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PREFACE 

 
This volume contains the texts of the contributions presented at the HPM 2004 Satellite Meeting of 
ICME 10, conjointly with ESU 4 (the fourth European Summer University on History and 
Epistemology in Mathematics Education). This double event was organized by the Department of 
Mathematics of the University of Uppsala (Sweden), in Uppsala, in the week following ICME 10 
in Copenhagen (Monday, July 12 - Saturday, July 17, 2004). 

The book starts with an account of the first 25 years of HPM (by Florence Fasanelli & John 
Fauvel) and on the history of ESU (by Evelyne Barbin, Nada Stehlikova & Constantinos 
Tzanakis). These contributions remind us the spirit of HPM, which permeates the Summer 
Universities, as well. This spirit is much more than the use of history in the teaching of 
mathematics; it is the conception of mathematics as a living science, a science with a long history, 
a vivid present and an as yet unforeseen future, together with the conviction that this conception of 
mathematics not only should be the core of the teaching of mathematics, but also it should be the 
image of mathematics spread out to the outside world. Through history we see that mathematics 

• is the result of contributions from many different cultures,  
• has been in constant dialogue with other sciences, 
• has been a constant force of scientific, technical, artistic and social development,  

and that 
• the philosophy of mathematics has evolved through the centuries, 
• the teaching of mathematics has developed through the ages. 

The event held in Uppsala in 2004 brought together historians of mathematics (wishful to inform 
about their research), mathematics teachers (eager to get insights on how the history of 
mathematics may be integrated into teaching), mathematicians (willing to learn about new 
possibilities to teach their discipline), mathematics educators and all those with an interest in 
mathematics, its history, and its role nowadays and in the past, both as a scientific activity and as 
part of education. A group of pre-service teachers, involved in the European project “Quality 
class”, attended the conference as well. The participants had the opportunity to share their insights 
and experiences of integrating the history of mathematics into teaching. The activities developed 
around the following main themes: 

• Topics in the history of mathematics and mathematics education 
• The role of the history of mathematics in the teaching and learning of mathematics 
• The role of the history of mathematics in teachers’ training  
• The common history of mathematics, science, technology and the arts 
• Mathematics and cultures  
• Historical, philosophical and epistemological issues in mathematics education 

The activities consisted of invited talks, panel discussions, workshops, oral communications and 
posters. The contributions were refereed by members of the scientific program committee on the 
basis of an extended abstract. A provisional edition of the proceedings1 was distributed on the 

                                                      
1Furinghetti, F., Kaijser, S., Vretblad, A. (eds.), 2004, Proceedings of HPM2004 and Fourth Summer 

University, Uppsala (Sweden): University of Uppsala. 
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spot, to help the participants plan their participation in the activities. 
After the meeting, authors were invited to review their texts on the basis of the feedback they 

gained from the audience in Uppsala. The present volume contains the revised papers of the oral 
communications - including those that for one reason or another did not appear in the original 
edition-, texts describing the workshops, a synopsis of the panel discussions and poster 
presentations. For a few contributions the authors provided only an abstract. The content of each 
contribution, and the choice of language, was left to the authors’ responsibility (French and 
English were the official languages). We feel that, the variety of levels of use of English in this 
volume and the inevitable weakness of some texts in this respect, definitely stress the character of 
internationalism of the HPM and ESU meetings, however, without prohibiting the textual 
understanding of the contributions. We thank the authors, who willingly amended their papers for 
this revised edition. One of us (C.T.) was asked to join the editorship as the chair of the HPM 
Group appointed during this meeting in Uppsala for the period 2004-08, thus marking the 
continuity of the HPM activities and reflecting the spirit of the HPM community. 

Fulvia Furinghetti  
Sten Kaijser  

Constantinos Tzanakis 
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THE INTERNATIONAL STUDY GROUP ON THE RELATIONS BETWEEN THE 
HISTORY AND PEDAGOGY OF MATHEMATICS: THE FIRST TWENTY-FIVE 

YEARS, 1976-2000 
 

Florence FASANELLI, John G. FAUVEL† 
 
 

There has been interest in the question of how history of mathematics can help mathematics 
teachers and learners since at least the time of David Eugene Smith and Florian Cajori, that is, 
from the 1890s onwards, but a widespread international movement began to take shape only three-
quarters of a century later, in the 1970s. The intervening period is full of interest and deserves a 
historical study of its own, but the present account picks up the story at the point in 1972 when 
there occurred a confluence between growing interest within the mathematics education 
community (seen notably in the NCTM’s celebrated 31st Yearbook of 1969, Historical topics for 
the mathematics classroom) and an increased readiness of international bodies to take such 
interests and concerns on board. 

1972 

What is now called “HPM” sprang from a Working Group organised at the second International 
Congress on Mathematical Education (ICME), held in Exeter, UK, in 1972. This was only the 
second such international congress, the first one having been four years earlier, in Lyons, France. 
These congresses, which have been held every four years since, are organised by ICMI, the 
International Commission on Mathematical Instruction. This international body was the result of a 
suggestion in L’Enseignement Mathématique in 1905 by David Eugene Smith, and was originally 
established in 1908 at the International Congress of Mathematicians held in Rome, its first chair 
being Felix Klein. After some interruption of activity between and during the two world wars, it 
was reconstituted in 1952 as a commission of the International Mathematical Union (IMU). The 
IMU itself was formed at the 1920 International Congress of Mathematicians, held in Strasbourg. 
The history of these international bodies is thus closely linked with twentieth century 
internationalisation of mathematical activity, in particular with the efforts of mathematicians to re-
energise international co-operation after major wars, as part of the healing and reconciliation 
process and in a spirit of optimism about building a better future for everyone. At the 1972 ICME, 
a Working Group (EWG 11) on ‘History and pedagogy of mathematics’ was organized by Phillip 
S. Jones (University of Michigan, US) and Leo Rogers (Roehampton Institute of Higher 
Education, UK), both influential figures in the nascent movement over the next few years2. 

                                                      
† Deceased. 
2 Geoffrey A. Howson (ed.), 1973, Developments in Mathematical Education Proceedings of the Second 

International Congress on Mathematical Education, Cambridge: Cambridge University Press, p. 39. This 



 
 

xi 
 

1976 

The work of this group was continued at the next ICME (ICME 3), held in Karlsruhe, Germany, in 
1976 (August 16-21), with three sessions, chaired by Phillip Jones and Roland Stowasser 
(Bielefeld, Germany), under the title of ‘History of mathematics as a critical tool for curriculum 
design’. Phillip Jones, Henk Bos, Roland Stowasser, Barnabus Hughes, Leo Rogers, Jean Nicolson 
and Graham Flegg gave talks in these sessions3. At this meeting, in the words of Leo Rogers’ 
report, “It was clear that participants were anxious to bring to the notice of the Congress 
Organizing Committee the importance and the widespread interest in historical-pedagogical 
studies in mathematics”, and a resolution was forwarded to the secretary of ICMI proposing the 
setting up of a system to ensure regular sessions at future ICMEs on the relations between history 
and pedagogy of mathematics. The ICMI Executive Committee welcomed these proposals and at 
its subsequent meeting approved the affiliation of the new Study Group, under the title 
International Study Group on Relations between History and Pedagogy of Mathematics, 
cooperating with the International Commission on Mathematical Instruction. (This somewhat 
unwieldy title is now generally shortened to “HPM”.) The “principal aims” of the Study Group 
were given in these words4. 
 

1. To promote international contacts and exchange information concerning: 
a) Courses in History of Mathematics in Universities, Colleges and Schools. 
b) The use and relevance of History of Mathematics in mathematics teaching. 
c)Views on the relation between History of Mathematics and Mathematical Education at all levels. 

2. To promote and stimulate interdisciplinary investigation by brining together all those interested, 
particularly mathematicians, historians of mathematics, teachers, social scientists and other users of 
mathematics. 

3. To further a deeper understanding of the way mathematics evolves, and the forces which contribute to 
this evolution. 

4. To relate the teaching of mathematics and the history of mathematics teaching to the development of 
mathematics in ways which assist the improvement of instruction and the development of curricula. 

5. To produce materials which can be used by teachers of mathematics to provide perspectives and to 
further the critical discussion of the teaching of mathematics. 

6. To facilitate access to materials in the history of mathematics and related areas. 

7. To promote awareness of the relevance of the history of mathematics for mathematics teaching in 
mathematicians and teachers. 

8. To promote awareness of the history of mathematics as a significant part of the development of cultures. 
At the same Karlsruhe ICME, another permanent study group was set up, the International Group for the 
Psychology of Mathematics Education (PME). This group too has flourished in the years since, holding 
annual meetings in different countries and issuing a PME Newsletter twice a year as well as conference 
proceedings and other scientific publications. 

To complete the picture of ICMI study groups, there are two further permanent groups which have 
come on stream more recently: IOWME, the International Organization of Women and 
Mathematics Education, which is particularly concerned with issues relating gender and 
mathematics education; and WFNMC, the World Federation of National Mathematics 

                                                                                                                                                                
includes a footnote ‘A longer account of the group’s discussions is to appear in Notae De Historia 
Mathematica the Newsletter of the Commission on History of Mathematics obtainable from Professor I. O. 
May, Historia, Dept. of Mathematics, The University, Toronto 181, Canada’. 

3Historia Mathematica, 4 (1977), 94-95. The first report about HPM appeared in the ICMI Bulletin N. 10 
March 1978, 26-27. 

4Historia Mathematica, 5 (1978), 76. 
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Competitions. The latter is a confederation of people interested in the creation of school 
mathematics competitions and using them to develop the talents of young people. All four ICMI 
Study Groups share certain features, such as being rather loosely structured as well as being very 
dependent on the commitment and enthusiasm of a few already busy individuals to keep the 
momentum going and ensuring the organization survives and develops. HPM has been very 
fortunate in that each generation of members has managed to inspire younger folk to pick up the 
baton and continue to work for the group’s survival and growth, enthusing an ever-widening circle 
of teachers and others across the world. 

1978 

In the years after the Karlsruhe congress, the spirit of the HPM Group’s activities began to 
percolate through other meetings. For instance, the International Congress of Mathematicians 
(ICM) in Helsinki held two years later (15-23 August 1978) had a session on relations between 
history and pedagogy of mathematics, chaired by Graham Flegg (Open University, UK). At this 
meeting two roles for the HPM Study Group were identified: disseminating information on 
publications and resources in the history of mathematics, and organizing lectures and seminars at 
international gatherings such as ICM and ICME.5 

1980 

ICME 4 was held at the University of California, Berkeley over August 10-16, 1980. The HPM 
contributions were planned and flagged well in advance6. At that meeting Bruce Meserve 
(University of Vermont, USA) was elected co-chair of HPM, alongside Roland Stowasser, in place 
of Phillip Jones. Two sessions were devoted to themes of interest to the group, “How can you use 
history of mathematics in teaching mathematics in primary and secondary schools?” and “The 
relevance of philosophy and history of science and mathematics for mathematical education”. Four 
lectures were given in each of these sessions, all published in the conference proceedings.. Nor 
were insights into the area confined to these sessions. The plenary lecture given to the Congress by 
the distinguished Dutch mathematics educator Hans Freudenthal valuably included his succinct 
views on the “ontogeny recapitulates phylogeny” debate which has long been a concern to those in 
HPM circles: 

 
History of mathematics has been a learning process of progressive schematising. Youngsters need 
not repeat the history of mankind but they should not be expected either to start at the very point 
where the preceding generation stopped. In a sense youngsters should repeat history though not the 
one that actually took place but the one that would have taken place if our ancestors had known what 
we are fortunate enough to know. 

Hans Freudenthal, ‘Major problems of mathematics education7‘ Proceedings of ICME 4, p. 3. 

                                                      
5 Historia Mathematica, 6 (1979), 204. 
6 Historia Mathematica, 7 (1980), 80-81. In fact the sessions recorded in the proceedings (next footnote) 

do not seem to follow the plans announced in advance in Historia Mathematica. 
7 Marilyn Zweng, et al. eds. (1983) Proceedings of the Fourth International Congress on Mathematical 

Education, Boston: Birkhäuser. On pages 396-404 are the four papers given in the session on “How can you 
use history of mathematics in teaching mathematics in primary and secondary schools?”: Casey Humphreys 
(Minneapolis, USA), ‘Use of the history of mathematics as a pedagogical tool,’ 398-400; Leo Rogers 
(London, UK), ‘The mathematics curriculum and the history of mathematics,’ 400-402; Maassouma Kazim 
(Cairo Egypt), ‘The use of history of mathematics in the teaching of mathematics in secondary education’, 
402-403; Hans Niels Jahnke (Bielefeld, Germany), ‘The relevance of philosophy and history of science and 
mathematics for mathematical education,’ 444-447; Rolando Chuqui (Santiago, Chile), ‘Restricted 
Platonism and the teaching of mathematics,’ 449-450; David Pimm (Warwick, UK), ‘Why the history of 
mathematics should not be rated X – the need for appropriate epistemology of mathematics for mathematics 
education,’ 450-452. 



 
 

xiii 
 

HPM Newsletter, the early days 

It was in 1980, too, that the UK mathematics educator Leo Rogers, who had acted as the Group’s 
contact person from early in the 1970s, established a Newsletter, serving as its first editor. In the 
early years, a’ North American edition’ of the Newsletter was created and edited by Bruce 
Meserve (University of Vermont), of which two numbers were issued (February 1982 and October 
1982) before he passed the baton to Charles Jones. By 1984 the two newsletters had in effect 
amalgamated and henceforth (from what was called issue no 7) there was one HPM Newsletter, 
edited until 1988 by Charles Jones, with occasional special supplements for the Americas Section8. 
It was at the 1983 Michigan NCTM meeting, mentioned below, that Charles Jones (University of 
Toronto, Canada, and Ball State University, USA) agreed to be the editor of the Newsletter. The 
intention was that the Newsletter have a calendar of upcoming events, a guest editorial, a ‘Have 
You Read?’ column and short reviews and announcement of meetings and activities. The North 
American edition would be distributed around the world so that articles could be added in various 
countries by other editors. Jones wrote about the creation of the first 16 issues of the Newsletter in 
a valedictory at the time of his resignation in May 1988. He considered there to have been three 
issues before he took over (Rogers and Meserve) and thus he began numbering them with the 
October 1983 issue as ‘n. 5’9. 

With issue n. 7 this Newsletter became the organ for the international group, not just North 
America. By 1988 there were 2500 on mailing list with readers on every continent (except 
Antarctica) and in 62 countries. The publishing and distribution were paid for by the Department 
of Mathematical Science sat Ball State University. It was Jones who built up the Newsletter into an 
important document for communication and hence developing strongly and creatively the work 
laid out in the initial document of HPM, a tradition which was carried on by his successor Victor 
Katz. The Newsletter has from the start relied on the goodwill of various college and university 
institutions for its printing facilities, and an in formal distribution system to spread it as widely as 
possible. 

Relations with NCTM 

The long-standing organization for north American mathematics teachers, the National Council of 
Teachers of Mathematics (NCTM) has long had an interest in the role of history for mathematical 
pedagogy. It was during Phillip Jones’ presidency of the NCTM that the celebrated 31st Yearbook 
of the NCTM, Historical topics for the mathematics classroom, was proposed. Even before that 
there had long been a history section in the NCTM’s journal Mathematics teacher, edited 
successively by Vera Sanford (a student of David Eugene Smith), Phillip Jones and Howard Eves.  

1982 

With the founding of HPM, relations with NCTM continued to be positive and productive. 
Beginning in1982, the Group has organized sessions at the major annual meetings of the NCTM; 
these sessions have generally been highly popular, often standing room only. That year the NCTM 
Meeting was held in Toronto, where the Institute for the History and Philosophy of Science and 
Technology hosted a reception and dinner, arranged by Charles Jones, for those who were 
interested in the work of the study group. The HPM session, on 15 April 1982, to an audience of 

                                                      
8 HPM Newsletter, 16 (1988), 2. 
9 Charles Jones, HPM Newsletter, n. 16, May 1988, 2-3. 
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80, had presentations from Linda Kolnowski, Marie Vitale, Maryjo Nichols, Dorothy Goldberg, 
and Charles V Jones10. 

1983 

The following year, 1983, an HPM workshop was held at the University of Michigan, Ann Arbor, 
organized by Phillip Jones, just prior to the annual meeting of the NCTM, held in Detroit. At the 
University of Michigan meeting, extensive use of the outstanding mathematical collection in the 
Rare Book Room at the university was organized by Jones and V. Frederick Rickey (Bowling 
Green State University, USA)11.  

This type of well-attended meeting continued until 1997 [check date] when the meetings were 
incorporated into the general program of NCTM and consequently compete - not unsuccessfully - 
with a huge number of other talks and sessions. These annual meetings held in collaboration with 
the NCTM have been, in effect, the annual meeting of the Americas Section of HPM, which is to 
this extent an affiliated group of NCTM as well as being a semi-autonomous section of HPM (and 
thus affiliated to ICMI). Discussions followed of how such works could be used in the 
classroom. Participants brought copies of materials they had used in their classrooms to share, 
a vital part of the work of HPM. 

The Canadian connection 

Toronto at that time played an important role in the development of history of mathematics as an 
institutional and international endeavor, as the university from which Kenneth O. May promoted 
history of mathematics in a number of ways up until his sadly early death in 1977. May’s 
successors at Toronto’s Institute for History and Philosophy of Science and Technology (IHPST) 
have continued to support and promote history of mathematics and its relations with pedagogy. In 
1983, for example, a workshop from 25 July to 2August, billed as a summer seminar on the history 
of mathematics for teachers, was held in Toronto and attracted a number of distinguished speakers. 
The proceedings, edited by Ivor Grattan-Guinness, were published as History in mathematics 
education, Paris: Belin (1986), 208 pp. In 1992 the same institution hosted the HPM satellite 
meeting, described in more detail below, whose proceedings were to be published as Vita 
Mathematica (ed R Calinger, MAA 1996, 359 pp.). 

Americas Section 

In 1984, a meeting was held at University High School in San Francisco under the leadership of 
Jones and Meserve and hosted by Craig McGarvey (University High School). This meeting saw 
the presentation of papers and the plans for the establishment of an Americas Section of ISGHPM 
(North, South and Central America) as well as a 6.1 earthquake. The underlying reason for 
establishing this section was to have a more active presence in the mathematics education 
community than was forthcoming from the international organization. Florence Fasanelli 
(Sidwell Friends School, USA) was elected to chair this section and to represent it at the ISGHPM 
in Adelaide, Australia in August 1984 at ICME 5. Subsequent chairs of the section have been V. 
Frederick Rickey, Charles Jones, Victor Katz, and Robert Stein. 

                                                      
10 Historia Mathematica, 10 (1983), 92. 
11 V. Frederick Rickey, ‘ISGHPM Meets in Ann Arbor and Detroit,’ HPM Newsletter, North American 

Edition, May 1983, 3. 
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With the work of Jones and Meserve to initiate the Americas section described above and to 
begin a local newsletter which was transformed into an international newsletter by its editor 
Charles Jones the development of activities in the USA began in earnest in 1983. The Section 
meetings continue to be held each year as an affiliated group (since 1993) of NCTM. In 1993, 
HPM Americas Section created a constitution, which was laid out in the HPM Newsletter12. 

International meetings 

In 1983 three two-hour ISGHPM sessions were held at the ICM in Warsaw, Poland organized by 
Roland Stowasser13. (with Waclaw Sawasowski of the Mathematical Institute as local organizer). 
The talk by Abraham Arcavi (Weizmann Institute of Science, Israel) presented materials dealing 
with the history of negative numbers which had been prepared for use in courses for teachers. 
They had adopted original documentation in the original languages (with some translation clues 
supplied) and the development of tasks for teachers to perform. Other speakers included: Hans 
Wussing, David Wheeler, and Christian Houzel, 

1984 

Up through this period the major activities of ISGHPM were at international congresses. In 1984, 
the first Satellite meeting to be held with an ICME took place at the Sturt Campus of the 
University of Adelaide under the leadership of George Booker14. This was particularly memorable 
event, for it was at this meeting that Ubiratan D’Ambrosio outlined his thoughts on the need to 
develop three separate histories of mathematics: history as taught in schools, history as developed 
through the creation of mathematics, and the history of that mathematics which is used in the street 
and the workplace. As a plenary speaker a few days later at ICME 5, he introduced the concept of 
‘ethno mathematics’ as compared to ‘learned mathematics’ to deal with these differences15. 

ICME 5 itself was held at the University of Melbourne, and contained further activities of the 
study group. 

Notably, a series of four meetings was held with the intention of introducing mathematics 
educators to the group and its aims. During the business meeting of ISGHPM at that congress, Ubi 
D’Ambrosio (University of Campinas, Brazil) and Christian Houzel (Université Paris-Nord, 
France) were elected co-chairs for the next four years. Bruce Meserve suggested that the acronym 
for ISGHPM be shortened to HPM. He also suggested that affiliated groups of HPM be formed, 
specifically an Americas Section. This was approved at the meeting. 

