xy
1Yo X3 — Z1Y3Xo — ZoY1 X3 + ZoY3 Xy + Z3Y1Xe — Z3Y2 X4

Cramer gave a series of specific regulations to put down the values of unknowns:

(i) The values of unknowns have a common denominator. Each term of the denominator is in the
form of Z,Y;, X, and a, b, and ¢ are arrangements of number 1, 2, and 3: 123, 132, 213, 231, 312,
321. Therefore, the denominator has 6(=3!) terms.

(ii) We attach the sign “+” to the term with even number of “derangement”, or we attach the sign

“—". The “derangement” means infringing the condition a« < b < c. For examples, the term

Z3Y5 X1 has the sign “—" because there are two derangements: 3 before 1 and 3 before 2. The

term has the sign “ ” because there are three derangements: 3 before 1, 3 before 2 and 2 before

1. After these, we have the denominator.

(iif) We change 71, Z5, Z3 into A1, A, A3 respectively, and then we find the numerator of the value of

the unknown Z. We change Y7, Y5, Y3 into Ay, Ay, A3 respectively, and then we find the numerator

of the value of the unknown Y. The value of the unknown X is obtained in a similar way.

In a word, Cramer used permutations to find the values of unknowns, rather than determinants.

In my teaching project, I asked students trying to write down the Cramer’s rule with four unknowns,
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and to imagine it with five unknowns. In addition to Cramer’s original rule, I showed several pages
of Colin Maclaurin’s (1698 1746) Treatise of Algebra (1748) to my students, and asked them to explain
what is the subject of these pages (see Figure 5). It was not difficult for them to identify the content
of these pages as the so-called Cramer’s rule. Moreover, after they knew Maclaurin already wrote the
rule in 1729 before Cramer published his book in 1750, they answered the following three questions:

Question 1: Which one do you like? Cramer’s or Maclaurin’s rule?
Question 2: Should we call the name of the rule as Cramer’s rule or Maclaurin’s rule?
Question 3: What are the advantages of representing the rule in the form of determinant?

There are 85 students in my two classes, and in the case of question 1, only 2 students liked Cramer’
original rule, 30 students liked Maclaurin’s, and 33 students disliked both of them. Most students dis-
favored Cramer’ original rule because of its complexity of expression, and they preferred Maclaurin’s
rule because they comprehended what Maclaurin had done. When it came to question 2, needless
to say, most students approved of the name, Maclaurin’s rule. However, one student defended for
Cramer because Cramer told us how to find the values of unknowns no matter how many unknowns,
but Maclaurin only told us the rule with three unknowns. After listening to his explanation, many
students became hesitant. I was very glad that some one could perceive the deep difference between
them and triggered off other students” second thought.

Although I have some experience in terms of the HPM, this teaching project was not successful
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enough in practice. I discussed it with a teacher of reaching-practice status who went to the class-
room and made a recording on digital video. We both primarily agreed that this teaching project has
many merits. However, we could make it better in two aspects. First, I nearly adopted all of Cramer’s
symbols and notations in order to bring the flavor of history to students. However, they brought cog-
nitive obstacles to students at the same time. It was not easy for students to learn new things with an
unfamiliar system of symbol. In addition, there were so many symbols that Cramer’s rule became an
abstract monster. Therefore, I should use symbols that are familiar to students instead of Cramer’s,
and start the rule on two unknowns.

Second, it may be better to use this teaching project before students know Cramer’s rule. I expected
that students could appreciate mathematicians’ efforts on developing this rule as students knew its
modern form. However, it did not work. On the one hand, the original rule is much more complicated
and troublesome than the modern one, so students became impatient and unwilling to follow it. On
the other hand, the time I brought this teaching project into classroom was six day earlier than the
final examination of the semester, and it was no wonder that a few students were not in the mood to
know something unrelated to the exam.

Besides these two flaws mentioned above, there was an unanticipated and surprising gift from
Cramer’s original rule. In Cramer’s approach, it is easy to count the number of derangements of any
given term. However, if we ask the inverse question: how many terms have the same number of de-
rangements, then we enter the realm of 20th century discrete mathematics. Actually, this question
turns to be a problem about permutations and inversions (derangements). For example, permutation
31524 has four inversions, namely (3,1), (3,2), (5,2), and (5,4), and how many permutations formed by
1,2, 3,4, and 5 have four inversions? This line of research can trace back to Eugen Netto’s Lehrbuch
der Combinatorik in 1901. (Béna, 2004) On the last day of the semester, I got together six students who
are good at mathematics, and proposed two interesting methods to them to get start the study of this
problem. (See Appendix) Although they all highly attracted by these two methods, they did not go
further in their winter vacation. I wrote an article to show the way to solve this problem in detail, and
two of my colleagues are very interested in it. We will work together to modify my teaching project
to become a six-class lesson, including Cramer’s original rule and modern discrete mathematics as
well, for students in mathematics and science talented classes.

3 Concluding Remarks

From these experiments mentioned above, we can see that the HPM has rooted in these teachers” PCK
(pedagogical content knowledge). When they integrated history of mathematics into instructions,
they combined their expertise of the HPM and of the PCK to prepare practicable and suitable teaching
materials for their students. Prof. Wann-Sheng Horng developed the hermeneutic tetrahedron from
Niels Hans Janhke’s hermeneutic twofold cycle to illuminate how the HPM enhances teachers” PCK.
(Horng, 2004b & 2005) Being a mathematics teacher in high school, I propose my suggestions for
teachers and scholars who are interested in using history of mathematics in classroom.

To design such kind of teaching materials, obviously, teachers need to know the history of the
chosen topic in deep sense. It even requires an overview of history of mathematics. Take for instance
Jun-Hong Su’s award winning teaching projects, he cannot create them without recognizing the sig-
nificance of incommensurable magnitudes, the Pythagorean Theorem in Euclid’s Element, and the



126

latus rectum in Apollonius” Conics. However, few teachers in high school are as good as Jun-Hong
Su expertise in history of mathematics. So, how can we help them? To offer them a serious course of
history of mathematics might be an option, but it is not attainable for most teachers. I asked some
teachers and myself a question that being a mathematics teacher in high school, what kind of resources
of the HPM is most helpful or useful for us.

I got two answers. One is popular articles about the history of topics in high school math textbooks.
I have to stress the word “popular”. There are many articles and books on history of mathematic in
Taiwan, but most of them are written for mathematicians and historians, not for teachers in high
school. Take logarithm for example, Napier is the main character in many articles and books, but
Briggs is rarely mentioned or referred to. However, Napier’s logarithm is unintelligible not only for
students, but also for most teachers. Fortunately, there gradually come out articles and books basically
written for high school teachers. Math through the Ages: A Gentle History for Teachers and Others was
translated into Chinese by team members of HPM Tongxun in 2008. My wife Jing-Ru Chiu who is
now a senior high school mathematics teacher told me she likes this book very much and thinks it
useful. In addition, Hui-Yu Su, the editor of HPM Tongxun, continues to write a series of articles,
named “HPM Gao Zhong Jiao Shi” (HPM in senior high school classroom), for senior high school
mathematics teachers since 2011. Up to now, she has written seven series articles, and all of them are
devoted to history of math topics in textbooks. These articles provide teachers abundant materials for
designing teaching projects.

The other answer is teaching projects with guidelines in detail. Teachers who are not capable of
designing teaching projects of history of mathematics are capable of integrating history of mathe-
matics into instruction, as long as there are some things like reports written by participants of Dr. Su
Yi-Wen’s research program, or articles about my own teaching projects. Through these reports and
articles, teachers acquire not only guidelines and advices about implementation, but knowledge of
history of mathematics. Moreover, teachers can easily adapt these teaching projects for their students.
In other words, these teaching projects are prototypes that can produce many teaching projects. As a
teacher adapts more and more teaching projects, he or she would acquire more and more expertise
in terms of the HPM. One day he or she may be able to create a new prototype for others.
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Appendix

The symbol f, (n) denotes the number of permutations formed by 1, 2, 3...m with # inversions.

For example, permutations formed by 1, 2, and 3 have three numbers of inversions:

Number of inversions 0 1 2 3

Permutation 123 213 ~ 132 | 231 ~ 312 321

Wewrite f,(0)=1, f,(D)=2, f,(2)=2,and f;(3)=1. Let start the observation from m=1.

m=1: n 0

1 = number of inversions : 0 £ (n)

1

m=2 :

1 2 = number of inversions : 0 n 0 1

2 1 = number of inversions : 1 £.(n)

D D 3 < 1 2 3 = number of inversions : 0

2 1 3 = number of inversions : 1

—> The numbers are as the same asm =2.

1 3 2 = number of inversions : 1 1 1
[13[]

2 3 1 = number of inversions : 2 1 1

= Each number increases 1. S () 1 2 2 1

3 1 2 = number of inversions : 2 )
3 D D = Each number increases 2.

3 2 1 = number of inversions :

D D D 4 = The numbers are as the same as m =3

D D 4 D = Each number increases 1 n 0 1 2 3 4 5
1 2 2 1
D 4 D D = Each number increases 2. 1 2 9 1
1 2 2
4 D D D = Each number increases 3. 1 ) )
Sl 1 1315165 |3
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(A ={L 4,9, 15, 20, 22, 20, 15, 9, 4, 1}
(fim}” =1L, 5,14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1}
) L, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573,
n =
70 T 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1

These sequences constitute the Triangle of Mahonian Numbers (or Mahonian Triangle). The name
shows the respect for Percy Alexander MacMahon (1854~1929):

1 5 14 9 49 T 90 101 101 90 71 9 29 14 3 1
1 6 0 4 9 169 259 359 455 531 573 573 331 455 3% 259 169 98 49 20 6 1

Now, we introduce discrete mathematics. Rewrite the tabulation of f, (n) as follows:

n xo )C1 x2 x3 x4 )C5 x6

x° 1 2 2 1

x! 1 2 2 1

X2 1 2 2

X 1 2 2 1
So(m) |1 3 5 6 5 3 1

Then we see the procedure of finding f, (n) from £ () is multiplication of two polynomials:
A+2x 42X + X))+ x+x" +x°) =143x+5x" +6x° +5x* +3x° +1-x°

In the similar way, we have 1+2x+2x> +x’ =(1+x)(1+x+x"). Therefore, we find the
generating function of f, (n):

F(x)=1
F(x)=1-(I+x)=1+1-x

F(x)=1-(1+x)-(1+x+x")=1+2x+2x" +1-%°

F,(x)=1-(1+x)-(I+x+x)1+x+x" +x°) =1+3x+5x> +6x” + 5x* +3x" +1-x°



130

F(x)=1-1+x)-(I+x+x)A+x+x" + )1 +x+x° +x" +x*)
=14+4x+9x> +15x° +20x* +22x° +20x° +15x" +9x* +4x° +1-x"
F(x)=1-(1+x)-(I+x+x)A+x+x" + )1+ x+ x>+ +x) 1+ x+x" +x° +x* + )
=14+ 5x+14x" +29x° +49x* +71x° +90x° +101x" +101x" +90x" + 71x"’ + 49x"'

+29x" +14x"° +5x" +1-x7

m—1
F(x)=1-(1+x)-(I+x+x") (I x+x7 4ot x" ) = [ A+ x+ 27+ +x5)
k=0

The coefficient of x” of the expansion of F, (x) is f, (n). However, it still requires some work to

write down the expression of £, (n).
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ABSTRACT

As areaction to E. P. Wigner’s paper on The unreasonable effectiveness of mathematics in the natural
sciences from 1960, R. W. Hamming wrote a paper in 1980 called The unreasonable of effectiveness of
mathematics, where he expanded Wigner’s discussion by looking into the use of mathematics in
computer science, being able to draw on his own 40 years of experiences in the area.

In the setting of the Danish upper secondary mathematics program this paper reports on the
design and implementation of a so-called HAPh-module (History, Application, and Philosophy),
where students were to read the original text by Hamming as well as two original texts by G. Boole
and C. E. Shannon, respectively, illustrating the main point of Hamming’s paper. More precisely
the students worked with Boole’s An investigation of the laws of thought on which are founded the mathe-
matical theories of logic and probabilities (1854) and Shannon’s A symbolic analysis of relay and switching
circuits (1938). The implementation of the teaching module took place in a third year upper sec-
ondary mathematics class (students age 18-19) in the fall of 2011. Besides discussing the design of
the module, a selection of data gathered during the implementation will be provided to illustrate
outcomes (positive as well as negative) of the module.

1 Introduction

The motivation for carrying out the study described and discussed in this paper is threefold. First, in
Denmark a reform, initiated in 2005, of the upper secondary school led to a more serious inclusion of
elements of history in the mathematics program. Through “modules in the history of mathematics”
students now must be able to “demonstrate knowledge about the development of mathematics and its
interplay with the historical, scientific, and cultural development” (UVM, 2008, appendix 35, articles
2.3 and 2.1, my translation from Danish). Further, actual applications of mathematics play an impor-
tant role in the new program, e.g. it says that students also must be able to “demonstrate knowledge
about application of mathematics within selected areas, including knowledge about application in
the treatment of a more complex problem” (ibid., article 2.1).

"The study presented in this paper is supported by the Danish Agency for Science, Technology, and Innovation.
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Second, in 2002 a Danish report was published on Competencies and Mathematical Learning (recently
it was translated into English: Niss & Hejgaard, 2011), which besides listing eight mathematical com-
petencies that students of mathematics are to develop and come to possess as part of their training,
also lists three types of 2"¢ order competencies or types of overview and judgment (O]):

o OJ1: the actual application of mathematics in other subject and practice areas;

o Q]J2: the historical evolvement of mathematics, both internally and from a social point of view;
and

o OJ3: the nature of mathematics as a subject.

Where mathematical (15 order) competencies are a kind of “well-informed readiness to act appropri-
ately in situations involving a certain type of mathematical challenge”, the three types of overview
and judgment are ““active insights’ into the nature and role of mathematics in the world” which “en-
able the person mastering them to have a set of views allowing him or her overview and judgement
of the relations between mathematics and in conditions and chances in nature, society and culture”
(Niss & Hejgaard, 2011, pp. 49, 73).

Finally, the purpose of including history above, both in the Danish upper secondary mathematics
program and as OJ2 in the report on competencies, has to do with a use of ‘history as a goal’, rather
than one for instruction, i.e. ‘history as a tool” (Jankvist, 2009a). Something similar is the case for
including aspects of the actual application of mathematics, both in the upper secondary program and
as OJ1. And also for OJ3, which we may associate with a use of philosophy in mathematics education,
the purpose is rather one of ‘goal” than of “tool” (for further discussion, see Jankvist, forthcoming).
Often when original sources play a role in mathematics education, it is mainly in the sense of a tool
(e.g. Glaubitz, 2011; Barnett et al., 2011; Kjeldsen & Blomhgj, In press). But as we also know, e.g. from
Jahnke (2000) and Fried (2001), a study of history through original sources introduces many aspects
which are not only related to the actual learning of some mathematical concepts, theories, or methods.
The study of original sources bears with it considerations of many aspects, e.g. in relation to the three
types of overview and judgment mentioned above, which are not only a matter of understanding the
mathematics treated; this being the third part of the motivation.

Thus, the overall motivation for the presented study is to do with if and how we may design
upper secondary level teaching modules that through a use of original sources take into account all
three types of overview and judgment simultaneously.! My way of trying to address this question in
the present paper shall be mainly through students” own reactions and responses to such a teaching
module. Since the three types of overview and judgment may be said to deal with the History (O]2),
the Applications (OJ3), and the Philosophy (OJ3) of mathematics, respectively, I shall refer to such
teaching modules as HAPh-modules.

ISee also Jankvist (2012).
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2 HAPh-modules—design and implementation

What then is a HAPh-module? Following the concept of a guided reading of primary original sources,
as developed by Pengelley, Lodder, Barnett, and others associated with the NMSU group,? where the
reading of the original text(s) is ‘interrupted” by explanatory comments, tasks, etc. (see in particular
Barnett et. al, 2011), the idea is to have one original source representing the historical, the applica-
tional, and the philosophical dimension, respectively. For the HAPh-module to be discussed here,
the three original texts which the students studied — in Danish translation — were:

o GEORGE BOOLE, 1854: An Investigation of the Laws of Thought on which are founded the Mathemat-
ical Theories of Logic and Probabilities. (Boole, 1854)

o CLAUDE E. SHANNON, 1938: A Symbolic Analysis of Relay and Switching Circuits. (Shannon,
1938b)

o RICHARD W. HAMMING, 1980: The Unreasonable Effectiveness of Mathematics. (Hamming, 1980)

I shall explain in detail the contents of these three texts, their interrelations, and touch upon their
exemplarity in relation to the three types of overview and judgment in the next section, but for now
I shall focus on implementation and design.

During the three years of Danish upper secondary school, a class of 27 students were given two
HAPh-modules, the first one on Euler’s solution to the Koénigsberg bridge problem, Dijkstra’s algo-
rithm for finding shortest path, and Hilbert’s 1900-lecture on mathematical problems (see Jankvist,
2011b; 2011c; forthcoming), and the one discussed in this paper. The first module was implemented in
first year of upper secondary school (student age 16-17 years), and the second in their third and final
year. After each implementation, the students were given a questionnaire containing both questions
on the content of the modules and on their opinion about it. Half of the class was also interviewed
about their questionnaire answers as well as their hand-in written material. During each implemen-
tation, I followed a focus group of 5 students in their work with the original texts and the associated
tasks and assignments.?> The duration of each teaching module was approximately ten 90-minutes
lessons.

For each lesson, the students were to prepare in advance by reading a selection of the teaching ma-
terial including the original texts. When meeting in class they then split into seven prefixed groups of
approximately 3-4 students — the same groups during the entire implementation. Here they worked
on the tasks given in relation to the texts as part of the guided reading approach. These tasks could
be of various kinds, asking, for example: how we may be certain that Boole assumes associative and
multiplicative properties for his classes; what Hamming means, when he says that science describes
only how” and not ‘why’; or in relation to the text by Shannon to have the students search the In-
ternet to find out what a ‘relay’ is, a “switch’, a “circuit’, and to find examples of pictures of such. In
general, the teaching material (Jankvist, 2011d) was designed for ‘self-study’, meaning that the stu-
dents worked mainly by themselves in their groups, but with the possibility of asking their teacher

ZNMSU is New Mexico State University. The group’s teaching materials based on original sources may be found at:
http:/ /www.math.nmsu.edu/hist_projects/ and http://www.cs.nmsu.edu/historical-projects/ (Retrieved on February
15, 2012). In particular the projects by Janet Heine Barnett (2011a; 2011b) have served as a source of inspiration for the
HAPh-module discussed in this paper.

3The focus group(s) were video filmed during the two implementations.
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for help if needed. This also meant that the teacher would not give lectures at the blackboard. But by
circulating among the groups during lessons, the teacher would still have an idea of how the students
progressed with the material.

After having read and studied the three original texts and done the related tasks, the students
were to do a collection of essay assignments. In a previous study I have found that this is a good way of
bringing students to work with aspects of history as a goal (Jankvist, 2011a). For this reason, the same
approach was taken to bring in the two dimensions of applications and philosophy. The particular
setting creates a scene, where students near the end of the implementation of the teaching module
are to discuss in their groups selected meta-perspective issues — or meta-issues — regarding the case.
These meta-issues are chosen beforehand and included in the description of the essay assignments.
More precisely, as part of the essay assignments, the more historical text by Boole and the application
oriented text by Shannon were to be related to the philosophical discussion in Hamming’s text, a task
which to some degree also demands understanding of the inner mathematical issues — or in-issues —
dealt with in the original texts. Furthermore, such discussions may force out some of the interplay
between the three dimensions of history, application, and philosophy, although still exemplified by
the concrete case. Once having outlined the content and context of the three original sources in the
following section, I shall display an example of an essay assignment as well as an example of a student

group ‘essay’, i.e. their answer.*

3 The historical case(s)

As mentioned, the philosophical theme for this module was Hamming’s (1980) comment to a paper
by the physicist Eugene Wigner from 1960, in which he discusses the “unreasonable effectiveness of
mathematics in the natural sciences” (Wigner, 1960). Where Wigner’s examples stem from the physical
sciences, Hamming sets out to illustrate this unreasonable effectiveness of mathematics drawing on
his own experiences from engineering — and aspects of what we today would consider to be computer
science:

During my thirty years of practicing mathematics in industry, I often worried about the pre-
dictions I made. From the mathematics that I did in my office I confidently (at least to others)
predicted some future events — if you do so and so, you see such and such —and it usually turned
out that I was right. How could the phenomena know what I had predicted (based on human-
made mathematics) so that it could support my predictions? It is ridiculous to think that is the
way things go. No, it is that mathematics provides, somehow, a reliable model for much of what
happens in the universe. And since I am able to do only comparatively simple mathematics, how
can it be that simple mathematics suffices to predict so much? (Hamming, 1980, p. 83)

As may be seen from the above quote, Hamming approaches his question from a rather construc-
tivist point of view, which of course rules out some of the more Platonic explanations for the effec-
tiveness of mathematics. This can also be seen from his statement that “Indeed it seems to me: The
Postulates of Mathematics Were Not on the Stone Tablets that Moses Brought Down from Mt. Sinai”
(Hamming, 1980, p. 86). Nevertheless, Hamming does point out that even though the standards of

*The two teaching materials may be found as texts 486 and 487 at http://milne.ruc.dk/ImfufaTekster/
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rigor in mathematics may change over time, and with that definitions and proofs, the mathematical
results often stay intact. After having discussed the effectiveness of mathematics and what mathemat-
ics is, Hamming (1980, pp. 88-89) goes on to provide some partial explanations for the unreasonable
effectiveness of mathematics arranged under four headings, among these that “We see what we look
for”, meaning that we approach situations with an intellectual apparatus so that in many cases we
can only find what we do — Hamming provides a parable by the physicist Arthur Eddington, saying
“Some men went fishing in the sea with a net, and upon examining what they caught they concluded
that there was a minimum size to the fish in the sea” — and that “We select the kind of mathematics to
use”, meaning that we select the mathematics to fit the situation, and that the same mathematics does
not work in every place.

Boole’s The Laws of Thought--- from 1854 is an example of the latter, since he selects the elements
from standard (arithmetic) algebra that applies to his logic system, the purpose of which he describes
as follows:

The design of the following treatise is to investigate the fundamental laws of those operations of
the mind by which reasoning is performed; to give expression to them in the symbolical language
of a Calculus, and upon this foundation to establish the science of Logic and construct its method;
to make that method itself the basis of a general method for the application of the mathematical
doctrine of Probabilities; and, finally, to collect from the various elements of truth brought to view
in the course of these inquiries some probable intimations concerning the nature and constitution
of the human mind. (Boole, 1854, p. 1)

In chapters II and III of his treatise, Boole considers the role of language in relation to the above
and introduces a number of signs and laws to do so. More precisely, he introduces literal symbols z, ,
etc. representing classes, and signs of operation +, —, x (times) and the sign of identity = to be used
on these classes. For example, if = stands for ‘white things” and y for ‘sheep’, then the class xy stands
for ‘white sheep’, similarly if z stands for ‘horned things’, then zyx stands for ‘horned white things’.
After associating the sign + with the words ‘and” and ‘or’, Boole deduces a number of laws which
have their equivalent counterparts in standard arithmetic, e.g. the commutative law = +y = y +z, the
distributive law z(x + y) = 2z + 2y, and the associative law (although this is not done as explicitly as
for the others), and he deduces laws for the operation x (times) as well. The more interesting thing,
however, is Boole’s observation that in the context of his investigation we have that zz = z (or 2? = 2).
If for example z stands for ‘good’, then saying ‘good, good men’ is the same as saying ‘good men’.
Boole then draws the consequence of comparing this to standard algebra:

Now, of the symbols of Number there are but two, viz. 0 and 1, which are subject to the same for-
mal law. We know that 0? = 0, and that 1? = 1; and the equation x> = x, considered as algebraic,
has no other roots than 0 and 1. Hence, instead of determining the measure of formal agreement
of the symbols of Logic with those of Number generally, it is more immediately suggested to us
to compare them with symbols of quantity admitting only of the values 0 and 1. Let us conceive,
then, of an Algebra in which the symbols z, y, 2, etc. admit indifferently of the values 0 and 1, and
of these values alone. The laws, the axioms, and the processes, of such an Algebra will be iden-
tical in their whole extent with the laws, the axioms, and the processes of an Algebra of Logic.
Difference of interpretation will alone divide them. (Boole, 1854, pp. 26-27)
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Boole’s ideas went on to be adapted within mathematical logic and set theory, and the notion
Boolean algebra was conceived. Some eighty years later, however, the ideas showed valuable in a
very different setting than that of language and thought, namely design of electric circuits.

Shannon was a student at MIT when he got the idea for describing electric circuits by use of logic.
With a set of postulates from Boolean algebra (0-0=0;14+1=1;1+0=0+1=1,0-1=1-0=0;
0+0=0;and 1 -1 = 1) and their interpretations in terms of circuits (e.g. 0 - 0 = 0 meaning that a
closed circuit in parallel with a closed circuit is a closed circuit; 1 +1 = 1 meaning that an open circuit
in series with an open circuit is an open circuit), he was able to deduce a number of theorems which
could be used to simplify electric circuits (see below). In an interview from 1987 in the magazine
Omni, Shannon explained his use of Boolean algebra:

It’s not so much that a thing is ‘open” or ‘closed,” the ‘yes” or ‘no” that you mentioned. The real
point is that two things in series are described by the word “and” in logic, so you would say this
‘and’ this, while two things in parallel are described by the word ‘or.” The word ‘not” connects
with the back contact of a relay rather than the front contact. There are contacts which close when
you operate the relay, and there are other contacts which open, so the word not’ is related to that
aspect of relays. All of these things together form a more complex connection between Boolean
algebra, if you like, or symbolic logic, and relay circuits.

The people who had worked with relay circuits were, of course, aware of how to make these
things. But they didn’t have the mathematical apparatus of the Boolean algebra to work with
them, and to do them efficiently. [:-*] They all knew the simple fact that if you had two contacts
in series both had to be closed to make a connection through. Or if they are in parallel, if either
one is closed the connection is made. They knew it in that sense, but they didn’t write down
equations with plus and times, where plus is like a parallel connection and times is like a series
connection. (Shannon, 1987 in Sloane & Wyner; 1993, p. xxxvi)

For a given electric circuit @ — b, Shannon defined the hindrance function X, to be 1 if a — b is
open and 0 if closed. For example, figure 2 (left) has the hindrance function X, = W+ W/ (X +Y) +
(X+2)-(S+W'+2)-(Z'+Y + S'V), where + indicates series, - parallel and W’ is the negation of
W. Now, by means of manipulations according to his theorems of the expression for X,;, Shannon is
able to reduce this to X,, = W + X +Y + ZS'V, the circuit of which is illustrated on figure 1 (right).
(For exact reductions and theorems used, see Shannon, 1938b, p. 715 or Jankvist, 2011d, pp. 62-63.)

4 An example of an essay assignment and a student group essay

Having been introduced to the mathematical theorems and their proofs behind the reductions of the
hindrance function above as well as the mathematics of Boole, the students were given the following
essay assignment in order to relate the three original texts, and thus the three dimensions of history,
application, and philosophy, to each other:

a. According to Hamming, what does it mean that a piece of mathematics is effective?

b. Do a comparison of the relative effectiveness of Boole’s and Shannon’s works (systems) distin-
guishing between effectiveness in terms of philosophy and effectiveness in terms of applications.



137

8!
-K:l-oo—-—-oc—
Y v Y 2
—t el &=
a. —owe — 0= g Gy O
g W Z
. - ©
w! -0 @ -0 o——d
X Z
Z
——-oh
i
a-—-——owc— ;xt _arc —ost—-ﬁ—-b
e O

Figure 1 Left: The circuit to be simplified. Right: The simplified circuit after reductions on the hin-
drance function. (Shannon, 1938a).

c. Based on your answers to the above questions, discuss different types of ‘the effectiveness of
mathematics’. Recapitulate what Hamming means by the title of his paper The Unreasonable
Effectiveness of Mathematics, and why it may be seen as ‘unreasonable’.

d. Do you consider Boole’s introduction and Shannon’s application of the idea of an algebra only
operating on the elements 0 and 1 along with the mathematical interpretation of ‘and” and “or’
as an example of Hamming’s ‘the unreasonable effectiveness of mathematics’?

As an illustrative example of the students” work with this essay-assignment, I provide the following
translated excerpt from one out of the seven groups:

According to Hamming a piece of mathematics is effective when it can describe and predict nat-
ural phenomena. He finds mathematics puzzling in the sense that it can describe Nature using

relatively simple formulas and expressions, practically without doing any experiments. [***]

The philosophical effectiveness we see with Boole is connected to thoughts and the philosophy
behind mathematics. It can say quite a bit about how we understand and confine mathematics
with axioms [laws], for example when Boole makes it an axiom that x must be either 1 or 0. On the
basis of philosophy he concludes something about mathematics” ways of thinking and methods.
Shannon, however, on the basis of Boole’s philosophical effectiveness, uses a method leading to
his own effectiveness regarding application when transferring the [mathematical] theories to real
life, where he at the same time tests them and thereby obtains an evaluation of the effectiveness.
This is seen from the system [of electric circuits] on which his theorems are used.

What Hamming believes is that mathematics is unreasonable because you are able to describe real
events by simple mathematics and that we as human beings are finding it difficult to comprehend
that apparently there are no limits to the range of mathematics regarding use in everyday life.
By “unreasonable’ he means that it seems illogical that nature can be described by such simple
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operations, since nature for us seems complex, incomprehensible, and unpredictable - i.e. that
we ‘just’ cannot plot them on a graph and get a result.

Yes, we do consider Boole’s introduction and Shannon’s application as being examples of the
unreasonable effectiveness of mathematics, since Boole shows that mathematics can [help] ex-
plain composition of language and that you can translate language directly into mathematics. In
addition to this, Shannon shows, by means of Boole’s introduction, that [the idea of using] the
elements 0 and 1 can be applied on a circuit and hereby find the most simple [circuit]. These
two examples fall outside what is usually considered the main field of mathematics and should,
following Hamming, be described by more complex systems — but since this is not the case, it
is natural, according to Hamming’s line of thought, to call this mathematics unreasonable. [-**]
(Group 2, excerpt from hand-in)®

I'll return to the above excerpt in the discussion section of the paper, but first let us turn to the
students” own reactions to module.

5 Students’ reactions

It is difficult to draw a completely conclusive picture of which of the three dimensions the students’
preferred and found to be fulfilled best in the module. When asked about this in the post-interviews,
some would say the historical and some the philosophical, even though the majority of the students
did claim that for them personally it was important to see an actual application of the mathemat-
ics they had to learn, i.e. the application of Boolean algebra to electric circuit design. Of course, the
students” answers to this question are to some degree dependent on which of the three texts they
personally preferred. When asked about this, as part of the essay assignments, many would lean to-
wards Shannon’s text because it was closets in presentation to what they were used to, for example

one group wrote:

In Shannon’s text there was more mathematics than text, which made it easier to picture, more
palpable. There were examples of what he said, which helped us to understand his conclusions,
his intermediate results, and purpose. Of the three texts this was the most accessible, because it
was more visual than the other two. Our favourite! (Group 6)

Not surprisingly, when studying original texts, language becomes a major factor, one to which
students immediately refer:

We find Hamming’s text more relevant for teaching in the way that he manages to explain the
limits of mathematics without drawing a conclusion, thus leading us to think further for our-
selves. For that reason we perceive Hamming’s text as more open and accessible. Besides, it is
easier to read in terms of language, which makes it possible for us to focus on the mathematics,
while working with it. [+**] (Group 2)

This group, Group 2, on the other hand found Boole’s text to be close to inaccessible for the same
reason, i.e. language, which is completely in opposition to the evaluation of Group 4:

°All excerpts from student group’s hand-ins or from student interviews have been translated from Danish.
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Boole’s text from 1854 is the one you remember the best. He makes it simple, and then be builds
on top and on top, so that we continuously and gradually become wiser. He understands how

to create images in our heads that are easy to remember and with which you can easily identify.
(Group 4)

Thus, it is important to remember that the experience a student has with reading different original
sources is individual, and that this experience may have an effect on their preference of one of the
three dimensions over the others. Actually, this may not be so surprising, because original sources
often are discussed in their role of ‘interlocutors’ (e.g. Jahnke, 2000; Kjeldsen & Blomhgj, In press).
So in the same way that we as individuals may communicate better with some persons than others,
we may simply ‘communicate’ better with one original source than another. Perhaps because we can
relate better to its author, its objective, or the language it is written in. Nevertheless, some students
were able to look past the language barriers. For example, although Group 3 also found Boole’s text
difficult, they stated:

Relatively strange, but good because it provides us with a new way of thinking. (Group 3)

The idea of the reading of original sources providing the students with something else than just
a knowledge of the mathematical in-issues of the text, is, however, something that several students
bring up themselves in the interviews. One of the focus group students (Group 7), Sophia, said:

Well, it’s been dry getting through it, it has, but it’s also been very---Well, it has provided insight,
I think, on how mathematics has been used before and how it has come into being, quite pre-
cisely. That was really cool, I think. Even though it wasn’t mega exciting and even though it was
enormously difficult to interpret, it also gave something in a sense. You got a lot of information
about how mathematics was applied or about how some clever fellow formulated it back then
and so. That was exciting, I think. Okay, maybe not necessarily exciting, but I think it was really
cool to see that, how it worked. (Sophia, post-interview, November 374, 2011)

Another focus group student, Nikita, provides a much more elaborated account:

Well, first of all, I think that language wise it was very, very different from what we normally read.
That is, what we normally read is much milder, academically speaking. It is described in basic
words, or how you say it, it is almost ‘baby talk’, so you really can follow. Whereas this, not only
did you have to understand what it was about, you also had like the language of it, and it has been
a different way of thinking compared to the mathematics we are usually taught, where we have
this formula and it works like this, this, and this. Here you got all the background knowledge,
and how he arrived at it, etc. For me, I personally think that I get much more interested, when
I see it all, than if I'm only told that now we are studying vectors and we must learn how to
dot these vectors and then we must be able to calculate a length, right. That’s all very good, but
what am I to use it for? Whereas, when you know about the background, the development up
till today, that I think was exciting. Because when we began with the first text [Boole’s text], it
was kind of like, yeah, that’s alright, he can figure out this thing here, and this equals that, I can
follow that, and ‘white sheep” and so-:-That was good for starters. Then more is built on top, and
all of a sudden we see: Why, it’s a [electric] circuit we are doing! You could begin to relate it to
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your own reality; that is, something you knew already. So, the thing about starting from scratch,
which I kind of felt I did, and suddenly seeing it form a whole, what it was used for today, and be
able to relate it to something. Something you knew about. That, I think, was way cooler. (Nikita,
post-interview, November 3rd, 2011)

6 Discussion and conclusions

As evident from the above quotes, language is indeed a factor when using original sources in math-
ematics education. But despite the difficulty of reading old style language (even in translation), the
students seem to find that the reading of the original sources in itself provides them with something,
this ‘something’ ranging from: insights into a, for them, new way of thinking (Group 3); knowledge
about the application of mathematics and original formulation of mathematical ideas (Sophia); his-
torical background knowledge, the origin of mathematical ideas, and actual modern applications
(Nikita). Results from previous studies also indicate that students may find a use of history more
relevant if either there is an applicational side to it, or if the history is not too remote in time from
themselves — because they feel that they can relate to this better than to something from “--before
Christ was born-++” (Jankvist, 2009b). And the student quotes above do seem to confirm this.