1986 

D’Ambrosio arranged for an HPM meeting in conjunction with ICM in Berkeley in 1986. 

                                                      
12 HPM Newsletter, n. 30 (Nov. 1993), 11. 
13 David Wheeler, ‘ISGHPM at Warsaw International Congress’ in ISGHPM Newsletter, n. 5 (Oct. 

1983), 3. 
14 Florence Fasanelli, ‘International Study Group on the Relations Between History and Pedagogy of 

Mathematics’ in American Perspectives on the Fifth International Congress on Mathematics Education 
(ICME 5), Warren Page (ed.), 1985, MAA Notes n. 5, Washington, DC: Mathematical Association of 
America, 256-260. 

15 George Booker, ‘Topic Area: Relationship Between the History and Pedagogy of Mathematics’ in 
Marjorie Carss (ed.), 1986, Proceedings of the Fifth International Congress on Mathematical Education, 
Boston, Birkhäuser, 256-260. 
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1988 

A meeting of the HPM Americas Section was held from June 30 to July 4 1988 in São Paulo, 
Brazil, in connection with the Second Latin-American Congress on the History of Science and 
Technology. 

From July 20 to 22, 1988, the second HPM satellite meeting was held at Pallazo Medici-
Riccardi in Florence, Italy, under the leadership of Florence Fasanelli (now of the National 
Science Foundation, USA). This began the custom of holding the quadrennial HPM satellite 
meeting in a nearby but different country, shortly before or after the main ICME meeting, to 
encourage those who could not also attend ICME to be able to participate in HPM and to provide a 
fuller set of HPM activities than is possible during the very crowded ICME timetable. Holding the 
meeting in Florence made it possible to tour historical sites connected to mathematical history 
including a tour of the history of science museum, the Palazzo de Storia della Scienze. Speakers at 
the meeting included Catherine Perrineau (France), John Fossa (Brazil), Ubiratan D’Ambrosio 
(Brazil), David Wheeler (Canada), James Tattersall (USA), Michael Serfati, Jacques Borowczyk 
(France), Benedito Castrucci (Brazil), Israel Kleiner (Canada), Maryvonne Hallez (France), V 
Frederick Rickey (USA), and Robert Hayes (Australia), who shared his experiences of history of 
mathematics as a source of encouragement in learning mathematics for non-traditional students, in 
particular adults returning to learning. 

ICME 6 was held in Budapest, Hungary, from July 27 to August 3 1988. The HPM sessions, 
arranged by Ubiratan D’Ambrosio, focused on two main themes, Non-euclidean geometries and 
their adoption in the school systems and The evolution of algorithms for use in schools, as well as 
having a panel on History of mathematics in the teaching of mathematics. The symposium on non-
euclidean geometries had three speakers, Nikos Kastanis (Greece), Massouma Kazim (Qatar), and 
Tibor Wessely (Romania). That on algorithms had one main speaker, Lawrence Shirley (Nigeria), 
although a lengthy and well-received intervention by George Ghevarghese Joseph (UK) was the 
first opportunity many HPM members had to hear of the work which Joseph was to publish three 
years later as The crest of the peacock. The panel on history and teaching, chaired by Ubiratan 
D’Ambrosio, had four members: Evelyne Barbin (France), Helena Pycior (USA), Arpad Szabó 
(Hungary) and Hans Wüssing (DDR). In a fourth session, short papers were given by László Filep 
(Hungary), Ryusuke Nagaoka (Japan), Zofia Golab-Meyer (Poland), Rudolph Bkouche (France), 
Robert Hayes (Australia) and Circe Silva da Silva (Brazil). As the array of countries indicates, this 
was perhaps the most international of all HPM gatherings up to then. 

At this meeting Florence Fasanelli was elected chair, for the next four years, and the previous 
system of co-chairs was dropped. Victor Katz (University of the District of Columbia, USA) was 
invited to become editor of the Newsletter following its successful development under Charles 
Jones who had resigned after 12 excellent editions. It was determined that the Advisory Board 
members for HPM would continue to comprise previous chairs and a number of others who would 
be co-opted by the Chair to share in decisions and generally help to promote the concerns of the 
Study Group around the world. 

After the Budapest ICME, several members of the HPM community went on to a meeting in 
Kristians and, Norway, organised by Otto Bekken (Agder College, Norway) and Bengt Johansson 
(Göteborg University, Sweden). While not strictly an HPM meeting in its formal conception, this 
meeting of historians, mathematicians and mathematics educators from twelve countries spanning 
four continents was fine testimony to the growing international interest in relations between 
history and pedagogy of mathematics. A collection of twenty-three influential papers arising from 
this conference was subsequently published by the Mathematical Association of America, under 
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the title Learn from the masters!, a tribute to the memory of Norway’s greatest mathematician, 
Niels Henrik Abel, who lived near Kristiansand and whose spirit watched over the proceedings. 

1990 

From 26-28 June 1990 an HPM conference was held in Campinas, Brazil at the Center of Logic, 
Epistemology and History of Science at the State University of Campinas, Brazil, on ‘Using 
History in the Teaching of Mathematics.’ 

HPM sponsored sessions at the 1990 ICM in Kyoto were arranged by Ubiratan D’Ambrosio. 
By this time HPM was well enough known to merit a footnote in Marcia Ascher’s classic 
Ethnomathematics, published in June 1991 (the final words of the book, indeed), saying “Their 
activities and newsletter are important resources”. 

1992 

1992, the year of the next ICME, saw the holding of the third HPM satellite meeting at the 
University of Toronto, Canada. This was organized by Florence Fasanelli and the local hosts were 
Craig Fraser (University of Toronto) and Israel Kleiner (York University). At this meeting John 
Fauvel (Open University, UK) was elected Chair for the forthcoming quadrennium, and Victor 
Katz was asked to continue as Editor of the Newsletter. Ronald Calinger (Catholic University, 
USA) was invited to prepare a refereed volume of the papers initially prepared for this meeting 
and for the subsequent ICME in Quebec, to be published by the Mathematical Association of 
America in the MAA Notes series16. 

At ICME 7 held in Québec, the four HPM sessions were organised by a team consisting of 
Florence Fasanelli (chair), Evelyne Barbin, Israel Kleiner and V. Frederick Rickey: there were 
three themes for the history of mathematics and pedagogical problems; the history of mathematics 
as a cultural approach to solving problems; and historical problems in the classroom. Talks were 
given in these sessions by Otto Bekken (Norway) and John Fauvel (UK), (discussant Evelyne 
Barbin (France)); Jan van Maanen (Netherlands) and Michèle Grégoire (France), (discussant Hans 
Niels Jahnke (Germany)); George Booker (Australia) and Man-Keung Siu (Hong Kong) 
(discussant Frank Swetz (USA)); V Frederick Rickey (USA)and Maggy Schneider (Belgium)17. 

The 1992 ICME, held in Francophone Canada, had of course a particularly French tone, 
intellectually and linguistically (and, not least, gastronomically); and the French Inter-IREM group 
(see below) led by Evelyne Barbin presented a valuable report entitled Histoires de problèmes 
histoire des mathématiques This collection of fifteen histories of different problems (such as prime 
numbers, the parallel postulate, the brachistochrone problem, &c) written by some thirty French 
teachers and designed for other teachers as a means of introducing a historical perspective into 
their teaching, was subsequently published in French and then in English translation. 

At the meeting of the General Assembly of ICMI at the Quebec meeting it was announced that 
the proposal for an ‘ICMI Study’ in the history and pedagogy of mathematics was under 

                                                      
16 Ronald Calinger, (ed.), 1996, Vita Mathematica; Historical Research and Integration with Teaching. 

Washington, DC: Mathematical Association of America, MAA Notes n. 40. This referred volume contains 
papers developed from talks given in Toronto and Québec and an additional ten papers written to expand the 
usefulness of the volume. The volume is dedicated to Philip S. Jones, Scholar-teacher, Historian of 
Mathematics, Colleague. 

17 V. Fredrick Rickey, ‘An Historical Perspective on Learning, Teaching, and Using Mathematics,’ in 
Proceedings of the 7th International Congress on Mathematical Education, (1994), Claude Gaulin et al. eds. 
Sainte Foy: Les Presses de l’Universitè Laval. 299-303. This is a fine and thorough report on all the papers 
given in Québec. 
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consideration and would probably be funded. The story of the development of this study is taken 
up later. 

1994 

A meeting of HPM, arranged by Ubiratan D’Ambrosio, was held in Blumenau, Brazil, in 1994 as a 
satellite of the Second Iberoamerican Conference on Mathematics Education18. 

1995 

A meeting of HPM arranged by George Booker was held in Cairns, Australia, in July 199519. This 
conference focused on ethnomathematics and the Australasian region, the history and diversity of 
that subject and fortunately included native people from New Zealand and Australia. Among the 
memorable talks of the conference was the report by Alan Bishop on the work of his late student 
on numeration structures in Papua New Guinea. 

1996 

HPM held its usual meetings at ICME 8 in Seville, Spain. Talks from these sessions, together with 
others from the subsequent HPM satellite meeting in Braga, (twenty-six papers in all), were 
published by the Mathematical Association of America in 2000, edited by Victor Katz20. At this 
meeting, too, Jan van Maanen of the University of Groningen, Netherlands, was elected as Chair 
of HPM (note the title was officially shortened in the acronym) for the next four years21. 

At the General Assembly of ICMI held at the Universidad de Sevilla, the Secretary announced 
that the Study hinted at in Quebec four years earlier was to come about; namely, that ICMI would 
mount a study in1997 on ‘The Role of the History of Mathematics in the Teaching and Learning of 
Mathematics’. Shortly afterwards the HPM chair and his predecessor, Jan van Maanen and John 
Fauvel, were invited by ICMI to chair the Study (whose progress is described in more detail later). 

For the first time the HPM satellite meeting was held after the congress and in conjunction with 
another conference, the ‘European Summer University’. Organized by Eduardo Veloso through 
the Portuguese mathematics teachers association, the Associação de Professores de Matemática, 
the meeting was held on24-30 July in Braga, Portugal. It had a very high attendance of more than 
550, some half or so from Portugal itself as well as very many from Brazil, and many interesting 
papers were published in the two volume set of proceedings. The official languages were English, 
Portuguese, and Spanish (although in the event there were not many Spanish delegates)22. 

1997 

Over the autumn of 1996 the co-chairs of the ICMI Study invited a number of distinguished 
scholars in the field (listed later) to form an International Programme Committee for the Study. 
The following year a planning meeting of the IPC was held in Nantes, France, taking advantage of 
an already-planned French conference on HPM issues, the 7th Université d’été interdisciplinaire 
sur l’histoire des mathématiques.(This biennial series of meetings for French teachers should not 

                                                      
18 Sergio Nobre (ed.), Proceedings of the Meeting of the International Study Group on Relations 

Between History and Pedagogy of Mathematics HPM-Blumenau/Brazil 25-27 July, 2nd
 edition. UNESP. 

19 British Society for the History of Mathematics Newsletter, n. 30 20-21 
20 Victor Katz (ed.), 2000, Using history to teach mathematics: An international perspective, 

Washington, DC: Mathematical Association of America, MAA Notes. 
21 Mogens Niss (ed.), Bulletin of the International Commission on Mathematical Instruction, n. 41, 

December 1996, 6-7. 
22 Eduardo Veloso et al. (eds.), 1996, História e Educação Matemática. proceedings/actes/actas 24-30 

Julho 1996, Braga, Portugal, Braga/Lisbon 
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be confused with the triennial European Summer University series, discussed later.) Following the 
IPC meeting a discussion document was widely circulated through publication in many venues and 
everyone was encouraged to respond to the issues already determined as important. From the 
responses 72 individuals were invited to a meeting the following April in southern France, to 
participate in the official study and make plans to complete a book for presentation in August 2000 
at ICME 9. 

1998 

The study conference for the ICMI Study was held from April 20-25 1998 in Luminy, near 
Marseilles.(This conference is described more fully below.)A meeting of HPM was held in 
Caracas, Venezuela, in 1998. In 1998, an entire day of talks at the time of the Joint Meetings was 
organized by Victor Katz and Karen Michalowicz (Langley School, USA) in honor of Ubiratan 
d’Ambrosio’s 65th birthday. Speakers included Dirk Struik who was then 104. This meeting was 
held jointly with the International Study Group on Ethnomathematics. 

2000 

HPM held its usual meetings during ICME 9 in Makuhari (near Tokyo), Japan. At this meeting, 
Fulvia Furinghetti of the University of Genova, Italy, was elected Chair of HPM for the next four 
years, and Peter Ransom (UK) was invited to take on the role of Newsletter editor. The HPM 
satellite meeting was held after the congress in Taipei, Taiwan, from August 9 to 14, at the 
National Taiwan Normal University, organized by Wann-Sheng Horng, under the title ‘History in 
mathematics education: challenges for a new millennium’. While attendance was not so high as in 
Braga four years before, largely for reasons of the high travel costs anticipated by many otherwise-
interested European and American members of HPM, the level of enthusiasm was just as high, 
with participation from nineteen countries and all continents, and there was a tremendously warm 
welcome for foreign delegates from Taiwanese students and teachers. The five plenary lectures, 
given by Marjolein Kool (The Netherlands), Park Seong-Rae (Korea), Christopher Cullen (UK), 
Karine Chemla (France) and Masami Isoda (Japan), provided a range of background studies 
against which various themes of the conference could be played out in symposia, workshops, 
round tables and panels. As in Braga, the two-volume proceedings was issued in advance, edited 
by Wann-Sheng Horng and Fou-Lai Lin, providing an invaluable aid for delegates to study—
before, during or afterwards—papers whose verbal delivery might be in an unfamiliar language. 

The contribution made by Taiwanese teachers and students to the conference marked an 
important consolidation of a trend already noticeable in Braga, in the strength of the home team. 
The Taiwanese school-teachers at the conference were already informed and enthusiastic about 
HPM issues, having been trained at the Normal University in Taipei, and the students were 
currently studying there, often for master’s degrees, under the guidance of Wann-Sheng Horng and 
his colleagues. So there was already a strong base for fruitful interaction with the visiting teachers, 
historians and educators, and a sense that the activities and approaches stimulated by the HPM 
meeting could and would continue afterwards. Thus the efforts put in beforehand over several 
years, by the conference organizers, in their role as teachers at the Normal University, ensured that 
the HPM meeting was part of the ongoing development of HPM studies in Taiwan as well as 
benefiting HPM activities world-wide. 

In developing HPM activities further in the region, the hope was expressed for holding a series 
of regular future conferences, somewhat after the fashion of the European Summer University (see 
next section) which could bring together students and teachers from many East Asian countries, 
notably Japan, Taiwan and Hong Kong. 
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European Summer University 

In 1993, the first of what turned out to be an on-going series of ‘European Summer University’ 
was held. This first meeting was organized by the Institutes of Research in Mathematics Education 
(IREM - see below) and took place in Montpellier, France, from 19 to 23 July. The Summer 
University (or Université d’Été Européenne sur histoire et épisteemologie dans l’education 
mathématique) is intended for teachers of mathematics from schools, colleges, and universities, 
and those engaged in research into the history or didactics of mathematics, as well as teachers of 
philosophy, history and physical sciences23. 

The second ESU was held at Braga, Portugal, in July 1996, concurrently with (indeed 
indistinguishable from) the HPM satellite meeting after ICME 8, as noted above. 

The third European Summer University was held in Belgium in July 1999, across the two sites 
of Louvain-la-Neuve and Leuven. The former is a new university town, south of Brussels, set up 
to house the French-speaking students who broke away from the ancient Dutch-speaking 
university of Leuven in the1950s, hence there were political reasons, given the extraordinarily 
complex nature of Belgian educational politics, for a split-site meeting. But in any case both 
universities were excellent and most welcoming locations for a summer university. The meeting 
was organized by Patricia Radelet de Graves, Dirk Janssens and Michel Roelens, and the 
anticipated volume of proceedings has been published with P. Radelet as editor, Third 
European summer university in history and epistemology in mathematics education. 

France: IREM 

The most consistent enthusiasm and activity over many years for the educational benefits of 
history of mathematics is to be found in France. This high profile is due to a remarkable 
organisation, or set of organisations, the IREM system, set up in the early 1970s. IREM stands for 
Institut de Recherche sur l’Ensignement des Mathématiques (Institute for research on mathematics 
education). There are twenty-five such institutes in France, each attached to a university, roughly 
one IREM for each Académie (the territorial administrative division of the French Ministry of 
Education). An important feature of an IREM is that it consists largely of practicing teachers, 
seconded from their school for a year or so to work on specific courses and projects. Thus there is 
less danger of losing touch with the chalk-face, such as occur in mathematics education research in 
other countries. 

IREMs soon developed a reputation for moving beyond the teacher re-training and in-service 
provision, as well as initial training, which was their original brief, and of moving into making 
valuable contributions to pedagogical innovation, critical study of syllabuses and textbooks, 
classroom uses of new technology, and a vigorous questioning of conventional practices. Inter-
IREM commissions on various topics of common concern were set up, one of the most successful 
of which is the Inter-IREM Commission on history and epistemology of mathematics. It is this 
Inter-IREM Commission, under the co-ordination and leadership of Evelyne Barbin (Le Mans 
IREM), which has generated some of the most exciting and consistently energetic ventures into 
bringing history and mathematical pedagogy together, in a series of conferences as well as books. 
The general pattern of the books is of a series of chapters, each written by a different IREM 
member, describing use of history of mathematics in the classroom, or providing original sources 
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for classroom use, or more recently providing a coherent account of the historical development of 
some classroom topic in a way that is highly suitable for teachers to use to aid their students’ 
learning. These books are generally in French, naturally, although their quality is such that several 
have been translated into English wherever a translator and publisher could be found. 

UK: HIMED 

In September 1988, Ivor Grattan-Guinness organised on behalf of the British Society for the 
History of Mathematics a three-day meeting in Leicester on The use of history in mathematics 
teaching and pedagogy. This proved so successful and aroused such interest that it was decided to 
have more such meetings. 

In 1990 the first such meeting was held, again at the University of Leicester, under the title of 
History in mathematics education. This and all subsequent meetings have had the overall label of 
“HIMED”. The1990 Leicester HIMED was organised by John Fauvel, Neil Bibby and Steve Russ 
on behalf of the British Society for the History of Mathematics, and annual meetings have 
subsequently been held in other British cities. The general pattern is that these meetings have been 
held in the spring, generally near Easter (during the school holidays so that school teachers are 
able to come), with one day and three-day residential meetings in alternate years (even-numbered 
years have been those in which a residential HIMED has been held). These meetings are designed 
to bring together researchers and teachers at all levels of education to explore issues around the 
educational use of history of mathematics24, and the residential meetings are particularly fruitful as 
that makes it worth while for international visitors to attend. 

Changes in the funding of the UK school system have, though, made it increasingly hard for 
teachers to find funding support from their employers for attendance at any conferences that have 
not an immediate utilitarian pay-off, in terms of the league tables which governments now use to 
quantify, order and reward the performance of teachers in UK schools. The idea of teachers 
coming to a meeting for intellectual refreshment, inspiration, sustenance and interest, to improve 
morale and sustain them in continuing to grow into better teachers, is already far in the distant past 
and no longer makes sense in today’s neo-That cherished political climate in the UK. This must 
put the long-term survival of the HIMED meetings in doubt. USA: The Institute 

USA: The Institute in the History of Mathematics and its use in Teaching 
(IHMT) 

As a direct result of the activities of HPM, a number of senior US figures in the movement—
Florence Fasanelli, Victor Katz, and Frederick Rickey, along with Ron Calinger and (from South 
America) Ubiratan D’ Ambrosio—designed an Institute in the History of Mathematics and Its Use 
in Teaching which was funded by the National Science Foundation over six years. In the first 
tranche of activity, 75 mathematicians and mathematics educators from all across the US came to 
Washington DC to spend three weeks over two summers reading original texts, surveying the 
history of mathematics, ethnomathematics, and historiography, preparing presentations for peer 
review, and discussing concepts and context with renowned historians. They had the opportunity 
to visit museums and rare book collections with commentary by librarians. An especially 
important aspect of the Institute, unique among such ventures, was the opportunity provided by the 
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xxii 
 

Mathematical Association of America (MAA) for students of the Institute to attend the major 
MAA annual meeting (held in January, jointly with the American Mathematical Society) and 
section meetings and give presentations on how they have used history in their teaching. A large 
number of students availed themselves of this opportunity, giving often very impressive talks 
about how their teaching had changed, and in what respect, since attending the Institute the 
previous summer. In addition, it is remarkable to record that almost all participants have published 
refereed papers as a direct result of the work they have done subsequent to the Institute, along the 
principles in research, reading original texts, writing and speaking that they learned there. The 
effect on their teaching has been truly remarkable. Three of the participants have created ongoing 
meetings on the history and pedagogy of mathematics in their regions: California, New York (the 
Pohle Lectures organized by two IHMT alumni and the Euler Society organized by another), and 
in Ohio a program of reading original texts. 

A further outcome is that under the leadership of Victor Katz and Karen Dee Michalowicz, 
teams of high-school teachers, totaling 22 individuals and participants who had completed the two-
years of study have created modules for using history of mathematics in the classroom. These 
modules have been developmentally tested in classrooms across the US and are available through 
the MAA. 

USA: Joint meetings 

For several years now, the most prominent showcase of HPM-related activity in the USA has been 
at the annual gathering of mathematicians from the two main associations, the Mathematical 
Association of America and the American Mathematical Society. The MAA/AMS Joint Meeting 
takes place in January each year, generally in a large southern city whose weather can be relied 
upon at that time of year. In 1972 there was a day-long set of sessions on the history of 
mathematics. From several perspectives this was the beginning of a wellspring of interest in the 
history of mathematics. Just as interest in mathematics education has become a large part of the 
Joint Meetings, both the history of mathematics and the history of mathematics and its use in 
teaching have built larger and larger audiences. By 1980 the number of talks had increased to 
stretch over two days and by 2001 to four full days plus a fifth day before the Joint Meetings 
began. Each year from 1996-2000 there were at least 15-18 papers on the use of history in teaching 
mathematics. In 2004 these talks were given by speakers from at least ten countries. The 
international thrust and the ideas of HPM are clearly affecting the mathematics community. 

Portugal and Brazil 

The HPM Newsletter began to be distributed in Portugal in 1990 and the number of teachers 
receiving it grew steadily. In 1993 a working group on History and the Teaching of Mathematics 
(GTHEM) was launched by the Portuguese Association of Teachers with the aim of exchanging 
experiences on using history in the mathematics classroom and to help teachers to integrate the 
history of mathematics in their teaching. Other groups also formed: in both Lisbon and in northern 
Portugal teachers organized themselves for a two-year program studying the 17 units of the British 
Open University source book by John Fauvel and Jeremy Gray; while in Coimbra in 1993 the 
Primeiro Encontro Luso-Brasileiro de História da Matematica was organized. The series continued 
with the 2 o EL-BHM in Áquas de São Paulo, SP, Brazil, in 1997, the 3 o EL-BHM in 2004, again 
in Coimbra, and the 4 o EL-BHM planned to take place in Natal, RN, Brazil, in October 2004. 
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The other major Portuguese-speaking country which has shown considerable interest in 
developing HPM themes and issues over the years is Brazil, largely due to the influence of 
Ubiratan D’Ambrosio of the University of São Paulo, who has inspired a generation of 
mathematics educators and historians in Brazil (and elsewhere). National and international 
conferences in various Brazilian centers (most recently a meeting in Lorena, Brazil on 26-27 July 
1998, in connection with the 5th Latin-American Congress of History of Science and Technology) 
testify to the enthusiasm in Brazil for relating mathematical history to its teaching. The strong state 
of history of mathematics per se in Brazil is clearly an important factor behind the HPM activity 
there. 

Africa: AMUCHMA 

Another organisation with keen interest in HPM matters is AMUCHMA, the African 
Mathematical Union’s Commission on the History of Mathematics in Africa. This body was set up 
in 1986, at the second Pan-African Congress of Mathematicians, held in Jos, Nigeria; a Newsletter 
was produced the following year, and has appeared regularly since, in Arabic, English and French. 
The Chair of AMUCHMA from its inception has been the influential mathematics educator Paulus 
Gerdes (Mozambique), and the Secretary Ahmed Djebbar (Algeria) - thus, symbolically, 
encompassing all Africa in between. While, strictly, AMUCHMA is concerned with history of 
mathematics in Africa, many of those concerned have educational interests and the research results 
have proved of great interest to African mathematics teachers. Among the most fruitful and widely 
used research in this area has been that of Paulus Gerdes on the mathematics of sand drawings in 
sub-equatorial Africa.  

A related interest group is the International Study Group on Ethnomathematics, whose board 
members are mostly from the USA. This group also has a newsletter (the ISGEm Newsletter) 
distributed in the same way as the HPM Newsletter, through a number of people in countries 
across the world who photocopy and distribute the Newsletter in their region. 

The ICMI Study 

Since the mid 1980s HPM’s parent body, the International Commission on Mathematics 
Instruction, has engaged in promoting a series of studies on essential topics and key issues in 
mathematics education, to provide an up-to-date presentation and analysis of the state of the art in 
that area. By the early 1990s a consensus was growing that one of these studies should be devoted 
to the relations between history and pedagogy of mathematics. Once ICMI Council agreed to this 
Study, which was announced at the Seville ICME in 1996, the current and immediate past Chair of 
HPM, Jan van Maanen and John Fauvel, were approached to chair the Study. ICMI’s support for 
and promotion of this Study can thus be seen as recognition of how the HPM Study Group had 
encouraged and reflected a climate of greater international interest in the value of history of 
mathematics for mathematics educators, teachers and learners. Concerns throughout the 
international mathematics education community had begun to focus on such issues as the many 
different ways in which history of mathematics might be useful, on scientific studies of its 
effectiveness as a classroom resource, and on the political process of spreading awareness of these 
benefits through curriculum objectives and design. It was judged that an ICMI Study would be a 
good way of bringing discussions of these issues together and broadcasting the results, with 
benefits, it is to be hoped, to mathematics instruction world-wide. 
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ICMI Studies typically fall into three parts: a widely distributed Discussion Document to 
identify the key issues and themes of the study; a Study Conference where the issues are discussed 
in greater depth; and a Study Volume bringing together the work of the Study so as to make a 
permanent contribution to the field.  

The Discussion Document was drawn up by the two people invited by ICMI to co-chair the 
Study, John Fauvel (Open University, UK; HPM chair 1992-1996) and Jan van Maanen 
(University of Groningen, Netherlands; HPM chair 1996-2000), with the assistance of the 
leading scholars who formed the International Programme Committee: Abraham Arcavi (Israel), 
Evelyne Barbin (France), Jean-Luc Dorier (France), Florence Fasanelli (US, HPM Chair 1998-
1992), Alejandro Garciadiego (Mexico), Ewa Lakoma (Poland), Mogens Niss (Denmark) and 
Man-Keung Siu (Hong Kong). The Discussion Document was widely published, and was 
translated into several other languages including French, Greek and Italian. From the responses 
and from other contacts, some eighty scholars were invited to a Study Conference in the spring of 
1998, an invitation which in the event between sixty and seventy were able to accept. 

The Study Conference took place in the south of France, at the splendid country retreat of the 
French Mathematical Society, CIRM Luminy (near Marseille), from 20 to 25 April 1998. Local 
organization was in the hands of Jean-Luc Dorier (University of Grenoble). The scholars attending 
were from a variety of backgrounds: mathematics educators, teachers, mathematicians, historians 
of mathematics, educational administrators and others. This rich mix of skills and experiences 
enabled many fruitful dialogues and contributions to the developing study.  

The means by which the Study was advanced, through the mechanism of the Conference, is 
worth description and comment. Most participants in the Conference had submitted papers, either 
freshly written or recent position papers, for the others to read and discuss, and several studies 
were made available by scholars not able to attend the meeting. These, together with whatever 
personal qualities and experiences each participant was bringing to the Conference, formed the 
basis for the work. Apart from a number of plenary and special sessions, the bulk of the 
Conference’s work was done through eleven working groups, corresponding, in the event, to the 
eleven chapters of the Study Volume. Each participant belonged to two groups, one meeting in the 
mornings and one in the afternoons. Each group was led by a convener, responsible for 
coordinating the group’s activities and playing a major part in the editorial activity leading to the 
eventual chapters of the book. Each group’s work continued for several months after the 
Conference, with almost everyone participating fully in writing, critical reading, bibliographical 
and other editorial activities. 

This way of group working for a sustained period towards the production of a book chapter was 
a fresh experience to many participants, since the pattern of individual responsibility for separate 
papers is a more common feature of such meetings and book productions. In this instance the 
participants proved remarkably adept at using the new structures to come up with valuable 
contributions to the development of the field, all the more valuable for their being the results of 
consensual discussions and hard-written contributions, which were then edited and designed into 
the Study Book. 

In the end the Study Book was a 437 page volume, with some 62 contributors, working 
together in eleven teams as just described. It was launched at ICME 9, in Japan, with the title 
History in Mathematics Education: the ICMI Study. 

2000-2004 

How has HPM grown? Not as fast as the WorldWideWeb, a name invented in October 1990, but 
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because of www we now have our own backbone, the HPM Newsletter, easily available. Fulvia 
Furinghetti launched a splendid program during her tenure as Chair of HPM creating a website, a 
logo, and with Peter Ransom a first class newsletter. The Italian Society of History of Mathematics 
has been formed and has its own website as does the Americas Section of HPM. Further, the goals 
and objectives of HPM have infiltrated many meetings as Coralie Daniel points out so well in her 
article describing her journeys in 200225. Reviving the Newsletter so carefully nurtured by Victor 
Katz who had built up a “strong distribution network, which serves a local focus for HPM 
activities and promotion”26 was vital to the organization. The group works rather informally with 
the “main binding element”27 being the Newsletter. Its role is crucial and when there was a 
vacancy it was sorely felt. 

 
____________________________________________________________________ 

THE FIRST TWENTY-FIVE YEARS, 1976-2000: DATES, EVENTS, NAMES 

 

Chairs of HPM 

1976-1980 
 
1980-1984 
 
1984-1988 
 
1988-1992 
1992-1996 
1996-2000 
2000-2004 

Phillip S. Jones (University of Michigan, USA) (co-chair) 
Roland Stowasser (University of Bielefeld, FRG) (co-chair) 
Bruce Meserve (University of Vermont, USA) (co-chair) 
Roland Stowasser (University of Bielefeld, FRG) (co-chair) 
Ubiratan D’Ambrosio (University of Campinas, Brasil) (co-chair) 
Christian Houzel (University of Paris-Nord, France) (co-chair) 
Florence Fasanelli (NSF, USA) 
John Fauvel (Open University, UK) 
Jan van Maanen (University of Groningen, Netherlands) 
Fulvia Furinghetti (University of Genova, Italy) 

Editors of HPM Newsletter 

1980 Leo Rogers, Roehampton Institute, UK (issue 1) 
1982 Bruce Meserve, University of Vermont, USA (Americas Section Newsletter) (issues 2-3) 
1983-1988 Charles Jones, Ball State University, USA (issues 4-16) 
1988-1995 Victor Katz, University of the District of Columbia, USA (issues 17-38) 
1996-1998 Gerard Buskes, University of Mississippi, USA (issues 39-44) 
2000-2004 Peter Ransom, The Mountbatten School and Language College, UK (issues 4628-56) 

Chairs of HPM Americas Section 

1983 Florence Fasanelli 
1988 V. Frederick Rickey 
1994 Charles Jones 
1996 Victor Katz 
2000 Robert Stein 

                                                      
25 HPM Newsletter, n. 52, March 2003, 2-4. 
26 John Fauvel, Report on HPM Activities 1992-1996. 
27 ICMI Bulletin n. 47, December 1999. 
28 As noted in HPM Newsletter, n. 46 there is no Newsletter, n. 45. 
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HPM Advisory Boards  

The Advisory Board for a quadrennium consists of the Chair, former chairs, the Newsletter Editor, 
the Americas Section Chair (all these are listed above) together with the following members: 

 
1984-1988 Otto Bekken (Norway), George Booker (Australia), Sergei Demidov (USSR), 
Paulus Gerdes (Mozambique), Maassouma Kazim (Egypt), Bruce Meserve, David Pimm 
(UK), Roland Stowasser (West Germany), David Wheeler (Canada), Lee Peng Yee 
(Singapore) 
1988-1992 Evelyne Barbin (France), Ahmed Djebbar (Algeria), John Fauvel (UK), Paulus 
Gerdes (Mozambique), Robert Hayes (Australia), Nikos Kastanis (Greece), Ryosuke 
Nagaoka (Japan), David Wheeler (Canada), Hans Wussing (GDR) 
1992-1996 George Booker (Australia), Jacques Borowczyk (France), Lucia Grugnetti 
(Italy), Hans Niels Jahnke (Germany), Maasouma Kazim (Egypt), Israel Kleiner (Canada), 
Osamu Kota (Japan), Jan van Maanen (Netherlands), Mohini Mohamed (Malaysia) 
1996-2000 George Booker (Australia), Jacques Borowczyk (France), Gail FitzSimons 
(Australia), Lucia Grugnetti (Italy), Abdulcarimo Israel (Mozambique), Hans Niels Jahnke 
(Germany), Maasouma Kazim (Egypt), Israel Kleiner (Canada), Osamu Kota (Japan), 
Mohini Mohamed (Malaysia), Eduardo Veloso (Portugal), Greisy Winicki-Landman (Israel) 

HPM Satellite Meetings 

Since 1984 HPM meetings have been held every four years, as satellites of that year’s ICME. The 
tradition has grown up of trying to arrange the meeting in a different but nearby country to that in 
which ICME is held. 

 
1984 Adelaide, Australia (ICME 5: Melbourne, Australia); chief organizer George Booker 
1988 Firenze, Italy (ICME 6: Budapest, Hungary); chief organizer Florence Fasanelli 
1992 Toronto, Canada (ICME 7: Quebec, Québec); chief organizers Florence Fasanelli and 
Craig Fraser 
1996 Braga, Portugal (ICME 8: Seville, Spain); chief organizers Eduardo Veloso and Maria 
Fernanda Estrada 
2000 Taipei, Taiwan (ICME 9: Tokyo, Japan); chief organizer Wann-Sheng Horng  

Other international HPM meetings 

As part of the agenda for HPM from 1988-1992 members were urged to plan yearly international 
meetings more often. Several countries, notably France and England as noted earlier have had 
meetings directly connected to the goals and objectives of HPM. 
 

1993 Montpellier, France, 19-23 July, organized by Evelyne Barbin, Francoise Lalande, 
Yves Nouaze on behalf of IREM 
1994 Blumenau, Brazil, organized by Ubiratan D’Ambrosio 
1995 Cairns, Australia, organized by George Booker 
1998 Caracas, Venezuela 
1999 Louvain-la-Neuve/Leuven,Belgium, 12-17 July 1999, organized by Dirk Janssens, 
Patricia Radelet, Michel Roelens. 
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International congresses to which HPM has made a contribution 

The relations of the study group with ICME 2 (1972, Exeter) and ICME 3 (1976, Karlsruhe) have 
been described in the text 
 

1976 ICM Helsinki 
1980 ICME 4, Berkeley, California 
1983 ICM Warsaw, Poland 
1984 ICME 5, Melbourne, Australia 
1986 ICM Berkeley, California 
1988 ICME 6, Budapest, Hungary 
1990 ICM Kyoto, Japan 
1992 ICM 7, Quebec, Québec 
1994 ICM Geneva, Switzerland 
1996 ICME 8, Seville, Spain 
1998 ICM Berlin, Germany 
2000 ICME 9, Tokyo, Japan 

Books arising from HPM meetings 

(or from meetings with a high proportion of HPM contributors). 
 
Swetz, F., Fauvel, J., Bekken, O., Johansson, B., Katz, V. (eds.), 1995, Learn from the Masters! 
Washington: Mathematical Association of America. 

In 1988, Otto Bekken and Bengt Johansson organized a meeting at Agder College, 
Kristiansand, Norway following ICME. Papers were presented on how participants used 
history of mathematics in their teaching. This volume collects many of these useful 
papers. 

Calinger, R. (ed.), 1996, Vita Mathematica: Historical research and integration with teaching, 
MAA Notes n. 40, Washington, DC: Mathematical Association of America. 

This valuable book contains articles developed by the authors based on their talks given at 
the HPM Meeting in Toronto, Canada in 1992 and ICME in Québec, interspersed with 
solicited papers by well known historians of mathematics. Many often quoted articles. The 
volume is dedicated to Phillip Jones (26 February 1912 – 27 June 2002) remembering the 
fruitful work he did in creating the America’s Section of HPM. 

Lagarto, M.J., Viera, A., Veloso, E. (eds.), 1996, Proceedings of Second European Summer 
University and Satellite meeting of ICME-8, Braga, Portugal: Portuguese Association of the 
Teachers of Mathematics & Department of Mathematics, University of Minho. 

This volume also contains papers presented at the quadrennial meeting of HPM which was 
held jointly with the summer university in Braga, Portugal. 

Katz, V. (ed.), 2000, Using history to teach mathematics: an international perspective, 
Washington, DC: Mathematical Association of America. 

This book contains articles developed from talks at ICME 8 (1996) in Seville as well as the 
HPM meeting which followed. 

Fauvel, J., van Maanen, J. (eds.), 2000, History in Mathematics Education - The ICMI Study, 
Dordrecht-Boston-London: Kluwer. 
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This study, six years in the making is a powerful resource for making the argument that 
history of mathematics in vital for many students and their teachers to gain a fuller 
understanding of what they learn and teach. 

Horng, W.-S., Lin, F.-L. (eds), 2000, Proceedings of the HPM 2000 Conference History in 
Mathematics Education. Challenges for a New Millennium. A Satellite Meeting of ICME-9. Taipei: 
National Taiwan University. 

 
 

Acknowledgement: John Fauvel (21 July 1947 – 12 May 2001) worked on this 25-year history 
with me as I prepared it as a gift for the HPM meeting in Taiwan. His spirit is present in every 
sentence. When he joined HPM in 1988, he lifted it to a benchmark never expected, and he 
brought color and joy to every meeting he attended. 

Florence Fasanelli 
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ESU 
EUROPEAN SUMMER UNIVERSITIES ON THE HISTORY AND 

EPISTEMOLOGY IN MATHEMATICS EDUCATION 
 

Evelyne BARBIN, France,  
Nada STEHLIKOVA, Czech Republic  

Constantinos TZANAKIS, Greece 
 

Brief history and statistics of the ESU 
The initiative of organizing a Summer University (SU) on the History and Epistemology in 
Mathematics Education belongs to the French Mathematics Education community IREM in the 
early 1980’s. It was the French IREMs (Institut de Recherche sur l’Enseignement des 
Mathématiques) that organized the first interdisciplinary SU on the History of Mathematics in 
1984 in Le Mans, France. It was followed by other SU in France (1986 in Toulouse, 1988 in La 
Rochelle, and 1990 in Lille). The next one was organized in 1993 on a European scale, and was 
called the 1st European Summer University (ESU) on the History and Epistemology in 
Mathematics Education, (a name coined since then), but many participants in it and in the 
subsequent ESU came outside Europe.  

The previous ESU took place in July,  
- 1993, Monpellier, France  
- 1996, Braga, Portugal (conjointly with the HPM Satellite meeting of ICME 8) 
- 1999, Louvain-la-Neuve & Leuven, Belgium  
- 2004, Uppsala, Sweden (conjointly with the HPM Satellite meeting of ICME 10) 
- 2007, Prague, Czech Republic 
 

ESU Duration No of participants Number of talks, 
workshops etc 

1st Montpellier 
France 

19-23/7/1993,  
5 working days 

254 from 29 countries 
(17 European) 

5PL, 2PN, 48WS, 
37T 

2nd Braga, Portugal 24-30/7/1996,  
5 working days + a 
morning session 

548 from 33 countries 
(14 European) 

1PL, 28IL, 4PN, 
33WS, 71T 

3rd Louvain-la-Neuve 
/Leuven, Belgium 

15-21/7/1999,  
6 working days 

159 from 22 countries 
(16 European) 

6PL, 2PN, 37WS, 
35T 

4th Uppsala, Sweden 12-17/7/2004,  
4 working days + two 
half morning sessions 

120 from 33 countries 
(17 European)  

6PL, 2PN, 9WS, 
59T 

5th Prague, Czech 
Republic 

19-24/7/2007, 
4 working days + two 
morning sessions 

 6PL, 2PN, 49WS, 
50T29 

PL=Plenary lecture 
PN= Panel discussion 
WS=Workshop 
T= Talk/ oral presentation 
IL=Introductory Lecture 

                                                      
29 For ESU 5, these figures have not been finalized yet. 
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Remarks: 
(a) In the 2nd ESU there was only one plenary lecture, but many introductory lectures, which 

run in parallel and which were addressed to schoolteachers, providing an introduction to the topics 
elaborated in the workshops. 

(b) The 2nd and 4th ESU have been organized conjointly with the HPM Satellite Meeting of the 
corresponding ICME (ICME 8 and ICME 10, respectively) 

(c) In most ESU, more than half of the participants were local people: Portuguese in the 2nd 
ESU (310); French in the 1st ESU (134). In the 3rd ESU about 40% were Belgians (64). Thus, in 
general, there was a strong participation from local people, mainly primary and secondary 
schoolteachers.  

(d) In general, a key element of the program was the great number of workshops, which gave 
the opportunity to presenters to explain their ideas, teaching practice, share their experience with 
participants and distribute relevant material. The workshops were of variable duration usually, 
from 1 to 3 hours.  