Now, regarding the module’s philosophical dimension, to which the title of this paper refers, this
was probably the one of the three dimensions which caused the students the most trouble. When
asked about this particular dimension of the module, two students, Katharine from Group 4 and
Sophia from the focus group, replied:

Hamming was a little like being on the moon for me. Well, I understood it, but I had to read it
twice before I could do the connection. [-**] of course he [Hamming] taught me something, but
for me it was on this high strange level, because I'm like; I just want the math, and then calculate
and stuff, right. So, it was a bit high floating, I preferred the other two better [Boole and Shan-
non]. But it did provide an incredibly good connection between the parts, that there were the
three dimensions. (Katharine, post-interview, November 3rd 201 1)

Well, I found it difficult. I found it very difficult. It was difficult to think philosophically like
that. I don’t think that I've been asked to think in that way before. [Usually] it is more like; that’s
the way it is, now try and work on it. I found it challenging. (Sophia, post-interview, November
374 2011)

When discussion falls on the use of original sources, it is often argued that although this may be
one of the most ambitious, demanding, and time consuming ways of teaching mathematics/introducing
history, it is also one of the most rewarding (e.g. Jahnke, 2000; Glaubitz, 2011). Something similar may
be the case for the introduction of a philosophical dimension into the teaching of mathematics, be-
cause even though most students agreed to this being very challenging indeed, the essay assignments
along with their questionnaire answers and post-interview utterances bear witness to this dimension
having actually ‘moved” something—not least in relation to the students” knowledge of meta-issues
of mathematics, that is ‘overview and judgment’. Focus group student Jean was even able to articulate
some of his newly gained insights as well as pinpointing these to the presence of the philosophical

dimension:
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I also think that the philosophy part was exciting, but rather abstract:-It may sound a bit strange,
but I do find it kind of cool to sit and think about mathematics [the subject], that it’s not only a
tool. Or yes, it is a tool, but you can kind of view it from different perspectives and, yes, view it
more philosophically. (Jean, post-interview, November 3", 2011)

When asked if this module (as well as the first one) had any impact on the way in which he per-
ceived mathematics as a discipline, Jean replied:

Yeah--definitely the view of mathematics has been altered because you've had the philosophical
dimension as part of it [the modules], a fairly big part, I think. So, you gained a different insight
into this than you had before. You kind of feel that you've reached a higher level::-Yes, because
you are able to see mathematics in a different way. And that has sort of surprised me; that you
can view it in this way---that mathematics also has a philosophical side to it. That it is not only,
as I said before, numbers. (Jean, post-interview, November 3rd 201 1)

As promised, let us return to the excerpt from Group 2’s essay assignment. Now, this essay may
be considered a fairly deep answer for students at this particular level. In a few paragraphs, and par-
ticularly the last one, they are able to coin the essence of interplay between the three dimensions in the
HAPh-module by providing their own sound argumentation for Boolean algebra and Shannon’s use
of it in electric circuit design being an example of Hamming’s unreasonable effectiveness of math-
ematics. Admittedly, this essay answer is one of the better from the seven groups, but even so, it
provides an existence proof of it being possible to have students reach the intended level of meta-issue
abstraction, i.e. relating the three original texts to each other, and thus also the three dimensions of
history, application, and philosophy.

That it is possible to introduce a historical dimension into mathematics teaching is well known
from four decades of HPM research.® That it is also possible to introduce an applicational dimension
into mathematics teaching is equally well known and documented. And that it is possible to intro-
duce a historical dimension and an applicational dimension at the same time, has also been shown
(e.g. Jankvist, 2009b; 2010; 2011a). But as of yet, only very few studies address the introduction of a
philosophical dimension in mathematics teaching (see Jankvist, forthcoming, for a list), meaning that
it is not a priori given how to do so. The above description of a concrete HAPh-module provides an
example of this, one in connection with the dimensions of history and application where each of these
three dimensions is introduced through a guided reading of an original source and the interplay of
the dimensions (and sources) is dealt with in essay assignments. Judging from the student groups’
essays and the student interviews, some of which were displayed above, a development of the three
types of ‘overview and judgment” does appear to be present. All in all, this points in direction of the
laid out scheme of design indeed being ‘marketable’.
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ABSTRACT

Presented is a summary of two historical curricular modules for undergraduate discrete math-
ematics. The first “Deduction through the Ages” is a discussion of how modern mathematics ar-
rived at the truth of an implication (an “if-then” statement) in propositional logic. The second
“Networks and Spanning Trees” presents motivational material for the definition, enumeration,
and application of trees in graph theory.
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1 Introduction

In this talk we discuss teaching discrete mathematics from primary historical sources and provide the
results of a statistical study concerning the impact of this pedagogical technique on student learning
attitudes. Over the past four years our interdisciplinary, intercollegiate team of seven faculty have de-
veloped 18 curricular modules that incorporate passages from primary sources to teach core content
in finite mathematics, combinatorics, logic, abstract algebra, algorithm design, and computer science
courses. This builds on a pilot study to teach from historical projects [3]. Each module is designed
around one or several historical sources and develops a key concept (or several concepts) in the cur-
riculum by examining the work of the pioneers and offering student exercises that illuminate and
extrapolate from the source. Topics for the modules are often an examination of the ideas behind
modern definitions, algorithms or lemmas that appear as opaque or unmotivated statements in to-
day’s textbooks, such as the truth table of an implication in propositional logic, the definition of tree
in graph theory, or the formula for the summation of squares, Y 1, i* = (n®/3) 4+ (n?/2) + (n/6), and
the unenlightening proof of this equality by formal mathematical induction. For the complete list of
our curricular projects, along with the text of each one, see our web resource [2].

Why teach from historical sources when textbooks offer a concise, mathematically precise presen-
tation of the subject? First, historical sources add context, with the original author keenly motivated to
solve a particular problem or find a robust setting for previously fragmented solutions. We read what
the problem was and witness a pioneering, often paradigm-setting approach. The primary source
reveals the motivation for study of the subject or paradigm. Historical sources add direction to the
subject matter. We observe where the author begins, how a problem is solved, and what subsequent
work builds on the solution. Additionally we as readers are forced to grapple with the verbal meaning
of a passage, consider non-standard formulations of ideas, and ask “What is an appropriate system
of notation for this problem?” “What are the key properties to a solution to this problem?” We learn
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through cognitive dissonance. The thought process required to bridge the gap between the historical
and the modern offers an invaluable learning experience. We gain insight into the process of discov-
ery as well as an appreciation of the cultural and intellectual setting in which the author was writing.
For further reasons to study from primary historical sources, see [1, 3]. For the results of a pilot study
using this pedagogical technique, see [3]. To illustrate how the historical approach can be used to teach
mathematical content, we examine two historical modules in detail: “Deduction through the Ages,”
and “Networks and Spanning Trees.” The first is a study of the original work of several philosophers,
logicians and mathematicians who have contributed to an understanding of the truth table of an im-
plication (an “if-then” statement). The second examines the notion of tree and its applications before
graph theory was an independent subject of study.

2 Deduction through the Ages

While today the truth of p — ¢ (p implies ¢) is a matter of settled logic, the ancient Greeks debated
at length when the following hypothetical proposition holds: “If a warrior is born at the rising of
the Dog Star, then that warrior will not die at sea.” The Greek philosopher Philo of Megara (ca. 4th
century B.c.E.) maintained that a valid hypothetical proposition is “that which does not begin with
a truth and end with a falsehood” [18, II. 110]. The on-line written project “Deduction through the
Ages” [2] outlines five argument forms stated by Chrysippus (ca. 280-206 B.c.E.) [11, p. 189], and raises
the question (for students and instructors) whether these five rules could be special cases of just one

rule. This presentation focuses on the following three (of five) rules:
1. If the first, [then] the second. The first. Therefore, the second.
3. Not both the first and the second. The first. Therefore, not the second.
5. Either the first or the second. Not the first. Therefore, the second.

Verbal argument asserting the equivalence of these rules is difficult, and a more streamlined
method for discussing their relation to each other is sought. An old point of view on logic is to reduce
the subject to a system of calculation, whereby the rules of reasoning could be automated. The Ger-
man philosopher, mathematician, and universalist Gottfried Wilhelm Leibniz (1646-1716) was one of
the first to pursue this idea, and sought a characteristica generalis (general characteristic) or a lingua gen-
eralis (general language) that would serve as a universal symbolic language and reduce all debate to
calculation. This in part served as motivation for Leibniz to introduce his symbols for differentiation

and integration.

2.1 Boole’s Algebra of Statements

In the modern era, an initial attempt at a symbolic and almost calculational form of elementary logic
was introduced by the English mathematician George Boole (1815-1864). Author of An Investigation
of the Laws of Thought [4, 5], Boole believed that he had reduced language and reasoning to a system of

7,

calculation involving the signs “x”, “+”, “—", where “x” denotes “and,” “+” denotes “or,” and “—"

denotes “not.” Boole writes [5]:
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Prorosition 1.

All the operations of Language, as an instrument of reasoning, may be conducted by a system of signs
composed of the following elements, viz:

Ist. Literal symbols, as x, y &c., representing things as subjects of our conceptions.

2nd. Signs of operation, as +, —, X, standing for those operations of the mind by which the conceptions
of things are combined or resolved so as to form new conceptions involving the elements.

3rd. The sign of identity, =.

And these symbols of Logic are in their use subject to definite laws, partly agreeing with and partly
differing from the laws of the corresponding symbols in the science of Algebra.

If x represent any class of objects, then will 1 — x represent the contrary or supplementary class of
objects, i.e. the class including all objects which are not comprehended in the class x.

OXDXDXDXIXDXDXDO

The symbols “x”, “+”, “—", however, lose their arithmetic meaning when applied to the logic of
statements. For example, letting a denote the class of apples and b the class of red objects, then in
Boole’s notation the class of objects that are not red apples would be 1 — ab. Objects that are either not
apples or not red would be (1 — a) + (1 — b). Thus, in Boole’s notation

l—ab=(1—-a)+(1-0),

which reflects a statement in logic, not arithmetic. Also, Boole does not introduce a symbol for an
“if-then” statement, so writing Chrysippus’s first rule in this arithmetic notation is difficult.

2.2 Gottlob Frege Invents a Concept-Script

Let’s now turn to the work of the German mathematician and philosopher Gottlob Frege (1848-1925)
who sought a logical basis, not for language as Boole, but for mathematics. In The Basic Laws of Arith-
metic [12], Frege introduces his own system of notation, called a concept-script or “Begriffsschrift”in

the original German, which shows no kinship with the arithmetical symbols “x”, “4-”, “—". The cen-
terpiece of Frege’s notation is the condition stroke'. From The Basic Laws of Arithmetic, we read:

§12. Condition-stroke, And, Neither-nor,
Subcomponents, Main Component.

In order to enable us to designate the subordination of a concept under a concept, and other important

relations, | introduce the function of two arguments
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by stipulating that its value shall be the False if the True be taken as (-argument and any object other
than the True be taken as &-argument, and that in all other cases, the value of the function shall be the

True. ... The vertical stroke | call the condition-stroke. ... .

OXDXXDXDXXOXDO

Thus, the symbol _ B is false only when A (the beginning proposition) is true and B (the ending
A

proposition) is false. The reader is asked to compare the truth of Frege’s condition stroke to Philo’s
verbal statement that a valid hypothetical proposition is “that which does not begin with a truth and
end with a falsehood.” The condition stroke is true when it is not the case that it begins (A) with a
true statement and ends with a false statement (B). Thus, the condition stroke is Frege’s symbol for
an implication (a hypothetical proposition in ancient Greece). We use a few other symbols from the
“Begriffsschrift.” A horizontal line — denotes a “judgment stroke” that renders the value of either
true or false when applied to a proposition. For example, — 2% = 5 returns the value “false,” while
— 22 = 4 returns “true.” The symbol . ¢ denotes the negation of — &, while Ne denotes that ( is a true
statement. These symbols may be combined in what Frege calls “amalgamation of horizontals,” so
that ! (+ A) becomes ﬁ A, meaning that the negation of A is true, i.e., A itself is false.

Let’s now write Chrysippian rules (1), (3), and (5) above entirely in the concept-script. Frege him-

self states the “First Method of Inference” as from the propositions . B and | A we may infer | B.

L

Letting A denote “the first” and B denote “the second,” this “First Method of Inference” becomes
verbally: “If the first, then the second. The first is true, therefore, the second is true.” How can we
write Chrysippus’s third rule in Frege notation? Recall that the symbol

B

L4
B is false only when A is true and B is true, which

L

has the same truth value as “not both A and B.” Again, letting A denote “the first” and B denote

is false only when A is true and B is false. Thus

“the second,” we see that “not both the first and the second, not the first, therefore, not the second”
can be written as from __ B and ! A, it follows = B. Finally, to write the fifth Chrysippian rule in the

A
concept-script, note that the symbol _ B is false only when A is false and B is false, which has the

A
same truth value as “either the first or the second,” using the inclusive “or.” Thus, “either the first or
the second, not the first, therefore, the second” can be rendered as from _ B and . A4, it follows I B.
A
Thus, rules (1), (3) and (5) can all be written using the same root symbol, the condition stroke, and
minor variations on negating or asserting its arguments. This demonstrates the interconnectedness

of these rules, and offers insight into their possible equivalence.
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2.3 Russell and Whitehead Find New Notation

While somewhat awkward in execution, Frege’s condition stroke advances his philosophy that math-
ematical truths should follow from truths in logic, a point of view known today as logicism. Two later
practitioners of logicism whose work set the stage for mathematical logic of the twentieth century
were Bertrand Russell (1872-1970) and Alfred North Whitehead (1861-1947). Russell was a prolific
writer, contributing to the fields of education, history, religion, and political theory, not to mention
philosophy and logic. Let’s read a short excerpt from Russell and Whitehead’s monumental collab-
oration Principia Mathematica [17], where an implication (an “if-then” statement) is formally defined.
Note how the definition of “p implies ¢” reduces to the equivalent inclusive “or” statement in Frege’s
notation.

The fundamental functions of propositions. . ..

[T]here are four special cases which are of fundamental importance, since all the aggregations of
subordinate propositions into one complex proposition which occur in the sequel are formed out of them
step by step.

They are (1) The Contradictory Function, (2) the Logical Sum or Disjunctive Function, (3) the Logical
Product, or Conjunctive Function, (4) the Implicative Function. ...

The Contradictory Function with argument p, where p is any proposition, is the proposition which is
the contradictory of p, that is, the proposition asserting that p is not true. This is denoted by ~ p. Thus,
~ p ... means the negation of the proposition p. It will also be referred to as the proposition not-p. ...

The Logical Sum is a proposition with two arguments p and ¢, and is the proposition asserting p or
q disjunctively, that is, asserting that at least one of the two p and ¢ is true. This is denoted p V q. ...
Accordingly p V ¢ means that at least p or ¢ is true, not excluding the case in which both are true.

The Logical Product is a propositional function with two arguments p and ¢, and is the proposition
asserting p and g conjunctively, that is, asserting that both p and ¢ are true. This is denoted by p.q ... .
Accordingly p.q means that both p and ¢ are true. ...

The Implicative Function is a propositional function with two arguments p and ¢, and is the proposition
that either not-p or q is true, that is, it is the proposition ~ p V q. Thus, if p is true, ~ p is false, and
accordingly the only alternative left by the proposition ~ pV ¢ is that ¢ is true. In other words if p and
~ pV q are both true, then ¢ is true. In this sense the proposition ~ p V g will be quoted as stating that
p implies ¢. The idea contained in this propositional function is so important that it requires a symbolism
which with direct simplicity represents the proposition ... . The symbol employed for “p implies ¢", i.e. for
“~pVq"is"“pDq" This symbol may also be read “if p, then ¢." ...

But this ... by no means determines whether anything, and if so what, is implied by a false proposition.

What it does determine is that if p implies ¢, then it cannot be the case that p is true and ¢ is false, ... .

OXDXDXDXIXDXDXDO

With these crisp definitions, Chrysippus’s rules can be written as follows in the notation of Prin-
cipia Mathematica:
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1. pDq, p, . q
3. ~(paq),p ..~q
5. pVgq, ~p, ..q.

To discuss the relation between rules (1) and (5), note that from [17] every implication is equivalent
to a certain inclusive “or” statement and vice versa.

pPO2q=~pVgqg pVqGg=E~pDq.

The relation between rules (1) and (3) can be discovered from the equivalence between an implication

and a negated “and” statement and vice versa.

pOg=~pVg=~(p(~q), ~(pg=~pV~qg=pD~q

Thus, the major premise of rule (1), “if the first, then the second” is equivalent to a certain inclusive
“or” statement, which in turn is equivalent to a certain negated “and” statement. Of course, the indi-
vidual arguments of these “or” and “and” statements may themselves be negated, as we saw when

discussing writing Chrysippus’s rules in the “Begriffsscrift.”

2.4 Post Develops Truth Tables

Emil Post (1897-1954) developed a highly efficient method to represent the truth values of compound
statements involving the connectives “and,” “or,” “not,” and “if-then.” He dubbed these schematic
representations “truth tables,” a term which is in current use today. Emil was born in Poland, of Jewish
parents, with whom he emigrated to New York in 1904. He received his doctorate from Columbia
University, where he participated in a seminar devoted to the study of Principia Mathematica. In his
dissertation of 1921, “Introduction to a General Theory of Propositional Functions” [14], he develops
the notion of truth tables and clearly displays the table for an implication. With this in hand, the
equivalence of the major premises in Chrysippus’s rules is reduced to mere calculation of truth values.

INTRODUCTION TO A GENERAL THEORY OF ELEMENTARY PROPOSITIONS.
By EmiL L. Posr.

INTRODUCTION.

In the general theory of logic built up by Whitehead and Russell [17] to furnish a basis for all mathematics
there is a certain subtheory . .. this subtheory uses ... but one kind of entity which the authors have chosen

to call elementary propositions. . ..

2. Truth-Table Development—Let us denote the truth-value of any proposition p by + if it is true
and by — if it is false. This meaning of + and — is convenient to bear in mind as a guide to thought,
... . Then if we attach these two primitive truth-tables to ~ and V we have a means of calculating the

truth-values of ~ p and p V ¢ from those of their arguments.
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D, q|pPVygq
+ + +
+ — +
-+ +
... It will simplify the exposition to introduce ...
pDODq.=. ~pVgq
read “p implies ¢,” ... having the table

p,q|pPOQq

+ + +

+ — —

-+ +

- = +

ODDDAIXDXDDO

With the truth table of an implication we have arrived, after more than two millennia of deductive
thought, where modern discrete mathematics textbooks begin a discussion of propositional logic. It
is now a textbook exercise to verify, via truth tables, that the following logical equivalence holds:

pDg=~pVyqg, PpVg=~pDyq
pOqg=~(p(~q), ~(@Pg=pD~q.

3 Networks and Spanning Trees

In 1857 Arthur Cayley (1821-1895) published a paper [9] that introduces the term “tree” to describe
the logical branching that occurs when iterating the fundamental process of (partial) differentiation.
Of composing four symbols that involve derivatives, Cayley writes “But without a more convenient
notation, it would be difficult to find [their] corresponding expressions ... . This, however, can be at
once effected by means of the analytical forms called trees ... ” [9]. Without defining the term “tree,”
Cayley has identified a certain structure that occurs today in quite different situations, from networks
in computer science to representing efficient delivery routes for transportation. In a later paper “A
Theorem on Trees” [10] published in 1889, Cayley counts trees in which every node (vertex) carries
a fixed name or label, arriving at a result that today is known as “Cayley’s formula” for the number
of labeled trees on n vertices. His proof is a bit incomplete, and we discuss the work of Heinz Priifer
(1896-1934) on counting labeled trees via an enumeration of certain railway networks [15]. This is
followed by a discussion of Otakar Boruvka’s (1889-1995) work on finding a net of least total edge
length, i.e., a minimal spanning tree, from all labeled trees on n fixed vertices [6].
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3.1 Priifer’s Enumeration of Trees

The German mathematician Heinz Priifer offers a quite clever and geometrically appealing method
for counting what today are called labeled trees. He uses no modern terminology, not even the word
“tree” in his work. Instead, the problem is introduced via an application [16]: Given a country with

n-many towns, in how many ways can a railway network be constructed so that
1. the least number of railway segments is used; and
2. aperson can travel from each town to any other town by some sequence of connected segments.

The ideas expressed here, that the least number of railway segments is used, yet travel remains pos-
sible between any two towns, are recognized today as properties that characterize such a railway net-
work as a tree. Since the towns are fixed, their names (labels) are not interchangeable, and a labeled
tree is an excellent model for this problem. Priifer wishes to count all railway networks satisfying
properties (1) and (2) above, and in doing so, he arrives at a result that agrees with Cayley’s formula.
Priifer assigns to each tree a particular symbol based on the point labels (town names). Counting the
resulting symbols is then much easier than counting trees. Of course, establishing a one-to-one cor-
respondence between symbols and trees requires some work, which Priifer writes “follows from an
induction argument” (on the number of towns). Let’s read a brief excerpt from “A New Proof of a
Theorem about Permutations” [15, 16]:

ODDDDDDXDO
[We]| assign to each railway network, in a unique way, a symbol {a1, a2, ..., ap—2}, whose n — 2
elements can be selected independently from any of the numbers 1, 2, ..., n. There are n" 2 such symbols,

and this fact, together with the one-to-one correspondence between networks and symbols, will complete
the proof.

In the case n = 2, the empty symbol corresponds to the only possible network, consisting of just one
single segment that connects both towns. If n > 2, we denote the towns by the numbers 1, 2, ..., n and

specify them in a fixed sequence. The towns at which only one segment terminates we call the endpoints.

In order to define the symbol belonging to a given net for n > 2, we proceed as follows.

Let by be the first town which is an endpoint of the net, and a; the town which is directly joined to b;.
Then ay is the first element of the symbol. We now strike out the town b; and the segment by a;. There
remains a net containing n — 2 segments that connects n — 1 towns in such a way that one can travel from
each town to any other.

If n —1 > 2 also, then one determines the town as with which the first endpoint by of the new net is
directly connected. We take as as the next element of the symbol. Then we strike out the town by and the
segment by ao. We obtain a net with n — 3 segments and the same properties.

We continue this procedure until we finally obtain a net with only one segment joining 2 towns. Then
nothing more is included in the symbol.

Examples:
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3 2 3 2 3 2
Nets: 1 4 1 4 1
4 6
5 6 5 6 5
Symbols: {3, 3, 3, 3} {2, 3, 4, 5} {2, 4, 6, 4}

3.2 Boruvka’s Solution to a Minimization Problem

In 1926 Otakar Boruvka (1899-1995) published [6, 7] the solution to an applied problem of immediate
benefit for constructing an electrical power network in the Southern Moravia Region, now part of the
Czech Republic. In recalling his own work, Boruvka writes [8, 13]:

My studies at polytechnical schools made me feel very close to engineering sciences and
made me fully appreciate technical and other applications of mathematics. Soon after the
end of World War I, at the beginnings of the 1920s, the Electrical Power Company of West-
ern Moravia, Brno, was engaged in rural electrification of Southern Moravia. In the frame-
work of my friendly relations with some of their employees, I was asked to solve, from a
mathematical standpoint, the question of the most economical construction of an electric
power network. I succeeded in finding a construction ... which I published in 1926 ... .

Let’s examine specifically how Boruvka phrased the problem [7]:

There are n points in the plane (in space) whose mutual distances are all different. We wish
to join them by a net such that:
1. Any two points are joined either directly or by means of some other points.
2. The total length of the net would be the shortest possible.
Thus, of all n"~2 labeled trees on n points (towns), which tree(s) has (have) the shortest possible

total edge length. Boruvka proposes a simple algorithm to find such a net of minimal total length,
based on the guiding principle “I shall join each of the given points with the point nearest to it” [7].

OXDXXDXIXDXIXDO

A Contribution to the Solution of a Problem on the
Economical Construction of Power Networks

Dr. Otakar Boruvka

In my paper “On a Certain Minimal Problem,” | proved a general theorem, which, as a special case
solves the following problem:
There are n points in the plane (in space) whose mutual distances are all different. We wish to join

them by a net such that:
1. Any two points are joined either directly or by means of some other points.

2. The total length of the net would be the shortest possible.
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It is evident that a solution of this problem could have some importance in electrical power network

designs; hence | present the solution briefly using an example. ... .
| shall give the solution of the problem in the case of 40 points? given in Fig. 1.
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Fig. 1.

| shall join each of the given points with the point nearest to it. Thus, for example, point 1 with point
2, point 2 with point 3, point 3 with point 4 (point 4 with point 3), point 5 with point 2, point 6 with
point 5, point 7 with point 6, point 8 with point 9 (point 9 with point 8), etc. | shall obtain a sequence of
polygonal strokes 1, 2, ..., 13 (Fig. 2).
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Fig. 2.
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| shall join each of these strokes with the nearest stroke in the shortest possible way. Thus, for example,
stroke 1 with stroke 2 (stroke 2 with stroke 1), stroke 3 with stroke 4 (stroke 4 with stroke 3), etc. | shall
obtain a sequence of polygonal strokes 1, 2, 3, 4 (Fig.3).

| shall join each of these strokes in the shortest way with the nearest stroke. Thus stroke 1 with stoke
3, stroke 2 with stroke 3 (stroke 3 with stroke 1), stroke 4 with stroke 1. | shall finally obtain a single

*Bortivka only labeled the points 1 through 9 in his original paper. We have included labels of all points for later
reference.
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Fig. 3.

polygonal stroke (Fig. 4)% which solves the given problem.

Fig. 4.

4 Impact on Student Leaning Attitudes

Over the past four years the impact of our historical projects on student learning and attitudes has
been assessed by our statistical consultant, Dr. David Trafimow of the Department of Psychology,
New Mexico State University. Students are asked to complete a pre- and post-course questionnaire
which are matched by the use of anonymous codes. A sample question includes:

3In the original paper [7], Figure 4 is rotated 180°.
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Which best describes you:
I am capable (Extremely) : (Quite) : (Slightly) : (Neutral) : (Slightly) : (Quite) : (Extremely) incapable
of explaining Math /Computer Science concepts in writing.

Above, “extremely capable” is given the value of 3, “quite capable” the value of 2, ..., and “ex-
tremely incapable” the value —3, forming a scale from +3 to —3, with 0 being neutral. First the ques-
tionnaire was shown to be reliable by repeating similar questions, and Cronbach’s alpha reliability
factor was .89 on the pre- and .90 on the post-course questionnaires, where an alpha factor greater
than .7 is considered reliable. On the scale from +3 to —3 above, the mean from pre- to post-course
questionnaire increased from 1.13 to 1.47. Given the null hypothesis that there is no difference from
pre- to post-course questionnaires, the paired T-test between the means of these two questionnaires
yields p < .001, indicating that the probability of the difference occurring by chance is less than 1 in
1000. Our consultant reaches the conclusion that students’ estimates of their Math/Computer Science
understanding increased from pre- to post-test for courses using historical projects.
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ABSTRACT

Mathematical problem solving have placed as one of the important research topics which many
researchers have been interested in from 1980’s until now. A variety of topics have been researched:
Characteristics of problem; Processes of how learners to solve them and their metacognition; Teach-
ing and learning practices. Recently, the topics have been shifted to mathematical learning through
problem solving and the connection of problem solving and modeling. In the field of mathematical
problem solving where researcher have continuously been interested in, future research topics in

this domain are investigated using delphi method.
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o] RIYE] 11 Q] =X = A 2-& HLofjAto|ct.
R S7HA] Q2ludete] 48tat w-g b of| Al 2AR|s 2 ol B them QA AT

S 2 AT 2R Y2
2ol ARS Cheu 2ok Sejuete] 25te A AT BT DL A2 AAR St
T Were 7o) Zol s 9k B 4 UAIT, o S A A3 £UAR St a0 Alch 2

S A] 6kl It o g = o]l ¥]2] & &0l = =2o] Y esHitt.

o|A|, &utete] et oA ZAs Ao tigh A= o2/ o] Fo F =] A BAL. ZAsHZ o
gt d7= F= 19800 o] S EE BT AlATSHYI=H| 1990 ] ZR7HA] 11 Aol FFZ A
e oS 2o (M ALE, 1993). AR, g0 FAIsHAY AV)E At 71 E o]2A gl A,
A ZAlsh Ao gist 24, AR, ZAIsHAQ] A =-at5 W of ot A, YA, A2 Zute]
F7asol aish A, o AR, ZAIsHE w2 ¢St THH A 27 50lH, o] Fof TAsHA st
A= ot ye] wAlo] 5 o]21 QItt. o]2{st A S vIF =, o) A] 1980 ~ 1995 0] 78
3, 1996 ~ 2000 of] 893 o] FA|sf A= of st A7t 55 EJO*Ur(‘* Al o] ¥, &E 4, 2002).

2001375 2004 G7HA] f-2]upeto| A et st Pl st 2 stal A =2 5 oAlsl 2 o
Aot Y &2 ARz A BT (YhuA], 2005 & R), Mol &ot2 &85t wAlsHZE, £91A Jatas

Al A o] A, FAIBAE 4 £ ol HHH stSAtE 7Y, FAIH 2 1g ol A Q] HlERIX] A
&dF = AU =219 A, A tE7] E5 wAlsl A 0] #A|, A2 g oA S0l
Atgste A3 A B st 50l Adshs LRU AR 24, oA A A it EelE oA
Q4 A, wAre] ZASHZE A wof et A Ao Wt stEof A U)Xl 4 5 e wEd 14
QA4oF AAsTo] ookt A7 AlS el o] $ha2 & 4 AT (U7 &, 47d=t, 2006).

3HH | 3HX] 2 (2001) 2 1980 CELE] 2000E71HA] 0] U SA|51 2 el o L—Z U Auka} shele g
SR A] =2 5—olA = GFOJX] AL Qs FA W 1 S0 tishA A6t 1o =, ZAIsHE
ISR &, Al A wa, FAISHA A Sof digt A7 5 o] FaL S55] 2AIslE SR 2ol AE
Elo] A= A&l ATt AR ZAl A olet s FAI7F AR FA| 2 EYshA A=A Il
SHAIRE, ZAISH A B2, A A Bl = 5 4% A0l tist A= o] ol AJEl2hA] o] Ao Tt
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O]=e] A+t 5T oAl Aue] S5t RAoA th 2 S5t 2A| = Wtk o] &2 & 4 . 5HA]
o L2yt 5785 FAl g 580] = Aol oty A S RE H@A ZAlSi AW of 2] 2okt
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T3 A7 5 BAISHE ol B9 7157t Hl Hio] UEA 0.2 APt ol ol ek SHAIE, 1 o] ol
ChJ3E 2ofe] 917 7E SA]of o] 2ojA] 1 %%%%4&&%

3 A7y

31 Ay

ZA &4 (Trend Extrapolation), A G 3F &4 (Trend Impact Analysis), WA} G F £ (Cross Im-
pact Analysis), @1}0] 7| ¥ (Delphi Technique) 5 TF&st il -2 AFE-ofjA O]2fo| 53 & o JATH(Phi
Delta Kappa, 1984) o]l 7| & & Ruto]7|82 75t = Ao #et et Furt gle o "+
Artol o]do] gF Atdo} oA W ot sttt = AlA o] d2je} "t o] o] 240 HHH T
ettt = UERA AREAR O] Aol = A ZAE FaL AT (°]154d, 2001). Fufo] 7|82 of &5t
A= wAlol #std A7t Aol st st AN HHe 2 gelshs A Q] EARta
o % 9

o] 7. 0] 250 2 3o]7} o] 2o ThA] A4 0. 2 ¥e]ofof sFA| vk (Hsu & Sandford,
2007), i E29] 420 3~43]0] AX AF0 g F 85I} (0]5 4, 2006; Custer, Scarcella & Stewart,
1999; Ludwig, 1997). 48] 0f| X1 u}o] b o] "AR}= thaat Lo}, (B0 AR 17 2 Hsu & Sandford,
2007; Yousuf, 2007 &t %)
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A132]: 28104 843 WS uhgol thotel HF AT WALE (BT AFRETL MY (A2
MelPtne o) £ PRv BEUAD) S AEAC 35] AR 2 i ASolA 2 2ol AF A
BATE S92 (B AT vr) 3 1 2Q19] A28 ¥hg- 1] Suwisto] 2o gt vh-3-2 A 15t
LAY 5 e 71812 BT A33] AL0) 2 Bo] ofF ¥Hg Aol F0]0] Z Bt ofiaf chae]
SECE © 020 AT DS 0] 98 A 4 Yt A TR
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MR 02 oA Lehd 212 Wbk Adolata worh 18l 1 AR skgol AR os
O FAPHoR APESloW S0k o)A S LR 212 8 Folekn Berth o)k B
(Likert-type©] SEAE) 2 AA|sHA sheict. Wab s o) A et Likert-type] STA
Aot glstol ohe A BALS A Estol HAIE R ALSHA D, 1 BAZLS <X 2> 9 2]
2006).