(e) Non-local participants came from many countries, either European, or from other 
continents, although with a few exceptions, only a small number from each country (usually less 
than 5, or 6).  

Themes of the ESU 
The activities and the program of each ESU were structured around some main themes, which 
were the following: 

1st ESU Montpellier, France, 19-23/7/1993 
-The historical construction of mathematical knowledge 
-Introducing a historical perspective into the teaching of mathematics 
-The relationship between mathematics education and culture 
-Epistemology and its relationship to didactics and pedagogy 
-History of mathematics in initial teacher training and in-service courses 
-Mediterranean mathematics 
-Ethnomathematics 

2nd ESU Braga, Portugal, 24-30/7/1996 
Main themes: 

-Mathematical cultures all over the world 
-Mathematics as a science 
-Mathematics, arts and techniques 
Special topics: 
-History of mathematics education 
-Epistemological obstacles 
-Views on Mathematics 
-Mathematics for all 
-Mathematical proof in history 

3rd ESU Louvain-la-Neuve /Leuven, Belgium, 15-21/7/1999 
There were not any main themes specified a priori. However, themes proposed in due course 
included 

-Mathematical journals in Europe and their use in education 
-The historical construction of mathematical knowledge 
-The relation between mathematics and science in history; its in education 
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-Relations between mathematics and music up to Euler’s era; their use in education 
-History of mathematics education 
-Mathematicians in the Low Countries 
-About the 19th century geometry: the Belgian theorems; what may be the insights for the 

education? 

4th ESU Uppsala, Sweden, 12-17/7/2004 
Main themes: 

-The history of mathematics 
-Integrating the history of mathematics into the teaching of mathematics 
-The role of the history of mathematics in teacher’s training 
-The common history of mathematics, science and technology 
-Mathematics and different cultures 
-The philosophy of mathematics 

5th ESU Prague, Czech Republic, 19-24/7/2007 
Main themes: 

-History and Epistemology as tools for an interdisciplinary approach in the teaching and 
learning of Mathematics and the Sciences  

-Introducing a historical dimension in the teaching and learning of Mathematics  
-History and Epistemology in Mathematics teachers’ education  
-Cultures and Mathematics  
-History of Mathematics Education in Europe  
-Mathematics in Central Europe 

Proceedings 
An important aspect of the ESU has been the publication of its Proceedings. In the 2nd and 4th 
ESU the Proceedings became available in advance and were distributed to the participants on the 
spot. The Proceedings of 4th ESU have been published in a revised edition in 2006 (this volume). 

1st ESU: Actes de la première Université d’Été Européenne sur l’Histoire et Épistémologie 
dans l’Éducation Mathématique, F. Lalande, F. Jaboeuf, Y. Nouazé (eds.), Montpellier, France: 
IREM de Montpellier, Université Montpellier II, 1995 (598 pages in one volume). 

2nd ESU: Proceedings of the 2nd European Summer University on the History and 
Epistemology in Mathematics Education and the ICME 8 Satellite Meeting of HPM, M.J. Lagarto, 
A. Viera, E. Veloso (eds.), Braga, Portugal: Portuguese Association of the Teachers of 
Mathematics & Department of Mathematics, University of Minho, 1996 (813 pages in two 
volumes). 

3rd ESU: Proceedings of the 3rd European Summer University on the History and Epistemology 
in Mathematics Education, P. Radelet-de-Grave, C. Brichard (eds.), Leuven and Louvain-la-
Neuve, Belgium: Université Catholique de Louvain, 2001 (944 pages in two volumes). 

4th ESU: Proceedings of the HPM 2004: History and Pedagogy of Mathematics ICME 10 
Satellite Meeting and 4th European Summer University on the History and Epistemology in 
Mathematics Education, F. Furinghetti, S. Kaijser, A. Vretblad (eds.), Uppsala, Sweden: Uppsala 
University, 2004 (482 pages in one volume). Revised edition: F. Furinghetti, S. Kaijser, C. 
Tzanakis (eds.), Proceedings HPM 2004 & ESU 4, Iraklion, Greece: University of Crete, 2006 
(678 pages in one volume), ISBN 960-88712-8-X. 
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Plenary Lecture

FOUND AND LOST AND FOUND AGAIN

Victor KATZ
University of the District of Columbia Mathematics Department

4200 Connecticut Ave. N.W., Washington, DC 20008, USA
vkatz@udc.edu

ABSTRACT

The history of mathematics is full of numerous missed opportunities. Namely, there are many
times where a significant new mathematical discovery was made, but for whatever reason,
it was not communicated in a timely manner to the mathematical community of the time.
Thus, the idea disappeared from the mathematical landscape, only to be rediscovered totally
independently some time later, where that time could be years or even centuries. On the
other hand, it may be that“rediscovered totally independently” is incorrect. Is it possible
that these ideas survived “underground,” so to speak, and were then excavated by someone
later rather than discovered anew? We will look into this matter in the context of a number
of significant discoveries. We will find that in most cases, the record is not at all clear, and
that it is possible that future research will uncover a method of transmission that today is
unknown. Indications of the research necessary will be given, as will the relationship of some
of these discoveries to the teaching of mathematics.

1 Introduction

The history of mathematics is full of numerous missed opportunities. Namely, there
are many times where a significant new mathematical discovery was made, but for
whatever reason, it was not communicated in a timely manner to the mathematical
community of the time. Thus, the idea disappeared from the mathematical landscape,
only to be rediscovered totally independently some time later, where that time could
be years or even centuries. On the other hand, it may be that “rediscovered totally
independently” is incorrect. Is it possible that these ideas survived “underground,” so
to speak, and were then excavated by someone later rather than discovered anew? We
will look into this matter in the context of a number of significant discoveries. We will
find that in most cases, the record is not at all clear, and that it is possible that future
research will uncover a method of transmission that today is unknown. Indications of
the research necessary will be given, as will the relationship of some of these discoveries
to the teaching of mathematics.

Among these mathematical discoveries are the following:

1. The solution of quadratic equations

2. The derivations of the basic combinatorial formulas

Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006
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3. The calculus of the trigonometric functions

4. The calculus of polynomial functions: derivatives and integrals

5. Modern algebraic notation and its use in writing out basic formulas

We will discuss each of these discoveries in turn.

2 The solution of quadratic equations

We begin with the algebra of quadratic equations. It is well-known that the Babylonians
discovered, sometime around 2000 BCE, a method for finding the length and width of
a rectangle given the area and semi-circumference. In modern terms, their method
amounts to solving a quadratic equation by “completing the square.” For example,
consider the problem x + y = 6 1/2, xy = 7 1/2 from tablet YBC 4663. The scribe
first halves 6 1/2 to get 3 1/4. Next he squares 3 1/4, getting 10 9/16. From this is
subtracted 7 1/2, leaving 3 1/16, and then the square root is extracted to get 1 3/4. The
length is thus 3 1/4 + 1 3/4 = 5, while the width is given as 3 1/4 − 1 3/4 = 1 1/2. A
close reading of the wording of the tablets seems to indicate that the scribe had in mind
a geometric procedure, where for the sake of generality the sides have been labeled in
accordance with the generic system x+ y = b, xy = c. The scribe began by halving the
sum b and then constructing the square on it. Since b/2 = x−(x−y)/2 = y+(x−y)/2,
the square on b/2 exceeds the original rectangle of area c by the square on (x − y)/2,
that is (

x + y

2

)2

= xy +
(

x − y

2

)2

.

The figure then shows that if one adds the side of this square, namely
√

(b/2)2 − c, to

b/2 one finds the length x, while if one subtracts it from b/2, one gets the width y. The
algorithm is therefore expressible in the form

x =
b

2
+

√√√√( b

2

)2

− c y =
b

2
−
√√√√( b

2

)2

− c

Numerous Babylonian tablets are filled with problems of this and related types,
all solved by algorithms based on a “cut and paste” geometry evidently developed by
surveyors. We should note, however, that diagrams are not found on the tablets, only
procedures. It is only through a careful consideration of the words on the tablets that
specialists have determined the geometric basis of the procedures.

Greek mathematics, in contrast to that of the Babylonians, is based on proof from
explicitly stated axioms. Nevertheless, in Book II of the Elements, Euclid states several
propositions which clearly form the basis for the solution of quadratic equations. For
example, we can consider
Proposition II–5. If a straight line is cut into equal and unequal segments, the rectangle
contained by the unequal segments of the whole together with the square on the straight
line between the points of section is equal to the square on the half.

If we label AD as x, DB as y, and AC = CB as b/2, we can translate this result into
the standard Babylonian system x+y = b, xy = c. In this case, the figure is drawn in the
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manuscript. It is, however, essentially the same as the assumed Babylonian figure. Now
in the Elements Euclid did not use this figure for solving quadratic equations. In fact, it
could be argued that he does not do any such solving. However, centuries later, Islamic
mathematicians quoted exactly this proposition (as well as others in Book II) to provide
a justification for their essentially Babylonian method for solving equations of this type
as well as the analogous single quadratic equation bx − x2 = c or x2 + c = bx. And
Euclid himself, in his Data, comes very close to “solving an equation” in his proposition
85, among others:
Proposition 85. If two straight lines contain a given area in a given angle, and the sum
of the straight lines is given, each of them will also be given.

Although this proposition is slightly more general than the Babylonian problem, in
that it allows the two straight lines to meet at any angle instead of insisting on a right
angle, the medieval manuscripts of the Data all used right angles in their diagrams.
Euclid proves this proposition by quoting an earlier one:
Proposition 58. If a given parallelogrammic area deficient by a parallelogrammic figure
given in form be applied to a given straight line, the breadths of the defect have been
given.

Again, if we assume, as did most of the manuscripts, that the given area was a
rectangle, and the area was deficient by a square. this proposition is essentially based
on Euclid’s II-5, with a diagram similar to the one there as well as to the assumed
Babylonian problem.

There has long been a debate over whether the geometric algebra in Euclid stems
from a deliberate transformation of the Babylonian quasi-algebraic results into formal
geometry. As pointed out above, there is a strong similarity of the geometric proce-
dures to the algebraic ones, at least in the special cases discussed. But was there any
opportunity for direct cultural contact between Babylonian mathematical scribes and
Greek mathematicians? It used to be argued that this was virtually impossible, because
there was no record of Babylonian mathematics at all during the sixth to the fourth
centuries BCE, when this contact would have had to take place, and because those in
the aristocracy to which the Greek mathematicians belonged would be disdainful of the
activities of the scribes, who in Old Babylonian times were not themselves part of the
elite. However, recent discoveries have indicated that mathematical activity did con-
tinue in the mid-first millennium BCE. Furthermore, by this time, the Mesopotamian
languages were often being written in ink on papyrus using a new alphabet. Cuneiform
writing on clay tablets was then restricted to important documents which needed to
be preserved, and those who could perform this service were now members of the elite,
experts in traditional wisdom who were central to the functioning of the state. Besides,
from the sixth century on, Mesopotamia was a province of the Persian empire, with
whom the Greeks did maintain contact. Of course, just because such contact was pos-
sible, does not mean it happened. And many scholars still believe that the Greek work
was entirely independent of the Babylonian.
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3 The derivation of the basic combinatorial formu-

las

Although the basic formulas for calculating permutations and combinations were ap-
parently known in India in the first millennium, no derivations of these formulas have
come down to us in the Indian literature. They have come down, however, in literature
from the Islamic world beginning in the thirteenth century and in the Hebrew speak-
ing world around the same time. For example, Ahmad al-Ab’dari ibn Mun’im (early
thirteenth century), who lived in Marrakech, gave a derivation of the combinatorial rule

Cn
k = Ck−1

k−1 + Ck
k−1 + Ck+1

k−1 + · · · + Cn−1
k−1

in the context of solving a problem of how many different bundles of colors can be made
from ten different colors of silk.

A few years later, Abu-l-’Abbas Ahmad al-Marrakushi ibn al-Banna (1256–1321)
derived the multiplicative rule for these entries in Pascal’s triangle, by showing that for
any positive integers n, k (n ≥ k),

Cn
k =

n − (k − 1)

k
Cn

k−1.

(Of course, he did not use this modern notation, but only described the method and
results in words.)

In 1321, the same results were published on the opposite side of the Mediterranean,
by Levi ben Gerson of Orange (1288–1344). Although Levi was certainly familiar with
some Islamic work in mathematics, there is no direct evidence that he was familiar
with ibn al-Banna’s material. And his derivations were slightly different. More impor-
tantly, perhaps, Levi essentially used the technique of mathematical induction to prove
his results. That is, he stated the inductive step, the procedure of getting from one
level to the next, then showed that the result was true for an initial value, and then
concluded that the result was true in general. For example, to calculate the number of
permutations P n

k of a set of k elements in a set of n elements, he proved the following
result:
If a certain number of elements is given and the number of permutations of order a
number different from and less than the given number of elements is a third number,
then the number of permutations of order one more in this given set of elements is equal
to the number which is the product of the third number and the difference between the
first and the second numbers.

Modern symbolism replaces Levi’s convoluted wording with a brief phrase: P n
j+1 =

(n − j)P n
j . And given this inductive step, Levi could quote the following: “It has thus

been proved that the permutations of a given order in a given number of elements are
equal to that number formed by multiplying together the number of integers in their
natural sequence equal to the given order and ending with the number of elements
in the set.” After showing the relationship between the number of permutations of k
elements in n and the number of combinations of k elements in n, he could quote the
basic multiplicative formula for Cn

k already derived by ibn al-Banna.
Yet even though Levi had worked out the basics of combinatorics, the subject seems

to disappear from European thought for over two hundred years, with a couple of
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exceptions. In Oresme’s Treatise on the Configuration of Qualities and Motions (mid
14th century), the author mentions the number of different ways he can form composite
difform difformities from six simple kinds: These can be found ”either of one kind, or
two, or three, or four, or five, or six, [and] it follows by arithmetical rules that from
each simple kind some combination or composition can be formed.” Oresme then uses
”arithmetical rules” to determine that there are fifteen ways of taking two at a time,
twenty ways of taking three at a time, fifteen ways of taking four at a time and five
(!) ways of taking five at a time. We note that he makes an error in the last answer,
but, unfortunately, he does not indicate what the ”arithmetical rules” are. This leads
us to believe that they were well known at the time and that he was not just writing
out all possibilities and counting them. There are several instances in this and other
works in which he indicates the actual calculation of the number of ways two objects
can be chosen out of m – i.e. m(m− 1)/2 – but there does not appear to be anywhere
in his writings an explicit calculation of choosing more than 2 objects. Now given that
some of Levi’s work was known in Paris (including a small mathematical work he was
commissioned to write), it is possible, but of course not certain, that Oresme could have
known of Levi’s combinatorial work.

In the sixteenth century, there are indications of knowledge of the combinatorial
rules in the work of Cardano and other Italian mathematicians. But it was only in the
1630s that we see a more detailed discussion of the combinatorial formulas in the work
of Marin Mersenne, the Minimite friar who was the “secretary” of Europe’s republic
of letters. In two works on music theory published in 1636, Mersenne not only laid
out the arithmetical triangle in the same form Pascal was to use some years later, but
also described how the entries were calculated, first by the standard addition process
and then by a multiplicative method. We should note that Mersenne’s descriptions are
all in terms of forming tunes out of certain notes or words out of certain letters. But
his basic methods remind one of Levi’s methods. It is interesting to speculate whether
Mersenne or one of his sources could have known about Levi’s work. There was, for
example, a complete manuscript of Levi’s book in a Paris library, and Mersenne as well
as other priests certainly could read Hebrew. But we simply cannot tell whether in
fact Levi’s book was read. So for the moment, we have no choice but to assume that
Mersenne (or his sources) rediscovered the material independently.

4 The calculus of the trigonometric functions

Trigonometry, as a subject dealing with the solution of plane and spherical triangles in
order to record and predict the motion of the heavenly bodies, first appeared in Greek
mathematics around the beginning of our era. Ptolemy’s Almagest contains the first
extant treatment of the subject, but we know both that it began somewhat earlier and
that it was transmitted to India and later to Islam, before returning to Europe. Both the
Indians and the Islamic mathematicians improved the trigonometric methods. In India,
curiously, mathematicians developed algebraic formulas for approximating sine values
as well as interpolation methods. But during the first half of the second millennium,
the necessity grew in India for more accurate sine tables. This necessity came out of
navigation, for the sailors in the Indian Ocean needed to be able to determine precisely
their latitude and longitude. Since observation of the pole star was difficult in the
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tropics, one had to determine latitude by observation of the solar altitude at noon, μ.
A standard formula for determining the latitude φ was sin δ = sin φ sin μ, where δ is
the sun’s declination (known from tables or calculations). Determination of longitude
was somewhat more difficult, but this could also be accomplished using trigonometry
if one knew the distance on the earth’s surface of one degree along a great circle. In
any case, the more accurate the sine values, the more accurately one could determine
one’s location. Thus, mathematicians in south India, in what is now the state of
Kerala, developed power series for the sine, cosine, and arctangent, beginning late in
the fourteenth century. These series appear in written form in the Tantrasam. graha-
vyākhyā of about 1530, a commentary on a work by Nı̄lakan. t.ha (late fifteenth century).
Derivations appear in the Yuktibhāsā, whose author credits these series to Madhava
(1349–1425).

The Indian derivations of these results begin with the obvious approximations to the
cosine and sine for small arcs and then use a “pull yourself up by your own bootstraps”
approach to improve the approximation step by step. The derivations all make use of
the notion of sine differences, an idea already used much earlier. Thus, it was clear not
only that the Indians understood the basic idea of the differential of the sine and cosine
functions, but that they could handle what amounts to the passage to the limit of what
we would call Taylor polynomials for these functions.

Now power series for the sine and cosine first show up in Europe in the work of
Newton in the 1660s. There is certainly no available documentation showing that
Newton or anyone else in Europe was aware of these Indian developments prior to that
date. However, there is some circumstantial evidence. First of all, Europeans, just like
the Indians, needed precise trigonometric values for navigation. Secondly, the texts in
which these power series were described were easily available in south India. Third,
the Jesuits, in their quests to proselytize in Asia, established a center in south India in
the late sixteenth century. In general, wherever the Jesuits went, they learned the local
languages, collected and translated local texts, and then set up educational institutions
to train disciples. But the question remains as to whether, in fact, the Jesuits did find
these particular texts and bring them back in some form to Europe. In the period from
1630 to 1680 some of the basic ideas present in these Indian texts began to appear in
European works. But in the case of Newton, we can trace his thoughts through his
notebooks and therefore have no reason to believe he was aware of Indian material. For
many of the other European mathematicians, we have little documentary evidence of
how they discovered and elaborated on their ideas. So at the moment, we can only
speculate as to whether Indian trigonometric series were transmitted in some form to
Europe by the early seventeenth century.

5 The calculus of polynomial functions: derivatives

and integrals

The two basic ideas of the calculus are determining extrema and determining areas
and volumes. Examples of both of these were treated in Islamic mathematics. For
example, Sharaf al-Dı̄n al-T. ūs̄ı (d. 1213), a mathematician born in Tus, Persia, dealt
with maxima in his treatment of the solution of cubic equations. We look at one
example, his analysis of x3 +d = bx2. Sharaf began by putting the equation in the form
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x2(b − x) = d. He then noted that the question of whether the equation has a solution
depends on whether the “function” f(x) = x2(b − x) reaches the value d or not. He
therefore carefully proved that the value x0 = 2b

3
provides the maximum value for f(x),

that is, for any x between 0 and b, x2(b− x) ≤ (2b
3
)2( b

3
) = 4b3

27
. He did not say, however,

why he chose this particular value for x0, but it has been suggested that he found this
maximum by considering the conditions on x under which f(x) − f(y) > 0 for both
y < x and y > x, that is, in essence calculating a zero of the “derivative” of f(x).
However he derived it, he did give a perfectly correct geometric proof that this value is
in fact the maximum. He could then analyze the solutions. Given that 2b

3
provides the

maximum, Sharaf noted that if the maximum value 4b3

27
is less than the given d, there

can be no solutions to the equation. If 4b3

27
equals d, there is only one solution, x = 2b

3
.

Finally if 4b3

27
is greater than d, there are two solutions, x1 and x2, where 0 < x1 < 2b

3

and 2b
3

< x2 < b. Of course, giving these conditions still did not enable Sharaf to solve
the equation. That he did by a numerical method.