AP
2 3 o

i ﬁn 4y ng
EL
rz O

%
m o jo

1
°F hu Hobu K

o
S

<H 2> Likert-type ™ = 0] mAl E ghibgt

Likert-type 8= | %
1 96.00
2 73.25
3 50.50
4 27.75
5 5.00

Y = —22.75X + 118.5 (&, X: Likert-type A =49 &9, Y: %)

olof o] WAIE 2 ST WeP b5 BEL A AR 02 B A5 glstel Walrks g
<E 3>} 20| BEACHEIFA, 2001). YIS = L AEg ALEstct,

<# 3> WEIHSA Bgo] e Wb bs A Ak

#eTs 58 (%) | Webhsd B
67 1’3 =0
51 ~ 66 Aok
50 015 e
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4 A7 AT

MR 67%99) HRUYAL 5 0 59 ofe] 71x] APg o2 Qlstol, Al28] MRt 417, Al38] 4Rl

3879 ME7HS0 7S 2P Hoct. o] RIS A28 SEN A38) TS vlwatL, o]

FAE FRASHEA AW YT, HEIS S A PATA AL AUAPA ATHOE Lol 2} Al

o] A2 Bl Yt

41 ol 43

to] 7|3 5 YHESIA 22 B0 2 of2] Wl A E £ALS She ol fk SHASY] W50 Felot 43

NS oty gsiAolct B ARoA, 38) 20| o] HEL Walrh ol A A = o] 11.83%
ol 4] 20.30%71 4] LHER 0.0, 8]3of] TGt 3H) = 10.46% 0l 4] 19.69% 2 LFERITY. o] &= 2} Bgpe] B3

WAt gko] WS LRt
AT hAe AP ATA AT AR ATAL AT-RE DAL 0] 0] 9002 <X 4>l AR
ABISICE-0.2 THHRIE of £ U Gels o) Rol A AT SIT WA RSl
tAE AN Ak £ YU T F 4019 RS Ueh 2L EAlsAl Ysit 21geln e
F 7L =R B 8,95
17,182 Al 23 Boig

=2 =2 LI T g
t-478S AAlRE 2t = AT 3F 5 F2ule ALS UEUl = =

B[ AY |99 | 97 [EEEA ] | »
TAF| 18 | 8589 | 14.01
8 I'S=T1T 20 [7008| 2075 | 2567|0015
SAF| 18 | 8083 | 11.04
9 S 20 | 6984 1695 | 2340|0025
TAF| 18 | 7578 | 1326
13 x50 505 | igog | 3862 | 0.000
TAF| 18 | 8336 | 1401
4 S Tt | 172y | 2189 | 0035
TAF| 18 | 8463 | 17.88
15 520 7005 | Tose | 2248 | 0.031
TAF| 18 | 8842 | 11.04
17 520 T785 | To3e | 2480 | 0018
TAF| 18 9094 | 973
18 S50 Tosss | Toag | 3044 | 0.004
» < 0.05
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AAM oz, zF ol thell thfshAl Wh-go] L2 212 oty 39 ol A+= 50%0]5t] &0l
st glitts A2 Awrtsol 4 230l &% A2 Bo7E e FAlSol2ta wdsts Jlol2ta
st 4 qlch Al o] WA ot Qe Hal B Aul, 152 A13]oA A27IS50] RS A A A5
A AR 27 W ote| ofof hA L s getthal A zhetohal Wfict. (<2 8>, <2 10> AF4L) o] = A|19]of A]
w7t afdo] ojo] A7t o] Fojx{of & FA|S A ARt Zloltal = 4 S Aot

42 WIS Y

38]0]l 24 Wato] H2-2 Esto] Wb ut ko] chet ST AR 8 YL BRlStES 1]
stoitt. o2 A5s7] 9lsto] A28)et I38lo) Wab s, Al22)ok A33] o) 390l chat wAE BA
sto] moITh. o2 9]5t0] <L 5> % Atm{ B el 28] A8 2 A38] 420 Walrkis o) W) Afo]7t
A9) x| Qect, TbAl, Al48] 422 AAISHA] ek A2 ILS Zhol] 0j719] gojo] o 23ickn 2 4
91t o] = 8]g4o] that 2] = BHa7HA o],
< 5> 7} 290 Ygu REWUAL
2% [ 9 | wauA
23] Hal7bsAd | 23 | 62.84 5.37
33] Hal7t=A 23 | 62.82 6.03
23] 3|9t 23 | 77.57 6.43
33] 5| 23 | 78.38 6.69
A 92 | 7040 9.73
oz Pistol,

Al28] et A|3e]o] Hslrts/dS oF AT R Fal, A|29]9} A|38] 9 5|2 oF AT
K27} Altto] ¥yt ke whg Ha)sto] Aztsto] dato] ARof 25191 =x]2 Arm W 9fct
(<E 6> Ab 1), RTh7H ] 2 9] 3t FZF 46.5440] T3t 2018182 0.0000. 2, p < 0.05 7} A3t} whatA]
¥ 5171 A 1} 5] 9to] 571]7(4 o 2 ©olu]at xto]7} 9ltt. 0|25t 70 Y] 7[lo] A Ato]Q] Z}o] 7} 9l K|
A%5S Yal Ab5H] 1 (Post Hoc Tests) £ Z:7H2 Al 5to] of grct,

Aad | AFee | BdAlE F wolets
Aek-71F | 5281.251 3 1760.417 | 46.544 |  0.000
RlTh-1) | 3328.388 | 88 37.823
A | 8609.639 | 91

p < 0.05

Jejsto], M23] o} A|33]0] Wsb b5 AT} 5|9l Helg|o] o o] AJAlE| Tk 2 S Al Eststo]
AT (57> 32) A281) A3 WalFs el Aolek A12819F q331e) 2|l S Aol £

& p < 0.059) siFE R tov g FAAC =R Foju|st xfo]= gltt. &, A|23]0] Helrs/d 7t A3
sl Hetrhg dofl tist oo Apo] 7} glth= A2 Yol &t Eg, xﬂzsqq 5] ota} §33] 9] 3]9to Thst
oo = Afo|7f k= A-E & 4 ). o] Zubrt A|48] 9] dnfo] A7 AA|SHA] 42 o] f-oltt. Al

251 Wl b Ast 319, A35l0] Meks A3t 21, A128]9) Heb) 54 Assle] 21, A132lc)
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752 A28 9] Aol §AK O 2 3.0l Aol 7} 93-S & 4 ULt o] MR}l
=

Wel7Hs 41t 3)9e alstel 2

A28 Hat 7HsAd | AI3E] Wet 7hsAd | A3 S | AI3E] STt
A23] A7 Hs7d 1.000 0.000 0.000
A3 Hat7 s 0.000 0.000
A22] a7 0.978
A33] 519
p < 0.05

ojet 2 ZutS B2, M3%]2] et d ot ool et SE S Atk AT E okt

<E 8> 2} 23] WEl54o Je
HoPtsd A e =
=} 1.(1),1.2), 2,3, 4
itk 1.3),5~21
i) R

Wb b5 ol Barbs ol /M) &2 B3 AR FRIsh <k 9> 1t 2ok 241 3.2 25
22 B3 2515142 AR5 QSIAE LA WEEA] SHaAte] @A) o] 3h2 Bl 2 5912 A1%s
ZHob ek At @] o 01713 Sl S & BaA o FA1E YHE 2 4§88 He7IEol Qs
19SS WS AN 2 ek B 1.

o
knowledge for Teaching) of] th$t 17} st 7124 o] & St Fof XSRS
28FA] A1 (MKPS: Mathematical knowledge for problem solving) of] th$t A-9] D Q

It = 1.2) 2% =& 2+ o8] ZLAF 250l A 715] Polya®] 4512 4

s
>
o
hJ

2
2259

2 a9t WAL Atolol Al A At EAIE V]S =5t 2ol tiet A=71=2 «140] J 9
Zol2tal & 4 ot 28 4= Ao et 2doltt. 2AH 2 S S w52 A2 £2 wA=RH
AlARITHE AoA Aw7te2 ol A2 AlAbSH= BP7F 30 aL & 4 Ut} of 2 ARl ZA w5t
gol 7= AL AR = ZHF off Bieh =27t o] R AL l= A OIA ARl s] AE7tee] M2 2
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ABSTRACT

Thomas Harriot(1560 1621) introduced a simplified notation for algebra and his fundamental re-
search on the theory of equations was far ahead of that time. He invented certain symbols which
are used today. Harriot treated all answers to solve equations equally whether positive or nega-
tive, real or imaginary. He did outstanding work on the solution of equations, recognizing negative
roots and complex roots in a way that makes his solutions look like a present day solution. Since
he published no mathematical work in his lifetime, his achievements was not recognized in mathe-
matical history and mathematics education. In this paper, by comparing his works with Vié ta and
Descartes who were mathematicians in the same age, I will show his achievements in mathematics.
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1 Introduction

Although there have been constant disputes among scholars about the mathematician who first in-
vented the notation of the algebraical symbol between Thomas Harriot and Viéta, Frangois, Thomas
Harriot, a British scientist and mathematician in the late sixteenth and the early seventeenth centuries,
took algebraical symbols in the equation and some parts of them have been used up to this day. It is
very progressive that Thomas Harriot received the idea of complex roots and negative roots in the
equations and endeavored to generalize the form of equation.

Notwithstanding the achievements, his works have been dealt with carelessly. That is because he
does not have any mathematical work but a posthumous book.

First of all, this paper will look into the mathematical history when negative numbers were not
received as solutions of equation. A brief description of Harriot’s life in connection with mathematical
history, his scientistic and mathematical works will be dealt in the second part. Harriot’s algebraical
symbols and solutions of equation will be compared with Viéta, Frangois and Descartes, René for
bring out the differences. This will be a meaningful work and help to shed light on one of the foremost

mathematicians.
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2 Solutions of Equations and History of Algebraic Symbol

2.1 History of Negative Numbers

It took long time that mathematicians receive negative numbers thoroughly. Mathematicians found it
difficult to adopt negative numbers. There was possibly difficulties in detecting a visual and geometric
meaning and operating[8, 9]. It had reached the peak of disputes on an approval of negative num-
bers in sixteenth and seventeenth centuries. Even in eighteenth century, there were a lot of scholars
who did not receive negative numbers for reasons of irrationality. The history of negative numbers,
inversely, has showed farseeing intelligence of Harriot. Arcavi[1] made a study of history of negative
numbers, which particularly had difficulties to be received, in his paper on the methods of instruction
of it.

Diophantus, Greek mathematician in the third century, did not receive negative numbers as solu-
tions of a linear equation because he regarded it as an absurd one. He only adopted positive numbers
and nothing else is possible to extract. Brahmagupta in the early seventh century looked into multi-
plication between signs but he did not receive negative numbers as solutions of a quadratic equation.
Since then, multiplication between signs became known to the whole India. Though Al-Khowarizmi
in the ninth century made notes of negative and positive roots of a quadratic equation, it is doubtful
that he understood it completely without any comments on this.

Fibonacci in the early thirteenth century rejected negative roots, but took a step forward when he
interpreted negative numbers in a problem concerning money as a loss instead of a gain[1, 14]. In the
fifteenth century, though Pacioli used a minus sign in the equation such as (7 —4)(4 —2) =3 x2 =6,
he did not understand the meaning of negative numbers. On the other hand, French mathematician
Chuquet may have been the first mathematician to recognize negative numbers as exponents[9]. Stifel,
a well known German mathematician in the mid sixteenth century, recognized negative numbers as
absurd ones saying ‘negative numbers are smaller than nothing’. Cardano notes that the product of
multiplication between two negative numbers has a positive sign in his work in 1545 but he was doubt-
ful of negative numbers as a fictitious one. Bombelli also understood it insufficiently by appending a
term “m and n are positive numbers’ to m — n in 1572[1, 9]. Viéta explained some laws of algebra in
<In Artem Analyticem Isagoge> (1591) but he left out a specific explanation of negative numbers. He
set limits on coefficient in the equation as positive numbers[1].

Hudde in Germany in 1659 did not make a distinction between positive and negative numbers.
Harriot consented to his idea but literature disputes whether Harriot received negative numbers as
solutions of an equation and understood the meaning of it[1, 2, 8, and 9]. Descartes partly received
negative numbers. He called negative roots as a fake one because he thought that negative numbers
are smaller than nothing. He inferred that positive numbers would be genuine roots of the equation.

It was the seventeenth century that mathematician received and applied freely. Practicalism was
surged forth in the mid seventeenth century even in mathematics. It made an algebra design a consis-
tent theory so that the application of negative numbers was unrestrained. However logical considera-
tion about negative numbers was unsatisfactory. Since the notion and logic of negative numbers was
unreliable, mathematicians evaded to comment or object to use of it. d’Alembert said ‘if there was an
equation having negative roots, there should be a misdirection” and "the right answer was with a plus
sign’[1, 8]. Maseres, a British mathematician, disregarded negative numbers as not understandable
one in his book. Euler misjudged negative numbers as ‘bigger one than infinity” in the letter to Wallis
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but corrected it later. This conclusion was deduced from the sequence —1/4,1/3,1/2,1/1,1/0,1/ -1,
1/ —2,1/ — 3, — but later he changed position after the observation of the sequence —1/9,1/4,1/1,
1/0,1/1,1/4,1/9, — . When Pascal said ‘subtracting 4 from 0 leaves (', his friend Arnauld made an
objection to it bringing —1 : 1 = 1 : —1, the ratio of smaller to bigger one was bigger to smaller one.
De Morgan in the nineteenth century consented to d’Alembert saying ‘there is no numbers smaller
than 0".

After adopting the logical formalism which excluded self-contradiction, mathematicians started
to receive a negative number. Whitehead and Russel said that ‘if receiving a symbol as an operator,
there would be no restraint” in <Prinkipia>; as the solution of the equationz +1 =3isz =3—-1=2,
the solution of + +3 = 1isx = 1 — 3 = —2. That is, the solution of x + a = bis x = b — a. They
emphasized that an idea of + and — as an operator would remove absurd and irrational working. It
was a consequence of mutual supplementation of Fibonacci’s intuitive and unconscious point of view
which regarded negative numbers as a meaningful one and the logical and consistent point of view
which insisted an adoption of negative numbers or complex numbers as solutions of equation just
like a Euclidean geometry. The former emphasized intuitive and comprehensive understanding and

the latter stressed analytic and axiomatic formalism.

2.2 History of Algebraical Symbols

It was necessary to have mathematical signs for modern mathematics. Consequentially the devel-
opment of mathematical notation brought about the development of mathematics. In the sixteenth
century in Europe, mathematical notations were invented and applied. The sign of + and — were
first appeared in <Mercantile> by Widmann in 1489. In this book, the ‘excess” and ‘shortage” were
represented in equations instead of ‘addition” and ‘subtraction” or positive and negative numbers.
Heocke was the first mathematician who used it as an algebraic symbol in 1514. Recorde, a British
mathematician in 1557, first presented an equal sign ‘=" and he explained that equality means the
parallel. At that time, the length of an equal sign was little longer. Or, two parallel vertical lines and
* =227 also used as an equal sign. The multiplication sign ‘e” appeared Harriot’s <Artis Analyticae
Praxis> but Oughtred used “x’[4] as the multiplication sign. Harriot, the initiator of an inequality

sign, devised more convenient signs than Oughtred’s one. and was appeared in Harriot’s
manuscript but we could find “>" and ‘<’ in his book <Artis Analyticae Praxis>[11]. At that time, the
present sign of division '+’ was appeared in Rahn’s algebra book and a radical sign “\/” was used in
Rudolff’s paper[4, 9].

3 Thomas Harriot

Thomas Harriot as the virtual first Britain algebraist introduced algebraic signs such as the inter-
pretation of equation and inequality signs. An equal sign (=) generally known as the sign which a
mathematician Robert Record had invented had become famous because Harriot aggressively used
the sign.

Unfortunately, Harriot did not leave any of his books in mathematics in his entire life. After ten
years since his death, his book <Artis Analyticae Praxis> was published by his colleagues in 1631.
Furthermore, this fact had not been known to the world until Descartes’s book referred to Harriot’s
thesis in 1637.
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3.1 Harriot’s Lifetime

Harriot had been born in Oxford, England in 1560 and graduated from Oxford University when he
was twenty years old. There was not known about his private life when he was young. He had two
tutors in his entire life and those were Minister Walter Ralegh and Count Henry Percy. After he had
graduated from university, he became Walter’s private mathematics teacher and took part in the les-
son of the reclamation of new world and exploration to the new world in the North America with
Walter’s companies. As he brilliantly had worked as an adviser of the American expedition, for in-
stance he had done the design and production of the ship and recruitment; ‘a report about the new
world, Virginia” which had been issued in 1589 paid the highest tribute of admiration[4, 6, and 9]. In
addition, the report was filled with the native’s language, religion, the method of the trade; therefore
it became a famous thesis of settlers to the new world. This book is the only book he made in person.
After Walter had warped up in political chaos, Henry began to help Harriot since 1598. Walter un-
stinted in his praise of Harriot’s work and he described Harriot as “Count magician’. Thanks to Henry,
Harriot was able to focus on a stable study in a science lab with mathematicians Walter Warner and
Thomas Hughes.

As Count Henry underwent the hardships of prison life for political reason in 1605, Harriot was
also suspected but released soon. After that time, he devoted himself to the study of natural sci-
ence such as mathematics, astronomy, mechanics and optical science and left outstanding academic
achievements which great scholars paid little attention to. Though he attained materials for figuring
the sun’s rotation period by observing a solar spot in 1613, this period was his last moment to have a
passion for his academic work. He was under continuous adverse circumstance of Henry’s unfortu-
nate death, his colleague’s death and his disease. After five years of struggle against his disease, he
passed away in 1621[11].

Although he made splendid achievements in mathematics and science, he did not leave any pub-
lications in his life. Confusing socio-political atmosphere and his meticulous characteristics shown in
the report about Virginia had not gained an opportunity to publish his work.

3.2 Harriot’s Natural Science

Most of Harriot’s manuscripts were about natural science. Looking into his achievements in natural
science would help to understand Harriot.

Harriot was endowed with practical and profound scientific knowledge and he achieved results
in the fields of astronomy, optical science and dynamics. He was interested in astronomy after the
discovery of a comet at that time and he observed the movement of the comet, later called Halley’s
Comet, from 1607. He observed the comet using a telescope in 1609 and it was ahead of Galilei. He
first discovered sunspots while he observed Jupiter and after that time he had 199 times of record of
sunspots observation from 1610 to 1613[9, 11].

Earlier in 1597, he discovered sine rule about refraction of lens and it was twenty years ahead of
Willebrord Snell who was known as the originator of the theory[11]. A multi-color spectrum of light
inspired Harriot and he developed the theory of a rainbow. Kepler got the news and sent a letter to
Harriot but they never exchanged their theories. Harriot might feel discomfort to deliver his idea to
Kepler directly or he might plan to publish when he regained his health [14]. In dynamics, he studied
free fall of a parabola in the no resistance condition ahead of Galilei. Harriot discovered a track of a
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shell which described a parabola and could be divided into horizontal and vertical components. He
also theorized various problems of sea navigation and his calculation was so accurate that he won
praise[6].

His strong will and untiring observation and study brought him achievements of natural science.

3.3 Harriot’s Mathematics

Since Harriot published nothing in his lifetime, his achievements are underestimated. In 1631, after
ten years from his death, his colleagues published < Artis Analyticae Praxis> which contained his
achievements. He in fact wanted Nathaniel Torporley to publish his works but Torporley’s intimacy
with Viéta made him to hesitate. Manuscripts which are kept in the library in Britain lack consistency
and were out of order. Further, there are differences between manuscripts and <Artis Analyticae
Praxis>, though the book was based on the manuscripts[11]. It seemed that some mathematicians
revised arbitrarily, in the process of editing, when they concluded his mathematical results were
wrong. Such being the case, estimations of Harriot in mathematics history varied. Some literature
mentioned his unacceptance of negative and complex roots. A recent research tends to give prior-
ity to manuscripts when they compare manuscripts and the book. In 1883, 260 years after his death,
Sylvester showed his respect to Harriot as “a father of modern mathematics who introduced algebra
to analytics’ in a letter to Cayley[5, 11].

Algebraic Symbols and Roots of Equations

Even though most of literature mention Harriot as the originator of inequality signs, he used
and instead of ‘<’ and “>". Moreover Robert Recorde’s equal sign was used in his book and the
equality sign spreaded among people.

Warner, the editor of <Artis Analyticae Praxis>, wrote down comments under the error Harriot
had made. Harriot used algebraic symbols except an exponent in an excellent way. Viete used vowels
for unknowns and consonants for knowns and Harriot adopted it in his solution of an equation. Let-
ters and abbreviations were also used in expansion of an equation. For instance, a* was represented
as aaaa.

Following is quoted from his manuscripts[11]. For the expansion of the multiplication (b — a)(c —
a)(df + aa), we could find out that the symbol ‘" was used which was similar to the symbol in these

days.
b—u
c—a Ir
df + aa

bedf — bdfa—+ dfaa— baaa
— cdfa—+ bcaa — caaa+ aaaa
11 0000

A symbol L was an equal sign to represent the expansion of an equation and four 0s at the
last line showed a homogeneous expression. This meant that he dealt a homogeneous expression
emphasizing calculability.

The solutions of the equation (b — a)(c — a)(df + aa) = 0 are a = b, a = ¢ and aa = —df. Harriot
drastically represented a = \/—df from the solution aa = —df.
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allh

a1re
aall— df
airy —df

This was a challenging idea to existing mathematicians who disregarded negative roots.

There are differences between his manuscripts and <Artis Analyticae Praxis> which his colleagues
published in the way of dealing roots of an equation. As we could find out from his manuscript
in advance, Harriot dealt with negative and imaginary roots as same as positive ones. He received
negative roots without any comments and he added an explanation of complex roots as ‘noetic by
rationality’[13]. He presented four roots of biquadratic equation as follows.

51 a —71La
a[+1+ V=32, a[+1-V-32

He received positive, negative roots and two complex roots without reluctancy. In his manuscripts,
we could find many imaginary roots from equations.
The following biquadratic equation is quoted from his manuscript[14].

aaaa — 6aa + 136a = 1155

aaaa — 2aa + 1 = 4aa — 136a + 1156

This showed the process of solution of a biquadratic equation a* — 6a? + 136a = 1155. In the left
side of the equation, he changed to the form of perfect square of the second degree and, as a result,
he had a form of perfect square of the first degree. Then, he extracted the two square roots with =+.
Surprisingly, he adopted complex roots at the last line of two equations without reluctances.

aa—1=3a— 34

33 =2a —aa

aa — 2a = =33
aa—2a+1=1-33
a—1=,/-32
a=1+—32
a=1—,/-32

However, editors of <Artis Analyticae Praxis> were reluctant to receive negative roots of the equa-
tions. They excluded square roots saying “unexplainable and impossible’. We could infer that editors’
lack of understanding of Harriot’s mathematics brought about the wrong revision of manuscripts.
This led to further literature to mention Harriot’s neglect of negative and complex roots[9].
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Further Mathematical Achievements

Among Harriot’s manuscripts, the mathematical contents except algebraic signs and roots of equa-
tions has been recently studied. A conic section, its problems and an observation of celestial sphere
and related problems drew from research on Archimedes. Though there have been controversies
whether Harriot fully understood the concept of infinitesimal, many literature showed that he solved
Alhazen problem by using infinitesimal concept ahead of Barrow[11]. We could also find out the
Pythagorean number and some calculations similar to differential and integral in his manuscripts[7,
11].

4 Comparison with Viéta and Descartes

At that time in Europe, Viéta(1540 1603) was more recognized by public. He, who was acknowledged
as an originator of algebra using letters, was an algebraist and also had interests in geometry. Contrary
to former times to substitute numbers, he was the first mathematician using letters and generalizing
a quadratic equation. The former algebra was called as ‘Logistica numerosa’ and the latter was as
‘Logistica speciosa’. History of algebra, in fact, has divided before-and-after algebra on the basis of
the advent of Viéta.

Viéta represented a cubic equation as C, a quadratic equation as Q, and the unknown as N which
were picked out from initial sounds of Latin. His use of letters and abbreviations was an epoch-
making event in history. However, Harriot used more developed representation of a repetition of
the same letters for expressing the degree[9]. Decartes(1596 1650), who was born thirty six years after
Harriot, showed more progressive form of mathematics. Mathematics after the seventeenth century
has developed by logic itself. Descartes, one of the prominent mathematicians at that time, showed
his mathematical sense through his three paper <geometry> as appendixes of <Discours de la meth-
ode> dealing with philosophical problems. He was interested in mathematics because of its certainty
definitude of an inference and he tried to apply rational considerations to studies of natural science.
The invention of analytic geometry was the greatest achievement of Descartes. Analytic geometry,
which related algebra and geometry, made our knowledge of space and spatial relations transfer to the
language of numbers, and this allowed us to grasp the logic of geometric idea[3]. Though Descartes
invented analytic geometry with Fermat, he was not ready to receive negative roots.

The representation of equations has used the abbreviation from Diophantus era and it has devel-
oped to easier way to deal with in the sixteenth and seventeenth centuries.

Viéta represented a cubic equation 2® — 822 + 162 = 40 as

1C — 8@ + 16N aequ. 40.

and Harriot represented it as

aaa — 8aa + 16a = 40.

On the other hand, Descartes represented it as

23 — 822" + 162 22 40
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and it seemed like more modernistic one. Yet he represented the third and forth degree as z3*, x*" or
23, 2* the second degree was represented as zz for a long time[4, 9].

Viéta partly discovered the relations of roots and coefficients; he said ‘solutions of a cubic equation

2% — (u+v+w)r? + (uwv + vw + wo)r — uww = 0

were u, v, w’. However, it was not complete that he only took positive roots in the actual extraction.

Harriot found out that “if a, b, ¢ were the solutions of a cubic equation, it could be represented
as (z — a)(xz — b)(z — ¢) = 0" and he showed the logic of the generalization of an equation of higher
degree. The generalization of degrees of an equation was the progressive idea ahead of the times.

One equation could be represented in various ways. A sign could be changed when it transposes,
and similar terms could be confused in order. However, the right side of an equation would be 0
when similar terms are put together and listed in descending order at the left side of an equation.
This would be a standard type of an equation and a solution would be determined. It is no wonder
in these days but in the sixteenth or seventeenth centuries people had various ways of solution. They
had difficulties to receive negative numbers so that they had to transpose all negative numbers to the
other side for a representation of positive numbers. Frend presented four types of quadratic equations
in his book <The Principles of Algebra> (1796) as follows.

22 =50

2 _
zi+ar=0>
22 —ax="0

ar — 12 =1b

These four different types showed his difficulties to adopt negative numbers and a trial to remove
it. Since Harriot dealt negative numbers the same as positive numbers, he had only one type of an
equation. A standard type of an equation is the one and he only needed to factorize one. Thereafter,
Descartes praised his achievement and called it as ‘Harriot principle’.

5 Conclusion

Since Harriot had never published his achievements in lifetime, his works has gone unnoticed. He
was one of the prominent mathematicians at that time in the aspect of discoveries in methodology
and a mathematical sign and he led Britain mathematics to developed European one. His works were
quoted by Stevin, Bombelli, Stiefel and Viéta at that time and later by Wallis and Descartes.

This paper revealed Harriot’s mathematical achievements, especially on algebraic symbols and
negative and complex roots in an equation, and restored his status by comparing it to Viéta’s and
Descartes’.

In the unacceptable atmosphere on negative roots in an equation, Harriot received even complex
roots and said it was ‘the perceptible roots only by a rational sense’. He also simplified the relations
between roots and coefficients and generalized it. The representation of algebraic symbol was more
modernistic than Viete’s one which was famous at that time. A lot of literature mention that the first
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use of inequality signs of ‘>" and ‘<’ was by Harriot but it has been controversial between Harriot and
Viete.
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ABSTRACT

The recent acquisitions of archaeological findings of bamboo slips in many institutions in China
provide us a good significance for the study of development of mathematics in Ancient China.
These includes the Tsinghua University (arithmetic table, dated from the Warring States period),
the Yuelu Academy (bamboo slips of the book “mathematics”, Qin Dynasty), the Beijing University
(bamboo slips of mathematics, dated in the Qin Dynasty), and the Hubei Museum (Han bamboo
slips of mathematics at the found on “land of sleeping tiger”, Han Dynasty). Firstly, it gives us
rare first-hand information on the knowledge of mathematics in Ancient China. Secondly, it helps
to clarify that the nihilistic attitude holds by some scholars on the development of early Chinese
mathematics was unfounded. Thirdly, it provided strong evidence in the study of Chinese mathe-
matics, that the major methods and mathematics problems in Jiuzhang Suanshu (Nine Chapters)
was completed in early Qin period. Most importantly, it provides reliable literature to support
that the first peak of mathematics achievement in China was in the Spring and Autumn and War-
ring States period. In the past, the statement was only supported by the evidence of the work of
Jiuzhang Suanshu and its explanations and remarks made by Liu Hui.

1 The recent discovery of mathematics bamboo slips from the Warring
States Period, Qin and Han Dynasty

From 1983 to early 1984, about 200 mathematical bamboo slips “Suanshu shu” were discovered in
Jingzhou Zhangjiashan Han Tomb No. 247 in Hubei. There was less significant harvest for 20 years
in unearthed mathematical bamboo slips since then. Then there were much news on discovery of
mathematical bamboo slips from the Warring States Period, Qin and Han Dynasty in the past 10 years.
The news of discovery excited the circle of the scholars in history of Chinese mathematics. Some of
the discovered bamboo slips have been treated and studied, some are under treatment. We introduce
as follow these discoveries according to the date of history of these mathematical bamboo slips:

Calculation table (suanbiao), Warring States Period, collection of Tsinghua University The Cen-
tre of research and protection for relics of the Tsinghua University has a collection of calculation table
(suanbiao) dating from the Warring States Period. The book has 21 bamboo slips and is dated 2300
years from now. The whole table consists of 441 unit cells, in the form of 19 rows time 19 columns.
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The right column and the upper column start from bottom to above and from left to right. It could be
reads in order, from 1 to the cardinal number 1 to 9 and then all two-digit number. Their products
were recorded at the intersection of the cells. Therefore, the table is a multiplication in the form of 9
times 9; the rest is the extension of the table.!

Wooden Book of 9 times 9 table, Qin Dynasty, unearthed in Liye Town, Hunan In the year 2002,
a multiplication table made from wood? dating from the Qin Dynasty in the form of 9 times 9 was
unearthed from an old well in Liye Town of Hunan (i /). There are in total 113 characters. Most of
the bamboo slips of 9 times 9 multiplication table unearthed in 20th century were incomplete, and
this table from the Qin Dynasty is a complete 9 times 9 table.

Bamboo slip <shu>>, Qin Dynasty, collection of Yuelu Academy Hunan University In December
2007, The Yuelu Academy in Hunan University had purchased a batch of bamboo slips from the
antiques market in Hong Kong. Those bamboo slips were examined by a group of experts and it was
confirmed that these were dated from Qin Dynasty. We are most interested in that collection of slips
under the name “Shu”(mathematics). At present, 236 bamboo slips in Shu has been arranged and
numbered, with 18 pieces of them not in good conditions (without numbering). The better-preserved
slips are about 27.5 cm in length and 0.5 to 0.6 cm in width. There are three braided rope at the upper,
middle and lower part of each bamboo slip. “Shu” was printed at the back of bamboo slip numbered
0956, which make the name of the book.>

In the format of “Shu”, a complete problem (suan ti) generally consisted of four parts, conditions,
questions, answers and method. Only a few of the problems was given a title. There are 19 exemplars
of methods (shu) in the book. For example, “he fen shu” (xx) and pithy for multiplication. There are
34 bamboo slips with the record of ratio of volume and weight of grains and their rate of exchange.
Another 3 bamboo slips recorded measurement and units. The content of <shu>> from Qin Dynasty
included arithmetic operation of fractions, areas of fields, crop yield, ratios of grains and its rate of
exchange, shuaifen, shaoguang, volume, ying bu zu, gougu, yingjun and zu wu quan etc.* There was
only one Gougu problem, and is in consistence with the gougu geyuan in GouGu Chapter in Jiuzhang
Suanshu, with simple and unsophisticated wordings.?

Mathematical bamboo slip, Qin Dynasty, collection of the Beijing University In early 2010, a
friend from Hong Kong donated a batch of bamboo slips to the Beijing University. Among these
slips, there are in total 400 slips written with mathematics, a big proportion in this batch of slips.
According to preliminary study, these mathematical bamboo slips is close to those bamboo slips Shu
from Qin Dynasty by Yuelu Academy, Suanshu shu from Han Dynasty and the Jiuzhang Suanshu.

'Tsinghua’s new development of bamboo slip. “The recent development of the jian”, from the website of the Fudan
University’s Research Centre of Unearthed Literature and Ancient Text:
http:/ /www.gwz.fudan.edu.cn/ShowPost.asp?ThreadID=3522, 2010-8-10

?Hunan Province Archaeological Research Office: Brief report of Hunan Long Shan Li Ye Warring States Period —ancient
city of Qin Dynasty, No.1 well excavation. “Wen Wu” vol. 1, 2003.

*Chen Songchang : Content summarization of the bamboo slips from Qin Dynasty in Yuelu Academy. “Wen Wu” vol.
3,2009.

*Xiao Can, Zhu Hanmin: Major contents and historical value of the bamboo slips “shu” from Qin Dynasty in Yuelu
Academy. “Research of Chinese History” vol. 3, 2009.

>Xiao Can, Zhu Hanmin: New evidence of gougu — related research of the bamboo slips “shu” from Qin Dynasty in
Yuelu Academy. “Research of the history of natural science” Paper 29, vol 3, 2010.
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The problems of the slips are classified into different groups, which mean similar problems are put
under the same group. There are two formats used for describing the mathematical methods and the
structure of problems. One started by giving a description for algorithm, with the wordings “it is
stated that. ..” and then listed the exemplar of problems, with some variation in the numerical values
in the problem. The second one is by listing the problems, and then provides with the general form of
algorithm with the wording “A says. ..”. As we know, these two formats is the main body of style Ji-
uzhang Suanshu. Another point worth mentioning is that there is a passage around 800 words, which
starts with “Lu jib inquire mathematics from chin quid”, discussing the beginnings off mathematics,

its role and significance. ®7

Mathematical bamboo slips from Shui-Hu-Di (Land of the Sleeping Tiger), Han Dynasty, col-
lection of Hubei Museum There were 216 bamboo slips unearthed in a Han Tomb in Shui-Hu-Di
(Land of the Sleeping Tiger) in Hubei. The book is named “Suan shu”. These bamboo slips were
slightly damaged, but the characters and the texts are clear.

And from the calendar unearthed at the same finding dated the seventh year of Hou-Yuan, the
year of the emperor Wen-Di of the Han Dynasty (157 BC). There are 10 pictures of these bamboo slips
on the “Jianghan kaogu”. These bamboo slips are being compiled, and the preliminary information
revealed that some of the questions were similar with Shu (Qin Dynasty), Suanshu-Shu (Han Dy-
nasty) and Jiuzhang-Suanshu, but there are also content which has not been appeared in any of the
Chinese traditional mathematical works.® In addition, pieces of mathematical bamboo slips were also
unearthed from Fuyang of Anhui and Linyi Yinqueshan (mountain of silver bird) from Shandong .

2 The significance of mathematics bamboo slips from the Warring

States Period, Qin and Han Dynasty

These mathematical bamboo slips unearthed are rich in mathematical content; and have great signifi-
cance in the course of study in the history of Chinese mathematics. These have been discussed in Zou
Taihai’s papers.” This paper would like to share the following points.

2.1 It provides the firsthand literature from pre-Qin dynasty and Qin Dynasty

Over the past century, scholars in the field of history of Chinese Mathematics were much regret with
the fact that very few mathematical literature were passed down from pre-Qin and Qin Dynasty.
From the past relic exploration, only a few fragments of Chousuan and 9 times 9 multiplication table
were unearthed. We could only deduce the achievement and development of mathematics in pre-Qin
Dynasty and Qin Dynasty according to the shape, characterization and a few second hand information
unearthed.

®Brief report of the work of Beijing University Unearthed Literature Research Office, vol 3, October 2010

"Discussion on China’s earliest mathematical theories found from Beijing University’s compilation of bamboo slips from
Qin Dynasty (Guang Ming Daily), China News Web: http://www.chinanews.com.cn/cul/2010/10-25/2609393.shtml,
2010-10-25.

8Cai Dan: A report at the explanation meeting of bamboo slips from Qin Dynasty, September 2010.

°Zou Dahai: unearthed bamboo slips and the early Chinese mathematics history, “Humanity and Society” Paper 2, vol
3,2008.
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The discovery of mathematical bamboo slips from the Warring States Period, Qin and Han Dy-
nasty provides researchers with the first hand information about mathematics research from pre-Qin
Dynasty and Qin Dynasty, so that we can truly understand some of the real development of mathe-
matics at that particular time. From these bamboo slips, we found that the development of mathemat-
ics was well-progressed in pre-Qin Dynasty and Qin Dynasty. There was a complete multiplication
table in the form of 9 times 9, also complete methods and solution of arithmetic operation of fraction,
fang tian, sumi, shuai fen, shaoguang, shanggong, ying bu zu, gougu. It can be said that in addition to
technique of solving equation(fangcheng shu), which means the general solution of linear equations
and the standard problem of junshu, other seven methods and problems in “jiushu” were discovered,
also some difficult problems in “Jiushu” session in <Jiuzhang Suanshu>> were found, these greatly
enriched the content and range for study in the history of Chinese mathematics.

2.2 It breaks the nihilism towards the early development of Chinese mathematics

Certain people in Chinese and overseas academic sectors doubt about the existence of China’s achieve-
ments in mathematics before Song and Yuan Dynasty. This does not refer to those Eurocentric aca-
demics and their followers in China who do not understand and not even try to understand the math-
ematics of ancient China. For example, there is one claiming to be a senior researcher at Chinese
Academy of Sciences Shanghai Branch who made such a big mistake as identifying the well-known
scientist Rene du Perron Descartes and Gottfried Wilhelm Leibniz as ancient Greeks. He also over-
blew the dark European Middle Age Era of mathematics, but ridiculed that in ancient China people
only knew about gougu and achieved nothing in mathematics. In addition he blamed that the rea-
son why China could not get the Nobel Prize was mainly because of its poor performance in ancient
China.

Unfortunately, this kind of belief was constantly found in the publications, even including “China
Science News”(now “Science Review”), “Dialectics of Nature” and other prestigious academic publi-
cations. This does not refer to ignorant people who are not afraid to give his or her opinion(“Wu Zhi
Zhe Wu Wei”), but to scholars who have in-depth study of mathematics in ancient China. Apart from
the fragmentary information of Dunhuang Suanshu - the contents of these materials were relatively
not rich enough, and all of them were the 5th to 10th century works -, there is no mathematical texts be-
fore the Song Dynasty handed down, therefore they suspected that the authenticity of achievements
in mathematics in two Han Dynasty as well as Wei Dynasty of Southern and Northern Dynasties.
Moreover, they also doubted about the existence of a mathematics book at that time, and saying that
“Jiuzhang Suanshu” was a book claimed to have formed in Han Dynasty, but in fact, its earliest text
was appeared in Southern Song Dynasty only. This implied that the mathematics information in an-
cient China is only reliable after formation of Song Ben Suanjing by Bao Huanzhi in Southern Song
Dynasty Jiading period, all the previous information are unreliable.

By the end of 1983 to early 1984, “Suanshu shu” was unearthed; this to some extent refuted the
above erroneous view. However, the latest period shown in li ri, which was unearthed on the same
date as “Suanshu shu”, was 1 hou er nian (186 BC). Saying that the vast majority of problems arose
from pre-Qin and Qin Dynasty and existed in pre-Qin Dynasty'?, and there existed more than one

Peng Hao: Explanation of Zhang Jiashan bamboo slips “Suanshu shu” from Han Dynasty, Beijing: Science Publishing
Company, 2001.
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mathematics book,!! in pre-Qin Dynasty was a conclusion come up with scholars after verification
and it was not obvious. The mathematical bamboo slips unearthed from Warring States Period, Qin
Dynasty and Han Dynasty provide the world with the mathematics in pre-Qin Dynasty and Qin
Dynasty without any change of the original text made by descendants. This not only refuted the wrong
saying of no existence of any mathematics work in two Han Dynasty, but also broke the nihilistic
attitude adopted by some scholars towards the early development of Chinese mathematics.