Integrals were calculated by various Islamic mathematicians, mostly continuing on
the work of Archimedes. However, ibn al-Haytham (965–1039) made what could have
been a breakthrough in his calculation that the volume of the solid formed by rotating
the parabola x = ky2 around the line x = kb2 (which is perpendicular to the axis of the
parabola) is 8/15 of the volume of the circumscribing cylinder of radius kb2 and height
b. His formal argument was a typical exhaustion argument. But the essence of ibn
al-Haytham’s argument involved “slicing” the cylinder into n disks, each of thickness
h = b

n
, the intersection of each with the paraboloid providing an approximation to the

volume of a slice of the paraboloid. The ith disk in the paraboloid has radius kb2−k(ih)2

and therefore has volume πh(kh2n2 − ki2h2)2 = πk2h5(n2 − i2)2. The total volume of
the paraboloid is therefore approximated by

πk2h5
n−1∑
i=1

(n2 − i2)2 = πk2h5
n−1∑
i=1

(n4 − 2n2i2 + i4).

But ibn al-Haytham already knew formulas for the sums of integral squares and integral
fourth powers. In fact, he had developed a method for calculating sums of any integral
powers, one level at a time. Using these formulas, he could calculate the sum in this case
and show that the volume of the paraboloid is bounded between 8/15 of the cylinder
less its top slice and 8/15 of the entire cylinder. Since the top slice can be made as
small as desired by taking n sufficiently large, it follows that the paraboloid is exactly
8/15 of the cylinder as asserted.

It is just a short step from ibn al-Haytham’s calculation of sums of integral fourth
powers and its application to the volume of this paraboloid to a general calculation
of sums of integral powers and the application of that formula to finding the integral
of xk. Ibn al-Haytham never took that step. The only manuscript that we know of
containing ibn al-Haytham’s work on the volume of a paraboloid of revolution was
acquired by the library of the India Office in England in the nineteenth century. Thus,
although results similar to ibn al-Haytham’s on the sum of integral powers began to
appear in Europe in the seventeenth century, we have no way of knowing whether
anyone in Europe was aware, either directly or indirectly, of that particular treatise of
the Egyptian mathematician.
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6 Modern algebraic notation and the writing out of

formulas

The examples so far considered all deal with possible transmission from one civiliza-
tion to another. But even in Europe, there have been numerous occasions where an
idea was discovered by one mathematician but was not brought into the mathematical
mainstream until being rediscovered by another. One example in which we know more
than we did a few years ago is that of the development of modern algebraic notation.
Certainly it was Viete who created the idea that constants in an equation, as well as the
unknowns, could be represented by letters. Thus, he was the first to write down what
we could consider “formulas” for solving quadratic and cubic equations. Yet Viete’s
formulas are very clumsy since he did not use good symbolism to represent powers or
basic operations.

We therefore turn to the work of Thomas Harriot (1560-1621). Harriot published
nothing on mathematics during his lifetime, but he did much work on algebra. His
mathematical papers were collected by his executors after his death; some were pub-
lished as the Artis analyticae praxis in 1631, but these were to some extent mixed
up and certainly did not fully reflect his accomplishments. It is only in recent years
that thorough inspections of his manuscripts have led to the realization that he could
have had an enormous effect on mathematical notation, at least, if he had himself pub-
lished his material. Harriot was well-acquainted with Viete’s work. The connection was
through Nathaniel Torporley (1564-1632), who became Viete’s amanuensis (scribe) in
the 1590s. From 1597, Harriot had a lifelong patron in Sir Henry Percy, the ninth earl
of Northumberland, and Torporley was often part of the earl’s household. Harriot and
Torporley also corresponded when they were separated by the English channel. And
Torporley was one of the mathematical executors of Harriot’s estate after 1621.

What we want to look at here is how Harriot changed Viete’s notation, although
certainly keeping his mathematical ideas. Here is one example: Viete: To add Z
quadratum/G to A plano/B; the sum will be (G in A Planum + B in Z quadrat)/B
in G. Harriot wrote this same expression as follows:

ac

b
+

dd

g
=

acg + bdd

bg

Note that A plane is replaced by ac and z quadratum by zz, which, for some reason,
appears in the Praxis as dd. This example shows Harriot’s enormous improvements in
notation and clarity. Viete’s use of planes in an attempt to keep homogeneity meant
that he ended up with a clumsy mixture of symbolism and words. By replacing A
plane with the dimensionally equivalent ac, Harriot dispensed with Viete’s words and
originated a notation that can still be easily read today.

More interestingly, let us look at Harriott’s derivation of the cubic formula, a formula
which Viete certainly knew but could only express with difficulty. Harriott wrote: The
equation to be solved:

2ccc = −3bba + aaa

Canon for finding roots is qqq + rrr = −3qra + aaa, where a = q + r. From this, by
a familiar route, Harriott derived the result

a =
3
√

ccc +
√

cccccc − bbbbbb +
3
√

ccc −√
cccccc − bbbbbb
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The only thing lacking from our present algebraic symbolism is the use of exponents.
And we know these first appeared consistently in the work of Descartes.

Late in the seventeenth century, John Wallis argued forcefully that Descartes plagia-
rized the work of Harriott. Most readers of Wallis’s diatribe discounted this as English
prejudice, because few at the time actually knew the extent of Harriott’s work. Today,
given that extent, there seems to be stronger possibility that Wallis is correct. Among
other improvements, Harriott replaced the word for multiplication with juxtaposition,
and used modern symbols for the operations, while retaining Viete’s use of vowels for
unknowns and consonants for knowns. It seems reasonable to believe that Descartes
then took two further steps - using letters near the end of the alphabet for unknowns
and near the beginning for knowns, and using exponential notation for powers of a
given quantity. But was Descartes actually acquainted with Harriott’s work while he
was writing his Geometry? That is a question which as yet cannot be answered.

7 Conclusion

The above are only a few of the numerous examples of possibly lost opportunity that
could be presented. More will be discussed if time permits. The question is most of
these cases remains. Was there transmission of the ideas over channels of which we
know nothing, or were these ideas simply rediscovered from scratch. Unlike artifacts,
which frequently show up in unexpected places and provide solid evidence that there
was movement between civilizations, the transmission of ideas is much harder to track.
Documents still extant from ancient times are few and far between, because of the
fragility of the media used. And, of course, there are no “documents” on oral trans-
mission. So what we are often left with is informed speculation. We can compare the
description of the same idea at various times and places to try to determine how close
these are, particularly in the details. We can search for records of travel between places
and see whether transmission would have even been possible. We can hunt for letters
or other suggestions that someone read something that was only available in a possible
obscure location. But ultimately, without actual documentation, we can only look to
our intuition. Is transmission in a particular situation more likely than independent
rediscovery?
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αxm

1−αx

αxm

1 − αx
= αxm + αaxm+1 + αaaxm+2 + αa3xm+3 +

α+βx+γxx+δx3+
1+ax+bxx+cx3+dx4+

(1−px) (1−qx) (1−rx) (1−sx)
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π

4
= 8 arctan

1

10
− 4 arctan

1

515
− arctan

1

239

π

π

4
= 8 arctan

1

10
− 4 arctan

1

515
− arctan

1

240
− arctan

1

57361

π

π
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ABSTRACT 
Thomas Harriot (1560-1621) may be best known as the navigator and scientist for Sir Walter Ralegh’s 
1585-1586 expedition to the Virginia Colony, but he also was the leading English mathematician of his day. 
Harriot made important discoveries in a wide range of mathematical sciences, including algebra, geometry, 
navigation, astronomy, and optics. He published only one work during his lifetime, A Briefe and True 
Report of the New Found Land of Virginia (1588), but, at his death, left thousands of manuscript pages of 
mathematics. Harriot’s mathematical work is remarkable both in its content - he obtained many results 
generally credited to later mathematicians - and in its highly visual and symbolic presentation. We examine 
Harriot’s results on figurate numbers, finite differences, and interpolation in his unpublished treatise, De 
Numeris Triangularibus et inde De Progressionibus Arithmeticis. We also examine some of Harriot’s work 
on algebra (polynomial equations and their roots), Pythagorean triples, and combinatorics, focusing on his 
very clear and visual presentation of his work and offering, when available, his contemporaries’ reactions to 
his style of presentation. We invite reaction from the audience as to the effectiveness of such presentation in 
communicating mathematics for us and for our students today. 

During April of 2003, I had the opportunity to examine the mathematical manuscripts of Thomas 
Harriot (1560-1621) in the British Library.1 Subsequently, I have studied copies of the Harriot 
manuscripts at the University of Delaware Library, which houses the papers of Harriot’s 
biographer, John W. Shirley (1983). Whenever I study the manuscripts, I am struck by their highly 
visual quality - by just how much mathematical meaning Harriot is able to convey with well-
chosen symbols, cleverly arranged tables, and carefully laid out pages, rather than lengthy 
explanations in words. His non-verbal presentation style was unusual in his time and remains so in 
ours. The content of Harriot’s mathematical work also is striking in that he obtained many 
important results generally credited to later mathematicians. Before we examine Harriot’s very 
clear and visual presentation of his work on figurate numbers, finite differences, interpolation, 
algebra (polynomial equations and their roots), Pythagorean triples, and combinatorics, we review 
his eventful life.  

Harriot’s 1577 Oxford matriculation records show that he probably was born in 1560 in Oxford 
or at least in Oxfordshire.2 After he graduated from Oxford in 1580, Harriot moved to London, 
where Sir Walter Ralegh employed him to research and teach navigation. Ralegh sent Harriot on a 
voyage to Virginia during 1585-1586, and, upon his return to England, Harriot published A Briefe 
and True Report of the Newfound Land of Virginia (1588), which was to be his only publication 
during his lifetime. Harriot studied the flora and fauna of Virginia - North Carolina, actually - and 
also the customs and language of the people there. 

By 1593, Harriot had found a second patron in Henry Percy, the Ninth Earl of Northumberland, 
known as the “Wizard Earl” for his interest in science. During the 1590s, Harriot continued to 
work for both of his patrons, Ralegh and Northumberland, on navigation, ballistics, optics, 
chemistry, and alchemy, and, by the turn of the century, geometry and algebra. In optics, he 

                                                     
1 British Library Additional Manuscripts 6782-6789, in 14 volumes. The remainder of the Harriot 

manuscripts, Petworth Manuscripts 240-241, are at Petworth House, West Sussex, England. 
2 (Shirley, 1983, p. 40), or (Stedall, 2002, p. 88). The biographical information provided here is from 

these two sources. 
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discovered the sine law of refraction, now known as Snell’s Law, before Willebrord Snell (1591-
1626). For his work in navigation, Harriot obtained the formula for the area of a spherical triangle. 
He made advances in all of the fields in which he worked,3 except perhaps for alchemy.  

In 1603, the year Queen Elizabeth I died and James I assumed the throne, things started to go 
very badly for Harriot’s patrons. Ralegh was sent to the Tower of London, convicted of treason, 
and sentenced to death, although he wasn’t executed for another 15 years. Then, in 1605, 
Northumberland and Harriot were sent to the Tower after the Gunpowder Plot (Northumberland’s 
cousin, Thomas Percy, had been involved). Harriot was released almost immediately, but 
Northumberland was to serve another 16 years. Although both of Harriot’s patrons were in prison, 
they continued to support Harriot, and he kept working on the mathematical and scientific topics 
listed above and also making astronomical observations. He observed what later would become 
known as Halley’s comet in 1607, the satellites of Jupiter at about the same time as Galileo in 
1610, and sunspots from 1611 to 1613. By 1618, when Ralegh was executed, Harriot himself was 
in very poor health. He was suffering from cancer of the nose, probably brought on by the 
smoking habit he had picked up in Virginia. 

Three days before he died in 1621, Harriot prepared a will,4 in which he put his friend, 
Nathaniel Torporley (1564-1632), in charge of sorting through his mathematical papers and 
publishing the good stuff. Torporley started this task right away, but he never finished it; he ended 
up publishing none of Harriot’s work. Walter Warner (1557-1643), who was to assist Torporley, 
did publish some of Harriot’s algebra in the Artis Analyticae Praxis in 1631, but Torporley wasn’t 
happy with Warner’s work and neither are some modern scholars. Just last year, Jacqueline Stedall 
published Harriot’s theory of polynomial equations, as it appears in Harriot’s surviving 
manuscripts, as The Greate Invention of Algebra: Thomas Harriot’s Treatise on Equations
(Stedall, 2003). 

The history of the Harriot manuscripts is a story in itself.5 There currently are over 4000 
manuscript folios in the British Library and almost 900 of them at Petworth House, which was 
Northumberland’s country home. The manuscripts were thought to be lost, then were discovered 
under the stable accounts at Petworth House in 1784, then not studied again until the 1830s, then 
not again until the 1880s. In the meantime, in 1810, most of the manuscript sheets were transferred 
to the British Museum, but the split was not made carefully: one finds some papers on 
Pythagorean triples, for instance, at Petworth House and others at the British Library. The 
manuscripts contain much scratchwork; many studies of other people’s work, most notably 
Francois Viète (1540-1603); astronomical observations, including drawings; long tables of sines 
and logarithmic tangents; and a few more polished pieces, such as the lengthy treatise on 
polynomial equations. The most polished piece of all may be the short treatise on figurate numbers 
and finite differences titled De Numeris Triangularibus et inde De Progressionibus Arithmeticis.

In De Numeris Triangularibus (c. 1618),6 Harriot presented for the first time formulas for the 
figurate numbers, for finite differences, and for interpolated values based on finite differences. 
Some of these results are shown in Figures 1, 2, and 3, respectively. Figure 1 shows page 1 of the 

                                                     
3 The Newton scholar, D. T. Whiteside, has written that Harriot had a “profound grasp and creative 

understanding of the whole field of the exact sciences of his day. […] Harriot in fact possessed a depth and 
variety of technical expertise which gives him good title to have been England’s - Britain’s - greatest 
mathematical scientist before Newton.” See (Whiteside, 1975, p. 61). 

4 Harriot’s will is reproduced in (Tanner, 1967, pp. 244-247). 
5 The brief history of the manuscripts given here is from (Shirley, 1983). 
6 British Library Additional MS 6782, folios 107-146v. 
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37-page treatise.7 The figurate numbers were well known in Europe by Harriot’s time, with Stifel, 
Scheubel, Tartaglia, and Cardano having published tables of figurate numbers (or binomial 
coefficients), accompanied, of course, by wordy explanations.8 Harriot’s innovation was to write a 
symbolic formula for the nth figurate number in each column. His notation is easy to decipher: for 
instance, his formula for the fourth column - his pyramidal number formula - is  

n n 1 n 2
1 2 3

.

&c

1 1
1

12
12

123
123

1234
1234

12345
12345

     

1
2
1

23
12

234
123

2345
1234

23456
12345

     

1 3
1

34
12

345
123

3456
1234

34567
12345

     

1 4
1

45
12

456
123

4567
1234

45678
12345

1
5
1

56
12

567
123

5678
1234

56789
12345

1 6
1

67
12

678
123

6789
1234

6789 , 10
12345

1
7
1

78
12

789
123

789 ,10
1234

789 ,10 ,11
12345

&c

1 n n n n n

1 n 1 n 1 n 1 n 1
12 n 2 n 2 n 2

123 n 3 n 3

1234 n 4

12345

&c

&c

&c

Figure 1. Figurate numbers from Harriot’s “De Numeris Triangularibus” 

                                                     
7 BL Add. MS 6782, f. 108. 
8 (Edwards, 1987, pp. 5-7, 43-44, 53-54). Edwards reproduces and discusses tables from Michael Stifel, 

Deutsche Arithmetic, 1545, on pp. 5-6; Johannes Scheubel, De Numeris, 1545, pp. 7, 53-54; Niccolò 
Tartaglia, General Trattato, 1556, p. 53; and Gerolamo Cardano, Opus Novum, 1570, pp. 43-44. 

1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 3 6 10 15 21 28
1 4 10 20 35 56 84
1 5 15 35 70 126 210
1 6 21 56 126 252 462
1 7 28 84 210 462 924
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On page 5 of the treatise (Figure 2),9 after giving two examples of (constant fifth) difference 
tables, Harriot wrote formulas for the entries of such a table in terms of the constant difference, a,
and the first entries in each column, a through g. He recognized the coefficients he was getting as 
the figurate numbers, enabling him to write a general formula for the nth row entry of each column 
of the difference table. The vertical bar indicates multiplication here, so that the third-column 
formula, for instance, reads  

c nb
n 1 n
1 2

a .

d f g
4

a b c
3 7 6

13 10

2 5
7 8 10

18 23 23
46

2
2 9 15

24 33 41
74 87

11 35 57
92 131 161

292

& c
223 515

g
6 f d

15 9
11 2 c

5 b a
26
44 18 7

20 13 8
11 3

82 38
82 44 24

38 14 3
3

164
328 164 82

137 55 17

629 301
&c

f
d

c f+d
b d+c   

a c+b  f+2d+c
b+a d+2c+b   

a c+2b+a  f+3d+3c+b &c 
b+2a d+3c+3b+a   

a  c+3b+3a  f+4d+6a +4b+a
b+3a d+4c+6b+4a   

c+4b+6a  f+5d+10c+10b+5a
   d+5c+10b+10a   
    f+6d+15c+20d+15a
      

a

b
n a

1

c
n b

1

n 1
n a
12

d
n c

1

n 1
n b
12

n 2
n 1
n a
123

& c

f
n d
1

n 1
n c
12

n 2
n 1
n b
123

n 3
n 2
n 1
n a
1234

Figure 2. Finite differences from Harriot’s “De Numeris Triangularibus” 

                                                     
9 BL Add. MS 6782, f. 112. I have omitted Harriot’s g-column formulas due to lack of space. 
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Harriot repeated this work for difference tables based on every second, third, and nth entry of a 
larger table, and, on page 26 of the treatise (Figure 3),10 arrived at formulas for interpolated values 
(d-column values with constant third differences). He then generalized these formulas to the 
“Magisterium” formula at the bottom of the folio. Notice that Harriot did not use exponents, 
writing nnn instead of n3, for instance. Notice also that the second, third, and fourth terms in the 
“Magisterium” formula all are divided by 6n3. Harriot gave analogous interpolation formulas for 
constant first, second, third, fourth, fifth, “&c” (et cetera) differences on page 33 of his treatise.  

Pro Magisterio d.

A B C D
a b c d

c c c

D

D 6 nn C ( 3 nn 3n ) B ( 2 nn 3 n 1) A
6 nnn

D 12 nn C ( 6 nn 12 n ) B ( 4 nn 12 n 8) A
6 nnn

D 18 nn C ( 9 nn 27 n) B ( 6 nn 27 n 27 ) A
6 nnn                              

Magisterium     D  + 6nn N C 
 - (3nn N - 3n NN) B
 + (2nn N - 3n NN + NNN) A

  6nnn 

Figure 3. An interpolation formula from Harriot’s “De Numeris Triangularibus” 

Although we haven’t space to describe completely Harriot’s development of his interpolation 
formulas, we can see from the folios presented here that he used both numerical examples and 
algebra to derive these formulas. His reliance on tables, symbolic notation, and the arrangement of 
his work on the page in order to communicate his mathematical ideas also is apparent. Harriot’s 
interpolation formulas are equivalent to those known today as the Gregory-Newton forward-
difference formulas, to be developed by James Gregory (1638-1675) about 50 years later11 and by 
Isaac Newton (1642-1727) about 55 years later,12 most likely independently of one another and of 

                                                     
10 BL Add. MS 6782, f. 133. 
11 Gregory described his method to John Collins in a letter dated November 23, 1670. See (Turnbull, 

1939, p. 118-137), or (Turnbull, 1959, v. 1, pp. 45-49). Collins’ copy of portions of this letter appears in 
(Rigaud, 1841, v. 2, pp. 203-21). 

12 Newton’s formula is given as Lemma V of Book III of his Principia Mathematica (1687); see, for 
instance, Newton, 499-500. However, it appeared in Newton’s manuscripts in 1675-1676, according to 
(Whiteside 1967-1981, v. 4, pp. 7-8, see also pp. 3-8 and 14-69). 
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Harriot. 
Besides his anticipation of Gregory and Newton, what is most remarkable about “De Numeris 

Triangularibus” is Harriot’s almost entirely tabular and symbolic presentation of his derivation and 
results. By comparison, in his Arithmetica Logarithmica, published in 1624, Henry Briggs (1561-
1631) used quite sophisticated finite difference interpolation methods to construct logarithm 
tables, but he explained his procedures primarily in words. He did not give formulas, but rather 
examples incorporated into text. 

Harriot’s mathematical friends, Sir William Lower (1570-1615) and Sir Thomas Aylesbury 
(1580-1657), and Aylesbury’s (and Warner’s) mathematical friend, Sir Charles Cavendish (1591-
1654), may have found Harriot’s highly visual and symbolic presentation of his results on 
interpolation to be more beautiful than accessible. After seeing what apparently was a small 
section of an early version of Harriot’s treatise, Lower wrote to Harriot in 1611,13 “The touch that 
you give of your doctrine of differences of differences or triangular numbers enamours me of 
them, wherein to understand somethinge, I will one day bee a beggar unto you.” Cavendish 
relayed the following request to John Pell (1611-1685) in 1651.14

Sr Th Alesburie remembers him to you & desires to knowe if you would be pleased to show the 
use of Mr Hariots doctrine of triangular numbers which if you will doe he will send you the 
originall. I confesse I was so farre in love with it that I coppied it out though I doute I 
understand it not all, much less the many uses which I assure myself you will finde of it. 