2.3 It provides a strong evidence in solving problems about formation of Jiuzhang
Suanshu

Over the past 1700 years, views on the development of Jiuzhang Suanshu varied a lot. As Jiuzhang
Suanshu is the most important classic mathematics book in ancient China, ranking the top of all
canons, and therefore the development of Jiuzhang Suanshu is an important issue academically since
the 20" Century. There are three interrelated issues with different focuses. The first one is the date
of completion of the major methods and mathematics problems in Jiuzhang Suanshu. The second
issue is whether there was a certain kind of form that Jiuzhang Suanshu in existence before the Qin
Dynasty. The third issue is the completion date of the book Jiuzhang Suanshu which Liu Hui had
referred.

2.3.1 When the main mathematics methods and problems in<Jiuzhang Suanshu>> were
completed

On this issue, one of the founders of the history of Chinese mathematics branch Qian Baocong (1892—
1974), said, “Without a doubt that the techniques in solving problems in fang tian, sumi, shuai fen,
shaoguang, shanggong are mainly formed before Qin Dynasty.” I believe that: “apart from data of
equation(fangcheng) which was not found in books from pre-Qin Dynasty—it is very difficult to find
information on mathematical methods from literature and history books—the mathematical methods
of the remaining eight chapters and even some of the questions, evidence can be found from the texts
and historical relics from pre-Qin Dynasty.”!? This saying is made before looking at the translated
texts of <Suanshu shu>> from Han Dynasty and <Jiuzhang Suanshu>> from Qin Dynasty.!3 I actu-
ally think, “the main body of <Jiuzhang Suanshu>> which means using texts with technical meth-
ods(shu wen) to group examples together as well as most of the examples in books were completed
in Warring States Period and Qin Dynasty.”!* This is essential for understanding the compilation of
<Jiuzhang Suanshu>>.

Although Suanshu shu was not the predecessor of Jiuzhang Suanshu!®, Suanshu shu had a lot
of commonalities in the methods and problems with the bamboo slips of Shu from Qin Dynasty, the

"'Suanshu shu” is not a systematically compiled publication, but rather one that is selectively compiled with many
publications. See Guo Shuchun: Preliminary analysis of “Suanshu shu”, “Research of Chinese Literature” Page 307-349,
vol 11, June 2003.

2Qjan Baocong: Abstract of Jiuzhang Suanshu. See Qian Baocong-edited “suan jing shi shu” volume 1. Beijing: Zhong
Hua Book Store, 2003. “Li Yan, Qian Baocong The whole collection of science history” vol 4, Shen Yang: Liao Ning Education
Publishing Company, 1998.

BGuo Shuchun: “Liu Hui, the world-class mathematics leader in ancient time” Ji Nan: Shan Dong Science Technology
Publishing Company, 1992. revised edition in original complex, Tai Bei: Ming Wen Book Store,1995.

*Guo Shuchun: “Preface, explanation of Jiuzhang Suanshu” Shanghai Ancient Text Publishing Company, October 2009,
April 2010.
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collection of bamboo slips from Beijing University and Jiuzhang Suanshu. These commonalities obvi-
ously are the consensus of the academic circle in the early-Qin Dynasty. And this reinforces the saying
that the main methods and questions of Jiuzhang Suanshu were completed in early-Qin Dynasty.

2.3.2 The existence of a particular form of <Jiuzhang Suanshu>> in early-Qin Dynasty

It is commonly recognised in the academic circle that <Jiuzhang Suanshu>> was the result of long-

term accumulation, developed from “Tiushu,”1°

and was completed in Han Dynasty. However, mathe-
maticians before Ming Dynasty have different arguments. Starting from the mid-Qing Dynasty, many
scholars expressed their own views. In the existing data, the first one who talked about the compila-
tion of <Jiuzhang Suanshu™> was Liu Hui. He said: “Zhou Gong introduced the social norms and
therefore “Jiushu” existed. The details of “Jiushu” are actually “Jiuzhang”. As the Qin Emperor burnt
so many books and the remaining ones were broken and incomplete. After Shi Jue, both Zha Chang,
bei ping hou and Geng Shou Chang, da si nong zhong cheng of Han Dynasty were skillful in mathe-
matics. They prepared the new edition of the books as the old ones were incomplete. When compared
the content lists, they might be different from the old ones, but the actual contents were more or less
the same.!”

That is, Liu Hui believes that Jiuzhang Suanshu was developed from Jiushu and certain format of
the text was formed in early-Qin Dynasty. This format of Jiuzhang Suanshu was damaged in Qin-fire.
(I believe that the damage was come from the commotion in late Qin Dynasty, especially the burning
and plunder by Xiang Yu and his men.)

It should be pointed out that we cannot put the views and comments by Liu Hui and the views of
people after him to have the same weight on a balance. In other words, only by successfully refuting
Liu Hui’s argument, could we consider whether the argument held by people after Liu Hui being
reasonable. If we negate the argument of Liu Hui without evidence of any loophole, and make specu-
lations, is far from correct. We will argue later on, the negation opinion held by Dai Zhen on the Liu’s
historical material was wrong. From the analysis on the format of the Jiuzhang Suanshu and analysis
on the information of the price of material of that time, Liu’s argument is perfectly correct.

<Jiuzhang Suanshu>> can be divided into two forms, one is using texts with technical methods
(shu wen) to group problems together, another one is the applied question bank .The style of using
texts with technical methods (shu wen) to group problems together can be divided into three styles.
The differences in styles illustrates that <Jiuzhang Suanshu>> cannot be compiled in a single epoch.
It was the efforts of many mathematicians from different generations. The three styles in using texts
with technical methods (shu wen) to group problems together have a total of 82 methods (shu) and 196
problems (wen), covers all part of the six chapters included fang tian, sumi, shaoguang, shanggong,
ying bu zu, fangcheng, also shuai fen, shuai fen in jun shu zhang, problem of jun shu and gougu
shu in gougu zhang, gougu rong fang, rong yuan, ce yi zhu shu. Applied question bank is used in

Guo Shuchun: “About the relationship between Suanshu shu” and “Jiuzhang Suanshu”, “Zi, Qu Fu University of
Education Journal”, paper 34, vol 3, 2008.

16Zheng Xuan of Eastern Han Dynasty (127-200) referred to Zheng Zhong’s(?-83) “Zhouli zho” to explain “Jiushu” and
said, “Jiushu: fang tian, sumi, cha fen, shao guang,shang gong, jiu shu, fang cheng, ing bu zu, pang yao. Now it has zhong
cha, xi jie, gougu.” Lu Deming reckoned xi jie stream detailed article. See
“Zhouli”, “Explanation of 13 books”. Beijing, Zhong Hua Book Store, 1982.

7Guo Shuchun edited: Edited “Jiuzhang Suanshu” supplementary edition. Shen Yang: Liao Ning Education Publishing
Company, Tai Bei: Jiuzhang Publishing Company, 2004.
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the remaining non-shuai fen problem in shuai fen zhang, non standard jun shu problem in jun shu
zhang, questions in solving gougu shape in gougu zhang and three questions!®of yin mu wang shan.
If non-shuai fen problem and non-jun shu problems from shuai fen and jun shu zhang are deleted
respectively, the content of <Jiuzhang Suanshu> using texts with technical methods (shu wen) to
group problems together match with the titles of different chapters and is surprisingly consistent
with <Jiushu> mentioned by two Chengs. This proves that what Liu Hui said “jiu shu zhi liu equals
to <jiu zhang shi yi>>"and “compared its content list might differ from the past” are supported by
evidence. <Jiushu> is truly a source of<Jiuzhang Suanshu>.

Hori in Japan studied <Jiuzhang Suanshu> and the price of goods reflected from <Shiji>>,
<Hanshu>> and <Juyan Hanjian>> .He concludes that it is rather weak to say that the price of goods
found in «Jiuzhang Suanshu>>> equals to the price of goods in Han Dynasty. Basically the price of
goods found in <Jiuzhang Suanshu>> reflects to price of goods in Warring States Period and Qin Dy-
nasty.! This conclusion is consistent with that of Liu Hui. To analyse after combining the difference
between eras reflected by the price of goods shown in «Jiuzhang Suanshu>> as well as its variation
of problems, Liu Hui’s view will be strengthened. There are 31 problems involved when compared
and analyzed «<Jiuzhang Suanshu>> and the price of goods in Han Dynasty, 20 of them showed a
large price difference when compared with that of Han Dynasty but rather close to the price in War-
ring States Period and Qin Dynasty. 18 out of these 20 problems are in the form of using texts with
technical methods (shu wen) to group problems together. And 11 problems showed very close to the
price in Han Dynasty but having a larger price difference when compared with that of Warring States
Period and Qin Dynasty. 7 of them belong to the applied question bank; and 4 of them are in the form
of using texts with technical methods (shu wen) to group problems together.

Allin all, the present historical information not only did not contradict with Liu Hui’s discussion
on the compilation of «Jiuzhang Suanshu>, but also prove that Liu Hui’s discussion on the compi-
lation of < Jiuzhang Suanshu>> was totally correct. In addition, Liu Hui has a realistic and rigorous
learning attitude as well as a high level of morality. We should believe the words of Liu Hui. He de-
signed the mouhe fanggai and pointed out the right way to solve the volume of a sphere. Although
the result fell short of his prediction and he could not calculate the volume of mouhe fanggai, he
did not hide his failure, but spoke frankly, “When making the judgment and conclusion, there is the
confusion of square and circle, and also the mixture of thickness and thinness, it is unable to set the
equality. If a rough idea is simply made, it is afraid that the truth might be missed. Therefore the
problem is not solved, it should wait for the capable one to get it done.” “li shou zuo shu” was the
traditional view at that time. But he said, “I haven't heard of its details.” After the description of the
shape of giandu, he said,” I haven’t heard why it is named giandu”. The entire explanation of Liu
Hui showed his supreme spirit of expressing his opinions with evidence and never tells unproved
idea. Therefore Liu Hui’s words do have the full reliability. In short, regarding the compilation of
<Jiuzhang Suanshu>>, we should believe the words of Liu Hui. Freely denied the words of Liu Hui

and even invented another argument was not a scientific attitude.

¥Guo Shuchun: “About Chinese traditional mathematics ‘Shu”’. Li Wenlin & others edited: “Mathematics and mecha-
nization of mathematics”. Ji Nan: Shan Dong Education Publishing Company, 2001. This article made certain amendments
on the related discussion basis of the author’s “Liu Hui, the world-class mathematics leader in ancient time”.

¥(Japan)Hori: “Study on price of goods in Qin and Han Dynasty”. “Study and discussion on the history of legal system
in Qin and Han Dynasty”. Beijing: Law Publishing Company, 1988.
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2.3.3 When the <Jiuzhang Suanshu>> which Liu Hui read was formed

Liu Hui believed that <Jiuzhang Suanshu>> which he read was compiled by Zhang cang (?-152 BC)
and Geng Shou Chang (1st century BC) in Western Han Dynasty. As noted above, the words of Liu
Hui are worth to believe. As compilation of <Jiuzhang Suanshu’>> was such a serious issue, if he did
not have reliable information and had not read the concrete piece of the Zhang Cang and Geng Shou
Chang compiled «Jiuzhang Suanshu>>, it was absolutely impossible for him to talk about this. It
was unreasonable to reject the words of Liu Hui only based on the reason that it was a single case and
no other circumstantial evidence was available. Because of years of delay and natural disasters, only
very limited data which Liu Hui had seen were kept till mid-Qing Dynasty to today. Among those
limited data handed down to the era of Dai Zhen, what Dai Zhen and other people could read and
memorize was a very small proportion only. Therefore one can imagine how prejudiced it was when
Dai Zhen and other people based on their own knowledge to reject Liu Hui’s discussion. In fact, Dai
Zhen and other people rejected the Zhang Cang compiled <Jiuzhang Suanshu>> was mainly due to
two reasons. Firstly, the existence of the name of a place called “Shang Lin”.2’ Secondly, they said that
problems of junshu existed only from the era of Han Wu Dji, thus Zhang Cang was unable to involve
in the compilation of <Jiuzhang Suanshu> . In fact, as early as the era of Qin Emperor, there was a
Shang Lin Parkland?!, and junshu 1 was appeared in bamboo slip which was unearthed at the same
time with <Suanshu shu>.?2 As a result, the two main reasons for rejecting Liu Hui’s discussion
were no longer existed.

Conditions in <Jiuzhang Suanshu>>> also proved that Liu Hui’s words are correct. The examples
and styles used in the part that adopting applied question bank were totally different from the part
that using texts with technical methods (shu wen) to group problems together. Moreover, differences
were also found between the nature of questions and the nature of titles of chapters which they were
classified, a clear patch nature could obviously be seen. Also, a great variation existed in ideologies
for compilation.??> By comparing with bamboo slips <Shu>> from Qin Dynasty, <Suanshu shu>
from Han Dynasty and problem of shaoguang from <Jiuzhang Suanshu>>, one would find that the
former two slips were written by simple ancient words, while the later was written by the languages
of Han Dynasty. This proved that what Liu Hui said “the actual contents were more or less the same”
was supported by evidence.

In addition, from the guiding ideology for compilation of <Jiuzhang Suanshu>>, Qian Baocong?*
thought that the characteristics of the calculation techniques (suanfa) in <Jiuzhang Suanshu>> as
to solve practical problems as its fundamental purpose showed its realistic style. This reflected its
acceptance of Xunzi’s materialist ideology (wei wu zhu yi). On the other hand, <Jiuzhang Suanshu>>
did not define any mathematical concepts, and also no mathematical formula and explanation were
derived and proved. This also reflected Xunzi’s ideologies of “conventionalism (yue ding su cheng)”

?(Qing) Dai Zhen: Abstract of “Jiuzhang Suanshu”. In “Jiuzhang Suanshu” of “Wu Ying Hall collection of selected
books”. See Guo Shuchun edited: “Mathematics Paper - Collection of Chinese Science Technology Books” vol 1. Zheng
Zhou: He Nan Education Publishing Company, 1993.

*!(Han) Si Magian: “Shi Ji—Qin Emperor original record”. Beijing, Zhong Hua Book Store, 1959.

2Li Xueqin: Significant findings in Chinese mathematics history”. “Wen Wu Tian Di”, vol 1, 1985.

BGuo Shuchun edited: “Mathematics Paper—Chinese Science Technology History”, Science Publishing Company, Oc-
tober 2010.

*Qian Baocong: “Relationship between Jiuzhang Suanshu” and its explanation by Liu Hui and philosophical ideas”.
“Li Yan, Qian Baocong The whole collection of science history” vol 9, Liao Ning Education Publishing Company,1998.
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and “there was an end in learning (xue you suo zhi)”.? That is, <Jiuzhang Suanshu>> is compiled
under the guidance of Confucianism of the Xun School .There were very few historical records about
the thinking of Zhang Cang. However, Xunzi (313BC-238 BC) taught <.chun giu zuo shi zhuan>> to
Zhang Cang. Zhang Cang taught <Zuozhuan> to Jia Yi.2® It could be concluded that Xunzi, Zhang
Cang and Jia Yi did have the lineal teacher-student relationship. As Jia Yi was the main representative
of Confucianism of Xun School in the early Western Han Dynasty, therefore Zhang Cang did believe
in Confucianism of Xun School.?” This was consistent with the ideology for compilation of <Jiuzhang
Suanshu>>.

In short, the fact that <Jiuzhang Suanshu> was compiled by Zhang Cang, Geng Shou Chang.
should not be rejected.

2.4 It provides reliable literature to support the first climax of traditional Chinese
mathematics occurred in Spring & Autumn and Warring States Period

In 1990s, I concluded that the first climax of traditional Chinese mathematics was occurred in Spring &
Autumn and Warring States Period and Western Han Dynasty compiled <Jiuzhang Suanshu>> was
only a conclusion®of this climax after studying <Jiuzhang Suanshu> and its Liu Hui’s zhu (com-
mentary). Although I firmly believed that this view was correct, lack of evidence was the problem at
that time. In 2000, interpretation of <Suanshu shu>> was announced, in which the rich mathemat-
ical contents and Mr. Peng Hao’s conclusion about <Suanshu shu>> saying that the vast majority
of problems arose from Qin Dynasty and pre-Qin Dynasty made me settled. Now, several batches of
bamboo slips from Warring States Period and Qin and Han Dynasty were found, which provide more
reliable literature for the study of mathematics in Qin Dynasty and pre-Qin Dynasty. This ultimately
ends the situation of mainly relied on <Jiuzhang Suanshu> and its Liu Hui’s zhu (commentary) to
derive that the first climax of traditional Chinese mathematics was occurred in Spring & Autumn and
Warring States Period.

3 Expectations and Recommendations

Currently, study in bamboo slips <Shu>> from Yuelu Academy in Qin Dynasty is still very popular.
While the mathematical bamboo slips from Qin Dynasty in Beijing University and the mathematical
bamboo slips from Han Dynasty in Hubei Museum are still being compiled, so we are unable to
glimpse the whole picture. We propose two expectations:

First is to accelerate the compilation of the mathematical bamboo slips from Qin Dynasty in Bei-
jing University and the mathematical bamboo slips from Han Dynasty in Hubei Museum, so that
interpretation of the text will be available as soon as possible.

Z(Warring States Period): Xun Qing: “Xun Zi” “Simplified explanation of Xun Zi”, Shanghai People Publishing Com-
pany, 1975.

%6 (Western Han) Liu : “Preface of Spring and Autumn”. “Explanation of Spring and Autumn Zuo Chuan “Kong Yingda’s
explanation referred to Liu Xiang ‘Bie Lu’, See “Explanation of 13 books”. Beijing, Zhong Hua Book Store, 1980.

#Guo Shuchun: “Zhang Cang and ‘Jiuzhang Suanshu””. In “Ke Shi Xin Chuan”, Shen Yang: Liao Ning Education Pub-
lishing Company, 1997.

*Zou Dahai: “The rising of Chinese mathematics and Early Qin mathematics — the late report”. Shi Jia Zhuang: He Bei
Education Publishing Company, 2001.
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Second is hoping more colleagues in history of mathematics sector can participate in the study in
mathematical bamboo slips from Warring States Period, Qin Dynasty and Han Dynasty. Mathematics
in pre-Qin Dynasty is the origin of source and the fundamental stone of traditional Chinese mathe-
matics. In the past, we were in the state of blurred understanding. With the findings and studies of
mathematical bamboo slips from Warring States Period, Qin Dynasty and Han Dynasty, the mystery
of mathematics in pre-Qin Dynasty was gradually unveiled, so that our knowledge on mathematics
in pre-Qin Dynasty can truly get close to the history.

In the basis of in-depth study in mathematical bamboo slips from Warring States Period, Qin
Dynasty and Han Dynasty, two tasks should be conducted:

Firstly, to co-ordinate experts of history of mathematics, archaeology and ancient text to conduct a
comprehensive research and interpretation of mathematical bamboo slips from Warring States Period,
Qin Dynasty and Han Dynasty.

Secondly, as proposed by Mr. Dao Benzhou, to launch an international academic symposium
about mathematical bamboo slips from Warring States Period, Qin Dynasty and Han Dynasty at an
appropriate time, in order to conclude and promote the study in mathematical bamboo slips from
Warring States Period, Qin Dynasty & Han Dynasty, and the study in mathematics in pre-Qin, Qin
and Han Dynasty and even the entire Chinese history.
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ABSTRACT

The purpose of this study was to investigate the relationship between pre-service mathematics
teachers’” knowledge of history of mathematics and their attitudes and beliefs towards the use of
history of mathematics in mathematics education. Data were obtained from 1593 pre-service ele-
mentary mathematics teachers during the fall semester of 2010-2011 academic year by Attitudes
and Beliefs towards the Use of History of Mathematics in Mathematics Education (ABHME) Ques-
tionnaire and Knowledge of History of Mathematics (KHM) Test. The main correlation between
ABHME and KHM mean scores was found to be positive and statistically significant (r=.18, p<.01)
which meant that the pre-service teachers who were more knowledgeable in history of mathemat-
ics topics had more positive attitudes and beliefs towards the use of history of mathematics in
mathematics education. Furthermore, all of the seven correlations between the mean scores from
each of the seven sub topics of ABHME Questionnaire and the original form of KHM Test were
also positive and statistically significant at the .01 level, which were presented in details in the re-
sults. The findings were discussed with the relevant existing literature followed by implications
for teacher education programs and policy makers, and suggestions for future research were ad-

dressed.
Keywords: History of mathematics, Attitudes and beliefs, Knowledge of history of mathemat-

ics, Mathematics education, Pre-service mathematics teachers

1 Introduction and Theoretical Framework

Teachers may enhance the standards and the quality of mathematics teaching by including various
methods into their instruction through meeting varied learning goals (Hiebert & Grouws, 2007). Be-

“First Author
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fore entering upon the professional career, they undergo the formal pre-service education process
which gives opportunities to improve their knowledge and skills in their field. Having knowledge
of history of mathematics (HM), being able to use HM and displaying a demand for this usage as a
rooted special method for mathematics education may be pointed as important components of such
knowledge and skills (McBride & Rollins, 1977) as HM illuminates the relationship among mathe-
matical concepts, it introduces different perspectives to the learning of mathematics subjects and it
clarifies the nature of mathematics and mathematical knowledge (Freudenthal, 1981; Furinghetti &
Radford, 2002; Gulikers & Blom, 2002; Siu, 2000).

Mathematics teachers’ knowledge and their attitudes and beliefs regarding the teaching and learn-
ing of mathematics have been foci of interest and frequently investigated on the grounds that both
of them influence the quality of mathematics instruction (Alexander & Dochy, 1995). Apart from this
common point, research in education indicates a natural interaction between individuals” knowledge
of an issue (as a component of cognitive domain) and their related attitudes and beliefs (as a compo-
nent of affective domain) (Maker, 1982; Thompson, 1992). Gilbert (1991) claimed that one must ini-
tially have some knowledge and experience on a topic before stating attitudes and beliefs related to
that topic. In other words, attitudes and beliefs form the subjective form of one’s objective knowledge
of a topic (Pehkonen & Pietila, 2003). Thompson (1992) also stated that “disputability is associated
with beliefs; truth and certainty is associated with knowledge” (p. 129).

The knowledge of HM is likely to present credible information about the mathematics topics at
first hand (Freudenthal, 1981). The great part of the responsibility here may probably be on the pre-
service education (Hill, Sleep, Lewis, & Ball, 2007). In order to practice upon HM in ME effectively
in the future, pre-service mathematics teachers should firstly master the historical information of the
mathematical concepts that they are going to teach (Fried, 2001) by taking curricula and textbooks into
consideration. Yet, having enough HM background may not be adequate on its own for the pre-service
teachers. If they do not hold positive attitudes and beliefs towards the use of HM in mathematics
education, then they may not utilize it in the mathematics classrooms (Li, 1999).

Before illuminating the significance of these attitude and belief constructs in conjunction with the
HM integration, it is necessary to primarily identify them. In respect of Philipp’s (2007) metaanalysis
on affective domain research, attitudes are defined as “manners of acting, feeling, or thinking that
show one’s disposition or opinion” where beliefs are the “lenses that affect one’s view of some aspect
of the world” (p.259). Correspondingly, attitude and belief are actually two different, but strongly
engaged affective constructs (Ajzen, 2001; Goldin, Rosken, & Torner, 2009). More specifically, atti-
tudes are related to senses such as “liking, disliking, being curious, being bored” (McLeod, 1992,
p-581), whereas beliefs are more related to one’s cognition as “psychologically held understandings,
premises, or propositions about the world that are felt to be true” (Richardson, 1996, p. 103) which
also form basis for the related attitudes (Koballa & Glynn, 2007). In comparison with beliefs, attitudes
may change more easily and thus less permanent (McLeod, 1992). Indeed, the common point of these
constructs, which is also the driving force for considering them together in this study, is that humans
generally reflect their attitudes and beliefs towards an object, a situation, or another person into their
related feelings and behaviors such as interest, demand for learning, and utilization (Koballa & Craw-
ley, 1985). Considering these definitions, pre-service mathematics teachers’ beliefs regarding the use
of HM in mathematics education can be identified as their professed viewpoints for this usage, and
their related attitudes are feelings and thoughts displaying these beliefs. Both of them are likely to
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influence the concern, excitement, trust, and knowledge related to this notable method, and thus also
to affect the relevant choices and usages in future mathematics teaching.

As for the research pertinent to the relationship investigated in this study, Goodwin (2007) studied
mathematics teachers” knowledge of HM together with their images of the mathematics discipline. In
his study, knowledgeable teachers thought that learners of mathematics could discover mathematical
ideas again, mathematics could be done even one was not a professional mathematician, and mathe-
matics was a continuously developed subject by several cultures in the history (Goodwin, 2007). The
parallelism of these thoughts with the essential arguments of history in mathematics education was
notable. However, the relationship between pre- or in-service mathematics teachers” HM knowledge
and their attitudes and beliefs about integrating HM in mathematics education has not been investi-
gated in the accessible literature, indicating a gap in the mathematics teacher education. This limita-
tion and the presented arguments in favour of the interplay between knowledge and attitude-belief
leaded to the following research question examined in this study:

* Are there statistically significant correlations between pre-service elementary mathematics
teachers’ knowledge of HM and their attitudes and beliefs towards the use of HM in ME?

This study aimed to fill the addressed gap in the literature by finding a response to the above
research question via data collected from Turkish pre-service elementary mathematics teachers.

2 Methodology

This study intended to raise a claim, which was the existence of a link between pre-service math-
ematics teachers’ knowledge of HM and their attitudes and beliefs about using it in mathematics
education, via generalizing from a large and representative sample to the population of interest con-
sidering the more general literature on the relationship between individuals” knowledge and their
associated attitudes and beliefs. Therefore, it was based on quantitative methodology.

2.1 Context and Sample

The Elementary Mathematics Education (EME) programs in Turkey are four years teacher education
programs which train future mathematics teachers for grades 4 to 8. These programs are similar in
terms of courses as higher education is loosely centralized through a governing Council of Higher
Education (CHE) in Turkey. CHE suggests that “History of Science”, “History of Mathematics”, and
“Philosophy of Mathematics” should be considered as elective courses in EME programs and com-
pulsory pedagogical courses such as “Methods of Teaching Mathematics” should include HM and
its integration into mathematics education (CHE, 2007).

A total of 1593 pre-service elementary mathematics teachers (478 freshmen, 432 sophomores, 409
juniors, and 274 seniors; 1064 females and 529 males) from nine universities located in each of seven
geographical regions of Turkey were the sample of the study. Clustered random sampling method was
used in order to attain a representative sample of target population (Fraenkel & Wallen, 2006) who
were all Turkish pre-service elementary mathematics teachers. Twenty per cent of the universities
from all the regions were initially selected randomly, and the pre-service teachers enrolled in four
years teacher education programs were reached as many as possible in the fall semester of 2010-2011
academic year.
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2.2 Data Collection Tools

The data were gathered via Knowledge of History of Mathematics (KHM) Test (Alpaslan, Isiksal, &
Haser, 2011b) and Attitudes and Beliefs towards the Use of History of Mathematics in Mathematics
Education (ABHME) Questionnaire (Alpaslan, Isiksal, & Haser, 2011a) whose validity and reliablity
procedures were completed. KHM Test was formed of 11 questions comprising 13 multiple choice,
short answer, and true-false items which were determined with reference to mathematics teacher
competencies suggested by Turkish Ministry of National Education (MoNE, 2011), Turkish elemen-
tary mathematics curricula (MoNE, 2009), and formal elementary mathematics textbooks (Durmus,
2010a, 2010b, 2010c). ABHME Questionnaire was a Likert type scale containing 35 items in which the
pre-service mathematics teachers could state their attitudes and beliefs concerning the use of HM in
the context of its practicality, didactical and motivational contributions to mathematics education,
importance for their future teaching (Alpaslan, Isiksal, & Haser, 2011a). In order to examine the cor-
relation between knowledge of history of mathematics and the related attitudes and beliefs under
discussion in details, the items of ABHME Questionnaire were grouped into seven sub topics. Con-
sidering the relevant literature, these subtopics were determined as self-efficacy (SE) beliefs towards
the method (the use of history of mathematics in mathematics education) (items 11, 12, 17, and 29),
attitudes and beliefs towards the personal development (PD) on the method (items 6, 7, 28, and 32) and
usability (US) of the method (items 1, 15, 18, 21, 23, and 33), the method’s contributions to revealing
the meta-issues (RM) of mathematics (items 2, 5, 10, 13, 19, 24, and 30), to motivations for learning (ML)
mathematics (items 4, 20, and 25), to learning (LE) mathematics directly (items 3, 8, 9, 14, 22, 26, 31,
and 34). There were also items addressing very general (VG) attitudes and beliefs towards the method
(items 16, 27, and 35). The items of KHM Test was not grouped as ABHME Questionnaire on the
gorunds that it was designed for measuring the knowledge of the history of elementary mathematics
topics in Turkish elementary mathematics curricula (MoNE, 2009) as a whole and thus it had a unity
in itself. One sample question from KHM Test and seven sample items for each sub topic of ABHME
Questionnaire were illustrated respectively in Table-1 on the following page.

3 Results

Pearson product-moment correlation analysis was run through PASW Statistics 18 software program
with the intent of examining the possible relationship. Before conducting this parametric statistical
method, its five assumptions which were level of measurement, related pairs, independence of observations,
normal distribution, linearity, and homoscedasticity were checked in order to see whether the data is
appropriate for this analysis (Pallant, 2007). Since all of the variables produced from pre-service el-
ementary mathematics teachers” knowledge of HM and their attitudes and beliefs towards the use
of HM in mathematics education were continuous at interval level, the level of measurement assump-
tion was ensured. In the final form of the data, there was not any missing datum in the related pairs
of scores on the two variables. The participants were presumed to have no interaction during the
data collection addressed independence of observations. In addition, their mean scores on each of the
variables were observed to be normally distributed. As for the linearity assumption, the scatterplots re-
vealed a linear relationship for each of the examined correlations, which referred a trend of increase
in one variable accompanied with the increase in the other variable, or the reverse. The scatterplots
also clarified that the data pairs (e.g., ABHME mean scores-KHM mean scores, ABHME/SE mean



Table-1: Sample Items from KHM Test and ABHME Questionnaire

Sub
Topic

Instrument

Item

KHM Test

SE

PD

Us

ABHME
Questionnaire

ML

LE

VG

1. —They have one of the known oldest number systems.
- They developed a number system up to millions before approximately 5000 vears ago.
- Numerals in their mathematics are formed by juxtaposing some certain symbols.

- 7 different symbols constituting their mimeration system was given below:

tacellwy

Which antique civilization has the above mentioned characteristics?

A) Mesopotamian Civilization
B) Roman Civilization

C) Egyptian Civilization

D) Babylon Civilization

11. 1 do not have an idea about how to use history-based didactical
materials (e.g., pantograph, tangram).

7. Prospective teachers must be given courses about how to use
history of mathematics in mathematics education.

1. It is difficult to integrate history of mathematics in mathematics
education.

2. Having knowledge about history of mathematics gives an idea
about why humans felt the need for mathematics.

4. Using history of mathematics in mathematics education causes
students to lose their enthusiasm for learning mathematics.

3. The use of history of mathematics in mathematics education
makes positive contribution to the learning of mathematics by
providing a different standpoint and mode of presentation.

16. History of mathematics should be integrated into mathematics
education.
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scores-KHM mean scores) concentrated around the linear correlation line provided the last assump-
tion called homoscedasticity (Pallant, 2007). These implied meeting all the required assumptions of

Pearson product-moment correlation analysis.
The correlation analysis results revealed that all of the correlations tested for the pairs between
ABHME mean scores and KHM mean scores were positive and statistically significant, whose coeffi-

cients (r values) were presented in Table-2 below:
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Table-1: Sample Items from KHM Test and ABHME Questionnaire

ABHME Mean Scores

=7 27 5% 27 27 2% 27 =%
TE mI i T3 mI TSI m5 m3

<= <5 <= 4z <<= 4= 4= <=
KM 18%  19%  ]2% 10% 12% 18% 12% 08*

Mean Scores

*. Correlation is significant at the 0.01 level (2-tailed).

Considering the table above, the result that all of the positive correlations were also statistically
significant could lead to the idea that pre-service teachers” higher scores on KHM Test accompanied
with their higher scores on ABHME Questionnaire. Additionally, the relatively higher correlation
coefficients between the three pairs of KHM mean scores-ABHME mean scores, KHM mean scores-
ABHME/SE mean scores, and KHM mean scores-ABHME /ML mean scores were remarkable which
were discussed in the next part. The coefficients of determination (r%) were ranged between .01 and
.04 referred that the different kinds of the attitudes and beliefs shared 1 through 4 per cent of their
variance with the knowledge, or vice versa.

4 Discussion and Implications

The results of the study suggested a relationship between pre-service elementary mathematics teach-
ers’ knowledge of HM and their attitudes and beliefs towards the use of HM in mathematics edu-
cation which supported the claims in the literature for the interplay between knowledge, attitudes,
and beliefs (Gilbert, 1991; Maker, 1982; Thompson, 1992). It was also coherent with the relevant spe-
cific studies on the relationship between knowledge of HM and HM related attitudes and beliefs
(Goodwin, 2007). It might be the case that better knowledge on the HM would be a key factor in the
preferences for employing it in the classroom for mathematics teachers of the future. On the contrary,
the reversibility of the correlation also pointed out that positive attitudes and beliefs about using HM
seemed to lead the pre-service teachers to enrich the knowledge of HM. The positive attitudes and
beliefs might have encouraged them to learn HM and this situation maybe resulted in an increase in
the achievement got from the KHM Test.

In private, the relatively higher positive relationship between self-efficacy beliefs towards the use of
history of mathematics in mathematics education and knowledge of history of mathematics pointed
out the importance of mastering the history of mathematics before employing it for teaching mathe-
matics. The pre-service teachers’ decidedness for the future use of the method may be broken down
due to poor knowledge of history of mathematics, and hence lower self-efficacy beliefs towards using
it. The other relatively higher positive relationship between knowledge of history of mathematics and
attitudes and beliefs towards the method’s contributions to motivations for learning mathematics may
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be a result of that the Turkish pre-service teachers’ attitudes and beliefs were a product of their self-
perceiving the method as only a tool servicing the motivational purposes of learning mathematics
(Alpaslan & Haser, 2012). As a result of this, the pre-service teachers who were more knowledgeable
on the history of mathematics might have much displayed that they could use this knowledge for mo-
tivational aims. As for the relatively lower positive relationships, they might be an outcome of that
the pre-service teachers were not raised awareness of the addressed sub topics (personal development
on the method, usability of the method, the method’s contributions to revealing the meta-issues of
mathematics, learning mathematics directly, and the method in general) (Alpaslan & Haser, 2012). If
they were adequately informed about the use of history of mathematics in mathematics education
and were gained more positive attitudes and beliefs on this method, this might have directed them
to enrich their knowledge of history of mathematics.

The dual relationship found here could guide teacher educators for presenting HM knowledge in
order to train mathematics teachers who feel themselves familiar with and even competent in using
this alternative method. Teacher education policy makers may also design undergraduate courses on
HM addressing both the HM knowledge and the relevant attitudes and beliefs. Further studies should
explore this relationship through other research designs in different contexts such as those directly
seeking for a cause and effect relationship between knowledge of HM and different components of
affective domain. In these studies, qualitative methodology also can be included to see the existing

reality more vividly.
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ABSTRACT

This research investigated the role of solving historical problems on prospective mathematics
teachers’ mathematical knowledge for teaching. The primary research question was: In what ways
does a prospective secondary mathematics teacher’s work on historical problems contribute to their develop-
ing mathematical knowledge for teaching? In an effort to capture ways in which prospective secondary
mathematics teachers (PSMTs; those who will teach pupils aged 10 — 18) engaged in solving prob-
lems found in historical sources during a history of mathematics course, I implemented an histor-
ical problems and analysis assignment. For the assignment each PSMT selected ten problems that
they previously solved in the course. They then presented their solution and provided a reflec-
tion on how work on each problem informed their understanding of the underlying mathematical
concepts addressed in the problem. The presentation will include a summary of the most often
selected historical problems and will highlight the common themes identified as a response to the
study’s primary research question.

1 Mathematical knowledge for teaching

The concept of mathematical knowledge for teaching (MKT) is the most recent focus of trying to un-
derstand the special knowledge teachers must possess to teach mathematics —and to teach the subject
matter well. This focus of mathematics education research began with large-scale efforts primarily fo-
cused on assessing teachers. Furthermore, the field has endeavored to define exactly what the nature
of the special knowledge for teaching mathematics is, in much the same way that mathematics ed-
ucation (among other disciplines) sought to establish its unique definition of pedagogical content
knowledge (PCK) in the wake of Schulman coining the term in 1986.

Ball, Thames, and Phelps (2008) described knowledge for teaching beyond the “obvious” knowl-
edge of “topics and procedures that [teachers] teach” (p. 395). To do this, they concentrated on “how
teachers need to know that content” (p. 395) and they sought to “determine what else teachers need
to know about mathematics and how and where teachers might use such mathematical knowledge
in practice” (p. 395). Several scholars with an interest in what history of mathematics contributes to
teaching and learning mathematics (Clark, in press; Jankvist et al., forthcoming) have begun to focus
on the potentiality of the history of mathematics to be one dimension of the “what else” described
by Ball et al. and how this specialized knowledge contributes to prospective secondary mathematics
teachers’” (PSMTs’) future practice.
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Figure 1. Division of Subject Matter Knowledge and Pedagogical Content Knowledge into further
subdomains (Ball, Thames, and Phelps, 2008, p. 403).

Ball, et al. (2008) deconstructed Shulman’s concepts of Subject Matter Knowledge (SMK) and Ped-
agogical Content Knowledge (PCK) into further subdomains (or subcategories), as shown in Figure
1. Although the “egg model” for mathematical knowledge for teaching may continue to evolve, the
six subdomains provide a framework from which to gain insight into the ways that history of math-
ematics may contribute to PSMTs” MKT. SCK and KCT may be the obvious types of knowledge for
which PSMTs’ historical problem solving has the most influence. HCK, however, may also have a
role to play, especially since many scholars have remarked on the tentative nature (e.g., Ruthven,
2011) of this subcategory — and that it certainly has interplay with the other five subcategories. One
interpretation of HCK is that it relates to knowledge influenced by awareness, dispositions, and orien-
tations towards particular instructional practice. Thus, history of mathematics may have strong ties
to influencing PSMTs” MKT along this domain; however, stronger definitions of the HCK subcate-
gory and research aimed at testing such definitions is needed. Rowland and his colleagues (2010)
introduced the analytical framework of The Knowledge Quartet, or the different forms of knowledge
trainee teachers possess. Of the four types of knowledge, Rowland’s notion of foundation knowledge
“concerns trainees” knowledge, understanding and ready recourse to their learning in the academy,
in preparation (intentionally or otherwise) for their role in the classroom. It differs from the other
three units [of the Knowledge Quartet] in the sense that it is about knowledge possessed, irrespec-
tive of whether it is being put to purposeful use” (p. 1842). This framework is also promising for
the ways in which teacher educators can examine and characterize such foundational knowledge of
mathematics teacher candidates. In particular, if, when, and how history of mathematics contributes
to the development of foundation knowledge, serious implications exist regarding the policies and
practices governing the role of history of mathematics (e.g., course content or courses in general) of
mathematics teacher preparation programs.
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2 Participants and study details

Twenty-four PSMTs, enrolled in a Using History in Teaching Mathematics course, participated in this
study. The course was required for all PSMTs within two certification tracks, either middle grades
mathematics certification (for teaching pupils aged 10-14) or secondary mathematics certification (for
teaching pupils aged 11 — 18). Student work from one of the course assignments, “Historical Problems
and Analysis”, was used as the primary data source in the study. The assignment was described to
students as follows:

During most class sessions we will work with historical problems — either in groups during class
or individually (or with a partner) outside of class. You will not be handing in each assignment.
Instead, you will keep track of the work that you do and for the final task you will select ten
problems, tasks, or activities that you feel represent your best effort toward achieving the course
objectives. For each problem selection you will: (1) state each problem, task, or activity; (2) present
your solution, work, or explanation (as appropriate); (3) describe which of the objectives you feel
you addressed when completing and reflecting upon the problem, task, or activity and why;
and (4) provide a reflection of how your work on the historical problem contributed to your
understanding of the underlying mathematical concepts within the problem, task, or activity.

Students in the course - PSMTs — could elect any format to present their work on this assignment.
In most cases, PSMTs used a format that included the stated problem, presentation of accompanying
work, and a written narrative in response to the third and fourth items outlined in the assignment.
Of the 24 students enrolled in the course, 23 completed the course with a passing grade, and of the
23 completed “Historical Problems and Analysis” assignments 13! were analyzed for the purpose of
this paper.

The primary research question for this investigation was: In what ways does a prospective secondary
mathematics teacher’s work on historical problems contribute to their developing mathematical knowledge for
teaching? Analysis of the collection of PSMTs’ responses to the problems they selected included three
tasks: (1) reviewing the accuracy and completeness of the solutions, (2) coding each reflection for rev-
elations of how working on the problems improved PSMTs” understanding of the underlying math-
ematics, and (3) coding each reflection for expressions of beliefs about mathematics prompted by
PSMTs’ study of history of mathematics.

2.1 Data analysis

Although the problem solution (presentation, accuracy, completeness) was important to assess each
PSMT’s work for a course grade, for the purpose of this investigation, I was more interested in what
each PSMT articulated in their analysis with regard to how the particular problems influenced either
their mathematical knowledge or they way in which they now thought about particular mathematics
concepts. I note that this investigation represents a preliminary effort to assess the potential for future
research and as a result caution is offered regarding the use of such self-reported data. Thatis, without
triangulation (e.g., using additional data sources) of each PSMT’s claim, my interpretation of how

"Twelve of the 13 PSMTs were pursuing secondary mathematics certification and one was pursuing middle grades
mathematics certification.
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solving historical problems might influence their developing knowledge for teaching is just that: an
interpretation. In future research, pre- and post-assessments of content and micro-teaching tasks and
subsequent reflections will provide substantiation of claims and enable possible framework building
to use for identifying influences on PSMTs” mathematical knowledge for teaching.

Table 1 presents a brief description of the problems selected by the PSMTs and the frequency of
each. For this discussion I highlight two problems (or, types of problems in the case where multiple
examples were available) that were selected and discussed by a majority of the PSMTs: problems on
the method of false position (solving linear equations) and problems on the method of completing

the square (for solving quadratic equations).?

Table 1. Historical problem selections.

Historical problems selected Number of students selecting
1. Babylonian area calculation

(Ancient Babylonian problems) ?
2. Egyptian unit fractions 8
3.The power of zero: 0° 5
4. Method of false position 10
5. Acceptance of negative numbers 2
6. Use of different values of = 7
7. Euclid’s Elements (various problems) 6
8. “A square and things”

(method of completing the square) 13
9. Trigonometric identities 6
10. Imaginary numbers 6
11. Stifel’s symbols 11
12. Proofs of the theorem of Pythagoras 9
13. Italian abacists 1
14. Figurate number tasks 1
15. Solving cubic equations 4
16. Decimal fractions 1

3 Problem reflections

3.1 Method of false position

The first type of problems, those based on the method of false position (found in surviving papyri
from Ancient Egypt), were selected, solved, and discussed by ten students. Two problem sets were
assigned to students, one set from Sketch 9 of Math Through the Ages (Berlinghoff & Gouvéa, 2004)
and one from a task I created that required students to solve problems such as: A quantity three
times; the quantity’s three-fifths and one-fifth is added to it. It becomes 19. What is the quantity? The
goal of including this topic in the Using History in Teaching of Mathematics course was to encourage
PSMTs to consider the origins of solving linear equations and to connect the method of false position

The problems based upon the algebraic symbols introduced and used by Michael Stifel were not considered for this
investigation (even though 11 students discussed these problems in their historical problems analysis task) because these
problems were not considered to contain sufficient rigor.
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to important underlying ideas when solving linear equations, including, but not limited to rate of
change and “undoing” arithmetic operations.

However, many PSMTs did not discuss the potential mathematical content of the false position
problems, nor did they discuss how their knowledge developed as a result of their problem solving.
Instead, many revealed their beliefs about solving historical problems using the method of false po-
sition and these were often superficial in that the PSMTs focused on issues of ease or familiarity. For
example, many PSMTs shared some aspect about how the method was difficult to understand, how
a modern method of solving linear equeation was “easier” to perform, or they were simply unable to
analyze their mathematical understanding;:

“-++it is frustrating to use ‘guess and check’ for solving linear equations when we know a way

that comes much easier to us” (Clara®).

“I understood it but did not understand why that method would be used--
The false position is about guessing and proving [the answer] is right” (Julie).

“It was quite difficult to solve their way, but solving it in the modern way was simple---.The false
and double false position is not the most efficient way to solve for “z” (Katrina).

“I found it more difficult to solve because it is a more involved method” (David).

“The tricky part came when you had to decide how to go about solving the remaining problem
based on whether your estimation gave an error above or under the desired number” (Chantal).

One PSMT, however, described her understanding of the method of false position by relating it
to modern solution methods. Janine stated that, “I honestly feel more comfortable with the historical
method--. The main difference with the two problems is the usage of a variable for the unknown
[which is not used in the historical method]. For the most part, the method of solving for the “z” in
the modern method is very similar to finding the solution in the historical version.” Thus, instead of
stating a key difference in the methods of solution, Janine tried to articulate that the actual solution
process was the same — and that only symbolic representation set them apart.

In light of this sample of PSMTs’ reflections, it is difficult to identify a subcategory of MKT (Ball
et al., 2008) or Rowland’s notion of foundation knowledge that was influenced by engaging in and
reflecting about the false position problems. As a flawed application, aspects of each of the excerpts
hint at a basic form of what Rowland described as the knowledge possessed — though in almost every
case this may be interpreted as flawed knowledge possessed, or incomplete knowledge possessed.

3.2 Method of completing the square

As with the historical problems on the method of false position, PSMTs were assigned several prob-
lems to choose from for inclusion in their “Historical Problems and Analysis” assignment that focused
on the method of completing the square. Problems from three different time periods were part of the
course — from Ancient Babylonian mathematical texts, Euclid’s Elements, and from the famous text
of al-Khwarizmi. However, all 13 PSMTs who selected problems on the method of completing the
square to solve quadratic equations selected those from al-Khwarizmi’s text.

3 All names are pseudonyms.
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PSMTs’ reflections in response to the prompt, “provide a reflection of how your work on the his-
torical problem contributed to your understanding of the underlying mathematical concepts within
the problem, task, or activity”, about their work on the method of completing the square also lacked
strong evidence of how their understanding was impacted. Furthermore, the strongest declaration
expressed by these future teachers was that they had no previous experience with the historical roots
of the method of completing the square, and applying that method to solve quadratic equations:

“I had no clue that the quadratic formula and completing the square had actually anything to do
with areas of square or rectangles” (Katrina).

“Before these problems I never completely understood completing the square” (Julie).

“Even though I was aware of completing the square method, I was completely unaware of where
it originated” (Steven).

Other PSMTs discussed the connections between algebraic and geometric representations empha-
sized by the method of completing the square:

“[Al-Khwarizmi’s] use of the geometric representation, however, really helps you to see the com-
pleting of the square as you work through the problem” (Janine).

“I have trouble considering a geometric representation to solve algebraic problems and [this
method] really gave me ideas about having geometric representations for this and other sorts
of problems” (Megan).

“This task deepened my understanding through the use of geometrical methods and now I can
finally say I understand completing the square” (Kevin).

Again,  anticipated that PSMTs would discuss what they now understood about solving quadratic
equations after examination and successful application of the geometrical and numerical demonstra-
tions provided by al-Khwarizmi. However, this proved difficult for most of the PSMTs. In addition to
the two broad types of declarations (examples above), two students revealed incomplete understand-
ing of the method of completing the square. Chantal, for example, began her reflection with “this was
definitely something new for me”. She added,

I misunderstood at first, adding the missing portion to what the equation was equal to, just be-
cause I thought everything should equal that particular number (subtraction instead of addition
of the two numbers given). I understand enough that I would feel confident if having to present
this to students.

Chantal was able to identify how she incorrectly approached the problem; however, she still
claimed that she only understood “enough” to teach the concept to students. Unfortunately, Chantal
could not further articulate what her understanding was (or, was not).

Carrie’s reflection on the method of completing the square revealed her incomplete mathematical
understanding. She stated that

---the topic can show students the purpose of a topic that is constantly being drilled into them
that they often do not understand. It uses the history of math to show what squares of quantities
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were used for so that students can begin to make connections and understanding of exponential
ideas and terminology.

Not only did Carrie’s reflection shift to attention on students” understanding of completing the
square (in fact, many PSMTs did this), she also incorrectly summarized the purpose of the method.
Her conclusion that squares of quantities were used for understanding exponential ideas was math-
ematically incorrect compared to what other PSMTs discussed (e.g., geometrical representations of
equations involving squares). Furthermore, this particular reflection raises the question of how his-
tory of mathematics —in particular, working on non-trivial historical problems — can actually highlight
what mathematical knowledge prospective teachers do not possess (as opposed to the knowledge
possessed that Rowland described) and that efforts to implement more historical problems in teacher

training programs may prove beneficial.

4 Implications

This investigation intended to identify the ways in which history of mathematics influenced PSMTs’
mathematical knowledge for teaching. I anticipated that PSMTs would choose problems from through-
out the 15-week course and be able to discuss their understanding of the underlying mathematical
concepts when viewed through the lens of their own work on the various historical problems. I was
also hopeful that the prospective teachers would have sufficient practice at such written reflections
given the numerous writing tasks assigned in the Using History in Teaching Mathematics course. Un-
fortunately, most of the 13 PSMTs’ reflections did not contain explicit descriptions of what they really
understood nor did they discuss how their work on historical problems assisted in that understand-
ing.

Still, important lessons for future practice in mathematics teacher education can be learned from
the initial analysis of the data. For example, prospective mathematics teachers must be provided am-
ple opportunity to reflect on their own mathematical thinking and to articulate that thinking in order
to prepare them for doing the same with their future pupils” mathematical thinking. Assigning such
tasks to prospective mathematics teachers is not alone sufficient. Instead, as mathematics teacher ed-
ucators interested in the role of history of mathematics in the preparation of future teachers, we must
do a better job at modeling such reflective practices. Furthermore, we must create opportunities for
which PSMTs can participate in public reflective practice. In this way PSMTs are called upon to listen
and respond to their peers when undertaking these essential reflective tasks.

Finally, establishing the purpose of particular historical problems may yield important informa-
tion regarding the question of whether historical problem solving contributes to mathematical knowl-
edge for teaching. For example, explicitly presenting the method of false position as a way to analyze
rate of change may have prevented many PSMTs’ reflections focused on the perceived difficulty or
inefficiency of the method. Instead, PSMTs could be prompted to focus on what mathematical ideas
are present, why the mathematics “works”, and the ways in which different mathematical ideas are
related or represented. Such information may help reveal with more certainty the knowledge PSMTs
possess (Rowland, 2010) and has the potential to tease out the influence of historical problem solving
on the subdomains Ball, et al. (2008) described.
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ABSTRACT

What do children learn in mathematics classroom? Of course, it might be mathematical con-
cepts as well as mathematical theories that they should learn. But usually the concepts and theories
are quite abstract, and they cannot understand them so easily. In addition, they should also un-
derstand that they learn mathematics for the activities in their everyday life. For the purpose, they
should also see concrete features of mathematics. Then, how can teachers give them the concrete
subjects of mathematics? In this paper, we discuss an experiment in mathematics classroom, as an
example of concrete subject.

Here we show the experiment about Nautilus shell. It is often said that the Nautilus shell has
a logarithmic spiral whose growing rate is related to the golden ratio. From a viewpoint of bio-
logical investigation, Theodore Cook and D’Arcy Thompson published each of their works on the
morphology of the nature at the beginning of the 20th century. In their works, they discussed the
spiral of Nautilus shell. Recently, the subject of this kind is treated in many books on mathematics
for the specialists and even for the general public.

From this experiment, we can find that the growth curve of the Nautilus shell is almost ex-
actly a logarithmic spiral. Through this discussion, we also show that Nautilus shell is one of most
applicable examples, because it can be examines according to children’s level (both their school
curriculum and their ability). Moreover, we can get the same results repeating the procedure with
another type of Nautilus shell called Nautilus macrompharus (native to New Caledonia), etc.

Finally, we discuss the benefit of the experiment in mathematics classroom, as follows:

(1) Children can understand the feature (the form) of living things mathematically,
(2) Children can understand concrete features of mathematical subjects,
(3) Children can understand mathematics through various concrete features of mathematics

(4) Teachers can encourage students to interest themselves to mathematics

“First Author
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In addition, the experiment presented here had been already conducted in the high school math-
ematics classroom, as well as even in the teacher-training course, and this trial also included the
analysis applied with Excel software.

1 Introduction

1.1 Background

Nowadays, mathematics is considered to be universal. The universality of mathematics seems to be
argued from the fact that mathematics has developed, especially after Descartes in the 17th century,
with the aim of forming a conceptual system in spite of various aspects of its development process. We
are now sharing almost the same mathematics all over the world and its globalization is very impor-
tant to develop our scientific and technological civilizations at present. Thinking about the historical
development, universality is not always true; on the contrary, it is sometimes a prejudiced perspec-
tive under eurocentrism!. After the Scientific Revolution of the 17th century, the framework of human
thinking has kept a certain kind of universality. It has been based on the “new scientific thinking” of
the 17th century, and we can find the features of our modern civilization in that extension realized
through the 18th century. Mathematics is considered to have the same evolutionary process.

With this in mind, we can see the reason why mathematics is considered to be a universal
discipline at present. Mathematics today has, in a sense, developed under eurocentrism. Although
various kinds of mathematics were developed in each civilization, we perceive mathematics to be
a conceptual discipline which has been formed by cutting off many concrete human-cultural parts
and by rearranging the remaining conceptual parts into a logical and concise system. This kind of
mathematics is surely convenient for mathematicians, but not so comprehensible to the public as well
as mathematics education; for, universal mathematics formed under eurocentrism loses the features
that represent the original character related to human life and culture.

All that human beings have built up should be considered to be a part of civilization, and therefore,
mathematics, which is a product of human wisdom, must also be a kind of civilization. When we
consider mathematics as a key element to understanding our civilization, we should see a society or
a community including mathematics as an integrated system of multi-cultured dimensions just as
human cultures, human life-styles, science and technology, etc. Here, we could find some elements
for mathematics classroom; we could find concrete subjects which are related closely to children’s
direct understanding, for example in everyday life, in the nature, etc.

Then, how can teachers give such concrete subjects to children? When they choose a material, they
can show its mathematical feature theoretically; this might be an explanation from a deductive point
of view. But they can also show it in another way. Especially concerning materials seen in the nature,
we can analyze them through an experiment from a viewpoint of mathematical theory.

'For example, let us discuss the historical process of the abstraction of mathematics. Generally speaking, there exist
three typical periods of abstraction: ancient Greece, the 17th century and the 19th century. This gives us a composition that
is most easy to understand when we look at mathematics from a macroscopic perspective. It is also from a viewpoint of
eurocentrism that mathematics has been developed around Europe.
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1.2 Problématique

In this paper, we discuss the possibility of “mathematical experiments”. Here, by taking the case of
Nautilus shell, we try to show how to investigate it from a mathematical viewpoint.

It is often said that the Nautilus shell has a logarithmic spiral whose growing rate is related
to the golden ratio. The logarithmic curve is thought to have been developed by Rene Descartes,
French mathematician. At that time, Jan Swammerdam (1637-1680), Dutch biologist, and Christopher
Wren (1632-1728), English architect, studied the spirals of snail shells. From a biological viewpoint,
Theodore Cook and D’Arcy Thompson published each of their works on this subject at the beginning
of the 20th century?. In their works, they discussed the spiral of Nautilus shell. Recently, the subject of
this kind is treated in many books on mathematics for the specialists and even for the general public.
For example, Ian Stewart as well as other authors discussed the formation of the spiral of Nautilus
shell®.

We can investigate the features of the spiral that the Nautilus shell creates during its growth. By
tracing the spiral curve that appears along the cross section of the cut Nautilus shell, and by drawing a
series of the tangents of the curve which intersect with each other perpendicularly, we can see a series
of the length of the tangents and even the radii. Then by calculating the rate of increase between each
successive length, we can find that this sequence is a geometrical progression and that the lengths and
the numbers of order (the value of the angles) are related to each other as an exponential function.
And on further investigation we can also find that the coefficient of the growth is slightly larger than
the golden ratio.

This is an example of the practicable experiments in the mathematics classroom. This experiment
had been already conducted in the high school mathematics classroom, as well as even in the teacher-
training course. This trial also included the analysis applied with Excel software.

In this paper, we also discuss how we can realize the experiment and how to examine the results
according to children’s level (children’s school curriculum or even mathematical ability). As men-
tioned in the section 3, the result of this experiment can discuss in various manner. Therefore, we
could handle the result depending on the subjects that children learn at school (i.e. the problems re-
lated to a geometrical progression, an exponential function, etc.). In addition, since the example is
quite concrete, children could be convinced of the result even depending on each of their own abili-
ties.

In conclusion, we discuss the benefit of the experiment in mathematics classroom.

2 Method of the Experiment on Nautilus shell

2.1 Preparation

(a) Material
- Nautilus pompilius shell (a species native to the Philippines), which is cut right down the

middle into the two similar parts.

2Cook, Theodore Andrea, The corves of Life, Dover Publication, 1979 (originally published in 1914). Thompson, D’Arcy,
On the Gowth and Form, Dover Publication, 1992 (originally publishd 1917).
3GStewart, Ian, Nature’s Numbers, Basic Books, 1995
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(b) Tool
- a flat vat, absorbent cotton, a clear glass plate (a clear acrylic plate),

a tracing paper (squared graph paper), a ruler (a caliper)

2.2 Experiment

The experiment shoud be carried out in the following procedures.
[1] Trace the spiral curve of the Nautilus shell on the tracing paper:

(1-1) cover the bottom of the vat with plenty of absorbent cotton

(1-2) put the cut Nautilus shell onto the absorbent cotton (the cross section upward) and cover it with
a clear glass plate to fix the shell firmly on the absorbent cotton

(1-3) puta tracing paper on the glass plate and trace by hand the spiral curve of the shell on the paper
(handwriting)

[2] Investigate the properties of the spiral curve:

(2-1) draw a series of the tangents of the curve which intersect with each other perpendicularly (see
Fig. 1)

(2-2) measure the length of each tangent in ascending order from the shortest one (P P>, Po P, P3Py,
-+, in the Fig. 1)

(2-3) draw a segment joining the points of contact on the horizontal tangents (75771) and another
segment joining the points of contact on the vertical tangents (73770)

(2-4) find the center of the spiral as the intersection of these segments (O)

(2-5) measure the length of each radius in ascending order from the shortest radius at the right angle
(here radius means the length between the center and each point of contact, T3, OT5, OT3, *+*)

(2-6) calculate the ratio between the lengths of two consecutive tangents (between horizontal tan-
gents, between vertical tangents, etc.)

Pu
Tu

Fig.1 The tangents drawn of the spiral

We show the picture just about a specific sample (see Fig. 2).
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Fig.2 Nautilus shell and its tangents

3 Results and Discussion of the the Experiment

3.1 Result

223

According to the experiment mentioned above, we can get the result as follows (just about the specific

sample shown in the Fig. 2):

Table 1 The length of tangents

Tangents al bl a9 bg as bg ay b4 as b5
Length(horizontal) | 13 24 37 64 108
Length(vertical) 18 31 49 82 143
(mm)

Table 2 The length of radii

Radii T 72 73 T4 5 T6 7 r8 79 10
Length | 69 | 9.6 | 12.7 | 16.4 | 19.6 | 26.0 | 343 | 43.5 | 57.3 | 759
(mm)

where a;, b; and 7}, are defined as follows:

— a series of the length of the tangents
horizontally: a1 = P P>, ap = P3Py, a3 = PsFg, ***
vertically : by = P2 P3, by = PyPs, a3 = PPy, -+

— a series of the length of the radii
r1 =0T, 1m0 =0T, r3 =0P3,

Then, the ratio of two consecutive horizontal tangents is as follows:
ag/al = 1.84..., a3/a2 = 1.54..., a4/a3 = 1.72..., a5/a4 = 1.68...
and concerning the vertical tangents,

by/by = 1.72..., b3 /by = 1,58..., by/bs = 1.67..., bs/by = 1.74....
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Moreover, the ratio of each two consecutive tangents is as follows:

bl/al == 138, ag/bl == 133, bg/ag == 129, CLg/bg == 119, b3/a3 == 132,
(l4/b3 = 130, b4/a4 = 128, a5/b4 = 131, b5/a5 =1.32....

In addition, concerning each two consecutive radii, we get the ratio between them as follows:

7"2/7"1 = 1.39..., 7“3/7“2 = 1.32..., 7'4/7'3 = 1.29..., 7“5/7“4 = 1.19..., 7"6/7"5 = 1.32...,
r7/re = 1.31..., rg/r7 = 1.26..., r9/rs = 1.31..., r109/19 = 1.32....

From these values, it is resulted that

(A) the ratio between two consecutive horizontal tangents seems to be nearly equal to the value 1.7,
(B) the ratio between two consecutive vertical taggents seems to be nearly equal to the value 1.7,
(C) the ratio between two consecutive tangents seems to be nearly equal to the value 1.3.

(D) the ratio between two consecutive radii seems to be nearly equal to the value 1.3.

3.2 Discussion (1) — from a viewpoint of mathematics classroom

From the results of the experiment about the Nautilus shell, we can investigate various properties
depending on the situation of children’s understanding. For example, in the first year (or second year)
of a high school, students study the theory of progression. Therefore, they can understand that the
sequence of the length of the consecutive tangents (or the consecutive radii) appeared in the Nautilus
shell is considered as a geometrical progression. Perhaps, as to the ratio between two consecutive
tangents (or the consecutive radii), even junior high school students can understand the fact. But it
is just high school students in a science and engineering course who can understand that the spiral
possessed in Nautilus shell could be considered as a logarithmic spiral.

Thinking so, we can say that Nautilus shell is one of most applicable materials in mathematics

classroom; for it includes various aspects that we show below.

(1) From a viewpoint of a geometrical progression

The sequence of the length of consecutive tangents is considered as a geometrical progression, with
the value about 1.3 as the common ratio. In addition, the sequence of the length of consecutive hori-
zontal (vertical) tangents is also considered to be a geometrical progression with the value about 1.7
as the common ratio. Here, it should be noted that the value 1.3 is nearly equal to the square root
of 1.7. And the value 1.7 is considered to be nearly equal to the golden number 1.618+:-. Then, each
tangent seems to increase at the rate of the square root of the golden ratio at each right angle, and
therefore at the rate of the golden ratio at each 180 degrees.

(2) From a geometrical view point

In the experiment, the length of each radius is also measured. Then we can see the ratio between two
consecutive radii is equal to the ratio between two consecutive tangents. This can be argued from a
geometrical construction shown in the Fig. 3. Here, the triangles OPQ, OQR, ORS are similar to each
other, then we can easily obtain the result as

PQ:QR:RS=0U:0V:0W.
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According to this fact, it is also true that the ratio of two consecutive tangents is considered as the rate

of the growth of Nautilus shell.

Fig. 3 Nautilus shell and its center

In the experiment, the procedures (2-3) and (2-4)
can be attained on the hypothesis that the sipiral
is a logarithmic. It is because all the points of
contact could be arranged on the same segments
only when the angle between the radius and
each tangent are always equal to a constant
value (an equiangular spiral). And only in this
condition, the center of the spiral curve could be
fixed (see the Fig. 4).

In the Table 2, the length of each radius is re-
lated to the growth of the shell in every right an-
gle. Thinking of the geometrical discussion men-
tioned above, the length of each tangent coin-
cides with that of each radius. Then, we can in-
vestigate the growth rate of Nautilus shell by us-
ing the length of the tangents (Table 1).

Rewriting the Table 1 as follows:

Fiz. 4 Equiangular Spiral

Table 3 The length of tangents (rewritten)

No. 1123|456 7]|8 9 10
Length | 13 | 18 | 24 | 31 | 37 | 49 | 64 | 82 | 108 | 143
(mm)

where each number of order signifies the value of the angle increasing in every right angle (here,

we adopt the number of order for simplifying; i.e. the number % signifies the value & () /2, for

k=1,2,...,10).
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When we approximate the relation between the number and the length to an exponential function,
we can get the following graph (by means of Excel software).

160
120
100

80 /

(610]

40

20

0 T T T T T T T T T
1 2 3 4 5 G T 5 9 10

Fig. 5 Relation between the number and the length

This graph shows that the approximation is quite suitable, and then, the fact that Nautilus shell has
a curve close to a logarithmic spiral can be clarified.

(4) From a viewpoint of the golden ratio
Considering the discussion of the fact that the spiral of Nautilus shell is logarithmic, we can continue
to investigate if Nautilus shall has the golden ratio.
From the argument in (3), we can put the following expression as the formula of the spiral of
Nautilus shell,
r = Aef* (where r=radius, x=angle; A, K : constants)

Here, suppose that the rate of the radius is dr (= 7’/r) depending on the difference of the angle
dx = 2'—x, and then,

dr = efd®

therefore
logdr = Kdzx.

If the growing rate of the spiral of Nautilus shell is equal to the golden ratio, from the discussion
in 3.1., the ratio between two tangents in every 180 degrees might be equal to the golden ratio; in
consequence,

dr =1.618..., dx = 3.1415..., then K = 0.1532

In the case of the expression in the graph shown above, the value of exponent is equal to 0.2589. Since
this value is calculated with the numbers as variable, by converting this variable into the value of the
angle, we get, in this case

K =0.2589 % 2/3.1415... = 0.1648...

In consequence, we find that the rate of the growth is slightly larger than the golden ratio.
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4 QObservation

4.1 Historical Comment

The experiment conducted here in itself is quite biological, because it clarifies the feature of Nautilus
shell: we can find that Nautilus shell possesses a logarithmic spiral in its structure. However, this fact
is simultaneously mathematical, because it should be one of the conspicuous examples that the form
(or the figure) of living things can be analyzed and explained by means of mathematical theory.

Historically, the form of living things has not always been explained by means of mathematics.
Of course, we can found some specific cases; for example, it is known that Pappus (B.C. 3C.) tried to
explain the hexagonal section of a honeycomb geometrically. But, especially as to a logarithmic spiral,
it seems to have been discussed as a mathematical problem. Maybe Leonardo da Vinch (1452-1519)
tried to discuss a kind of spiral, but it might be concerned with the flow of water and the women’s
hair. At that time, Albrecht Diirer (1471-1528) is known to discuss a logarithmic spiral implicitly. After
Descartes” mathematical discussion on this spiral, in the 17th and 18th centuries, there appeared some
trials concerning the form of shell.

However, it is just in the second half of the 19th century or even early in the 20th century that the
form of living things had become a subject of mathematical research. We could say that some kind of
mathematical morphology had just established at that time. Concerning the curves of living things,
Theodore Cook and D’Arcy Thompson are evaluated as pioneer of this field.

Nowadays, it is well said that Nautilus shell has the golden ratio in its form. It is true that Cook
and Thompson suggested this matter in their works. But their methods are not so clear. From a view-
point of research, the form and the growth of living things are so complicated that we cannot discuss
easily. On the contrary, just about Nautilus shell, the spiral appeared in it is so harmonic that we can
understand its feature even mathematically. It is considered as a suitable material for children. In this
paper, we tried to show how we can handle its spiral. Naturally, with the present advanced technol-
ogy, we can make use of various kinds of devices (a photocopy, a scanner, a digital camera, etc.) to
get the image of the spiral. But here, we adopted a way to trace the spiral by hand, because we think
that a hands-on activity should be important for children.

4.2 Experiment in Mathematics Classroom

From the experiment, we can conclude that the growth curve of the Nautilus shell is almost exactly
a logarithmic spiral. Moreover, we can get the same results by repeating the procedure with another
type of Nautilus shell called Nautilus macrompharus native to New Caledonia, as well as other type of
the shells (for example, Argonauta argo called a Paper Nautilus).

This is an example of the experiment in the mathematics classroom. Well, what is the benefit of

the experiment in mathematics classroom? In conclusion, we show four points as follows:

(1) To understand the feature (the form) of living things mathematically:

It is a biological experiment, in itself. Each student handles each sample and then get each result. But
when students accumulate each of their results, they can find that nautilus shell (as well as other kinds
of shells) would have a proper feature that its spiral is close to a logarithmic curve. This is merely a
kind of a scientific experiment, to be sure, but students can understand the validity and the advantage
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of mathematics which can integrate what they acquired and after all even their thinking.

(2) To understand concrete features of mathematical subjects:

Normally, in the classroom, students try to understand mathematical concepts and theories. Since
mathematics is often abstract, students are apt to feel that mathematics is far from their activities. On
the contrary, through an experiment, students handle concrete objects, which include mathematical
teatures. Well, what should students learn in mathematics classroom? It is not only how to under-
stand mathematics but also how to think their activities and how to live by means of mathematical
thinking. When we face some mathematical objects, we can understand various aspects hiding these
objects through the experiment. It is because the experiment promotes various kinds of perspective.

(3) To understand mathematics through various concrete features of mathematics

How can we understand objects that we are facing? When student try to understand a abstract con-
cept, usually some concrete examples might be quite helpful. Because, it is easier to understand at
first some concrete matters and then to induce general matter. Therefore, experiments could give to

students the first starting points and the direction of thinking.

(4) To encourage students to interest themselves to mathematics

From a viewpoint of mathematical education, teachers should discuss the methods to encourage chil-
dren to interest themselves in mathematics. At present, we can find some mathematical museums,
where many kinds of visual devices and hands-on exhibits are set up. Perhaps, many students are
interested in such museums, and even some adult are still eager to visit. The experiment in mathe-
matics classroom could play the same role as the devices and the exhibits in mathematical museums.

Therefore, it is necessary and important for teachers to consider that mathematics is related to
many things around us, our culture, our everyday life, the nature, etc. The trial of some experiments
could become one of key elements for mathematics education in the future.
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ABSTRACT

Starting from August of 1852 the British Protestant missionary and sinologist, Alexander Wylie
(1815-1887), published in nine instalments an account Jottings on the Science of the Chinese Arithmetic
in the newspaper North China Herald. He explained clearly the purpose of his account at the begin-
ning:

“The object of the following desultory notes, made from time to time, in the course of some

researches entered upon, with another purpose in view, is to draw attention to the state of the

arithmetical science in China, a subject which has not been so fully explored as it might with
advantage, and on which some erroneous statements have been current in modern publica-
tions.”

Alexander Wylie is a well-known figure in the last quarter of the Qing Dynasty for his contribution
in transmitting Western science into China during the latter half of the 19th century. In mathematics
he was known for translating three treatises in collaboration with the Qing mathematician Li Shan-
lan (1811-1882) — Supplementary Elements of Geometry in 1856 but published in 1865 (believed to be
based on the English translation of Book VII to XV of Elements by Henry Billingsley in 1570), Treatise
of Algebra in 1859 (based on Elements of Algebra by Agustus De Morgan in 1835) and Analytical
Geometry and Differential and Integral Calculus Step by Step in 1859 (based on Elements of Analytical
Geometry and of the Differential and Integral Calculus of Elias Loomis in 1850). He was also the author
of Compendium of Arithmetic published in 1853.

This presentation will discuss the knowledge of Chinese science and mathematics which most
European sinologists of the 18th and 19th centuries possessed and the low regard they held it in,
but the viewpoint of which was critically examined by Wylie in his account.

Keywords: Alexander Wylie, Chinese mathematics, arithmetic, algebra

1 Introduction

Alexander Wylie (1815-1887) was a Protestant missionary of the London Missionary Society and later
an agent of the British and Foreign Bible Society in China. He was sent to China by the London Mis-
sionary Society in 1847. His contribution was not only on spreading Christian faith to China, but

“First Author
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perhaps more importantly on the intellectual exchange of scientific and mathematical knowledge be-
tween China and Western countries. He was well-known in transmitting Western science and math-
ematics into China by publishing and translating scientific books (in collaboration with Li Shan-lan
235 l) such as Compendium of Arithmetic (Wylie, 1853), Supplementary Elements of Geometry (Wylie
and Li, 1865), Treatise of Algebra (Wylie and Li, 1859a), Analytical Geometry and Differential and Integral
Calculus Step by Step (Wylie and Li, 1859b). On the other hand, he was also a sinologist who brought
Chinese literary, philosophy, science and mathematics to the Western world especially Britain. Dur-
ing his 30 years of stay in China, Wylie collected many Chinese books in different disciplines. He
published Notes on Chinese Literature (Wylie, 1867) which provides a bibliography with detailed ex-
planatory notes on Chinese books. He had also written a number of articles related to China which
were published in newspapers and periodicals. His colleague James Thomas selected some of these
articles and edited as Chinese Researches (Wylie, 1897). These two books provided valuable sources for
Westerners in the 19th century to know about China (in a new light).