Aylesbury and Cavendish seemed confident that Pell could understand and apply Harriot’s work. 
Indeed, Pell and Walter Warner had constructed tables of antilogarithms using finite difference 
methods before Warner’s death in 1643 (Stedall, 2002, p. 133). We discuss the reaction of 
Torporley, the friend Harriot put in charge of his mathematical papers, to Harriot’s work on 
interpolation at the end of this paper. 

Regarding Harriot’s achievements in algebra, Jacqueline Stedall has argued that Harriot’s 
algebraic notation was the first truly modern notation and that this helped make possible his 
“handling of equations at a purely symbolic level” and his understanding of the structure of 
polynomials in terms of their roots (Stedall 2002, 123-124). One could make similar claims for 
Harriot’s interpolation formulas. He was the first to give these formulas using symbolic notation 
and his formulas are very modern-looking. Gregory’s and Newton’s interpolation formulas 
actually are much less modern-looking than Harriot’s. Harriot certainly relied on symbolism to 
understand and communicate his ideas more than had any mathematician previously, and he had a 
deeper understanding of constant difference interpolation methods and applications than other 
mathematicians of his time, except possibly Briggs. 

Harriot presented his theory of polynomial equations in highly symbolic form and also relied 
very much on the arrangement of his work on the page to convey his mathematical meaning. As 
Stedall has pointed out, Harriot’s notation certainly was a great improvement over that of his 
primary algebraic influence, Viete. She noted, for instance, that where Viète wrote,15

If to A plane
B

 there should be added Z squared
G

,

                                                     
13 BL Add MS 6789, f. 429; see also (Halliwell, 1841, p. 39). 
14 BL Add MS 4278 (Pell papers, first series,) f. 321; quoted in Lohne 1966, 203. Cavendish’s copy of 

De Numeris Triangularibus is in British Library Harley MS 6083, ff. 403-455. 
15 (Stedall, 2003, p. 8, pp. 10-11). Stedall translated Viète’s Latin and modernized Harriot’s “equals” 

sign. 
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the sum will be G times A plane B times Z squared
B times G

, Harriot wrote   ac
b

zz
g

acg bzz
bg

. Figure 

4 shows a typical case of a quadratic equation from the section of Harriot’s algebra treatise titled, 
On the Generation of Canonical Equations, as reconstructed (and translated from Latin) by 
Stedall.16 Here, both the symbolic notation and the page layout help convey the mathematics 
clearly to the reader. 

On the generation of canonical equations 

Let a b  in the multiplication      b - a     or a - b
                                                         c + a          a + c 

therefore:  b - a bc - ca
               c + a     + ba - aa         oo  

or:  a - b      aa - ba 
     a + c  + ca - bc        oo 

therefore:  bc  - ba
+ ca  +  aa 

and we will have:  a       b 

and a is not equal to c nor anything other than b.

If a b  we will have:   bc       - bb
    + bc + bb         and it is so. 

If  a c  we will have:  bc        - bc
   + cc + cc
   2bc 2cc 
therefore  b       c, against the proposition. 

Therefore a b and not c.

Nor will we have a d  other than b.

If it were, we would have:   bc - bd
     + cd + dd 

and:  bc + bd         cd + dd 

and:   c + d           c + d 
  b          d 

therefore b        d, against the supposition, for d is supposed other than b.

If b       c  the first degree term is removed, and we will have: 

bb       aa 

and:   a       b 

Figure 4. A “canonical equation” from Harriot’s algebra treatise

                                                     
16 (Stedall, 2003, pp. 127), except that I have restored Harriot’s “equals” sign. A photo of the folio itself, 

BL Add. MS 6783, f. 183, appears on p. 15. In manuscript, the work shown in Figure 4 is arranged in two 
columns and there is additional work on the page. 
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The algebraic ideas, and especially the notation, of Harriot’s Artis Analyticae Praxis, published
in 1631, had an influence on the more talented mathematicians of the mid-seventeenth century, 
including John Wallis.17 Wallis expressed his high regard for Harriot’s algebra in his Treatise of 
Algebra (1685), devoting almost a quarter of the text to Harriot’s work. It was Wallis’s 
Arithmetica Infinitorum (1655) and, more generally, the algebraization of geometry, that the 
philosopher Thomas Hobbes was criticizing when he wrote in the introduction to his Six Lessons 
to the Professors of the Mathematicks (1656),18 “Symboles serve only to make men go faster 
about, as greater Winde to a Winde-mill.” Apparently, Hobbes was not praising the efficiency of 
symbolic notation, as he explained (in Lesson Five) that19

[S]ymboles though they shorten the writing, yet they do not make the reader understand it 
sooner than if it were written in words. For the conception of the lines and figures (without 
which a man learneth nothing) must proceed from words either spoken or thought upon. So that 
there is a double labour of the mind, one to reduce your symbols to words, which are also 
symbols, another to attend to the ideas which they signifie. 

Mathematicians generally embraced the new symbolic notation, although some readers of their 
texts had trouble with it. William Oughtred (1573-1660), who wrote a very popular algebra text,20

which went through several editions and from which the likes of John Wallis, Robert Boyle, John 
Locke, and Isaac Newton learned algebra (Stedall, 2000a, p. 41, pp. 43-44), had to defend his use 
of symbolic notation against readers who complained that it was too difficult to comprehend. In 
the preface to the 1647 edition of his text, its first English edition, titled The Key of the 
Mathematicks New Forged and Filed, Oughtred defended symbolic notation as follows.21

Which Treatise being not written in the usuall sytheticall manner, nor with verbous 
expressions, but in the inventive way of Analitice, and with symboles or notes of things instead 
of words, seemed unto many very hard; though indeed it was but their owne diffidence, being 
scared by the newnesse of the delivery; and not any difficulty in the thing it selfe. For this 
specious and symbolicall manner, neither racketh the memory with multiplicity of words, nor 
chargeth the phantasie with comparing and laying things together; but plainly presenteth to the 
eye the whole course and processe of every operation and argumentation. 

Harriot’s work on Pythagorean triples, as described in a paper by the Harriot scholar, Rosalind 
Cecilia Tanner,22 extended the incomplete work of Michael Stifel (1487-1567) in his Arithmetica 
Integra (1544) to include all primitive Pythagorean triples. Despite his facility with symbolic 
formulas in his work on interpolation and algebra described above, Harriot’s approach here was 
highly numeric and relied very much on the physical arrangement of a sequence of tables of 
Pythagorean triples on the page: see Figure 5.23

                                                     
17 (Stedall, 2003, p. 29). 
18 Quoted in (Stedall, 2002, p. 169). 
19 Quoted in (Stedall, 2002, p. 169). 
20 Clavis Mathematicae, London, 1631. 
21 Oughtred 1647, no page numbers; quoted also in (Stedall, 2000a, p. 39). 
22 Harriot’s work is in BL Add. MS 6782, ff. 84-89, and Petworth MS 241/5, ff. 1-7. Although Tanner 

discussed Harriot’s work on Pythagorean triples in detail in her paper, “Nathaniel Torporley’s ‘Congestor 
analyticus’ and Thomas Harriot’s ‘De triangulis laterum rationalium’” (1977), it seems to remain little 
known.

23 BL Add. MS 6782, f. 85; from (Tanner 1977, pp. 410-411). 
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1) ordo

1 0 1 2)
4

3 4 5 4 3 5 3)
8 4 12

5 12 13 8 15 17 15 8 17
12 4 20 6 12

7 24 25 12 35 37 21 20 29
16 4 28 6 16

9 40 41 16 63 65 27 36 45
20 4 36 6 20

11 60 61 20 99 101 33 56 65
24 4 44 6 24

13 84 85 24 143 145 39 80 89
28 52 6 28

15 112 113 197 45 108 117
32 60 6 32

17 144 145 257 51 140 149
36 36

19 180 181 185
40 40

21 220 225

4)

20 21 29
8 24

28 45 53
8 32

36 77 85
8 40

44 117 125
8 48

52 165 173
56

229

5)

45 28 53 6 )
10 20

55 48 73 48 55 73 7)
10 24 12 36

65 72 97 60 91 109 91 60 109
10 28 12 44 14 28

75 100 125 72 135 153 137
10 32 52 32

85 132 157 205 169
36 60 36

193 265 205
40

245
Et sic de caeteris in infinitum. 

Hic sunt omnes primì sed hìc omnes non sunt primì. 

Nota 

Primae Differentiae ordinis 

primi. 2. 4. su Dupla

secund 4. 12  tripla

terti. 6. 12  Dupla

quarti. 8. 24  tripla

quinti. 10 20  Dupla

sexti. 12 36  tripla

septim 14 28  Dupla

octavi. 16 48  tripla

&c in infinitum 

Figure 5. Thomas Harriot’s tables of Pythagorean triples 

Stifel had given the sequences attributed to Pythagoras and to Plato; namely,  
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1 1
3

,2 2
5

,3 3
7

, 4 4
9

,5 5
11

,  and 1 7
8

,2 11
12

,315
16

, 4 19
20

,5 23
24

, .

Here, 3 3/7, for instance, yields the triple (7, 24, 25). Stifel claimed that these sequences included 
all Pythagorean triples (or “diametrical numbers”),24 but Euclid and Diophantus knew better, as 
did Harriot. Harriot began with these two sequences as his first and second orders of Pythagorean 
triples.25 In each order, let us (with Tanner) call the triple above the line the “starter” and the first 
triple below the line the “first triple”. Note that Harriot interchanged the first two entries of the 
first triple to obtain the starter for the next order. For example, the first triple (8, 15, 17) of the 
second order becomes the starter (15, 8, 17) of the third order. Notice also that the tables are 
stepped so that these triples appear side by side. Within each order, to obtain the next triple, 
Harriot used a rule based on finite differences, described in the table at the bottom of Figure 5. The 
first entries of the triples of the nth order have a constant first difference of 2n; that is, to obtain 
the subsequent first entry, add 2n. The first differences between second and third entries are not 
constant, but the second and third entries have a constant second difference of 4 or 8, depending 
on whether n is odd or even, respectively. Note, however, that Harriot did not use the symbol n,
nor any other symbol, in his table. Folios 85-89 contain tables giving orders 1-22 with entries up 
to hypotenuse 1105. 

Harriot knew at least one general formula for Pythagorean triples and discussed it elsewhere in 
the manuscripts.26 However, he did not ever seem to link his symbolic and tabular approaches 
(Tanner, 1977, p. 415). He did assert (see Figure 5) that his list contained all the primitive (prime) 
Pythagorean triples but that not every triple in his list was primitive. Tanner (1977, pp. 415-417) 
provided a proof that Harriot’s tables, if extended indefinitely, would include all primitive 
Pythagorean triples. 

Harriot’s work on combinatorics seems to have been intended primarily for use in enumerating 
cases in his derivation of forwards-backwards interpolation formulas and in his solutions of 
polynomial equations. Yet Harriot arranged the work beautifully and - one would like to believe - 
must have been interested in the mathematics for its own sake. He explored combinations, 
permutations (he called them “transpositions”), and permutations with repetition, among other 
topics,27 using carefully organized and displayed lists and tables. When he described a general 
formula, he often did it in words rather than symbols. However, this work was less well developed 
than, say, his work on figurate numbers and binomial coefficients. I suspect a final version of any 
of it would look like Figure 1; that is, it would consist of tables followed by general symbolic 
formulas. 

Little is known about the influence both during Harriot’s lifetime and after his death of De 
Numeris Triangularibus and of his work on Pythagorean triples and on combinatorics. (Somewhat 
more is known about his algebra, thanks largely to Stedall’s work). In particular, little is known 
about his mathematical colleagues’ reactions to his style of presentation. As described above, 
Harriot’s will put his friend, Nathaniel Torporley, in charge of editing and publishing his 
mathematical work, to be assisted by Walter Warner and three other friends, yet Torporley was not 
able to publish any of Harriot’s work. Surviving manuscripts at Lambeth Palace Library show that 
Torporley did begin to write up some of Harriot’s work, including his work on algebra, 

                                                     
24 (Tanner, 1977, p. 398). By “diametrical number” Stifel meant a product mn of integers such that m2 + 

n2 is a square. 
25 (Tanner, 1977, p. 407); see Figure 5. 
26 (Tanner, 1977, pp. 413-415). See especially BL Add. MS 6785, ff. 201-206. 
27 See especially BL Add. MS 6782, ff. 33-41, titled, “Of Combinations.” 
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Pythagorean triples, and combinatorics, but not his work on figurate numbers and interpolation 
formulas.28 However, the Macclesfield Collection, newly available to scholars at the Cambridge 
University Library, contains a 164-page manuscript by Torporley dated 1627 and titled Of
Differences. This manuscript, which we viewed in May of 2003 and will view again in June of 
2004, was long believed to be the original of one of the manuscripts held at Lambeth, but it is not; 
rather, it consists of two parts, the first of which is a 98-page treatise on finite differences and their 
use in constructing sine and logarithm tables. 

In Torporley’s write-up of Harriot’s work on Pythagorean triples, he transcribed Harriot’s work 
without retaining his careful layout of the tables of triples (Tanner 1977, pp. 421-422) and then 
followed his transcription with a lengthy and not quite accurate explanation of and commentary on 
it. Torporley, in attempting to prepare Harriot’s work for presentation to the mathematical 
community, seems to have believed it required some explanation - in fact, quite a lot of 
explanation. If the very wordy manuscript, Of Differences, does indeed contain Torporley’s 
attempt to elucidate Harriot’s work in “De Numeris Triangularibus” or even his related work in 
various sections of the manuscripts titled “Ad Calculum Sinuum,” then it would provide another 
example of Torporley, Harriot’s closest and most trusted mathematical friend, believing that 
Harriot’s almost entirely non-verbal presentation of his work required much verbal explanation. 

Rosalind Cecilia Tanner has conjectured that Harriot’s lack of written text may have hindered 
his friends’ progress in publishing his work (Tanner 1967, p. 288). Although she referred to the 
“speaking character of [Harriot’s] careful non-verbal layout” of Pythagorean triples (Tanner 1977, 
p. 418), she then went on to describe Torporley’s troubles in interpreting it (Tanner 1977, pp. 418-
427). As to why Harriot himself never published, it has been speculated that he didn’t need to do 
so because his patrons supported him regardless, that his patrons didn’t want him to, that he never 
felt that any given project was quite finished, and/or that he kept procrastinating until he became 
too ill to prepare his work for publication. I wonder if Harriot feared (or knew) that a publisher 
would require him to explain his work in words and if he, having worked so hard to obviate the 
need for verbal explanation, was unwilling to do so. 

I invite reaction from the audience on any aspect of this paper, but especially on the 
effectiveness of Harriot’s style of presentation in communicating mathematics for us and for our 
students today. 
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ABSTRACT 
Fra Luca Pacioli (1445 – 1514?) was an important person in the history of human knowledge. He influenced 
mathematics, accounting, architecture, graphic arts and printing. His second major work is De Divina 
Proportione (“On the Divine Proportion”) and its central subject is the golden ratio. The main purpose of 
this paper is to describe briefly the contents of the original text of De Divina Proportione and to provide 
some historical foundations on its contents. This work has been translated into Portuguese with 
commentaries to my Phd thesis. 

1 Introduction 

The golden ratio has always been a subject of speculation and investigation along the history of 
mathematics. The first known manuscript that its main theme is golden ratio is called De Divina 
Proportione (The Divine Proportion), written by the Franciscan friar Luca Pacioli (1445 – 1514?). 
Pacioli is an important person in the history of science and art. He influenced Mathematics, 
particularly in algebraic and geometrical field, Accounting through the Double-entry 
Bookkeeping, Architecture, Graphic Arts and Printing, Painting etc. Despite his more famous 
work Summa di Arithmetica, Geometria, Proportioni et Proportionalità, his favorite work is De 
Divina Proportione. The friar classified this work like “opera a tutti glingegni, perspicaci e curiosi 
necessaria” (necessary work to every ingenious, perspicacious and curious person) and its contents 
as “secret science”. The book was enriched by Leonardo Da Vinci’s illustrations. This work has 
been translated into Portuguese with commentaries to my PhD Thesis. 

2 The author: Fra Luca Pacioli 

The Italian friar Luca Pacioli was born in Borgo San Sepolcro, in 1445. The artist Piero della 
Francesca was one of his fellows countrymen friend and master. Federico di Montefeltro, duke of 
Urbino, and his son Guidobaldo were his friends. 

Pacioli’s progress in mathematics and other sciences was notable. When he was 19 he taught 
Antonio Rompiasi’s sons. Antonio Rompiasi was a rich venetian businessman. During his stay in 
Venice he achieved a lot of knowledge on commerce and had some lessons from Domenico 
Bragadino. 

In 1470, Pacioli wrote a treatise on Algebra dedicated to Rompiasi’s three sons. In this period 
he went to Rome where he was a host at Leon Battista Alberti’s house. There is a possibility that 
he became a friar of the Order of Friars Minor by the influence of his friend Alberti. 

By the year of 1475 he wrote an Arithmetical Treatise. He taught in several places as the 
University of Perugia, Zara1, Sapienza in Rome, Naples, Padua, Milan and other places. 

                                                     
1 Today Zadar, Croatia. In this period of time this city was Venetian territory. 
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In Zara, Pacioli wrote an algebra treatise. In 1494 he published the Summa di Arithmetica, 
Geometria, Proportione et Proportionalitá, which brought to the world the double-entry 
bookkeeping and recognized him with the title of “Father of Accounting”. 

He was one of the members of Ludovico Sforza court, duke of Milan. There he met Leonardo 
Da Vinci, who became his friend. Leonardo used to ask Pacioli about mathematics. In December 
1498 Pacioli finished his work De Divina Proportione, with about sixty illustrations made by 
Leonardo Da Vinci. 

When Ludovico was deposed by the French in September 1499, Pacioli and Leonardo went to 
Firenze. In 1500, Pacioli was invited to teach geometry at Pisa University. At this time Pisa 
University was established in Florence because of the rebellion of 1494. 

Luca Pacioli made the first Elements of Euclids Italian translation based on the Latin 
translation of Campanus. In 1509 he published De Divina Proportione, in the office of Paganino 
de’ Paganini in Venice. 

After this period he was elected as the monastery superior of his hometown. He probably died 
after August 30th 1514, because his work was not continued after this date. 

We can find his influence in the works of Leonardo Da Vinci, Albrecht Dürer, Girolano 
Cardano, Nicolò Tartaglia, Rafael Bombelli, Pedro Nunes and others. 

Figure 1. Portrait of Fra Luca Pacioli with a pupil – Museo e Gallerie di Capodimonte, Naples 

3 The work: De Divina Proportione

The first codex of De Divina Proportione finished in December 1498 was dedicated to Duke 
Ludovico Sforza and soon after another manuscript was done and dedicated to Galeazzo da 
Sanseverino, the duke’s general. The first manuscript is in the Bibliothèque Publique et 
Universitaire and the second manuscript is in the Biblioteca Ambrosiana di Milano. 
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Pacioli was protected by his friend Pier Soderini, an authority from Firenze to whom he 
probably offered his third codex of his work (unfortunately lost). 

The original codices were based on the first part of his complete work printed in 1509. 
Leonardo da Vinci was the illustrator of the De Divina Proportione based on the works of Pacioli 
himself. 

[…] the small book called Divine Proportion. And with great enthusiasm that I included in 
schemes made by the hands of our Leonardo da Vinci, to be more instructive to the reader eyes. 
(1509 p A ii recto). 

The text can be divided in three main parts besides the Pacioli’s Roman alphabet. 
The first part of the manuscript deals with the gold ratio, that is, the Divine Proportion as called 

by Pacioli and from which its title is originated. It describes a summary of the propositions of the 
Elements of Euclid related to the golden ratio, a study of properties of regular polyhedra and semi-
regular polyhedra descriptions. In the first chapters the author takes the fundamental and universal 
importance of mathematics and give details about the court of Milan atmosphere and some work 
comprehension requirements. Seventy-one chapters are the total of his written work. Pacioli 
suggests the Elements of Euclid as “essential guide” to the reader.  

The second part of the work is an architecture treatise based in Vitruvius who considered the 
human body proportions as rules to build constructions and its components. This part of the work 
was inspired by sculptures and architectures Pacioli’s students who wanted to aknowledge on 
geometry and arithmetics in order to apply in their work. Twenty chapters are the total of the 
second part work. 

The third part work is an Italian translation of Libellus de quinque corporibus Regularibus
from Piero della Francesca originally written in Latin. It deals with some problems and some cases 
related to polygons, the regular polyhedra and other polyhedra. There are 138 problems divided in 
three minor treatises. 