In an accompanying workshop by the same authors, titled “ Chinese Arithmetic in the Eyes of a British
Missionary and Calculus in the Eyes of a Chinese Mathematician”, we will focus on Wylie’s introduction
of (Western) algebra and calculus into China. The present paper supplements and complements this
workshop. We will focus on how Wylie introduced Chinese mathematics to his own country. In partic-
ular, we will discuss a series of newspaper articles titled Jottings on the Science of the Chinese Arithmetic?,
which were first published in nine instalments from August to November of 1852 in North China Her-
ald and later reprinted in Chinese Researches (Wylie, 1897, pp. 159-194). This series of articles played
a pioneering role in the study of the history of Chinese mathematics in the Western world. It may
be the only reliable (Western) source on the history of Chinese mathematics before the publication
of Yoshio Mikami’s The Development of Mathematics in China and Japan in 1913 (Wang, 1999). Dauben
(2000) gives the following comment on Jottings:

“This article is the first in English to give a reliable account, for the most part, of Chinese math-
ematics **-. Given the pioneering nature of this work, it is not surprising that it contains various
errors and inaccuracies -*-. Nevertheless, the “Jottings” is an important work for the history of
Chinese mathematics, and was to have a significant influence upon such prominent historians of
mathematics as Moritz Cantor, Florian Cajori, and David E. Smith.” (Dauben, 2000, p. 781-782)

According to Wylie, the objective of this series of articles is to clarify some erroneous statements about
the status of mathematics in China that were found in (Western) publications at his time. He explained
clearly this purpose at the beginning:

“The object of the following desultory notes, made from time to time, in the course of
some researches entered upon, with another purpose in view, is to draw attention to the
state of the arithmetical science in China, a subject which has not been so fully explored
as it might with advantage, and on which some erroneous statements have been current

in modern publications.”

In this presentation, we will first outline Westerners” common views at Wylie’s time on the status of
Chinese mathematics. Then, we will discuss how Wylie responded to these views in his Jottings and

'In subsequent discussion, we will use “Jottings” as the abbreviation for the article Jottings on the Science of the Chinese
Arithmetic.
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evaluate his viewpoints in the light of contemporary literature on history of Chinese mathematics.
Finally, we will discuss the implication of this historical document to current mathematics education.
Since this paper is to be submitted five months before the actual presentation so that the authors lack
the opportunity of benefitting from comments and views of colleagues in the audience, the present
record will focus mainly on Wylie’s response to the erroneous statements, while its pedagogical im-
plication will be discussed in more detailed during the actual presentation.

The Chinese terms in the text are written in a system adopted by Wylie in his writings, which is
not exactly the (older) Wade-Giles system nor the (more modern) Pinyin system.

2 Common views of Westerners in the 19th Century about Chinese

mathematics

In this section, we will give a brief account (with support from excerpts of source materials) on the
common views of Westerners in the 19th Century about Chinese mathematics. It will provide back-
ground information to the subsequent discussions on Wylie’s Jottings. We are indebted to Wang (2004)
in directing us to some of these source materials.

Generally speaking, Westerners in the 19th Century thought that Chinese possessed only very
limited mathematical knowledge which was far behind them (the Europeans). They also thought that
mathematics was a neglected discipline to the Chinese. These views are evidenced from the following
quotations:

e “The knowledge of mathematics even among learned men is very small, and the common

people study it only as far as their business requires.” (William, 1848, p. 147)

¢ “For their [Chinese] acquaintance with the exact sciences cannot for a moment bear compari-

son with that of Europeans.” (Murray et al., 1836, p. 224)

¢ “Ithappens that men of genius neglect that kind of knowledge [knowledge of mathematics and
astronomy], and pursue the more popular branches which lead to honour and emolument.”

(Murray et al., 1836, p. 225)

2.1 Contribution of Jesuit missionaries to Chinese mathematics

The prevalent Western view at the time was that Chinese books on mathematics were based on con-
tribution from the Jesuit missionaries. For instance, William (1848) pointed out that the Swan-fah Tung
Tsung (General Comprehensive Arithmetic) and the Tsuimi-shan Fang Sho Hioh (Mathematics of the Lager-
straemia Hill Institution) contained a lot of material from the mathematical writings of the Jesuit mis-

sionaries. Similarly, Davis claimed that:

“In the science of numbers, and in geometry, the Chinese have, as usual, nothing to teach us;
being, on the contrary, indebted for a good deal to Europe, as may be seen from the logarithmic
tables and other works prepared for the Emperor Kang-hy by the Jesuits.” (Davis, 1851, p.282)

However, the impact of Western mathematics transmitted by the Jesuits was small. For instance, Mur-

ray et al claimed that:

“the progress which it had made in that country [China], when compared to the time it had been
cultivated before the Jesuit missionaries obtained a footing among them, was extremely small.
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-*+ it may be inferred, that there existed in that country no mathematics by which it could be
improved.” (Murray et al, 1836, p.231)

2.2 Chinese numeric notation, arithmetic and algebra

According to the understanding of Westerners, “the [numeric] notation of the Chinese is based on the
decimal principle, but their figures are not changed in value by position, and it is difficult therefore to
write out clearly the solution of a question.” (William, 1848, p. 146). William continued to explain that
this was overcome, in arithmetical calculations, by the assistance of an abacus. However, he pointed
out that its disadvantage is that “if an error be made, the whole must be performed again, since the
result only appears when the sum is finished” (William, 1848, p. 146). Therefore, he concluded that:
“This mode of notation - falls far behind the Arabic system now in general use in the west” (William,
1848, p. 146).

Other literature of Westerners in this period shared similar opinion. For instance, Murray et al.
(1836) gave the following comments on the abacus and Chinese numeric notation and arithmetic:

“It must, however, be admitted, that although this machine [the abacus] be well adapted for ex-
plaining the principles of arithmetic, it would be a very inadequate substitute for our Arabic
numerals, more especially in those laborious calculations which the progress of European sci-
ence has rendered indispensable. Sir George Staunton says, that the Chinese have no characters,
except those in their common language, to express sums in an abbreviated form, after the man-
ner of the Arabic figures used by Europeans. When, however, they have occasion to introduce
numbers in their writings, they have recourse to their ordinary terms, each of which denotes a
numerical value, independently of its relative position, - a method less tedious indeed than the
expression of the same numbers by the method of alphabetical writing, but which by no means
equals the conciseness of the same process in the Arabic notation. The universal multiplication
and subdivision of all quantities by decimal proportions, facilitates their calculations, and pre-
vents the necessity of methods to abridge them.” (Murray et al., 1836, p. 228-229)

Davis (1851) not only repeated the above opinions, he even claimed that: “No algebraic knowledge
is to be found in China” (Davis, 1851, p. 282). Unfortunately, this erroneous statement was rather
popular among Westerners in that period. Indeed, in his Jottings, Wylie put quite a lot of effort to
correct this misunderstanding.

2.3 Summary

Based on the source materials above, common views of Westerners at Wylie’s time can be listed below:

1. Chinese mathematics was far behind Western mathematics.

2. Nothing about Chinese Mathematics was worth learning by Westerners. On the contrary,
Chinese mathematics benefited wholly from Western mathematics (for example, logarithm)
which was transmitted by the (Jesuit) missionaries.

3. Chinese numeric notation was cumbersome. It fell far behind the Arabic numeric system used
by Westerners. Although the notation was based on decimal principle, it did not have local
value (that is, the numeric figures were not changed in value by positions).
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4. Abacus was an apparatus which assisted the Chinese to do arithmetic calculation, but it was
not very useful — at least, it was inadequate as a substitute for the Arabic numeric system.
5. There was no algebra in Chinese mathematics.

In the next section, we will describe how Wylie responded to these views in his Jottings.

3 Wylie’s response in his Jottings

Wang (1998) gave a detailed analysis on the structure and content of Wylie’s Jottings, with selected
passages translated into Chinese. In this presentation, we analyse Jottings from another perspective,
namely, how Wylie responded to Westerners’ common (erroneous) views about Chinese mathematics.
In the following discussion, the page numbers of Jottings refer to those in the Chinese Researches reprint
edition.

3.1 The history of abacus

Wylie wrote: “It has been erroneously stated by some authors that the Chinese have used the %
# Swan-pan or abacus from time immemorial.” (p.168). It seems that this erroneous statement was
rather common among Westerners at that time (see for instances, Murray, 1836, pp. 227-228; Davis,
1851, p.283-284). Wylie pointed out that the abacus was indeed introduced in “comparatively recent
date”. He continued to introduce the Show or tallies which is a predecessor of abacus. “In ancient time
calculations were carried on by means of # Show or tallies made of bamboo” (p.168). We remark that
the history of abacus and tallies mentioned by Wylie is basically correct. Martzloff (1997, Chapter 13)
pointed out that the counting rods (tallies) can be traced as early as Former Han Dynasty (1st century,
B.C.E.) and kept on playing an important role in Chinese mathematics until the Yuan Dynasty (13—
14th century). It was also pointed out that “the abacus only entered into common use in China from
the second half of the 16th Century [Ming Dynasty]” (p. 215).

The most interesting thing about the tallies which Wylie correctly pointed out is that “the written
character is evidently a rude representation of these [the tallies] ” (p. 168). He made an analogy of this
kind of written representation with the Roman numerals and pointed out that both systems have a
new symbol for the increment of 5. It provided evidence suggesting that the Chinese numeric notation
depended on the theory of local values at a time much earlier than the European understood this
theory.

3.2 Local values in Chinese written numbers

On p. 169 of his Jottings, Wylie quoted several books of his time, including Penny Cyclopaedia of the
Society for the Diffusion of Useful Knowledge (edited by Charles Knight, 1833) and also Sir John Davis’s
works, which claimed that the Chinese written numeration does not have local value. Wylie disagreed
and pointed out that “an example from any native work will be a sufficient reply to the above state-
ments” (p.169). Then, he quoted a question from Chapter 8 of Soo-shoo-kew-chang (Nine Sections of the
Art of Numbers)? #17% /. % by Tsin kew-chaon (Song Dynasty, 13th century) as a “random” example.
Wylie used this example as an illustration that the arithmetical work in (ancient) China was essentially

2Nowadays, this book is known as Mathematical Treatise in Nine Sections.
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the same as what English did, except perhaps with different meanings in some terms. In particular,
Wylie argued that “the author [of Nine Sections of the Art of Numbers] had the same view with regard
to local value,*+, as that universally adopted by modern civilized nations” (p.169).

It is interesting to note that in later part of Jottings when Wylie introduced the method of Tien-
yuen-yih K Jt— (Chinese algebra of polynomials) found in the Yuan Dynasty, he has the following

comments:

“In the Tien-yuen-yih, unity is employed as the representative of an unknown number; this being
combined with an extension of the theory of local value, in order to represent the successive
powers of the Monad or unknown number” (p.182).

“It is not a little remarkable, that while it has been gravely asserted by most respectable author-
ities in Europe, that the Chinese are ignorant of the meaning of local value, we find here on the
contrary, that they have pushed the principle to a degree of refinement unpracticed in the west”
(p.182).

In other words, Wylie pointed out that the polynomial representation in the method of Tien-yuen-yih
is indeed a generalization of the theory of local value.

3.3 Algebra in ancient China

In order to respond to the claim that there is no algebra in China, Wylie provided some concrete
algebraic methods found in ancient China. It is interesting to note Wylie’s comments on the dates for
the origin of these methods:

“In examining the productions of the Chinese one finds considerable difficulty in assigning the
precise date for the origin of any mathematical process; for on almost every point, where we
consult a native author, we find references to some still earlier work on the subject” (p.175).

Nevertheless, this quotation suggests that Wylie believed that algebraic knowledge did indeed exist
in China long time ago.

Ta-yen (“Great Extension”) KAT (known as “Chinese Remainder Theorem” nowadays) may be
the most well-known algebraic method introduced by Wylie in his Jottings. As a result of a German
translation of Jottings (translated by K.L. Biernatzki), this method had drawn the attention of West-
ern historians. Unfortunately, because of some misinterpretation in this German translation, some
of these historians thought that this method was mathematically incorrect. After a long process of
investigation (thanks to the work of L. Matthiessen in 1881) Westerners realized that Ta-yen method
was indeed equivalent to the method devised by Gauss. Finally, this method was recognized as the
Chinese Remainder Theorem. Readers who are interested in the details of this story may refer to
Wang (2004). We now come back to the discussion on how Wylie introduced the method of Ta-yen in
his Jottings. First, Wylie quoted the well-known problem of Wuh-puh-chi-soo (“Unknown Numerical
Quantities”) YA K1 appeared in Sun-tsze Swan-king (Sun Tsze's Arithmetical Classic)®>(Chin Dynasty,
1st Century):

“Given an unknown number, which when divided by 3, leaves a remainder of 2; when divided
by 5, it leaves 3; and when divided by 7, leaves 2; what is the number?” (p.175)

3Nowadays, this book is known as Master Sun’s Arithmetical Manual.
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After giving a brief discussion of the method of solution, Wylie proceeded to describe the general
method given in Chapter 1 (Ta-yen) in Nine Sections of the Art of Numbers. It is interesting (but may
not be so appropriate*) that he selected Problem 1 in the Chapter of Ta-yen as an illustration of this
method. Despite the fact that this principle is not very clearly explained (for instance, the precise
procedure of “finding unity”), Wylie’s work played a pioneering role in introducing this method to
Westerners.

Another method introduced by Wylie is the Tien-yuen-yih(unity)® as “the representative of an un-
known number” (p.182). This was an ancient Chinese method of representing a polynomial of one
variable. More precisely, ancient Chinese used different terms (such as Yuen7t, TaiX, Tai-kieh JXA&)
to represent the coefficients of different powers of an unknown quantity, that is, variable x (in today’s
terminology). As mentioned in a previous section, Wylie regarded it as “an extension of the theory of
local value”. Furthermore, he also pointed out that “the method invented by Hariot, of placing all the
significant terms on one side, is precisely that used by the Chinese [as demonstrated by Tien-yuen-yih]
some five centuries earlier; and although in itself but a variation in algebraic language, yet it is said
by De Morgan to have been the foundation of most important branches of the science” (p.182).

Next, Wylie pointed out that Horner’s method of “solving equations of all orders” which was first
published in 1819 (some 30 years before the publication of Jottings) could be found in Nine Sections
of the Art of Numbers (Song Dynasty, 13th century which was 6 century earlier). Again, this gives an-
other example that many algebraic methods known by Westerners were already known by Chinese
many centuries earlier. This serves as a refutation of the Westerners” usual claim that “no algebraic
knowledge is to be found in China”.

3.4 Chinese mathematics versus Western mathematics

The overall purpose of Wylie’s Jottings is to respond to the common Westerners’ view (at his time) that
Chinese mathematics was far behind their Western mathematics and nothing in Chinese Mathemat-
ics was worth learning. As discussed above, Wylie provided some examples to support an opposite
view, namely, quite an amount of mathematical knowledge known to Westerners at his time was ac-
tually discovered by ancient Chinese much earlier (some even several centuries earlier). The theory
of local values in numeric representations, the concept of negative numbers, Ta-yen (Chinese Remain-
der Theorem), Tien-yuen-yih (the method of representing a polynomial), and solving polynomials of
any degrees are some examples. Furthermore, detailed introduction of some classical Chinese math-
ematics books such as Kew-chang-swan-shun (Arithmetical Rules of the Nine Sections)® JL# 547 and
Soo-shoo-kew-chang (Nine Sections of the Art of Numbers) ¥{Z /L& are included in Jottings. Despite the
fact that it contains some erroneous descriptions on these books (see for instance, Wang 1998), it has
opened up a new window for Westerners to know about Chinese mathematics.

Wylie held a balanced view on Chinese mathematics and Western mathematics. On the one hand,
he did not underestimate Chinese mathematics; on the other hand, he recognized the contribution
of Western mathematics transmitted by the missionaries to the progress of mathematics in China. In
the last part of Jottings (p.188 and onwards), he gave a brief account on mathematics in Qing Dynasty

4See Wang (2004).

> Authors such as Wang (2004) pointed out that Wylie has (mistakenly) mixed up Ta-yen and Tien-yuen-yih. Indeed, they
are actually not related.

®Nowadays, this book is known as Nine Chapters on the Mathematical Art.
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and pointed out how Western mathematics influenced the development of mathematical ideas in

that period. For instance, the work of Li Shan-lan, who became one of Wylie’s close co-workers, on

logarithm (a mathematical idea transmitted by the Jesuit missionaries) was introduced. As revealed

in the following comment, Wylie paid rather high regard to Li’s work:

“This small indication of self-satisfaction may be very well overlooked, as quite pardonable in
one who has had no better aid than that afforded by the Leuh-lih-yuen-yuen, and who has here
given us, as the result of four years” thought, a theorem, which in the days of Briggs and Napier,
would have been sufficient to raise him to distinction.” (p.194)

The following closing remark in Jottings suffices to describe Wylie’s view on Chinese mathematics

and Western mathematics, which was indeed rather innovative in his time!

“It is true the Celestials are disposed to look with a feeling akin to contempt on the mushroom
antiquity of our Western lore; yet it is equally true that a spirit of inquiry still germinates among
them, which if fostered by a greater freedom of intercourse, will doubtless tend much to smooth
the asperities which now exist, and this prove mutually advantageous.” (p.194)
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ABSTRACT

Indian pedagogies are not well known to research community outside India. The researcher
refers to Indian literature to examine the pedagogies that have been in use in India since ancient
Vedic times. She also identifies the use of these pedagogies even in contemporary classroom. She
concludes that some of the current pedagogies such as memorization are culture-influenced ped-
agogies, culture being defined as a human learned behaviour.

Though pedagogies such as memorization and oral repetition which are considered in modern
times as not very beneficial in enhancing the learners’ intellect were used in ancient India, the re-
searcher cites that how problem solving was part of the mathematics curriculum in Thamizhakam
(Southern Indjia), the province in which the mathematician Ramanujan was born. The researcher
also cites how mathematics was taught and learnt in Thamizhakam. She quotes some of the an-
cient problem solving questions, which were transmitted orally for generations. She concludes that
though traditional methods such memorization and oral repetition were in use in Indian mathe-
matics classrooms, problem solving was also part of mathematics curriculum in Thamizhakam,
which could have galvanized the mathematical reasoning of the learners.

Keywords: Indian pedagogy, problem solving, Indian culture in education

1 Introduction

Due to the phenomenal growth in the number of schools, the literacy rate in India has risen drasti-
cally in the past 50 years. According to the census of 2011, 821 out of every 1000 men and 655 out of
every 1000 women could read and write (Department of School education). Guo (2005) praises In-
dia on witnessing “phenomenal educational development both in quantitative and qualitative terms,
since independence” (p. 190). However, there are not many classroom studies on Indian classrooms
focusing on teaching and learning.

Though India has produced many mathematicians, the pedagogy used in India is a mystery to
many researchers as India did not take part in any international studies and there are not many studies
on Indian pedagogies known to research community outside India. The researcher refers to literature
to examine the pedagogies used in India and identifies certain key characteristic pedagogies such as
oral transmission of knowledge, teacher questioning, memorization and oral repetition that have been
in use since ancient Vedic times. The researcher also cites how mathematics was taught and some of
the problem solving questions used in ancient Thamizhakam, the Tamil speaking part of South India,
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which could explain how the two extremes of the spectrum of pedagogy complemented each other
in the development of students” mathematical abilities.

2 Hallmarks of Indian Education

Each country has its own philosophy of education. Unlike the educational philosophies of Greece and
China, which separated education and religion, in Indian educational philosophy, they were inter-
twined to the extreme that “music and poetry became even handmaids to religion” (Venketeswara,
1980, p. 31). Mathematics known as Ganita was mainly used in ancient India to calculate auspicious
time to perform religious rituals and prayers based on the movement of planets and to build temples
and altars. On analyzing the pedagogy of Indian primary schools, Alexander (2000) deduces that de-
veloping character is more important in India than enhancing intellect. According to Asthana (2001),
the main function of education in India “to develop virtues, socially accepted thoughts and habits”
(p. 2). In the ancient Indian education system, “Culture not literacy, was the highest aim of education
in India” (Venketeswara, 1980, p. 24).

2.1 Borrowing others’ ideas and indianizing

Venketeswara (1980) claims that the main feature of Indian education was its comprehensiveness
as the curricula never excluded anything unfamiliar or new. According to him, “the expansiveness
of Indian culture was the adaptability of the old to altering conditions and new circumstances”(p.
26). Since ancient times, the Indians readily accept new things “without completely ringing out the
old” (ibid: p. 27). In their quest to search the truth, the Indians readily accept foreign doctrines. Ven-
keteswara (1980) suggests that the immensity of Indian culture is due to “a readiness to borrow”
(p.- 25) and an adaptation of the borrowed ideas to the conditions and climate of their own country.
“Astronomical terms were borrowed, they were skillfully Sanskritised and incorporated in Indian
Astronomy that they became flesh of its flesh and bone of its bone”(ibid: p. 26). Venketeswara (1980)
claims “the expansiveness of Indian culture is illustrated by a readiness to borrow, and an adaptation
of the borrowed details to the conditions of this clime and country” (pp. 25-26) and “the adaptabil-
ity of the old to altering conditions and new circumstances” (p. 26). The Indian educators have bor-
rowed the doctrine of constructivism and have introduced activities in mathematics teaching in recent
years. However, to maximize the success rate of students benefiting from the activities, the activities
are transformed into teacher-directed activities. The main aim of the activities is to make every one
including the average and below average students understand the mathematical concepts. In other
words the activities supplement the whole class teaching but are not substitute to teaching. Though
we can notice the introduction of collaborative learning, the use of ICT for learning and the use of
activities to teach mathematics concepts in Indian classrooms, we can also observe the ancient peda-
gogies such as the stress on memorization, mental computation, questioning and even oral repetition
in late 20th and 21st century Indian classrooms. This shows how the Indian society values ancient
pedagogy though welcomes some changes in teaching methods for the benefit of the students.
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3 Prominent Pedagogies of Teaching and Learning in India

3.1 Learning by listening

In ancient India, knowledge was transmitted orally. Though the art of writing was developed, the
teaching was mostly depended on verbal learning (Chatterjee, 1951, p. 189). Learning by listening
in India has been mentioned by Venketeswara (1980), “India stands alone in the emphasis of Sruti,
learning by the ear, even long after writing came into common vogue”(p. 25). Even Kautilya, the chief
advisor to the first Maurya Emperor in his book on politics Arthasastra (written around 300 B.C.) sums
up the object of study as follows:

“From hearing ensues knowledge, thence Yoga (steady application), thence Atmavatta (self pos-
session) (as quoted in Venketswara, 1980. p 164, emphasis added).

As oral pedagogy was predominant, listening to learn became indispensable. Venketswara (1980)
claims that “ both in Hindu and Buddhistic schools, instruction was oral; text-books were seldom
used” as Fa-Hien, a Chinese monk who visited India in 4th century “could not find a single copy of
the precepts in North India, where teachers trusted entirely to oral tradition” (p. 213). It is proposed
that most of the learned books might have been written by the 17th century only. In South India
known as Thamizhakam “the children began their lessons in mathematics with the learning of Tamil
numerals, by hearing the number names” (Senthil Babu, 2007, p. 25). Only some teachers had text
books called ‘Ponnilakkam” (ibid.).

The significance attached to learning by listening in Tamil Nadu, the southern part of India can be
understood as Thirukural ackowledges the knowledge attained by listening as the prime knowledge.

Gasudbpisit Gaivaud Gt shad oF0adab
QFeadHaisr sradsumid & 2.

(Kural. 411)
(Translation: Of all wealths, listening is the best available wealth on earth.)

Subramanian (2007) confirms that people followed this practice by stating “the pattern of education
in ancient Tamilakam (Thamizhakam) was not merely reading and understanding of texts, but also
listening to learned persons” (p. 342).

3.2 Questioning as one of the main pedagogies

Questioning has been employed as the main teaching methodology even in ancient India. There
were frequent mentions of terms like “prasnin” (questioner), “abhi—prasnin” (cross—questioner),
“prasna—vivaka” (answerer) (Gupta, 2007, p. 76). Many past studies have identified the Indian teach-
ers’ use of questioning in mathematics classroom (Alexander, 2000; Clarke, 2001; Clarke & Fuller,
1997; Rao & Cheng, 2001). Clarke and Fuller (1997) have reported observing the teachers in Chennai
transmitting “what the students should know” by lecturing and “how they should know” (p. 54) by
asking questions. Clarke (2001) has also identified “the teacher asking questions and the student an-
swering” (p. 77) as the predominant model of interaction between teacher and student in mathematics
teaching. Alexander’s (2000) research throws light on Indian teachers’ efforts to develop dialogue with
students and scaffold understanding despite the crowded classroom (p. 558) with the help of ques-
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tioning. Rao and Cheng (2001) have found the Indian teachers use of questioning “to involve children
actively in the learning process” (p. 11). Sensarma (2007) has identified ‘question-answer dominated
interaction pattern’ as one of the seven commonly used distinctive interaction pattern in mathematics
classrooms at secondary level. Subramanian’s (2010) research analyzes extensive use of questioning
in Indian mathematics classroom both to assess and assist students’ learning. Since ancient times,
discourse, questioning and debate have been commonly practiced pedagogies in India, which could
explain the natural prevalence of this type of verbal interaction in the classrooms even today.

3.3 Memorization as a pedagogy

The Vedas, the oldest texts of Hinduism, have been transmitted orally for three thousand years as
“the Vedas as recited from memory by Brahmans” (Fuller, 2001, p. 1) were considered as authorita-
tive. The priests needed to learn texts from the Vedas even before mastering the Sanskrit language.
Hence memorization became the dominant pedagogy used in the Vedic period (1500 B.C.-500 B.C.)
Repetition (parayana) and memorization (Venketeswara, 1980) were renowned pedagogies as Vedas
were repeated every day so that students could learn and remember the texts.

Students listened to the guru and repeated his utterances without the aid of books and memorized
the Vedic texts. Venketeswara (1980) even claims that there were prayers for memory in ancient India.

As regards methods of education, the first noteworthy principle is that of memorizing and even
learning by rote. There are prayers for memory (medtha). ‘May the Lord endow me with medha;
may we learn much and learn by the ear, and may we retain what we have learnt’ (p. 88)

Ancient Indian mathematical works, mostly composed in Sanskrit, usually in the form of Sutras in
which a set of rules or theorems were stated in verse in order to aid memorization. “Profuse use of the
verse style as an aid to memory and to make the students learn verbatim” (Bara, 1998, p. 161) clearly
exhibits the society’s belief in this pedagogy of learning. There was a strong stress on memorization
of multiplication and conversion tables involving fractions and measurements in Thamizhakam where
merchants memorized “all kinds of tables relating the various kinds of measures was the first task to
be accomplished” (Samuel, 2005a, p. 59) to master arithmetic.

Kanita Nul (an ancient mathematics book in Tamil, recorded in palm-leaf manuscript) proves the
significance attached to memorization to learn arithmetic in Thamizhakam (Samuel, 2005a). Senthil
Babu (2007) claims that memory the mode of learning was central to education in the indigenous
schools in Thamizhakam. He further asserts that memory was used not because of the lack of books
but mainly good memory was considered as intelligence. Studies also show the presence of memo-
rization as the common pedagogy in Indian classrooms even during the British period and the British
could not as do much as the pedagogy has been deeply rooted in the Indian pedagogy (Clarke, 2001).
The Vedic mathematics, which has been drawing a lot of attention in recent years, expounds the mem-
orization of certain computation procedures to perform complex computation mentally. Memoriza-
tion was a foundational pedagogy of learning in education systems in most cultures in ancient times;
it is venerated in certain cultures, especially in India even today.
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3.4 The use of oral repetition since the Vedic period

The dominant Pedagogy used in Vedic period (1500 B.C.—500 B.C.) was repetition (Parayana) and
memorization (Venketeswara, 1980). Vedas were chanted every day so that students could learn and
remember the texts. Oral transmissions of texts were promoted, as the pronunciation of the texts with
accuracy and correct intonation could not be achieved by learning from the texts. The pedagogy of
oral repetition was not changed even under the Muslim rule, as “the oral transmission of the Quran”
was “the backbone of Muslim education” (Robinson, 1996, p. 65). The numerical tables were recited
twice a day in order to memorize them (Acharya, 1996). When there was a scarcity of textbooks and
when many could not afford to buy textbooks, oral transmission of texts became inevitable and oral
repetition became a strategy to memorize the texts and to pass on to the next generation. However,
it is worth mentioning that even written texts are readily available at affordable prices, people prefer
the oral transmission of knowledge. Oral repetition became an effective strategy when oral tradition
was widely used. Oral repetition, which was one of the common pedagogies in ancient times, is still
in use in Indian classrooms (Alexander, 2000; Clarke, 2001; J. Subramanian, 2010).

The researcher summarizes that stress on oral tradition, teacher questioning, oral repetition and
memorization are pedagogies being in practice in India since ancient times and hence they are influ-

enced by culture as these practices are ‘learned behaviours’, being transmitted socially.

4 History of Education in Ancient and Medieval Thamizhakam

The Tamil (a language) speaking community was formed nearly thirty five centuries ago (N. Subra-
manian, 1996) and lived in the southern part of Indian peninsula which is currently known as Tamil
Nadu. Originally this part of India was known as Thamizhakam. As we find great quality of poetic lit-
erature, we understand that creativity was celebrated by the Tamils. At the same time, “the merchants
and the royal servants were to learn accounting and arithmetic” (N. Subramanian, 2007, p. 343). We
do not know much on curriculum or pedagogy. Subramanian (ibid) claims, “Much of the teaching
was oral” (p. 345). Many literary pieces were saved due to the remarkable memory of the students of
those days, as they did not have any other aids to preserve the literary texts. The students memorized
the texts not only because there was a scarcity of textbooks but mainly because “it was believed that
a strong memory was a chief virtue of a scholar” (ibid. p. 345).

4.1 Significance attached to Mathematics in Thamizhakam

The ancient Tamil literature, Thirukural (also known as Kural) proclaims numeracy and literacy as
the two eyes of human being.

OF 6% G ST U g B eTg h B esTL B suafiy aim ()10
SanAmIdin aragh o ulid .

(Kural.392)
(Meaning: Numeracy and literacy are considered as eyes for human beings.)

In Western literature, we come across literacy and numeracy. However, in Tamil Nadu since ancient
times, numeracy (en) is mentioned before literacy (eluttu), which the researcher argues shows the
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significance attached to numeracy. It is mentioned in Pinkala Nikandu (an ancient book in Tamil) that “en”
and “eluttu” refer to “Kanakku” (math) (N. Subramanian, 1996, p. 157) as in Tamil, letters were used to
denote numbers. It is argued that ‘en” refers to arithmetic and ‘eluthu’ refers to algebra in which case,
mathematics consisting of arithmetic and algebra is considered as the two eyes of a human being.
In other words, the supremacy of mathematics has been acknowledged by the Tamils since ancient
times.

4.2 Tinnai palli (Veranda schools)

In Thamizhakam, ‘Tinnai’ schools became popular in the 18th to 19th century. Every village or a
cluster of nearby villages had a Tinnai school. Students paid the fees in cash and kind to the teacher;
students also worked on the land of the teacher to pay the fee (Senthil Babu, 2007). The children were
not divided into classes based on their ages, but according to their abilities to “learn language and
mathematics” (ibid: p. 20). There was no standardized curriculum and the aim of this education was
to prepare the children to be competent in language and numbers practised by the society.

Letters were used to represent 1 to 10, 100 and 1000. Using these 12 letters, they represented all
numbers. One followed by 14 zeroes was named as “Maha koti”. Only some teachers had a book called

‘Ponnilakkam’ for elementary mathematics.

Ponnilakkam—elementary number primer for Tinnai schools (Courtesy French Institute of
Pondicherry,Pondicherry). (Senthil Babu, 2007, p. 34)
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Like Tamil letters, Tamil numerals were also memorized.

T & 21 2Io& 41 Fo® 61 &iod 81 Mok 101 M6

2 2 22 2109 42 HOP 62 OB 82 Soe. 102 AT o

3 B 23 SLE4I FOR 63 HOE 83 Soh 1O AT o

4 F 24 2I0F 44 FOF 64 GloF 84 SMoF i T 0%
5 6 25 2045 Fod 65 oG 85 oo® 120 Moo
6 ‘@n 26 PlOF46 FOF 66 Giof 86 SoF 127 el
7 @ 27 92.0d47 fod 67 &od 87 Sod 190 T el
8 M 28 2OM48 HlOS 68 Hiod 88 Suos 197 14 LR
2 & 29 249 FOSn 69 Fiodn 89 Sosn 200 o NT
10. 1o 30 W 50 @®o FO0 do 90 &io 201 e Ms
M & 31 Flod 571 @Hos 77 @06 97 &WE 211 & 0T s
12 w® 32 RS 52 Hob 72 0L 92 &S 221 2_fMe 1os

13 R 33 KR 52 @O 73 @05 93 SoR 222 o fif2i0s
4 WF 34 RIOF 54 GOF 74 FOF 94 m0F 290 B T Ko
IS5 @ 35 EOG S5 &0 75 dod 95 Elod 297 & ATHENOE
16 10F 36 RO S6 GO 76 df 96 Hlof 299 0 pl&nOEN
177 wd 37 RWDF 57 @od 77 dod 97 &od 300 KAy

B W 38 GOS8 Fo 78 dos 98 oM 400 F AT

¥ W& 39 Elof5?  &lofn 79 do&n 99 &lofn 900 Fn AT

20 2w 40 Fo 60 Mo 80 SO 100 NT 1000 rb

(Samuel, 2005a, p. 292).

They had special terms for each fraction. For example, 535 is termed as muntri. The lowest fraction
with a term is called immi (little) m (ibid; p. 49). Students memorized the fraction table [eg., 4
mahani (i) = 1kal (1)] However there was meaning in naming the terms such as é has been termed
as “ari kal” (half of quarter).

o L. . . iy 1
Similarly, — is known as ‘erandu kaaniye ari kaani’. Kaani= —.

32
. . 11 . 1 o1 1
Erandu(twice) kaani= 2 x 87(% = 401. Ari (};alf) kiaru— 5 * 30 = 160"
i i i= — 4+ — = — = — (ibid; p. 81
Erandu kaaniye ari kaani 10 + 160 ~ 160 ~ 32 (ibid; p. 81)

Tamil letters, which were used to represent fractions, are listed below.

- g
@ %()I.')
22 1o
By Fao
TaasD T, i 250
D }//'-[,
D el Ma
=> Mo
=smgy  £X] S A%
TEED 2Za
= E o
=1 Az
=2 1 ra
= 3 =] =
S L wErsS 24
E r
s T2 FHeo

(Samuel, 2005a, p. 294).
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According to a manuscript dated 1693, there were six types of measurement:
En alavu—numerals, Kol alavu—linear measurements, Kal alavu—measurements involving volume,
Tula alavu—measurements in weighing, Nal alavu- measurement of time and Teyva Atikaram—dealing
with celestials (astronomy) (Samuel, 2005b). Each of them had a conversion table which the students
needed to master (for example, 60 Nodi (seconds) = 1 Nimisham (minute), 24 Nimishams (minutes) =1
nazhi, 60 nazhis = 1 day---). All tables and conversions were memorized and recited. Memorization
was the predominant pedagogy of learning. The Tinnai schools in Thamizhakam trained many pupils
to memorize procedures and shortcuts from Kanita Nul to solve problems, which were in verse format
to become accountants honing their mathematical skills and logical reasoning. As they needed to do
long computations quickly and accurately in either agriculture, commerce or astrology, they were
taught certain procedures, which they memorized. Paun has been is use for measuring the weight of
gold since ancient time (which is eight grams of gold). They had separate measurement conversions

for gold.

31. LTaITaed 106h &R LomebiTand Lig gilam
Spondd ohereds snprom - GHEY
GG seun neiseha SITeo UL
SoSsnacts GaTTonamd elumsr.

el et el APged.
S WTehe wWwehamp aamid, 1/16 &@ 10 ur eamd, 3/80 & 6 wn
saigun, 1/40 & oan eapt, 1/80 sl Yae) eidmi, 1/160 &g Omed erarmid;
1/320 8@ Sieoy 6ped eeigi Glameieoluhl et mainm.