In the end of the work we find the polyhedra illustrations, and other illustrations that refers to 
architecture and the “alphabeto dignissimo antico” presented by Pacioli. The alphabet is an effort 
to rule the source of letters constructions which Italians and foreigners found out when they 
studied ancient monuments. Pacioli didn’t copy the only alphabet known of Damianus Moyllus, 
published in 1480 and even could not copy the manuscript of Felice Feliciano from Verona, 
finished in 1482. The friar was one the first who made the comparison and proportions with 
human body and use the rule and the compass to teach students inscriptions reconstructions. 

The book was written in Italian and has quotations in Latin. The main purpose of the work is to 
be easilly understood, didactic and objective. Its theoretical sources were the important Elements 
of Euclid, Plato’s Timaeus, the works of Vitruvius, the neo-platonic scholars from Firenze ideas 
and others works from Middle Ages, Classic World and contemporary Humanism, moreover these 
sources are not exactly mentioned. 

4 The divine title 

The main belief of Pacioli’s work is that the golden ratio was a divine manifestation. He wrote that 
among similarities between God and the Divine Proportion he found that four of them justified his 
statements: 
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1 – This proportions (ratio) is unique according to every theological and philosophical school; 
this unit is God epithet itself. 

2 – The corresponding with the Holy Trinity. As in divinis there is the same substance between 
three persons, that is, Father, Son and Holy Spirit, in the same way the same proportion (ratio) of 
this kind can be found between three terms. 

3 – As God can’t be defined and can’t be understood by word this kind of proportion can’t be 
determined by intelligible number and can’t represented by rational number. 

4 – As God can’t change and is everything in everywhere and He is in all places this proportion 
is also invariable in every quantity. 

Pacioli is a follower of the platonic idea which each element from Nature corresponds to a 
regular polyhedra: fire/tetrahedron: earth/hexahedron: air/octahedron: water/ icosahedron and 
Quintessence/dodecahedron. As the dodecahedron can’t be formed without the golden ratio, he 
makes the comparison of the ratio necessity to form this kind of polyhedron and the necessity of 
God to create and shape Universe. 

Figure 2. The first page of Pacioli’s Divina Proportione (1509) 

5 The Divine Proportion “effects” 

Pacioli dealt with some Divine Proportion properties and named them “effecti”. Such effects are 
described and studied from Chapter VII to XXIII. The author says that there are infinite effects, 
however, elected thirteen, “in honor of the group of the twelve and his leader, our Holy Redeemer 
Jesus Christ”. In fact, the friar considers the first propositions in Elements of Euclid in book XIII, 
changing the geometrical proofs by numerical examples. To each effect a special name is given: 
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first, essential, singular, ineffable, admirable, unnameable, reciprocal of precedent, inestimable,
excelse, supreme, excellent, worthy.

6 Final considerations 

We can say that Fra Luca Pacioli had great reputation among his contemporary fellows. He had 
lots of prestigious friends. He taught and spent some time in several places as Perugia, Venice, 
Padua, Milan, Firenze and Rome. In fact, Pacioli was considered a great professor and speaker. 
His fame reached a high level among academic and intellectual people of that time and was always 
recognized as teacher of mathematics. Therefore, he had his portrait painted by Piero della 
Francesca. 

The friar always praised his protectors and friends at the same level as he criticizec people who 
didn’t believe on his conceptions which he thought to be of great importance to everyone. 

Because of his beliefs and style Pacioli had to present a set of ideas and made an exposition of 
all “misterium” that was the background of his work. 

Besides his knowledge on mathematics he had a mystic conception work and makes quotations 
on famous philosophers and authors from Classical World to the Fathers of the Patristic age and 
wrote biographies through his own and personal remembrances. 

His beliefs agreed with the Renaissance atmosphere. His book contents gave a “feeling” to 
“Sacred Geometry” which made artists very attracted upon its subject and led Master Luca to be 
called a Priest of Mathematics. Albrecht Dürer, for example, was one of these artists who wanted 
dominate the “secret science”. 

it is evident that the great professor and studious mathematician could not be happy enough 
writing a simple manual of practical use (Portoghesi, 1957) 

as much as one read it, better results he will achieve. (Pacioli, 1946, p. 54) 
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ABSTRACT 
In the 19th century, only one learned school existed in Iceland, where the population was 47,000 in 1801 and 
72,000 in 1880. Considering the circumstances, the Learned School enjoyed excellent mathematics teaching 
in the period 1822–1862, when the school was served by Björn Gunnlaugsson, a gold medallist in 
mathematics from the University of Copenhagen.  
In the 1860s, discussions about teaching modern languages intensified in Denmark and other Nordic 
countries. In 1871, Denmark’s learned schools were divided into two streams, specializing in languages and 
history on one side and mathematics and natural sciences on the other side. Regulations were prepared for 
the sole Icelandic learned school in 1876, suggesting that the Icelandic school would continue as a one-
stream school, while Hebrew would be eliminated and Greek reduced to make room for the modern 
languages, French and English. German and Danish had previously been taught during the first four years. 
Mathematics would continue throughout the school as previously.  
Immediately after the proposals for the new regulation were introduced, the governor of Iceland sent them 
to the Minister of Iceland in Copenhagen along with a long letter, containing his own proposals, suggesting 
a clear language-history stream in the Icelandic school, as it would overload the pupils to study Latin and 
mathematics at the same time. He proposed that mathematics be reduced.  
The Minister for Iceland forwarded the original proposals to King Christian IX, suggesting that Danish and 
exegetics replaced mathematics in the last two years of the school. This became the conclusion of the matter 
and the mathematics-science stream was first established in 1919. 
Over the next couple of years the teachers of the school tried to influence this decision, while it seems that 
the headmaster, who was a philologist, had lobbied his way through the official system with his emphasis on 
languages. Letters from the governor, the minister and the teachers are preserved at the National Archives in 
Iceland. They reveal interesting arguments for and against mathematics education, all of which harmonise in 
one way or another with the Mogens Niss’s analysis of fundamental reasons for mathematics education from 
historical and contemporary perspectives, published in the International Handbook of Mathematics 
Education (1996). 

1 Introduction 

Iceland remained a rural society well into the 20th century. It was settled from mainland 
Scandinavia in the 9th century, and from late 14th century it was a tributary of Denmark. The 18th

century saw the dawn of modern times. Regulations issued in the 1740s were the basis for a unique 
educational system whereby homes were responsible for the education of children, under the 
supervision of parish priests. Until after the middle of the 19th century there was only one 
educational institution in the country, the Learned School. The population of Iceland numbered 
47,000 in 1801 and 72,000 in 1880. 

The aim of this study is to examine the arguments given in the 19th century for and against the 
teaching of mathematics in that sole learned school in Iceland. The history of mathematics 
education will be analysed in the light of the following statement by Mogens Niss: 

Analyses of mathematics education from historical and contemporary perspectives show that in 
essence there are just a few types of fundamental reasons for mathematics education. They 
include the following: 
• contributing to the technological and socio-economic development of society at large, either 
as such or in competition with other societies/countries; 

36



• contributing to society’s political, ideological and cultural maintainance and development,
again either as such or in competition with other societies/countries; 
• providing individuals with prerequisites which may help them to cope with life in various 
spheres in which they live: education or occupation; private life; social life; life as a citizen. 
(Niss, 1996, p. 13). 

2 Earlier circumstances 

Regulations for the learned-school level were introduced in 1743, on the required knowledge in 
the four basic skills in arithmetic. With the advent of the Enlightenment movement, the first 
mathematics textbooks in Iceland were published. However, no teacher was available to teach 
mathematics. While the University of Copenhagen introduced minimum requirements in 
mathematical knowledge in 1818, Icelandic students alone were exempt from these requirements 
until after 1822.  

From 1822 to 1862 the Learned School, first located at Bessastaðir and later in Reykjavík, was 
fortunate enough to have as mathematics teacher Björn Gunnlaugsson (1788–1876), a 
mathematician who had earned two gold medals for mathematics at the University in Copenhagen. 
As students were few, the six-year programme had to be taught in only two groups: novices and 
veterans. The students studied arithmetic, algebra, geometry, stereometry, and trigonometry. 

At his inauguration at the Learned School in 1822 Björn Gunnlaugsson said:

In order to be able to live, and live comfortably, we have to utilize the resources which God has 
in nature prepared for us; in order to use the resources of nature we have to know its evolution; 
in order to know its evolution we, or least some of us, have to research it, in order to research it 
we have to calculate it, often with mathesi applicata; to calculate with mathesi applicata we 
have to know mathesin puram and that thoroughly; and in order to know it properly we have to 
investigate all its tricks to the degree that we possibly can; and if not all of us have the 
opportunity and leisure time for that, then we have to send out some scouts who do that for us. 
Every nation should therefore have its mathematicos to send them out into nature to research its 
mysteries and who then point out to the nation where it should search to find the resources 
which are hidden in it. (Gunnlaugsson, 1993, p. 57). 

Björn was influenced by the Enlightenment and was well acquainted with the laws of physics and 
their dependence on mathematics. Most other Icelanders may not have seen this connection in their 
country at that time. 

Björn’s address indicates that he considered it the goal of his teaching that the nation would be 
able to harness nature’s resources, in addition to the official reason given for teaching 
mathematics, which was to ensure the admittance of Icelandic students to the University of 
Copenhagen. One can therefore identify, in early 19th-century Iceland, two of the fundamental 
reasons for mathematics education, stated by Mogens Niss, i.e. to provide the students with 
prerequisites for further studies, and to contribute to the technological development of society. 

3 Debates about the new regulations  

Intense debates about the teaching of modern languages in learned schools arose in Denmark and 
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other European countries during the 1860s. In 1871 the Danish parliament passed legislation on 
the division of Danish learned schools into two streams: a language/history stream, and a 
mathematics/natural sciences stream. Following the granting of Iceland’s own constitution in 
1874, a committee, the School Affairs Board, was appointed in Iceland in 1875 to prepare 
regulations for the Icelandic school. Among the board members was Jón Þorkelsson, headmaster 
of the Reykjavík Learned School. In October 5 1876, the board presented a proposal whereby new 
modern languages were implemented: French and English as compulsory subjects – French for six 
years and English for four years – and German as an elective in the last two years. German and 
Danish had prior to this been the only compulsory modern languages, both taught for the first four 
years. Hebrew was to be eliminated, Greek and exegetics were to be reduced, while Latin would 
be slightly reduced. Mathematics was to be taught for six years as before (Álitsskjal nefndarinnar í 
skólamálinu, 1877, 19–47). As the school was so small, it should have only one stream, a mixture 
of the two streams offered in Denmark. 

When the regulations were published on July 12 1877, the following main amendments had 
been made to them: Danish and exegetics were to be taught in all grades, while mathematics was 
to be completed in the fourth year (Stjórnartíðindi, 1877). Several documents from the archives of 
the governor and the Ministry for Iceland, preserved in the National Archives of Iceland, reveal 
the lobbyism going on in 1876–77. 

The new governor, Hilmar Finsen, a Dane of Icelandic origin, sent the School Affairs Board’s 
proposal to Nellemann, the Minister for Iceland in Copenhagen, along with 17 pages of his own 
comments, in which he expressed his concern about the workload of students having to study 
mathematics and Latin at the same time. He put forward his own proposal, that mathematics would 
terminate after four years, after which German would become a compulsory subject for the last 
two years. The Learned School would then resemble the Danish language stream. No mention was 
made of Danish in his letter. In his letter he stated that: 

[...] the language-historic teaching must be considered as the one, for the present situation, 
which is the best suited to prepare the school’s pupils for the professional education they later 
plan to acquire, and which they … usually will attempt to gain by seeking qualifications for 
professional examinations, either at one of the present higher education institutes, that is the 
Theological Seminary or the Medical School or, in the case of the law or philology, at the 
University in Copenhagen. 
It is an extremely rare exception if a student from the present school will seek further education 
at the University in the subjects for which instruction in mathematics and natural sciences must 
be considered as the best preparation, and in this country we do not have learning institutions 
where such instruction can be acquired (Íslenska stjórnardeildin, VI, p. 6). 

Minister Nellemann forwarded the proposals to King Christian IX, together with a letter in which 
he expressed his view that it was necessary to increase instruction in Danish at the Icelandic 
Learned School, since that language was of the greatest importance to Icelandic officials as a 
business language. Furthermore, exegetics should be taught through all classes, and German as a 
compulsory subject in the last two classes. This would not overload the pupils, as mathematics 
could be reduced (Skjalasafn landshöfðingja, LhJ 1877, N nr. 621). Regulations announcing the 
decision that mathematics would not be taught during the final two years, and that German and 
Danish would become compulsory subjects in its place, were published on July 12 1877. 
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4 Repercussions 

It seems odd for the governor of Iceland to write such a long letter about details of Icelandic 
school affairs. Certainly, school affairs had great weight in the finances of the country, but 
finances were not the concern here. It seems reasonable to infer that some of the members of the 
School Affairs Board were discontented with its proposal, and had found an alternative route, via 
the governor, to express their ideas. Discussions soon after at two sessions of parliament, in 1877 
and 1879, and two letters from 1882, could point to that conclusion. 

The teacher of German at the Learned School, Halldór Kr. Friðriksson, was a member of 
parliament. During the parliamentary session in the summer of 1877, he submitted two questions 
to the governor: Firstly, why the teachers and management of the school had not been given an 
opportunity to present their opinions about the new school regulations before they were adopted, 
and secondly, how the regulations should be implemented that autumn. In his introduction, Halldór 
voiced the criticism that German had been transferred to the uppermost grade, that English and 
French started at the same time in the first grade and, moreover, that much of what had previously 
been taught in mathematics was now to be omitted. One could say that not everyone was expected 
to become a mathematician, but by this act general education was reduced. Mathematics had a 
great role, as it was a form of instruction in thinking for mankind. Halldór stated that there was no 
institution in France, England or Germany at the same level which did not teach at least as much 
mathematics as had been taught in the Learned School up to this time. One of the members of the 
School Affairs Board, also a member of parliament, said that, as in Iceland there was one more 
foreign language to cope with than in Denmark, i.e. Danish, one language had to be dropped, and 
German had been chosen (Alþingistíðindi 1877, pp. 636–643). In 1879 parliament resolved that 
the governor should set up a board of all the teachers and two others to revise the 1877 regulations 
and propose amendments to it. The matter was brought up by Halldór Kr. Friðriksson 
(Alþingistíðindi 1879, p. 408, p. 499). 

In 1882, the teachers wrote a letter to the authorities, requesting that German replace French as 
the first of the three new modern languages, and that mathematics be restored to its previous status 
as a six-year subject. Their reasoning was that mathematics education was insufficient in itself, 
without trigonometry and stereometry. They drew attention to the fact that trigonometry supported 
physics and astronomy, and that these topics “finalized and perfected” mathematics education. 
This would achieve the necessary preparation for those wanting to continue the study of 
mathematics at a higher institution. Secondly, the topics in question were, in their opinion, 
important for the country’s “technical life”, and 

[…] we think that there is the more reason to teach them in the Learned School, as they are not 
taught in any other school in this country at this time, so our countrymen thus do not have any 
choice to acquire knowledge in them except by self-instruction. 

The letter was signed, with reservations, by Headmaster Jón Þorkelsson and another language 
teacher, while yet another language teacher, the mathematics teacher, the natural science teacher 
and others signed the letter unconditionally. The headmaster, who had been a member of the 
School Affairs Board and thus put forward the original proposal, expressed in a separate letter that 
he supported the exchange of German and French, while the present amount of mathematics would 
suffice for all but those who were not heading for the Polytechnic College [in Copenhagen]. He 
claimed that hardly more than one Icelander attended that school per decade, and those few would 

39



have to seek private instruction in mathematics. The hours for more mathematics would inevitably 
have to be gained at the cost of the languages, and he, for his part, put the greatest emphasis on 
them (Íslenska stjórnardeildin S VI, 5. Isl. Journal 15, nr. 680).  

Headmaster Jón Þorkelsson was thus, after all, not interested in re-introducing mathematics. 
One suspects him of having been in a minority on the School Affairs Board, and therefore having 
lobbied his way through the governor. 

5 The reasoning 

It is noteworthy that all the main reasons mentioned by Niss, concerning mathematics education, 
were drawn into the debate. Halldór Kr. Friðriksson’s reasoning concerns mathematics’ great role 
as instruction in thinking for mankind. This reason can be classified as contributing to society’s 
cultural maintenance, although it may also be thought of as providing individuals with 
prerequisites to cope with life in an educated way. 

The reasoning of the teachers also concerns the fundamental reasons, i.e. that mathematics 
education 

• contributes to society’s cultural maintenance, as they considered the mathematics education 
then offered by the school to be insufficient in itself without trigonometry and stereometry, and 
felt that these topics would “finalize and perfect” mathematics education in the school; 
• provides individuals with prerequisites for further studies, for everyone who wanted to 
continue mathematics study at a higher institution; 
• contributes to the technological development of society, in that it was important for the 
country’s “technical life”. 

By mentioning the importance for “technical life,” the teachers reiterated Björn Gunnlaugsson’s 
reasoning about the importance of mathematics education for utilizing nature’s resources, 60 years 
earlier. The process of utilizing nature’s resources for “technical life” had not yet begun in Iceland. 
Neither the governor nor the Minister for Iceland in Copenhagen seems to have thought of that 
reason for mathematics education, while they were exerting their influence on Iceland’s school 
affairs. Icelandic society at that time was without any infrastructure, and most buildings were not 
made of durable material. While authorities were beginning to realize that technical knowledge 
was needed, there was no universal consensus that the origin of such knowledge should be the 
Learned School. 

The governor’s reasoning concerned the society of that time. His reasons were that the pupils of 
the Reykjavík Learned School were seeking qualifications for professional examinations in 
theology, medicine, law or philology, and anything else would be an extremely rare exception. In 
1877 learned persons of other kinds, such as engineers, could not expect any official post in 
Iceland. However, educational government requires a little foresight. Sixteen years later, in 1893, 
the office of National Engineer for Iceland was established. 

6 Consequences 
As the opinions of the teachers were unanimous only on the issue of languages, the consequences 
were that the regulations were amended, making German the primary foreign modern language, 
while mathematics was still limited to four years. Its status and respect diminished, as illustrated 
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by the fact that examination problems were not printed in school reports until after 1910. Pupils 
were mainly occupied with practical arithmetic. Higher mathematical knowledge disappeared from 
the country for over four decades, until 1919, when a mathematics / natural science stream was 
established at the Reykjavík School. The absence of higher mathematics education coincided with 
a period when the society was throwing off the shackles of the Middle Ages and building up an 
infrastructure, primarily under the supervision of foreign technical experts. 

In 1911 the University of Iceland was established by uniting the theological, juridical and 
medical schools and adding a faculty of Icelandic studies. Teaching of mathematics within an 
engineering department first commenced during World War II. 
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ABSTRACT 
Multiplicative thinking is the key to the development of mathematical ideas in the secondary school and in 
tertiary study. Research suggests that many students are not gaining these ideas in the middle years of 
schooling and are consequently avoiding or failing more advanced mathematics courses. An understanding 
of why and how the concept of multiplication emerged in mathematics may well be one way of providing a 
full background to multiplicative thinking for teacher and student alike. In particular, examining the 
historical paths that were followed in moving from procedures to produce accurate results along with the 
forces that led to extended notions of number may assist students and their teachers to gain a deeper 
understanding of the full meanings for multiplication that will be required.

1 Introduction 

Multiplicative thinking and the fraction and ratio ideas that grow out of it are the key to the 
development of mathematical ideas in the secondary school and in tertiary study. Yet research 
suggests that many students are not gaining these ideas in the middle years of schooling and are 
consequently avoiding or failing the more advanced mathematics courses in the latter years of high 
school and that inadequate conceptual and content knowledge in middle year teachers may be a 
contributing factor (Anghileri, 1999; Booker, 2003; Kierin, 1995; Mulligan 2002). An 
understanding of why and how the very concept of multiplication has emerged in mathematics 
may well be one way of providing a full background to multiplicative thinking for teacher and 
student alike. Yet, as Cajori noted around 100 years ago, 

That, in the historical development, multiplication and division should have been considered 
primarily in connection with integers, is very natural. The same course must be adopted in 
teaching the young. First come the easy but restricted meanings of multiplication and division, 
applicable to whole numbers. In due time the successful teacher causes students to see the 
necessity of modifying and broadening the meanings assigned to the terms. A similar plan has 
to be followed in algebra with exponents. 

(Cajori, 1917, p. 183) 

The history of the development of multiplication has taken two paths. On the one hand, a focus on 
the procedures needed to reliably and accurately obtain answers that involve whole number 
multiplication, largely in response to the needs of everyday commerce and work. A second, and 
for many a secondary, need has been to extend the initial concept from one based on repeated 
addition and the notion of an increasing amount, to one that will encompass multiplication with 
fractions, negative numbers, matrices and a range of algebraic processes. Multiplicative thinking 
among students needs to similarly move beyond the procedural, no matter how meaningful, to a 
focus on the conceptual as a basis for further mathematics. 