(Samuel, 2007, p. 65)

Translation:

1 Ma =1/20 =1 Manchadi Pon
1 Ma kani =1/16 =10 Ma Pon
1 Mukkani = 3/80 = 6 Ma Pon
1 Arama = 1/40 = 1 kunri Pon
1 Kani = 1/80 = 1 Pilavu Pon

1 Araikkani 1/160 = 1 Nel Pon
1 Muntiri 1/320 = 1/2 Nel Pon

Kannakkatikaram also has problems and solutions in verse format for farmers to find the area of
land in the shape of an arrow (sector) and for government servants to calculate taxes, for goldsmiths
and customers to find the purity of gold in ornaments. They also had formula to find the area of
triangle and trapezium. The following verse informs us how to find the length of the yard-stick if the

area is given.
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S d araGov CEHEasvy (&I Thay

@ Fufsir swelsv Gansvig Glumhahd
Qh U &iw0smis Huihahs SMUMD :
Slean e Gaaed «orgsluwssid s1amsvayGro.

(Samuel, 2005a, p. 136)

Translation:

When measured by a 12 yard stick, the area is 100 kuli (unit for area). When the same area is measured
by another stick of unknown length, the area becomes 25 kuli. Find the length of the yard stick.

The solution is given as follows:

12/100 = 12 x 10 = 120

Therefore the length of the second yard—stick= 120/5 = 24.

Since ancient times, we had different names for multiples of ten, some of which are still in use in
India such as ‘Lakh’” which is 100000 and ‘Crore’(kodi in Tamil) which is 100 lakhs or 10000000 (10 mil-
lions). We also find verses explaining how to find the sum of numerals from 1 to 10 and sum of square
numbers. The method to find the sum of squares from Kanitha Nul (an anicent mathematics textbook
in Tamil) is given below. This verse given below explains how 12422 +32+42 452462+ 72 +82+92 4102
can be computed.

AniPis W HH HIF o N563161 HiNsH Fn DE16USHT DTSV

an T BT 10 M asmsn 713G a.\:_r)sin},sheirf'_ _
16 1F1us pipsE sy G50 &iTsaT ﬂ;i,um.»r.a,s.m? Gi10605051 8, )
5101 [B)s0ds (S aaclinsst Gsudlamsvssn st s pGies.

(Samuel, 2005a, p. 101)

Translation:

Multipling 10? (which is 100) by 10 to get 1000.

By subtracting 10 from 1000, we get 990.

Dividing 990 by 3, we get 330.

Adding the sum of numerals from 1 to 10 (which is 55) to 330, we get 385, which will be the answer
for the problem.

Samuel (2005a) translates another question from the manuscripts of Kanita Nul..

s s fatan® Fallon’ @iflanmas ansmolasimai
amovayf Mol Bagn alFeat Mty srhdaremss
s sh@f widem setalanenbsi Hudmmas
ansfal BbHLé ssmgBn srals somsdmmCi.

(p-91)

1 1 3
The above verse tells how to compute the sum of the series i 3 tytot 8.
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Translation:

Divide 8 by quarter, which gives 32 (the number of terms).

Multiply 32 by 32 and add 32 and halve the result (which is 1024 + 32 = 1056 + 2 = 528.
Multiplying 528 by the quarter, the result is 132.

To conclude, memory has been used not as a mere strategy but as pedagogy to learn arithmetic
in Thamizhakam. As agriculture and business were the main occupations, many short cuts for easier
computation were taught. And the arithmetic they mastered was applicable to real life.

5 Problem-solving in ancient Thamizhakam

In mathematics teaching, students needed to memorize basic conversion (in measurement of length,
weight etc.,), and tables involving numbers and fractions. Though arithmetic was the core of mathe-
matics curriculum, problem solving was also a part of mathematics curriculum in ancient Thamizhakam
(Senthil Babu, 2007). Several treatises on mathematics in Tamil are available in palm- leaf manuscript
form. Palm leaves manuscripts that had been extensively used to learn arithmetical practice have been
discovered and translated into formal Tamil and recently into English. There are 58 sums in verse for-
mat, 25 in prose style and another 25 sums known as prose style practice sums. The researcher cites
from Samuel (2005b) ancient problem solving questions both in verse and prose style, which was part
of curriculum in ancient Thamizhakam.

Earlier, the problem was stated in verse format and passed on from generation to generation.
Students needed to be good in language to understand the meaning of the problem. The chameleon
question stated below was a popular one even after centuries. Even those who could not memorize
the verse passed on the questions in prose format.

The problem stated below involves the conversion of measurements in lengths; however, it also
tests the problem solving skill.

3. QEUNar SAMEE
' (Cad

WIuSE ety b2 e i UsveTais

SULMoed @iﬁ*-g&@ﬁ,@gﬁ&' - Glatugp ex
snGao) Hiaie eHdyud seiLGy

e OSTBHTE HSjHE- (3

apEe Homhs SO Uoowil. So 32 ued UPBLIZ. b
ONGG onas Side) g Hae Yo BINGH Q- QOUNS  C5HHMEN
el SnlwgHda 2 Ffow Sian upa?

(ibid: p. 54).

The translation of the popular ‘Chameleon’ problem is as follows:
A chameleon climbs up a palm tree of height 32 feet. It climbs up the tree a span length speed every day but
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slides down by a length of four fingers. How many days will it take to reach the top of the tree?

The problem solving questions in verse form involved many topics in Mathematics including rate,
ratio and solving equations.

There were twenty—five questions written in prose style, which might have been written at a
later period easing the burden on language. The twenty—five ‘prose style practice style sums’ are
similar to “prose style sums’ involving “inductive reasoning” (ibid: p. 51). Some of these questions
are more challenging than the verse style problems. These questions were passed on from generation
to generation. The problem stated below involves solving equations with five variables, which could

be reduced to two variables.

L. ureSes5d alme STamed SaHE

L9 =i @f Swrd Boherd. en prd oo awuum) e
Lnrrem.ﬂ&esg,m)g, él.gaggyc%@ﬁ uisns Sfssrea. ANHs Sgeose 4 nnHooer
@Lr_rz'mg,mr.g. AJED (B UHSPoW Sowse uralsssHd ame aarablarin
BsLnal. SNghG b uHSY, s TS e QU UkEW, WLH
iy ubSPeelar - sbueAAl Bafhored ediaea) LeTGLT Siaauera 6Tl DITeT
@P'm_r_rrmg]i uhSfou NoYsHss Gl BUTE, o5& SNLGSSD b e 210
L&D,  wHp D b eeler siiuapl  Gafhsred easea UG
<5'I.61,IGIJH;TG_] . ﬁms'r.mrrefr. pEpiaE  ubSfou  Seonsss Cal L Gung, oSar
sULaigh e BHSE0 S0 LEE@W wip epdin wubSPedd sduaud GafRsTed
calaiETay LG Stalaseral CIGIDTEN. Braisnes uhafou Aousad Gsl L
Gur.rg‘u, o .&mucﬂgaﬁhﬁ G0 @ UBGU uhn een ubsNsdar  FBUmAL
Gonpored ealaEa Lan@ur el adipre. Bbhs Brew whsed Ceneier
alooul @By elwours Qubses aapted wnefidedSd el  e@er?
whSPse @aiblanpafa sibLen oaiaes?

(ibid: p. 93).

Translation:

Once there was a king in a town. One day a merchant presented a diamond to the king. The king
wanted to know the price of the diamond. He had four ministers. He called his first minister and
asked him the price of the diamond. He said the price of the diamond was equal to one third of his
salary and the salaries of other three ministers. The king asked his second minister the cost of the dia-
mond. He said that the cost of the diamond was equivalent to one fourth of his salary and the salaries
of other ministers. Then the king called his third minister who said that the cost of the diamond was
one fifth of his salary and the salaries of other ministers. The fourth minister told the king the cost of
the diamond was equal to one sixth of his salary and the salaries of other three ministers. If the price
quoted by all of them is the same, find the cost of the price of the diamond. What was the salary of

each one minister?

Though there was a strong emphasis on memorization, the curriculum also developed problem-
solving skills and included practical application questions. The problem given below gives a typical

example testing intuitive reasoning.
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5. BraEal SULTS Sandd

Sl Apoef ) Guad Bomoans Samaded Gsjbone. 9'6‘—'59._)""'@.'
G5 ETOMHE QU SIMSE suad. AUE 30 i OIS Sgean B G
amven Aedepne gUUESD Oy OatedLrs. Geavd aloUIWy Gamveuie
Bans Somenl Appoe HUSGSSS @busd GsnpiusiG a.],r'e_mamg 30
s seoLded  dgsd 5 Gundphvesad Gedy  ejelade  Sefiby
Gaiwarnsi. SGe 5 Guisyhes Qatlaraind  shooen QYNEET  H160
EunirasiiL_smas?

(ibid: p. 96)

Translation:

A king had made five rings of different weights in such a way that whenever he dismissed his servant,
he could pay his salary exactly as ring(s). If the salary of the servant each day is one ‘poun’ (8 g) gold,
what are the weights of the rings (in terms of pouns) of the king?

According to Samuel (2005a), though memorization of conversion tables and short cuts from
Kanita Nul helped merchants to perform computation effectively, to make ‘school mathematics useful
to real life” the problem—solving questions in real life situations might have been written. These kind
of questions kindled students’ interest in mathematics. They also complemented the ‘memory driven
mathematics curriculum’, enhancing students’ logical thinking.

6 Snapshot of an Indian mathematics classroom in 21st century

The researcher observed and video recorded thirteen consecutive mathematics lessons in Chennai,
the capital of Tamil Nadu in 2006. While the teaching practices of a teacher in 8th grade mathematics
classroom are analyzed, the teacher under study was found practicing the ancient pedagogies such as
the use of memorization, oral repetition, and questioning. She asked every student questions follow-
ing a rigid pattern and helped the students to verbalize mathematical arguments. In her interview,
the teacher acknowledged the use of memorization, oral repetition and questioning as she claimed
they have pedagogical values. In every lesson, she asked her students to recall different formulae that
they have learnt. According to the teacher, memorization of basic mathematical facts and formulae are
essential for mastering fundamental mathematics. She asked the same questions to many students, as
she believed in use of oral repetition to enhance learning. She even made a student to repeat five times
the formula, which he could not recall. While classrooms in some other cultures downplay the use of
oral repetition in learning and some modern learning theories attach negative connotation to ancient
pedagogies as old fashioned, in the classroom under study, oral repetition played a positive role in
aiding memorization, developing students” understanding and helping learners master mathematical
language and to communicate mathematics. According to an Indian educationalist, “oral repetition
is another approach to involve the slow learner to the main stream and it would be a misinterpreta-
tion to consider this oral tradition as one lacking individual outcome” (Personal communication, D.
Subramaniam, August 2010).



249

7 Conclusion

On referring to literature, the researcher concludes that the pedagogies that have been in use in India
since ancient times are learning by listening, teacher questioning, memorization and oral repetition.
The researcher identifies these pedagogies even in a 21st century Indian mathematics classroom as
these pedagogies have been transmitted for generations. Both teacher and students in the observed
classroom reported valuing these pedagogies. The researcher classifies them as culture influenced
pedagogies, as they are learned behaviours, being transmitted for generations. The researcher also
refers to mathematics curriculum to illustrate how mathematics was taught and learnt in ancient
southern part of India and the significance attached to memorization by citing the ancient arithmetic
book called Kanita Nul. She also cites some of the problem solving questions which were transmitted
for generations orally and which were also part of the curriculum even in 18th to 19th centuries in
Thamizhakam, the ancient South India.
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ABSTRACT

We analyze our student project Euclid’s Algorithm for the Greatest Common Divisor. The project
was written for students to decipher Euclid’s verbal description of his famous algorithm for calcu-
lating the greatest common divisor of two numbers, convert it to a modern mathematical formula-
tion, consider various issues that arise, and prove its correctness. We will discuss how the project
design achieves specific pedagogical goals for teaching directly from primary historical sources.

Keywords: Euclidean algorithm, greatest common divisor, primary sources, original

sources, pedagogy

1 Introduction

We analyze pedagogically the project Euclid’s Algorithm for the Greatest Common Divisor, written for
student study at beginning undergraduate or pre-college level. In the core of the project students are
guided to decipher Euclid’s verbal description of his famous algorithm for calculating the greatest
common divisor of two numbers, convert it to a modern mathematical formulation, consider various
questions and issues that arise, and prove its correctness. Along the way the Euclid source naturally
raises questions about the nature of numbers, divisibility, algorithms, efficiency of computation, cor-
rectness, and proof. We will discuss how the project design achieves specific pedagogical goals.
This student project is part of a larger endeavor. Over the past nine years, with support from
the US National Science Foundation, our interdisciplinary team of seven mathematicians and com-
puter scientists has been developing and testing student projects based directly on primary historical
sources for studying discrete mathematics and related subjects. Our 34 projects for students are based
on primary sources encompassing discrete mathematics, combinatorics, abstract algebra, logic, and
computer science, and have been extensively tested with students at varied institutions. The goal is
to study mathematics directly from the minds of the pioneers, such as Euclid, Archimedes, Fermat,
Pascal, Bernoulli, Lagrange, Cauchy, Cayley, Boole, Venn, Dedekind, Frege, Russell, Whitehead, and
others. All our projects are available, along with guidance for instructors and our philosophy of teach-
ing with them, at [?, ?]. Our overall program for developing, testing, and evaluating the use of these

projects is also discussed in [?].
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Designed to capture the spark of discovery and motivate subsequent lines of inquiry, each project
is built around primary source material close to or representing the discovery of a key concept.
Through guided reading and directed questions and activities, students explore the mathematics
of the original discovery and develop their own understanding of the subject. To place the source in
context, a project also provides biographical information about its author, and historical background
about the problems with which the author was concerned. Advantages include providing context
and direction for the subject matter, honing students” verbal and deductive skills through reading
the original work of some of the greatest minds in history, and the rediscovery of conceptual roots.
Additionally, students practice the skill of moving from verbal descriptions to precise mathematical
formulations, and must often recognize an organizing concept for a detailed procedure.

2 Mathematical aims of the Euclid project

Each of our projects provides a summary of the project along with suggestions about class activi-
ties for instructors. For our project Euclid’s Algorithm for the Greatest Common Divisor, the notes to the
instructor are:

“The project is meant for use in an introductory computer science or discrete mathemat-
ics class. The project can be used to introduce students to the notion of “computation
method” or “algorithm” and to explore concepts like iteration in a basic setting. It allows
them to practice their skills in doing proofs but more importantly to observe the evolution
of what is accepted as a valid proof or a well-described algorithm. The students will eas-
ily notice that the method presented by Euclid to compute the GCD and the proof of its
correctness that he provided would not be formally accepted as correct today. They will
also notice, however, that Euclid is somehow able to convey his ideas behind his method
and proof in a way that they can be easily translated into a modern algorithm and proof
of its correctness. In this way, it will provide them a sense of connection to the past.

A basic knowledge of programming is essential to successfully complete some of the com-
ponents of the project.”

3 Pedagogical design goals

In [?] we distilled a set of pedagogical goals informing our selection of primary source material and
the design of projects. We list these here in preparation for analyzing the Euclid project.

Fifteen Pedagogical Goals Guiding the Development of
Primary Source Based Projects

1. Hone students’ verbal and deductive skills through reading.

2. Provide practice moving from verbal descriptions of problems to precise mathematical formu-
lations.

3. Promote recognition of the organizing concept behind a procedure.



10.

11.

12.

13.

14.

15.
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. Promote understanding of the present-day paradigm of the subject through the reading of an

historical source which requires no knowledge of that paradigm.
Promote reflection on present-day standards and paradigm of subject.

Draw attention to subtleties, which modern texts may take for granted, through the reading of
an historical source.

Promote students’ ability to equally participate, regardless of their background or capability.

Offer diverse approaches to material which can serve to benefit students with different learning
styles through exposure to multiple approaches.

Provide a point of departure for students” work, and a direction for their efforts.

Encourage more authentic (versus routine) student proof efforts through exposure to original
problems in which the concepts arose.

Promote a human vision of science and of mathematics.
Provide a framework for the subject in which all elements appear in their right place.
Promote a dynamical vision of the evolution of mathematics.

Promote enriched understanding of subject through greater understanding of its roots, for stu-

dents and instructors.

Engender cognitive dissonance (dépaysement) when comparing a historical source with a mod-
ern textbook approach, which to resolve requires an understanding of both the underlying con-
cepts and use of present-day notation.

4 The Euclid project and its pedagogy

We will present the complete student project based on Euclid’s text, and intersperse commentary

discussing how it addresses our various pedagogical goals. We will find that every one of the goals

in our list is addressed.

Euclid’s Algorithm for the Greatest Common Divisor

Numbers, Division and Euclid

People have been using numbers, and operations on them like division, for a very long time for prac-

tical purposes like dividing up the money left by parents for children, or distributing ears of corn

equally to groups of people, and more generally to conduct all sorts of business dealings. It may be a

bit of a surprise that things like calculating divisors of numbers also form the core of today’s methods

ensuring security of computer systems and internet communications. The RSA cryptosystem that is
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used extensively for secure communications is based on the assumed difficulty of calculating divisors
of large numbers, so calculating divisors is important even today.

A related and even more basic notion is that of multiples of quantities. A natural way to compare
quantities is to “measure” how many times we need to aggregate the smaller quantity to obtain the
larger quantity. For example, we may be able to compare two unknown lengths by observing that the
larger length can be obtained by “aggregating” the smaller length three times. This provides a sense
of how the two lengths compare without actually knowing the two lengths.

The larger quantity may not always be obtainable from the smaller quantity by aggregating it an
integral number of times. In this scenario, one way to think would be to imagine each of the two
quantities to be made up of smaller (identical) parts such that both the quantities can be obtained
by aggregating these smaller parts an integral number of times. Obviously, we will need a greater
number of these parts for the larger quantity than for the smaller one. For example, when comparing
two weights, one might observe that the larger one can be obtained by aggregating some weight
7 times whereas the smaller weight can be obtained by aggregating the same weight 5 times. This
provides a basis for comparing the two weights. Of course, in the above scenario, one can also observe
that if we chose even smaller parts to “split” the weights (say a quarter of the first one), the first
weight would be obtained by aggregating this even smaller weight 28 times and the smaller of the
two original weights would be obtained by aggregating this smaller part 20 times, which also provides
us a sense of the relative magnitudes of the two weights. However, using smaller numbers like 7 and
5 to describe relative magnitudes seems intuitively and practically more appealing than using larger
numbers, like 28 and 20. This leads us to think about what would be the greatest magnitude such that
two given magnitudes will both be multiples of that common magnitude.

This question was considered by Greek mathematicians more than 2000 years ago. One of those
Greeks was Euclid, who compiled a collection of mathematical works called Elements that has a chap-
ter, interestingly called a “Book”, about numbers. During the course of this project you will read
a translation of part of this chapter to discover Euclid’s method (algorithm) to compute the greatest
common divisor of two numbers. It is not clear if Euclid was the first person to discover this algorithm,
but his is the earliest known written record of it.

Commentary. This brief introductory mathematical discussion and thought experiment sets the stage both for
modern practical applications and historical context. It provides a motivational point of departure for students,
and highlights the issue of choice of unit for measurement, something that is often glossed over today, but whose
importance is brought out naturally through reading ancient texts.

Euclid of Alexandria

Euclid lived around 300 B.C.E. Very little is known about his life. It is generally believed that he
was educated under students of Plato’s Academy in Athens. According to Proclus (410485 C.E.),
Euclid came after the first pupils of Plato and lived during the reign of Ptolemy I (306-283 B.C.E.).
It is said that Euclid established a mathematical school in Alexandria. Euclid is best known for his
mathematical compilation Elements in which among other things he laid down the foundations of
geometry and number theory. The geometry that we learn in school today traces its roots to this
book, and Euclid is sometimes called the father of geometry.
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Euclid did not study mathematics for its potential practical applications or financial gains. He
studied mathematics for a sense of order, structure and the ideal form of reason. To him geometrical
objects and numbers were abstract entities, and he was interested in studying and discovering their
properties. In that sense, he studied mathematics for its own sake. One story that reveals his disdain
for learning for the purpose of material gains concerns a pupil who had just finished his first geometry
lesson. The pupil asked what he would gain from learning geometry. As the story goes, Euclid asked
his subordinate to give the pupil a coin so that he would be gaining from his studies. Another story
that reveals something about his character concerns King Ptolemy. Ptolemy asked the mathematician
if there was an easier way to learn geometry. Euclid replied, “There is no royal road to geometry”,
and sent the king to study.

Euclid wrote several books such as Data, On Divisions of Figures, Phaenomena, Optics, and the lost
books Conics and Porisms, but Elements remains his best known compilation. The first “book” [chap-
ter] in this compilation is perhaps the most well-known. It lays down the foundations of what we
today call “Euclidean” geometry (which was the only plane geometry people studied until the Re-
naissance). This book has definitions of basic geometric objects like points and lines along with basic
postulates or axioms. These axioms are then used by Euclid to establish many other truths (Theorems)
of geometry. Euclid’s Elements is considered one of the greatest works of mathematics, partly because
it is the earliest we have that embodies an axiomatic approach. It was translated into Latin and Arabic
and influenced mathematics throughout Europe and the Middle East. It was probably the standard
“textbook” for geometry for more than 1500 years in western Europe and continues to influence the
way geometry is taught to this day.

Book 7 of Elements provides foundations for number theory. Euclid’s Algorithm for calculating the
greatest common divisor of two numbers was presented in this book. As one will notice later, Euclid
uses lines to represent numbers and often relies on visual figures to aid the explanation of his method
of computing the greatest common divisor (GCD) of two numbers. As such, he seems to be relating
numbers to geometry, which is quite different from the present day treatment of number theory.

Today, erroneously, many different methods are called Euclid’s algorithm. By reading the original
writings of Euclid you will discover the real Euclidean algorithm and appreciate its subtlety. In any
case, “Euclid’s Algorithm” is one of the most cited and well-known examples of an (early) algorithm.
To quote Knuth [?] :

By 1950, the word algorithm was mostly associated with “Euclid’s Algorithm”.

Commentary. This biographical and historical background gives students a sense of the human aspect of the
creation of mathematics, including the interplay between studying mathematics for its own sake and for applica-
tions, as well as a sense for the evolution of mathematics over a very long period. By pointing out the relationship
between number and geometry for Euclid, it also fosters a framework in the mind of the student in which the
different parts of mathematics are interrelated, unlike the way they are often taught today.

Prelude

We say that a number! z divides another number y if y is a multiple of . For example, 1,2, and 3 all
divide 6 but 5 does not divide 6. The only divisors of 17 are 1 and 17. The notation x|y is a shorthand

'The word number in this section means a positive integer. That is what it meant to Euclid.
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for “x divides y”. We denote by divisors(x) the set of all the numbers y such that y|z. So, for example,
divisors(6) = {1,2,3,6} and divisors(60) = {1,2,3,4,5,6,10,12, 15, 20, 30, 60}.

A number z is called a common divisor of two numbers z and y if z|x and z|y. We denote by
cd(x,y) the set of all common divisors of z and y. For example, ¢d(6,8) = {1,2} and cd(40, 180) =
{1,2,4,5,10,20}.

Exercise 4.1. What is the set of divisors of the number 3157
Exercise 4.2. Calculate the set cd(288,216).

While it is relatively easy to calculate the divisors of a number and common divisors of two num-
bers when the numbers are small, the task becomes harder as the numbers becomes larger.

Exercise 4.3. Calculate divisors(3456).
Exercise 4.4. Calculate cd(3456,4563).

Exercise 4.5. A rather naive method for computing the divisors of a number x is to test whether each number
from 1 to x inclusive is a divisor of x. For integersn = 1, 2, 3, ..., x, simply test whether n divides x. Using
this naive algorithm, write a computer program in the language of your choice that accepts as input a positive
integer x and outputs all divisors of x. Run this program for:

(a) x = 3456,
(b) = = 1009,
(c) x = 1080.

Exercise 4.6. The naive method for computing the common divisors of two numbers x and y is to test whether
each number from 1 to the least of {x, y} divides x and y. In modern notation, let m denote the minimum (least
of) {x, y}. Forn =1,2,3, ..., m, first test whether n divides x, and, if so, then test whether n divides y. If n
divides both x and y, record n as a common divisor. Using this naive algorithm, write a computer program in
the language of your choice that accepts as input two positive integers x, y, and outputs their common divisors.

Run this program for:

(a) x = 3456, y = 4563,
(b) © =625,y = 288,
(c) x =216,y = 288,

(d) = =147,y = 2T.

As you might have noticed the number 1 divides every number. Since there is no number smaller
than 1, 1 is the smallest common divisor for any two numbers z and y. What about the greatest
common divisor? The greatest common divisor of two numbers = and y, denoted by gcd(z,y), is the
largest number z such that z|x and z|y. Finding the greatest common divisor is not nearly as easy as
finding the smallest common divisor.
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Commentary. This prelude prepares students for reading the primary source directly, since Euclid does not
provide definition, motivation or context for questions about the greatest common divisor of two numbers. This
short section explores the issue through a number of concrete examples and exercises, and encourages students
to program naive algorithms. We intentionally make the prelude no longer than necessary for students to dive
into Euclid, since our goal is to have students engage the primary source as quickly and as deeply as possible.

We intersperse exercises throughout the project, encouraging students and instructors who wish to engage
the project in small stages, as regular day-by-day classroom work and homework. The logistics of ways to use a
project in class are discussed further at [?].

Euclid’s Algorithm

Here we present the translations of (relevant) Definitions, Proposition 1 and Proposition 2 from Book
VII of Euclid’s Elements as translated by Sir Thomas L. Heath [?]. Euclid’s method of computing the
GCD is based on these propositions.

DDDDDDDO
BOOK VII of Elements by Euclid
DEFINITIONS.

1. A unit is that by virtue of which each of the things that exist is called one.

2. A number is a multitude composed of units.

3. A number is a part of a number, the less of the greater, when it measures the greater.
4. but parts when it does not measure it.?

5. The greater number is a multiple of the less when it is measured by the less.

6. An even number is that which is divisible into two equal parts.

7. An odd number is that which is not divisible into two equal parts, or that differs by a unit from an

even number.

8. An even-times even number is that which is measured by an even number according to an even

number.

9. An even-times odd number is that which is measured by an even number according to an odd

number.

10. An odd-times odd number is that which is measured by an odd number according to an odd

number.

11. A prime number is that which is measured by a unit alone.3

12. Numbers prime to one another are those which are measured by a unit alone as a common measure.

>While this definition is not relevant here, what is meant by this definition is quite subtle and the subject of scholarly
mathematical work.

*Reading further work of Euclid, e.g. Proposition 2, it is clear that Euclid meant that a prime number is that which is
measured only by the unit and the number itself.
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13. A composite number is that which is measured by some number.

14. Numbers composite to one another are those which are measured by some number as a common

measure.

OXOXDXDXOXIXDXDO

7

Exercise 4.7. Discuss how Euclid’s “unit” relates to the number 1. Does Euclid think that 1 is a number?

Exercise 4.8. What is likely meant when Euclid states that a number “measures” another number? Express
Euclid’s notion of “measures” in modern mathematical notation.

Exercise 4.9. Does the number 4 measure number 72? Does 5 measure 72? Briefly justify your answer.

Exercise 4.10. Euclid never defines what is a “common measure,” but uses that in definition 12 and 14. What
is your interpretation of Euclid’s “common measure”?

Exercise 4.11. Find a number (other than the unit) that is a common measure of the numbers 102 and 187.
According to Euclid’s definitions, are the numbers 102 and 187 composite to one another? Why or why not?

Exercise 4.12. According to Euclid’s definitions, are the numbers 21 and 55 composite to one another? Justify
your ansuwer.

Commentary. Euclid’s definitions provide considerable grist for mathematical questions, intentionally left
unexplained by us, for students to grapple with in exercises. Such basic questions as whether “one” is a number,
and what “measures” means and why Euclid leaves it undefined, reflect the rich intellectual stimulation a
primary source can provide, even before anything particularly technical is encountered.

Already here deductive skills through reading the primary source are naturally emphasized, as well as the
challenge of moving between verbal and symbolic formulations, e.g., in divining the meaning of “measures”
and comparing it to the concept of a “multiple”.

We now present Proposition 1 from Euclid’s book VII. The proposition concerns numbers that are
prime to one another.

CDDDDDDDO
PROPOSITION 1.

Two unequal numbers being set out, and the less being continually subtracted in turn from the greater,
if the number which is left never measures the one before it until a unit is left, the original numbers will

be prime to one another.

For, the less of two unequal numbers AB, C'D being continually subtracted from the greater, let the

number which is left never measure the one before it until a unit is left;
| say that AB, CD are prime to one another, that is, that a unit alone measures AB, CD.

For, if AB, C'D are not prime to one another, some number will measure them.
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Let a number measure them, and let it be F; let C'D, measuring BI, leave I A less than itself,
let, AI measuring DG, leave GC less than itself,

and let GC, measuring [ H, leave a unit HA.

Since, then £ measures C'D, and CD measure BI, therefore E also measures BI.
But it also measures the whole BA;
therefore it will also measure the remainder Al.
But Al measures DG,
therefore E also measures DG.
But it also measures the whole DC;
therefore it will also measure the remainder CG.
But CG measures I H;
therefore E/ also measures I H.
But it also measures the whole I 4;
therefore it will also measure the remainder, the unit AH, though it is a number: which is impossible.

Therefore no number will measure the numbers AB, CD; therefore AB, C'D are prime to one another.
[VII. Def 12]
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OXDXDXDXOXXDXDO

Exercise 4.13. Euclid begins with two unequal numbers AB, CD, and continually subtracts the smaller in
turn from the greater. Let’s examine how this method proceeds “in turn” when subtraction yields a new number
that is smaller than the one subtracted. Begin with AB = 162 and CD = 31.

(a) How many times must C'D be subtracted from AB until a remainder is left that is less than CD? Let
this remainder be denoted as I A.

(b) Write AB = BI + I A numerically using the given value for AB and the computed value for I A.

(c) How many times must I A be subtracted from C' D until a remainder is left that is less than I A? Let this
remainder be denoted as GC.

(d) Write CD = DG + GC numerically using the given value for C'D and the computed value for GC.

(e) How many times must GC be subtracted from I A until a remainder is left that is less than GC'? Let this
remainder be denoted as H A.

(f) Is HA a unit?

(g) Write IA = IH + H A numerically using the computed values of I A and H A.

Exercise 4.14. Apply the procedure outlined in Proposition 1 to the numbers AB = 625 and CD = 288.
Begin by answering questions (a)—(f) above except with the new values for AB and CD.

(g) In this example, how should the algorithm proceed until a remainder is reached that is a unit?

Exercise 4.15. Euclid claims that if the repeated subtraction algorithm of Proposition 1 eventually produces a
unit as a remainder, then the original numbers AB, C'D are prime to one another. He does so by using a “proof
by contradiction.” Suppose the result, namely that AB and C'D are prime to one another, is false. In this exercise
we examine the consequences of this.

(a) If AB and C D are not prime to one another, must these numbers have a common measure E that is greater
than 1? Justify your answer by using Euclid’s definitions.

(b) From AB = BI+1A, why must E also measure I A ? Be sure to carefully justify your answer for general
numbers AB and C'D (not tied to one particular example).

(c) From CD = DG + GC, why must E also measure GC? Be sure to carefully justify your answer.
(d) From [A = IH + HA, why must E also measure HA? Carefully justify your answer.

(e) If according to Euclid, H A is a unit, what contradiction has been reached in part (d) ?

Commentary. Euclid’s Proposition 1 and the exercises achieve a number of our pedagogical goals. To decipher
and understand Euclid students will use considerable verbal and deductive skills through reading, practice
moving from a verbal description to a precise mathematical formulation, puzzle out the organizing concept
behind a procedure, and gain perspective on present-day paradigms through translating to modern formulas.
Moreover, Euclid’s approach through imagining geometric measurement is quite different from a modern one,
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providing students with a diversity of viewpoints and enabling students with different backgrounds and learning
styles to benefit. The exercises also explore the phenomenon of iterative procedures and when they terminate,
raising questions about Euclid’s description, which does not directly address this issue.

We now present proposition 2 from Book VII of Euclid’s elements. This proposition presents a
method to compute the GCD of two numbers which are not prime to each other and provides a proof
of the correctness of the method. Euclid’s presentation intermixes the proof and the method to some
extent. Despite this the elegance of his method and the proof is striking.

ODDDDDDDO
PROPOSITION 2.

Given two numbers not prime to one another, to find their greatest common measure.

Let AB, CD be the two given numbers not prime to one another.

Thus it is required to find the greatest common measure of AB, CD.

If now C'D measures AB - and it also measures itself - C'D is a common measure of CD, AB.
And it is manifest that it is also the greatest; for no greater number than C'D will measure C'D.

But, if C'D does not measure AB, then, the less of the numbers AB, C'D being continually subtracted

from the greater, some number will be left which will measure the one before it.#

For a unit will not be left; otherwise AB, C'D will be prime to one another [VII, ], which is contrary

to the hypothesis.

Therefore some number will be left which will measure the one before it.

A

*This is the heart of Euclid’s description of his algorithm. The statement is somewhat ambiguous and subject to at least
two different interpretations.
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Now let CD, measuring BE, leave E'A less than itself, let £ A, measuring DI, leave IC less than
itself, and let C'I measure AFE.

Since then, CI measures AE, and AE measures DI,
therefore C'I will also measure DI.

But it also measures itself;

therefore it will also measure the whole C'D.

But CD measures BE;

therefore CI also measures BE.

But it also measures F A:

therefore, it will also measure the whole BA.
But it also measures CD;

therefore C'I measures AB, C'D.

Therefore CI is a common measure of AB, CD.
| say next that it is also the greatest.

For, if CI is not the greatest common measure of AB, C'D, some number which is greater than C'1
will measure the numbers AB, CD.

Let such a number measure them, and let it be G.

Now, since G measures C'D, while C'D measures BE, G also measures BE.
But it also measures the whole BA;

therefore it will also measure the remainder AFE.

But AEF measures DI;

therefore G will also measure DI.
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But it will also measure the whole DC)

therefore it will also measure the remainder CI, that is, the greater will measure the less: which is

impossible.
Therefore no number which is greater than CTI will measure the numbers AB, C'D;
therefore C1 is the greatest common measure of AB, CD.

PoRIsM. From this it is manifest that, if a number measure two numbers, it will also measure their

greatest common measure.

OXOXDXDXOXIXDXDO

Exercise 4.16. In Proposition 2 Euclid describes a procedure to compute the greatest common measure of two
numbers AB, C'D, not prime to one another. The method again proceeds by repeatedly subtracting the smaller
in turn from the greater until some number is left, which in this case divides the number before it. Let’s examine
this process for AB = 147 and CD = 27.

(a) Does CD measure AB? If so, the process stops. If not, how many times must C D be subtracted from AB
until a positive remainder is left that is less than C'D. Let E'A denote this remainder.

(b) Write AB = BE + EA numerically using the given value for AB and the computed value for EA. Also
find a positive integer q; so that BE = ¢q; - CD.

(c) Does EA measure C'D? If so, the process stops. If not, how many times must E A be subtracted from C D
until a positive remainder is left that is less than EA. Let IC denote this remainder.

(d) Write CD = DI + IC numerically using the given value for C D and the computed value for IC. Also,
find a positive integer qo so that DI = g - EA.

(e) Does I1C measure EA? If so, the process stops. If not, how many times must 1C' be subtracted from EA
until a positive remainder is left that is less than 1C ?

(f) Find a positive integer g3 so that EA = g3 - IC.

Exercise 4.17. Apply Euclid’s procedure in Proposition 2 to compute the greatest common measure of AB =
600 and CD = 276 outlined in the steps below.

(a) To streamline the process, let a1 = AB = 600, aa = C'D = 276, and a3 = EA. Compute a3 numerically
for this example. Write the equation AB = BE + E A entirely in terms of a1, az and as.

(b) Let ay = IC. Compute ay for this example. Write the equation CD = DI + IC entirely in terms of as,
as and a4.

(c) Does IC measure EA in this example? If so, the process stops. If not, how many times must IC' be
subtracted from E A until a positive remainder is left that is less than 1C'? Denote this remainder by as.
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(d) Write an equation using as, as and as that reflects the number of times 1C must be subtracted from EA
so that the remainder is as.

(e) Does as measure a4? If so, the process stops. If not, how many times must as be subtracted from a4 until
a positive remainder is left that is less than as?

Exercise 4.18. In modern notation, the Euclidean algorithm to compute the greatest common measure of two
positive integers ai and ay (prime to each other or not) can be written as follows. Find a sequence of positive

integer remainders as, as, as, . . ., an+1 and a sequence of (positive) integer multipliers qi1, q2, q3, - - ., qn 50 that

ay = qraz + a3z, 0<az<as
as = qaa3 +aq, 0<ag <as

as = qsaq +as, 0<as <ay

ai—1 = ¢i-10; + ai+1, 0< a1 <ay

a; = qiai+1 + air2, 0<a;12 <aip

An-1 = Qn-10n + ant1, 0 <apy1 <ap

an = qnln+1
(a) Why is ay+1 a divisor of a,, ? Briefly justify your answer.
(b) Why is ay,1 a divisor of a,—1? Carefully justify your answer.

(c) In astep-by-step arqument, use (backwards) mathematical induction to verify that a,1 is a divisor of a;,
i=nn—1,n-2,...,32,1.

(d) Why is ap41 a common divisor of a; and ay?

(e) In a step-by-step argument, use (forwards) mathematical induction to verify that if G is a divisor of aq
and ay, then G is also a divisor of a;, © = 3,4, 5, ..., n + 1. First, carefully explain why G is a divisor of
as. Then examine the inductive step.

(f) From part (d) we know that a1 is a common divisor of ay and as. Carefully explain how part (e) can be
used to conclude that a1 is in fact the greatest common divisor of a1 and as. A proof by contradiction
might be appropriate here, following Euclid’s example.

Exercise 4.19. In Proposition 1 Euclid describes an algorithm whereby, given two unequal numbers, the less is
continually subtracted in turn from the greater until a unit is left. While in Proposition 2, Euclid describes an
algorithm, whereby, given two unequal numbers, the less is continually subtracted from the greater until some
number is left which measures the one before it.

(a) To what extent are these algorithms identical?

(b) How are the algorithms in Proposition 1 and Proposition 2 designed to differ in application?
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(c) Does Euclid consider a unit as a number? Justify your answer citing relevant passages from the work of
Euclid. Does Euclid consider a common measure as a number? Again, justify your answer from the work
of Euclid.

(d) Why, in your opinion, does Euclid describe this algorithm using two separate propositions, when a single
description could suffice?

Exercise 4.20. In the modern description of the Euclidean algorithm in Exercise (4.18), the last equation written
is

n = 4nln+1,
meaning that after n-steps, the algorithm halts and a,, 1 divides (measures) a,,. Given any two positive integers
a1 and az, why must the Euclidean algorithm halt in a finite number of steps? Carefully justify your answer

using the modern version of the algorithm.

Exercise 4.21. Write a computer program in the language of your choice that implements Euclid’s algorithm for
finding the greatest common divisor of two positive integers. The program should accept as input two positive
integers ai, ag, and as output print their greatest common divisor. Run the program for:

(a) a1 = 3456, ag = 4563,
(b) a1 = 625, ap = 288,
(c) a1 = 216, as = 288.

Commentary. The core of the project addresses many of our pedagogical goals, guided in exercises. Students
must engage considerable subtleties, since there is more than one way to interpret what Euclid is saying. More-
over, it is intellectually useful to ask why for Euclid the algorithm is separated into two procedures, when today
we make no distinction whether the GCD is one or greater. Justifying the algorithm from a modern viewpoint re-
quires double mathematical induction, connecting ancient with modern methods and promoting understanding
of modern standards and paradigms. And justifying the correctness of Euclid’s claims provides an authentically
important and worthwhile challenge for students, along with a clear sense for the roots of a critical piece of
modern mathematics. Finally, the difference between Euclid’s verbal presentation and our modern terminology
and methods engenders considerable healthy cognitive dissonance for students to resolve.
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ABSTRACT

When moving on from secondary to tertiary education, students are - in most countries - faced
with new challenges in terms of proof: all theorems are, from then on, proved by the lecturer
(which calls for proof-understanding skills); student are now expected to devise proofs of a more
or less formal nature. As a consequence, the issues of proof-understanding and proof-writing have
long been focal points in the research on AMT (Advanced Mathematical Thinking). Numerous
strategies have been put forward - and sometimes tried out with students -, among which: (1)
to distinguish between proof-ideas (or proof-germs) and formal proofs, and have students write
formal proofs from informal ones [Downs & Mamona-Downs 2010], (2) to study historical proofs
[Robert & Schwartzenberger 1991].

We will present a series of historical texts which lead to the now standard proof of the fact that,
for a differentiable function of one real variable, the sign of the derivative determines the variations
of the function (on an interval). Several features of this historical file are relevant from a maths-
education perspective : (1) it illustrates the role of “local” counter-examples (to use Lakatosian
terminology), a role which may not be familiar to students (although some students may be used
to dealing with “global” counter-examples); (2) the various proofs (or proof-attempts) are based
on at least two pretty different proof-ideas; (3) even a proper (meaning, both intuitive and formal)
understanding of the concepts involved in the statement of the theorem may lead to a faulty proof
scheme; (4) it helps understand the necessity of such intricate concepts as “uniform upper bound”
or the completeness of R.

For this workshop, we will provide translations of French and German original sources, with
excerpts from Lagrange, Cauchy, Serret, Peano, Darboux and Weierstrass.

Keywords: mathematical analysis, calculus, AMT, proof design, proof analysis.

1 Rationale

In the twentieth century, most tertiary-level textbooks of mathematical analysis prove the follow-
ing theorem: let f be a differentiable real-valued function defined on an interval, if its derivative f’

"Large parts of this paper derive from joint work with Anne Michel-Pajus, and Philippe Brin. A fundamental starting
point was [Dugac 1979].
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is positive, then f increases over this interval. Its standard proof is a rather straightforward appli-
cation of the “mean value theorem”? (“égalité des accroissements finis” in French, “Mittelwertsatz” in
German); the proof of which is a rather straightforward application of the “Rolle theorem”Let f be a
differentiable real-valued function, defined over some interval [a,b], such that f(a) = f(b). There is a
value c between a and b for which de derivative vanishes.?, which, in turn, depends on the fact that a
continuous real-valued function defined on a closed and bounded (i.e. compact) interval has a maxi-
mum or a minimum. The latter fact, although quite intuitive, depends on not-so-trivial properties of
the set of real numbers (completeness of the metric space, local compactness). Historically speaking,
this proof-chain can be found in the textbooks of Jordan [Jordan 1893, 65-67], Stolz [Stolz 1893, 51-],
Osgood [Osgood 1912, 26-28]; in his chapter on differential and integral calculus for the famous En-
zyklopidie der mathematischen Wissenschaften [Voss 1899, 65-66], Voss states in the clearest of ways that
the mean value theorem in calculus depends on Weierstrass’ theorem on the existence of extrema for
continuous functions.

With this example, we can see that the proof of a rather intuitive qualitative fact (namely: if all the
tangents point upward, the curve has to move up) requires several layers of sophisticated concepts
(differentiability, continuity, properties of the numerical continuum), and a few silly tricks (affine

changes of variable). In this workshop, we will present some of the proofs given, over the 19"

cen-
tury, either of this mathematical fact, or of some key points in its proof.

We must stress the fact that this paper was designed for a reading workshop: it is by no means a re-
search report on the “history” of that theorem - whatever that may mean. Among other things, we
do not aim for a comprehensive overview; the historical connections between the various authors are
hardly mentioned; nor are the institutional and intellectual contexts of the various research or teach-
ing programs. Our main goal is to make a few important texts available to an audience of teachers
and researchers who are not familiar with the French or the German languages. We hope this selec-
tion of texts, and the points we will highlight as we read them, will provide food for thought, and
trigger further work, be it classroom work, or more theoretical work in the teaching and learning of

(advanced) mathematics.

2 Lagrange’s proof (1806)

As we saw earlier, any function f(z + i) can be expanded into the series

i? i
f@) +if' (@) + 5 (@) + 5 /@) + -

which naturally goes on to infinity, unless the derived functions vanish, which is the case when f(x)
is an entire rational function of x.

As long as this expansion is used for the sole generation of derived functions, it is indifferent whether
the series goes to infinity or not; it is also the case, when the expansion is seen as a mere analytical
transformation of the function; but if one wants to use it to get the value of the function in particular

!For the analysis of a teaching experience, see [Praslon 1994].

ZLet f be a differentiable real-valued function, defined over some interval [a, b], there exists a value ¢ between a and b
such that f'(c) = %Z(a) Geometrically speaking: on the arc of curve joining the points (a, f(a)) and (b, f(b)), there is a
point where the tangent is parallel to the chord joining the two endpoints.

*Let f be a differentiable real-valued function, defined over some interval [a, b], such that f(a) = f(b). There is a value
¢ between a and b for which de derivative vanishes.
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cases, in which case it displays an expression of a simpler form - quantity i having been released from
the function - then, since only a given number of terms can be taken into account, it is important to
have means to assess the remainder of the series which we neglect, or, at least, to find bounds to the
error that we make by neglecting this remainder.

The determination of these bounds is above all important in the application of the Theory of functions
to the Analysis of curves, and to Mechanics, so as to impart on this application the rigour of ancient
geometry, as can be seen in part two of the Theory of analytic functions.

In the solution which I gave in the above mentioned work, I first found the exact expression of the
remainder of the series, then determined bounds for that expression. But these bounds can also be
found in a more elementary way, which is just as rigorous. For this purpose, we shall establish this
general principle, which can be of use in several occasions:

A function which vanishes when the variable vanishes, will, as the variable increases positively, have finite val-
ues of the same sign as that of its derived function; or of the opposite sign if the variable increases negatively, as
long as the values of the derived function keep the same sign and do not become infinite.

This principle is very important in the theory of functions, since it establishes a general relation-
ship between the state of primitive functions and that of derived functions, and also helps determine
bounds* for functions for which only the derivatives are known.

We shall prove it rigorously.

Let us consider the function f(z + ¢), whose general development is

,L'Q
fx) +if'(z) + if”(gc) Tl

As we saw in the former lesson, the form of the development may be different for some specific
values of z; but we saw that, as long as f’(z) is not infinite, the first two terms of the expansion are
exact; and that the other terms will, consequently, contain powers of i greater than the first, so that
we shall have

fla+i) = f(x) +ilf' (x) + V],

V being a function of = and i, which vanishes when i = 0.

So, since V' vanishes when 7 vanishes, it is clear that, should ¢ be made to increase from zero through
insensible degrees, the value of V would also increase from zero by insensible degrees, either posi-
tively or negatively, up to a certain point, after which it may decrease; consequently, one will always
be able to assign to i a value such that the corresponding value of V' - regardless of the sign - is less
than any given quantity, and that for lesser values of i, the values of V' are also lesser.

Let D be a given quantity, which may be chosen as small as one pleases; one can always assign to i a
value so small that the values of V are bounded by the limits D and —D); so, since we have

fla+i) = f(z) +ilf'(x) + V],

It follows that the quantity f(x + i) — f(x) will be bound by these two

i[f'(z)£D].

*We chose the work “bound” to translate Lagrange’s use of the word “limites” in this context.
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Since this conclusion holds for any value of z, as long as f/(x) is not infinite, it will hold when

r+i,x+2i,x+3i,...,x+ (n—1)i
are substituted for x; so that one can always choose 7 positive and small enough for all the quan-

tities

[z +1i) = f(=),
flx+2i) — f(z +19),
[z +3i) — f(z+ 29),

flx+ni) — f(z+ (n— 1)),

to be respectively bound between the limits

ilf"(x)=D],
ilf'(x +1)xD],
i[f'(z + 2i)£D),

ilf'[x + (n — 1)i]+D],

taking the same quantity D in all these limits, which is allowable so long as none of the quantities

(@), f(x+1), fl(x+2i), ... f(x+ (n—1)i)

is infinite. So, if all these quantities are of the same sign, that is, all positive of negative, it is easy
to conclude that their sum, which amounts to

fx +ni) — f(x)
is bounded by the sum of the bounds, that is by the quantities

if () +if'(x+i) +if (x+2i) +- + flz+ (n— 1)i]+niD.

So, if the arbitrary quantity D is chosen less than the sum

Fl@) + fla+i)+ fe+20) + -+ fle+ (n=1)i]
divided by n, then, if we do not take into account the sign of this sum, the quantity f(z+ni)— f(x)
will necessarily be bound between zero and the sum
2[f'(x) + (x4 0) + (@4 20) + - + f'lz + (n = 1)i]].

So, if P is the largest positive or negative value of the quantities

fl@), f i@+ i), f /(@ + 20), .., f(2 + (n = 1)),

the quantity f(z + ni) — f(z) will be bound between zero and 2niP.
And yet, since when taking i as small as we wish, n can - at the same time - be taken as large as we
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wish, we can assume that in is equal to any given quantity z, positive or negative, since quantity i can
be taken positive or negative.

The quantity f(z + ni) — f(x) will thus become f(x + z) — f(z), and can be used to represent any
function of z which vanishes for z = 0, quantity = being now seen as an arbitrary constant. Similarly,
the quantity f’(z + ni) will become f’(z + z), and will represent the derived function of the same
function of z, since f’(z + z) is also the derived function of f(z + z), either with respect to z or to 2.
Hence, one may conclude generally that, if f'(z+ z) constantly takes on finite values of the same sign,
and if P denotes the largest of these values - regardless of the sign - the primitive function will be
bound between 0 and 2z P; consequently, it will also remain finite, and of the same sign as the derives
function if z is positive, or of the opposite sign if z is negative. [Lagrange 1884, 86-89]

This passage clearly demonstrates that Lagrange was not a proponent of a purely formal analysis. Of
course, in the preface of the Théorie des fonctions analytiques (and even in the subtitle), he rejected the
notion of limit as a proper foundation and starting point for a systematic development of mathemat-
ical analysis. Indeed, he defined the derivative f’ of a function f as the coefficient of i in the power

series expansion

i i@
flx+i) = f@) +if'(z) + 5" (@) + 5 /" (@) + -

However, he was also concerned with numerical aspects in which issues of convergence, and lower
and upper bounds are of the essence. In particular, he determined upper bounds for the integral re-
mainder in the Taylor-Lagrange expansion, in order to assess the degree of approximation given by
a partial series expansion, and to establish convergence in some important cases’.

In this passage, we can see that Lagrange also had a proper numerical understanding what the value
of the derivative at a given point represents, and that he did interpret limits as relationships of depen-
dence between inequalities. For instance, he rephrased “V being a function of z and i, which vanishes
when i = 0” as “one will always be able to assign to ¢ a value such that the corresponding value of V'
- regardless of the sign - is less than any given quantity (...)".

However, in spite of the fact that the theorem Lagrange set out to prove is correct, and that the proof
relied on a correct numerical understanding of the derivative construed as a limit, something does not
sound right in the proof. The modern, 21st-century reader probably feels a bit uneasy when reading
the summing argument, and the conclusions derived by passing to the limit. Even if we do not know
exactly where things go wrong, we feel too many variables depend on one another in more than one
way for the final limiting arguments to be safe and sound.

However, this “gut feeling” of disbelief, this red signal flashing before your eyes as we read the proof,
is ascribable to our maths education: we were taught to distrust this kind of reasoning. In §5 of this
paper, we will endeavour to shed some light on the historical roots of this distrust.

3 Cauchy’s proof (1823)

Problem. Assuming that the function y = f(x) is continuous relative to x in the neigh-
borhood of specific value z = z(, one asks whether the function increases or decreases as
from this value, as the variable itself is made to increase or decrease.

°For a recent historical analysis of Lagrange’s work, see [Ferraro & Panza 2012].
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Solution. Let Az, Ay denote the infinitely small and simultaneous increments of variables
z and y. The Ay/Az ratio has limit dy/dz = y'. It has to be inferred that, for very small
numerical values of Az and for a specific value z of variable z, ratio Ay/Ax is positive if
the corresponding value of ¢/’ is positive and finite. (-+*)

This being settled, let’s assume function y = f(x) remains continuous between two given
limits x = x¢ and « = X. If variable x is made to increase by imperceptible degrees from
the first limit to the second one, function y shall increase every time its derivative, while
being finite, has a positive value. [Cauchy 1823, 37]

Unlike Lagrange, Cauchy defined the derivative as a limit; just like Lagrange, he was able to derive
proper numerical conclusions from this numerical conception of the derivative. So what makes his
argument so different from Lagrange’s ? Actually, they do not have the exact same understanding of
what the conclusion to be reached is; both have implicit definitions® of what it is for a function to be
increasing, but their definitions do not match exactly. Lagrange’s definition is closer to the one we
find in today’s textbook: a real valued function defined over some interval I is an increasing function
if, a and b being any elements of I, a < b implies f(a) < f(b). Lagrange’s (implicit) definition reads
slightly differently, since he compared the values of f at 0 and at any other given value’.

Cauchy’s implicit definition of an increasing function can be rephrased as follows: a real-valued func-
tion f defined over some interval I is an increasing function if, a being any element of I, there is a
neighbourhood N, of a such that, for any = in N,, the order between f(a) and f(x) is the same as that
between a and z. Lagrange’s definition is global, point-wise, and refers to two (arbitrarily, indepen-
dently) given points; Cauchy’s definition is one in which some local property holds in the neighbour-
hood of every (arbitrarily) given point. It can be shown - but it takes a little work - that both definitions
are actually equivalent from a mathematical viewpoint. However, they differ significantly, both from
an epistemological viewpoint (in which, for instance, the difference between local and global proper-
ties are put to the fore), and from a cognitive viewpoint [Chorlay 2007, 2011].

The fact that both definitions coincide from a mathematical viewpoint does not imply that proving
that the first holds involves the same kind (and amount) of work than proving that the second holds.
The information we start with (sign of the derivative) being of the everywhere-local-type®, a mere
rephrasing of the hypotheses leads to Cauchy’s definition of increasing functions, hence to the con-
clusion. Reaching Lagrange’s conclusion involves patching up local pieces of information to reach
global conclusions, an endeavour which the modern reader knows to be usually tricky.

To conclude this paragraph, we must add that, on other occasions, Cauchy himself used the same kind
of reasoning that Lagrange used in the above quoted proof. For instance, in the third volume of his
Cours d’analyse a I'école Polytechnique, he set out to prove the existence of the solution to an ordinary,
first degree differential equation 3’ = f(z,y) in the neighbourhood of a regular point [Cauchy 1981°].
His proof relied to some extent on the same idea as Lagrange’s: the derivative provides local affine

®We could use the notion of “in-action definitions” [Ouvrier-Buffet 2011]. For an analysis of the notion of functional
variation, see [Chorlay 2010]. For a more detailed analysis of Cauchy’s proof, see [Chorlay 2007, 2011].

Tt is however completely equivalent to the a — b definition, since the specific value 0 plays no part in the proof.

8We do not need to distinguish here between «local>> and <infinitesimal>> [Chorlay 2007].

These lectures were probably delivered in the 1820s, but were not published by Cauchy nor included in the Oeuvres
compleétes.
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approximations of the required function; these affine approximations are to be patched up to form
a piece-wise linear function; these are then taken to the limit as the subdivision step tends to zero.
For the 21st-century reader, this proof has basically the same flaws as Lagrange’s proof: continuity is
assumed to be uniform; same for the convergence of the sequence of functions.

4 Bonnet’s proof (in J.-A. Serret’s textbook, 1868)'°

Theorem I.- Let f(x) be a function of x which remains continuous for values of x between two
given limits, and which, for these values, has a well-determined derivative f'(x). If xo and X denote
two values of x between these same limits, the following

f(X)_f(370) Y
X — 20 - f (-Tl),
will hold, with x1 a value between xq and X.
Indeed, the ratio
f(X) = fl=o)

X*QZO

has, by hypothesis, a finite value; and, if A denotes this value, we will have
[f(X) = AX] = [f(z0) — Amo] = 0. 1)
Let p(z) denote the function of = defined by the formula

p(z) = [f(z) — Ax] = [f(x0) — Ao], (2)

then, from equality (1),
¢(r0) = 0,(X) =0,

so that ¢(x) vanishes for x = xy and for z = X. Let us assume, for instance, that X >
xo, and let = increase from xy to X at first, the value of ¢(x) is zero. If we assume that
this function is not everywhere zero, for values of x between zy and X, it will have to
either begin to increase, thus taking on positive values, or begin to decrease, thus taking
on negative values; be it from z = z(, or from some other value of x between z; and X.
If these values are positive, since ¢(x) is continuous and vanishes for x = X, it is obvious
that there will be a value x; between zy and X such that ¢(z) is greater than or equal to
the neighbouring values

p(x1—h), @(x1+h),

h being an arbitrarily small quantity. (...)
This, in either cases, the value x1 will be such that the differences

OUnfortunately we did not use the 1868 edition, but a later edition. We know the editions do not differ, as far as the
quoted passages are concerned (see [Dugac 1979]).



302

The Journey to a Proof

p(x1 —h) —p(x1), @1+ h) — (1)

Will be of the same sign; consequently, the ratios

pler—h) —ple1)  @(x1+h) = o(r1)
; )
—h h
will be of opposite signs. (...)
Both ratios (3) tend to the same limit when & tends to zero, since we assumed f(z) has a
well-determined derivative; hence, so does ¢ (z); besides, these two ratios are of opposite
signs: hence their limit is zero. So, one has,

i [222 20 =0t

or, taking equation (2) into account,

lim [f(m + h})L — flz1) A] ~0,
ie.
A=t MBI ey
Therefore
e

as we claimed. (...)

Comment.- The above proof is due to Mr. Ossian Bonnet. It should be noticed that no
assumptions are made as to the continuity of the derivative f’(z); one merely assumes
that it exists and has a well-determined value.

Theorem II.- If function f(x) is constant for all the values of x between two given limits, the
derivative f'(xz) vanishes for these values of x. Conversely, if the derivative f'(x) vanishes for all
values of x between two limits, the function f(x) has a constant value for the values of x between
these limits. (...)

Theorem II1.- If the derivative f'(x) of function f(x) remains finite for all the values of x between
the limits xo, if X > x, and if x is made to increase from xo to X, the function f(x) will increase
as long as the derivative f'(z) will not be negative, and it will decrease as long as f'(x) will not be
positive.

Indeed, since x lies between g and X, the ratio

flzxh) — f(x)
+h
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has limit f’(z), which is a finite quantity; so it will of the same sign as that of the limit, for
values of h between zero and some sufficiently small positive quantity €. Consequently,
for these values of h, the following will hold

flx=h) < f(z) < f(z+h)

if f/(x)is > 0, and

fle=h) > f(x)> flz+h)

if f/(x)is < 0.
Thus, the function f(x) will increase, as from any value of x for which f’(x) is > 0; and
decrease, as from any value of = for which f’(z) is < 0. [Serret 1900, 17-22]

In this passage, Serret introduced Ossian Bonnet’s proof of the mean value theorem, a proof idea
which relied on an affine change of variable and the vanishing of the derivative at a local extremum.
The existence of the extremum is not proved (at least when one compares with later rewritings of this
proof), but made obvious in the narrative style which is so typical of the first half of the 19" century.
Strikingly, Serret did not use the mean value theorem to establish the relationship between the sign
of f’ and the variations of f; he relied on Cauchy’s argument, hence on Cauchy’s notion of functional
variation. However, the mean value theorem was used to establish theorem II. Actually, quite a few
textbook writers made the same choice in the second half of the 19" century. For instance, in the very
Weierstrassian textbook by Genocchi and Peano, Cauchy’s proof is given first; then comes the proof
of the mean-value theorem, from which Serret’s theorem II is derived [Genocchi & Peano 1889, 43].

5 Proof-analysis and regressive analysis

5.1 Proof-analysis: the role of uniform convergence

We identified in Lagrange’s proof a flaw which can be described in several ways: implicit assumption
of uniform differentiability; failure to notice that some variable is dependent on some other, while
trying to consider the limit of second while leaving the first fixed; exchange, without due caution, of
two limiting processes. The same flaws were common to most proofs in analysis which dealt with the
numerical aspect of functions (as opposed to formal aspects); to name a few: Ampere’s proof of the in-
equality form of the mean value theorem!! [Ampeére 1806], Cauchy’s proof of the same [Cauchy 1823,
44-45'2], Cauchy’s proof that the limit of a sequence of continuous functions is continuous [Cauchy
1821, 120], Cauchy’s proof of the existence of a local solution to a first degree differential equation in
the neighbourhood of a regular point [Cauchy 1981, chapter 7] etc.

3

It is well known that the difference between point-wise and uniform!® continuity (for a function),

and point-wise and uniform convergence (for a sequence of functions) was stated in the clearest of

"Namely, that | f(b) — f(a)| over |b — a] is less than or equal to the maximal value of f'(z) on [a, b].
2The page numbers refer to the (Euvres.
B4 eleichmissig” in German.
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ways in Weierstrass’ Berlin lectures on the foundations of analysis; a distinction which he attributed
to his master Gudermann. The awareness of the importance of this distinction spread in the 1870s and
1880s among students, followers or readers of Weierstrass (Hurwitz, Cantor, Schwartz, Dini, Peano,
Pincherle, du Bois Reymond, Heine, Thomae etc.). Of course, this awareness was displayed in a new
generation of textbooks and research papers; it also spread through criticism of faulty proofs found
in papers or textbooks written by the most distinguished mathematicians.

An instance of this is given by Peano’s criticism of the proof of the mean value theorem, which he
read in the first edition of Jordan’s Cours d’analyse de I’école Polytechnique. The exchange of letters was
published in 1887, in the Nouvelles annales de mathématiques:

Mr. Jordan gave a not quite rigorous proof of the following theorem:
“Let y = f(z) be a function of x whose derivative remains finite and well-determined
when z varies in some interval. Let @ and a + h be two values of z in this interval. We will

have
fla+h)— f(a) = ph,

where 1 denotes a quantity between the largest and the smallest values of f’(z) in the
interval between a and a + h.”

Indeed, Jordan writes, let x take on a series of values a1, as, ..., a,—1 between a and a + h;
let us set

flar) = flar—1) = (ar — ar—l)[fl(ar—l) +&r).

Let us now assume that the intermediate values a1, ..., a,—1 are indefinitely multiplied
(and brought closer together). The quantities €1, €,... will all tend to zero, since ¢, is the
difference between % and its limit f/(a,_1).

The latter assumption is not correct; for

flar) — flar—1)

Qr — Qr—1

f/ (ar_ 1 ) = lim

when a,_ is assumed to be fixed, and a, variable and approaching a,_; infinitely closely;
but one cannot claim the same when both a, and a,_; vary, unless the derivative is as-
sumed to be continuous.

Indeed, for instance, let us set

1
y = f(x) = 2*sin —,
T

with

its derivative
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1 1
f'(z) = 2zsin — — cos —
T T

for z = 0, and f/(0) = 0, remains finite and well-determined, but it is discontinuous.
Let

a=0, h>0;
let us set
1 1
al=—, a9 =
' onr T 2n+ D

as, a4, ... any numbers.

One then has
_fen) =)
as — aq
but
f(al) :Oa f(a2) _Oa f,(al) = _]-a
hence

62:1,

which does not tend to zero.
Nearly the same mistake was made by Mr. Hotiel (Cours de Calcul infinitesimal, t.I, p.145).
Eventually, I shall add that the formula

f(@o 4+ h) — f(zo) = hf'(xo + 6h),

Can be established very easily, and without assuming the continuity of f’. [Peano 1884,
45]

In fact, very similar objections had been made a few years earlier to Jules Hotiel himself ! In the

1870s, Hotiel and Darboux co-edited the Bulletin des sciences mathématiques, and Hotiel asked Darboux

for comments on the drafts of his lectures on analysis, which he would eventually publish in 1878.

Darboux was well aware of the recent developments in Berlin, and criticized many of the “classical”

proofs Hotiel planned to rely on. Unlike the Peano-Jordan exchange of letters, this correspondence

remained private, and was partly published in the 1970s and 1980s [Gispert 1983]. Here is Darboux’s

view on Hotiel’s Lagrange-style proof of the mean value theorem, in a letter dated February 4, 1874:

As to 8§52, which plays a fundamental part in your argument, I also find fault with it,
namely: the ¢ quantities are functions of two variables. For instance, setting z3 — x2 = h,

f(xo +h) — f(z2) = hf'(x2) + hea.
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Clearly, ¢; is infinitely small, and is a function of = and h about which only the following
is known: it tends to zero with h, when x remains fixed; but then, I claim that you do not
know what becomes of it when, as h tends to zero, x5 varies with A, which is the case in

your decomposition. For instance, consider

ho
x1—a+h
For any x4, so long as it remains fixed, this expression vanishes with h. But if = varies, for

instance if we have

r1=a—h+ht

Then the expression simplifies into % , which becomes infinitely large as h tends to zero.
I am telling you this for I am deeply convinced that if you stuck more closely to rigour,
you would come up with a treatise of infinitesimal calculus of exceptional interest.

If I were you, I would give up on the theorem on the limit of sums, which is worthless,
just as many other things. With the mean value theorem, such as established by Serret,
you could build a strong structure. This, along with the definition of the integral, is all
one needs. This is how Weierstrass does it, I believe. [Gispert 1983, 89-90]

Needless to say Hotiel failed to be convinced, even though Darboux repeatedly voiced dissent and
disbelief. He sent out several other counter-examples, and rephrased the main argument in various
ways. Even though he did not use the terms “uniform convergence”, the notion was perfectly clear to

him, as we can see in this letter, dated January 18, 1875:

Here is where I find fault with your reasoning, which no one deems rigorous any more!4.

When setting

flz+h) - f(z)

LS ey =,

e is a function of the two variables z and h which tends to zero when, leaving x fixed,
h vanishes. But if 2 and h vary, as in your proof; even more, if every new subdivision
r1 — xo generates new € quantities, I cannot see anything clearly any more, and your proof
becomes only seemingly rigorous. (...) You could get out of this predicament in one of two
ways, 1. By changing proofs altogether, which I advise you to do'®. 2. By proving that if
a function always admits a derivative between x( and x;, one can find a quantity h such
that for all values of x between xy and x;, and all values xy and hq of h less than some limit

value, one has

fle+h) - f(z)

Y — fl(z) <,

“This is an optimistic overstatement from Darboux.
Darboux strongly recommended the Bonnet proof.
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where ¢ has a value which is fixed but chosen as small as one wishes; which is difficult®.
[Gispert 1983, 99-100]

5.2 Regressive analysis: the role of the existence theorem for extrema

A critical mind might object to Bonnet’s proof of the mean value theorem that it depends on the exis-
tence of a maximum or a minimum, an existence which is implicitly taken for granted. It seems clear
that if the function is piece-wise monotonous (as seems to be assumed in the text), it will indeed ad-
mit either a local maximum or a local minimum; but a differentiable function needs not be piece-wise

monotonous, as the ever useful example f(x) = 22

sin % shows.

In fact, the existence of a maximum can be grounded without piece-wise monotony, or continuous
differentiability, as Weierstrass established, for instance in his 1878 lectures on the theory of functions.
The following passage has nothing to do a priori with calculus. It comes after the construction of the
set of real numbers R (or, more precisely, the affinely extended real number line R = [—oc, +00])
starting from rational numbers. The theorem about nested intervals was established on this basis, as
well as the existence theorem of an upper bound (obere Grenze) for any non-empty subset of the ex-

tended real number system.

Let a value y correspond to every point (x1, ..., x,) of some domain; then y is also a vari-
able quantity, hence has a lower and an upper bound; let g denote it. Then, there exists
at least one point in the x-domain (that point needs not belong to the defined domain)?,
with the following property: if we consider however small a neighbourhood of that point,
and consider the values of y corresponding to that z-domain, then these values of y also
have an upper bound, this upper bound being exactly g. Similarly for the lower bound.
[Weierstrass 1988, 91]

What we have here is a purely set-theoretic theorem; the function does not have to be continuous; no
hypotheses are made on the domain (if it is not closed, the point with the remarkable property may
lie on its boundary). We skip the proof, which relies on the definition of the upper bound, and the
(now familiar) technique of nested intervals. Weierstrass then turned to an application of this very
abstract result in “everyday” analysis:

One is commonly faced with the question: among the values taken on by some magni-
tude, is there a maximum or a minimum (maximum or minimum in the absolute sense!®).
Let y be a continuous function of z, y = f(z). Here, x must remain between two given
limits a and b. In which circumstances is there a maximum and a minimum for y? There
is an upper bound for y. According to our proposition, there must be some point z in the
xz-domain such that the upper-bound of the values of y for x between xy — § and zo + ¢ is

16The fact that, if the derivative is continuous, then w does tend to f'(z) uniformly on every closed and bounded
interval was proved, for instance, in the second edition of Jordan’s textbook [Jordan 1893, 68].

7Indeed, it may lie on the boundary of the first domain.

18 e. not a local maximum or minimum.
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also g. Point z either lies inside a...b, or on its border (zg = a, or g = b).

In the first case, f(zo) is a maximum. Indeed, f(xo) must be equal to g: for f(z) — f(xo)
can be made as small as we wish, by choosing an adequately small |z — z|; on the other
hand, since x lies between zy — ¢ and x¢ +¢, f(z) can be chosen arbitrarily close to g; hence
f(zo) = g. If we had f(zo) = g+ h, we would have f(z) — f(zo) = f(x) —g—h, and f(x)
could not come arbitrarily close to g if » was not 0).

If zy coincided with either a or b, then we could only claim that f(a) (resp. f(b) is a maxi-
mum if f(z) was continuously at a (resp. b) as well. [Weierstrass 1988, 91-92]

A similar proof can be found in other texts, sometimes published before 1878, but all deriving di-
rectly or indirectly from Weierstrass’ Berlin lectures: [Cantor 1871], [Heine 1872 186], [Darboux 1872].
Fifty years later, the full conceptual clarification of the notion of maximum would still be considered
one of the achievements of Weierstrass” work on the foundation of analysis, as is shown by the first
lines of Hilbert’s famous 1925 paper On the Infinite:

Weierstrass, through the critique elaborated with the sagacity of a master, created a firm
foundation for mathematical analysis. By clarifying, among other notions, those of mini-
mum, function, and derivative, he removed the remaining flaws from the calculus, cleansed
it of all vague ideas concerning the infinitesimal, and conclusively overcame the difficul-
ties that until then had their roots in the notion of infinitesimal. [Hilbert 1967, 369]

6 Conclusion

Let us attempt to summarize the pretty intricate network of definitions, proof-ideas (or proof-germs),
proof-techniques, and proof-analyses displayed in this sample of texts.

At least two definitions of what it means for a real-valued function to “increase” can be found in the
19t-century: a point-wise and global definition which can be found in Lagrange; a definition that
relies on an everywhere-valid local property, which can be found in Cauchy. If we stick to Cauchy’s
definition, then the proof of the theorem about the relationship between the sign of f’ and the varia-
tions of f is pretty trivial. If we want to reach the Lagrange-style conclusion, then much more work is
needed, since one has to start from an everywhere-valid local property (sign of f’) and reach a global
conclusion.

To reach that conclusion, we saw two very different proof-ideas, namely Lagrange’s and Bonnet’s. In
the proof we studied, and in quite a few other parts of his work, Lagrange distanced himself from
the formal manipulation of formulae (finite or infinite), and engaged in numerical proof: he relied
on the correct numerical understanding of the notion of limit; on this basis, he cautiously built net-
works of inequalities; he finally endeavoured to ground his reasoning on the determination of upper

bounds for the errors in a process of affine approximation. In the first half of the 19th

century, many
proofs of the most important theorems in function theory were written along this line. Distrust of
this proof-scheme spread as mathematicians grew aware of the distinction between point-wise and

uniform (continuity, convergence). They spread all the more slowly since the theorems were correct,
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the building blocks of the proofs showed a proper understanding of the notions at stake, and local
counterexamples!'® were hard to find. As Darboux insightfully (but to no avail, as far as Hotiel was
concerned) stressed, there were only two ways out of this predicament: either to change proof-germs,
or to establish uniformity®.

For the theorem on which we chose to focus, an alternative proof became available in the 1860s, which
relied on a completely different proof-idea; unlike Lagrange’s proof, it did not rely on what the deriva-
tive of a function at a point is (a limit, which provides some local affine approximation), but on a prop-
erty of the derivative (stated in the mean value theorem). Some elements of Bonnet’s proof were later
seen as insufficiently grounded, in particular the existence of a minimum or a maximum; in the 1890s,
mathematicians such as Jordan or Stolz used Weierstrass’ analysis of the set-theoretic properties of
the real line to back up that weaker step in Bonnet’s proof.
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