One of the difficulties for students is that addition and subtraction conceptual understanding are 
largely tied in to the initial ideas and processes. There is little need to radically extend the initial 
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conceptions of joining and difference. Once concepts for fractions, rates or negative numbers are 
established, the additive thinking required is a straightforward extension of that used with whole 
numbers, although aspects of multiplication and division may be necessary to allow these 
processes to be completed. The ready extension of additive thinking to further mathematics may 
inhibit students’ understanding of any need to extend their initial ideas of multiplication to build a 
broader multiplicative thinking. 

A further difficulty is the conceptual obstacle inherent in extending multiplication to situations 
where all of the properties acquired with whole number are no longer maintained. For example, 
multiplying by a fraction is often confused with division (Greer, 1985, p. 71) while accepting that 
the product of multiplication with fractions may be less than the numbers that are multiplied has 
caused difficulties with mature mathematicians as well as novice students. For instance, Pacioli, an 
Italian mathematician of the fifteenth century was ‘greatly embarrassed by the use of the term 
‘multiplication’ in the case of fractions, where the product is less than the multiplicand’ (Cajori, 
1917, pp. 182-183). For a long time, not only were negative numbers held to be ‘fictitious’ or 
‘absurd’, multiplying them seemed to be devoid of any meaning let alone producing a positive 
result. Further difficulties occurred with the initial notion of 1 which arose in the general 
solution of algebraic equations: surely 1. 1 would be 1 rather than 1? (Cajori, 1917, p. 
236) This impasse was really only surmounted when a new mathematical symbol, i, devoid of the 
negative sign was introduced. 

2 The development of procedures for multiplication 
The manner in which procedures for multiplication were developed and expressed depended on the 
number system that was used. Not all societies developed a mathematical view that moved beyond 
addition or at most a method based on doubling. For instance, the ancient Egyptians: 

This shows the procedure for multiplying 12  12. At each step, the number is doubled, then those 
lines that represent 4 twelves and 8 twelves are added to give 12 twelves. (Bunt et al., 1976, p. 9) 

With other systems based on symbols for each multiple of ten, such as the Ancient Greeks or 
Romans, an abacus was used to carry out the successive additions. 

Many of the computational methods subsequently adopted into modern thought had their 
origins in the thinking of the ancient Hindu methods, following the adoption of their concept of 
zero and Base 10 system of numeration. These Indian mathematicians wrote on sand tables, 
usually working from the largest to smallest place, adjusting the partial products as they went. 
While it might look as if little recording was being shown, when their methods were transferred 
to the parchment and paper of European arithmeticians, a technique of crossing out digits as 
changes were made, or writing the numbers again above and below the original numbers that 
were multiplied shows how their thinking progressed: 
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A cancellation method called the Hindu plan by the Arabs still used by Hindus in the 19th Century 
(Smith, 1922, p. 118 – note that Smith’s example is incorrectly ‘crossed out’) 

Because zero was initially seen simply as a ‘plac holder’ corresponding to an empty space on the 
abacus that had been used for addition, many of these first algorithms avoided using a zero to 
indicate that there were no one, tens and so on, and used a layout of the recording to assist in 
placing the digits accurately. 

Treviso Arithmetic – Chessboard method (Swetz, 1987, p. 206) The multiplier is written along a 
sloped line to ensure the indexing of the partial products 

Treviso Arithmetic – Gelosia multiplication (Chabert, 1999, p. 26) 

In time, an ability to show all steps and see the sense of the calculations led to more efficiently 
recorded algorithms, usually worked from the smallest place to the largest place so that any need 
for renaming could be carried out in the practitioner’s head: 

Treviso Arithmetic – Scachieri multiplication (Swetz, 1987, p. 205) similar to that in use today 

These algorithms also showed the need to have readily available multiplication combinations for 
numbers to 5, 10 or higher depending on the procedure used. At first these were written tables of 
the form used by the early Babylonians where all combinations that might be needed could be 
readily found. In time, as an understanding of the process developed, students of arithmetic were 
exhorted to memorise those facts that were needed. While some of these tables used the familiar 
square array still in use in primary schools today, others were abbreviated to show the pairs of 
facts only once, perhaps an early recognition of the commutative nature of multiplication, but as 
likely an uncritical assumption that two numbers would give the same product: 
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Widman Arithmetic, 1489 (Smith, 1925, p. 127) Cirvelo Arithmetic, 1513 (Swetz, 1987, p. 200)
Square and triangular arrangements of multiplication tables

Keeping track of the steps in these more abstract algorithms led to a focus on the cross 
multiplication that was involved, following the methods evolved by the Hindu mathematicians. 

Pacioli Arithmetic 1494 (Cajori, 1928, p. 26; 1917, p. 146) 

When printing brought about a standardisation and economy of recording, the emphasis on cross 
multiplication gave rise to the symbol  as a means of alerting the practitioner to the process that 
was involved. From then on, the algorithm that we use today essentially was established and, 
unfortunately, then came to be seen as a procedure to be mastered to allow ready and accurate 
computation. Instruction concentrated on ways to follow the given steps rather than relate this to 
any underlying meaning for multiplication itself, laying the seeds of discontent and disbelief when 
new numbers and algebraic processes evolved to require products that did not intuitively fit with 
the techniques acquired by rote. 

3 The development of the multiplication concept 

While mathematics only worked with whole numbers, the dominant view of multiplication was as 
repeated addition 

To understand this [multiplication] it is necessary to know that to multiply one number by itself 
or by another is to find from two given numbers a third which contains one of these numbers as 
many times as there are units in the other 

Treviso Arithmetic (Swetz, 1987, p. 197) 

This conception of multiplication also meant that there was no need for any model to make sense 
of the operation; any procedure for calculating was simply viewed as a more efficient means of 
obtaining an answer. However, just as the number line was necessary to allow the negative 
numbers to acquire meaning and acceptance as numbers as real as the whole numbers, models for 
multiplication in terms of arrays or area was essential to allow the concept to distinguish itself 
from the underlying addition. This was particularly apparent in the manner in which early Arab 
algebraists showed the solution of quadratic equations by means of diagrams to represent the 
products involved.  
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Two distinct methods were used to solve problems such as ‘What must be the square, which, 
increased by ten of its own roots, amounts to thirty-nine?” (Katz, 1993, p. 230). In modern 
algebraic notation, this asked for a solution to x2 + 10x = 39 and the general case x2 + px = q can 
be shown:

Completing the square (Cajori, 1917, p. 440-441) 

In this way, situations modelled by multiplication came to move from repeated addition to equal 
groups and then to equal measures (Greer, 1985, p. 64). In this way, common fraction 
multiplication could be explained by reference to a square, ‘if 1

2  and 1
2  are the sides of a square, 

then 1
4  represents the area of the square itself’ (Pacioli, cited in Cajori, 1917, p. 182). 

Later writers provided an explanation based on rates and a part-whole interpretation, for 
example, Tonstall discusses the subject with unusual clarity: 

He takes 2
3

3
4  = 6

12 . "If you ask the reason why this happens thus, it is this, that if the 
numerators alone are multiplied together the integers appear to be multiplied together, and thus 
the numerator would be increased too much. Thus, in the example given, when 2 is multiplied 
into 3, the result is 6, which, if nothing more were done, would seem to be a whole number; 
however, since it is not the integer 2 that must be multiplied by 3, but 2

3  of the integer 1 that 
must be multiplied by 3

4  of it, the denominators of the parts are in like manner multiplied 
together; so that, finally, by the division which takes place through multiplication of the 
denominators (for by so much as the denominator increases, by so much are the parts 
diminished), the increase of the numerator is corrected by as much as it had been augmented 
more than was right, and by this means it is reduced to its proper value."  

Tunstall, cited in Cajori, 1917, p. 182 

In turn, when a concise recording of decimal fractions emerged, this part-whole model gave rise 
to a view of multiplication as a change factor. The stage was set for the extension of 
multiplication to new situations and numbers by following patterns in a manner consistent with 
earlier notions: 

4 x 3 =  12 
3 x 3 =  9 
2 x 3 =  6 
1 x 3 =  3 
0 x 3 =  0 
-1 x 3 = -3

As the number 
multiplying decreases 
by 1, the product 
decreases by 3. Thus 
 -1  3 must be -3

-3 x 4 = -12
-3 x 3 = -9
-3 x 2 = -6
-3 x 1 = -3
-3 x 0 = 0 
-3 x -1 =+3

As the number 
multiplied decreases by 
1, the product 
increases by 3. Thus 
 -3 -1 must be +3
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4 Conclusion 

As multiplication is extended from repeated addition to cope with products of measures, common 
fractions and decimal fractions, then give rise to ratios, students need to be led to focus on the 
conceptual models that provide meaning to the underlying concepts. An examination of the 
historical paths that were followed in moving from procedures to produce accurate results along 
with the forces that extended notions of number appears to be a powerful way of providing insight 
to both students and their teachers in the middle school when this transition is begun. As Avital 
(1995) reminds us, ‘the history of mathematics can supply a structure of understanding relating 
reasons with results’. Understanding how extensions of mathematical concepts must maintain 
invariance of properties allows multiplication to be seen as more than just another form of 
computation and become a way of thinking to deal with more complex mathematics. 
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ABSTRACT

In this paper we consider the Swedish mathematician E.G Björling’s contribution to uniform
convergence in connection with Cauchy’s theorem on the continuity of an infinite series. We
will also give a complete translation from Swedish into English of Björling’s 1846 proof of the
theorem. Furthermore, we will discuss the distinction between history and heritage (Grattan-
Guinness, 2004) in connection to the interpretation of Björling’s convergence condition.

1 Introduction

In this paper we consider E.G. Björling’s version of the Cauchy sum theorem. Cauchy
first formulated the theorem in 1821, but five years later Abel came up with counterex-
amples. In 1846 Björling formulated his own version of the theorem in Latin, which he
also translated into Swedish in 1853.

We will give a complete translation from Swedish into English of Björling’s 1846
proof. Some authors on this subject do not give Björling credit for actually proving the
allegedly false 1821 theorem of Cauchy. They claim that Björling’s proof suffers from
lack of precision and also contains a crucial mistake. In this paper we will discuss this
‘lack of precision’ in view of Björling’s own distinction between ‘convergence for every
value of x’ and ‘convergence for every given value of x’.

Finally, we will discuss Björling’s theory of convergence in view of Grattan-Guinness’
(2004) distinction between history and heritage. We think that to do Björling justice
one has to make a deeper investigation of the concepts used by the 19th century math-
ematicians.

A more detailed investigation of Björling’s, as well as Cauchy’s, version of the sum
theorem can be found in Br̊ating (2004).

2 Björling’s 1846 theorem and his proof

Here we give a complete translation of Björling’s 1846 theorem, which was translated
in the 1853 version by Björling from Latin into Swedish. We have translated the 1853
Swedish version into English.

Theorem 1. If a series of real-valued terms

f1(x), f2(x), f3(x), . . .
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is convergent for every real value of x from x0 up to and including X, and in addition
its particular terms are continuous functions of x between the given limits; then the sum

f1(x) + f2(x) + f3(x) + . . . (1)

necessarily has to be a continuous function of x between the given limits.

Proof. Since the series (1) is convergent for every value of x from x0 up to and including
X, the sum

fn+1(x) + fn+2(x) + fn+3(x) + etc.

must, no matter what value is assigned to x, except that it does not exceed the given
limits, for a certain and every larger n, be numerically smaller than a given number,
arbitrarily small, ω

2
. The size of this n differs of course for different values of x, in

general; but quite certain is that for a particular value of (or several values of) x
corresponds a finite maximum of n. Let ξ be such a value of x.

Then, not only is the sum fn+1(ξ) + fn+2(ξ)+ etc., or shorter Rn, numerically < ω
2
,

but also – whatever values of x, bounded between x0 and X, ξ and ξ′ may be – the two
sums

fn+1(ξ) + fn+2(ξ) + . . .
fn+1(ξ

′) + fn+2(ξ
′) + . . .

}

are each numerically < ω
2
, and hence the difference between them clearly becomes

numerically < ω. –
This was to begin with. – Now to the point!
To be convinced of the truth of the theorem, evidently one must prove that –

whatever values of x, bounded by x0 and X, z and z + α may denote – one can always
for a certain α, or every smaller, make the difference

S(z + α) − S(z)

numerically smaller than any given number 2ω, however small. (S(z) denotes the sum
in question for x = z.) – Here is the proof!

Since both of the series of

f1(z), f2(z), f3(z), etc.
f1(z + α), f2(z + α), f3(z + α), etc.

are convergent, the series

f1(z + α) − f1(z), f2(z + α) − f2(z), f3(z + α) − f3(z), etc. (2)

is convergent as well, and

S(z + α) − S(z) = [f1(z + α) − f1(z)] + [f2(z + α) − f2(z)] + . . . + [fn(z + α) − fn(z)] + rn,
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where

rn = [fn+1(z + α) − fn+1(z)] + [fn+2(z + α) − fn+2(z)] + etc.

Now, let n be a large number, so that for this (and every larger) number, the above
mentioned sum Rn is numerically < ω

2
. (Hence, this n is a function of ξ and ω, but

independent of α.) Then rn is also numerically < ω, as was mentioned in the beginning.
– Whatever value is assigned to α (such a value that was mentioned above) certainly
(at least) one of the terms

f1(z + α) − f1(z), f2(z + α) − f2(z), f3(z + α) − f3(z), . . . , fn(z + α) − fn(z)

must numerically be the largest. If this is denoted

fm(z + α) − fm(z),

where m is an integer, which may be a function of α, but not larger than n; then with
all certainty S(z + α) − S(z) − rn is numerically not greater than the numerical value
of n[fm(z + α) − fm(z)].

And, since fm(x) was continuous between x0 and X (and n independent of α); then
it is obvious that α can be assigned such a small numerical value, that the numerical
value of n[fm(z + α) − fm(z)] becomes < ω.
The rest is obvious.

Domar (1987), G̊arding (1998) and Grattan-Guinness (1986) all claim that Björling’s
proof suffers from lack of precision and also contains a crucial mistake. They all seem to
criticize Björling for not observing that n(x) does not have to be finite in the following
argument (excerpt from the beginning of Björling’s proof):

...for a certain and every larger n, be numerically smaller than a given
number, arbitrarily small, ω

2
. The size of this n differs of course for different

values of x, in general; but quite certain is that for a particular value of (or
several values of) x corresponds a finite maximum of n.

This is at least G̊arding’s (1998) interpretation. Domar (1987) says that this is at
least the case if we (like Pringsheim did in 1897) interpret Björling as assuming pointwise
convergence only. But Domar claims that Björling at least does not explain why n(x)
should be bounded. Grattan-Guinness (1986) writes that ‘he seemed to assume that n
was finite, and did not consider the possibility that it might be infinite...’

In order to make justice of Björling’s proof (in the sense: how did he reason) one
would need to take Björling’s distinction seriously, between convergence ‘for every value
of x’ and ‘for every given value of x’. This distinction will be discussed in Section
3 below. But one would also need to discuss what Björling (and others) mean by
‘convergence for every x-value’ in the middle of the 19th century. This will be discussed
in Section 4.

3 Björling’s distinction

In the 1846 paper, Björling makes an important distinction between
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• ‘for every value of x’ and

• ‘for every given value of x’.

In a footnote of the same paper, Björling tries to describe the difference between these
two notions. He begins by considering the series

sin x +
1

2
sin 2x +

1

3
sin 3x + . . . (3)

which is similar to Abel’s counterexample to Cauchy’s 1821 theorem.
However, Björling claims that his theorem is not affected by such objections and

states that (3) is indeed convergent for every given value of x within the limits 0 and
2π, but this does by no means imply that it is convergent “for every value of x from
one limit up to the other”. On the contrary, Björling stresses that the series (3) does
not satisfy the conditions in his theorem.

We think that Björling tried to express a generality condition using ‘convergence
for every value of x’. We base this on Björling’s distinction between ‘for every value
of x’ and ‘for every given value of x’, where the former notion obviously seems to be a
stronger criteria for convergence. In fact, ‘convergence for every value of x’ could be an
attempt to express what in modern terminology could be described as

sup
x

∣∣∣∣∣
n∑

k=1

fk(x) −
∞∑

k=1

fk(x)

∣∣∣∣∣→ 0 (4)

when n → ∞. However, the problem for Björling was perhaps to express the functional
relationship between the variables n and x. As Grattan-Guinness (2000) points out, at
the 19th century there was a problem to distinguish ‘for all x there is a y such that...’
from ‘there is a y such that for all x...’. According to this, the problem for Björling
could be to express that ‘for each n, we assign an x such that...’. During the first half of
the 19th century the Aristotelian logic was still very much unchallenged, and before the
modern function concept was introduced there was at least no notation for expressing
the relevant relationship between n and x to make a clear generality condition to express
uniform convergence.

We see the same problem repeated in Cauchy’s 1853 paper, since he expressed gener-
ality using the word ‘always’ (toujours). Cauchy exemplified what ‘always convergent’
could mean when he showed that Abel’s counterexample (3) was excluded from his
1853 hypotheses. He used x = 1/n and Björling was probably influenced by this since
he also (1853) wrote x = 1 − 1

2n
in another example to show that his notion ‘for ev-

ery value of x’ from 1846 was equivalent to Cauchy’s ‘always convergent’. However,
it is unclear what 1/n meant to Cauchy and Björling. Giusti (1984) claims that 1/n
should be interpreted as an ordinary sequence. Meanwhile, Laugwitz (1980) argues that
this expression should be seen as an infinitesimal quantity generated by the sequence
1/n. Another interpretation could be that the 19th century mathematicians made a
distinction between two kinds of real numbers: constant and variable numbers.

4 History and heritage

Grattan-Guinness (2004) makes a distinction between history and heritage. Many
mathematicians make their historical descriptions in terms of heritage, i.e. by try-
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ing to answering the question how did we get there? Grattan-Guinness claims that old
results are modernized in order to show their current place; but the historical context is
ignored and thereby often distorted. In Grattan-Guinness (2004), a typical example of
using heritage is to describe the original meaning of Pythagoras’ theorem with algebraic
symbols. Meanwhile, the term history is explained by answering the question ‘What
did actually happen?’. Grattan-Guinness points out that each approach is perfectly
legitimate, but they are often confused.

In connection to Björling and the Cauchy sum theorem some authors (see Section 2)
have interpreted Björling’s convergence condition with the modern distinction between
pointwise and uniform convergence. This is a typical description of Björling’s theory in
terms of heritage. However, we think that such an interpretation of Björling would be
unfair. Instead, a good future research project would be to investigate the 19th century
distinction between constant and variable numbers, i.e. by using the history approach.
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ABSTRACT 
Until the 13th century the Church had considered every type of deferred repayment for money lent as usury. 
On the contrary, Leonardo da Pisa, the most important Latin mathematician of the 13th century (and his 
followers) apparently considers personal loans as a common practise in all social classes. Is there therefore a 
gap between such a widespread practise and the ecclesial vetoes of the time? Or is it rather the emerging of 
a new theological thought that promotes a change of attitude towards the usury? 

Starting from a survey on the historical development of the meaning of usury, we will present some of 
the most significant problems of Leonardo from a mathematical point of view, paying attention to his 
language and to links with the Muslim world. The foundations of financial Mathematics: interest, yield, 
reimbursement of a loan will result from travels of a merchant/ money lender, who rehabilitates the 
character of the usurer/greedy for gain. 

1 Introduction 

Leonardo da Pisa, or Leonardo Fibonacci, lived at the turn of the 12th and 13th century, a period 
characterized by the renaissance of the Latin Western World thanks to a revolution that involved 
all society in terms of socio-political, cultural and religious changes. 

It is from the scientific conquests of the 12th century that we have to depart to measure the 
importance of the figure of Leonardo in the scientific panorama of the time. But his incredible 
success among his contemporaries can be explained not only in terms of mathematical genius and 
teaching and communicating abilities but also thanks to his contribution to the commercial 
revolution of the western world in the 12th and 13th centuries. His Liber Abbaci1 contains about 4 
chapters out of 15 (8th to 11th) concerning several commercial matters, like purchase and sale of 
goods, exchange of spices of different values, alloying of monies, comparison between weights 
and measures of different countries, methods of barter, business partnership, simple and compound 
interest etc.  

In Liber Abbaci, Leonardo deals with the problems concerning loans with interest, mainly in 
Chapter 12, Section Vi De viagiis. This chapter, named De solutionibus multarum questionibus, 
quas erraticas appellamus deals with many problems concerning different subjects, some of 
recreational character. It is interesting to notice that Leonardo’s work openly deals with the 
problems of usury, in spite of the fact that it was traditionally banned by the Church. This 
discrepancy induced us to investigate the historical context of Leonardo’s time in relation to usury. 

Until the 13th century the Church had considered every type of deferred repayment for money 
lent as usury. This also included mortgage loans2. On the contrary, Leonardo apparently 
considered personal loans as a common practise in all social classes (the interest rates he describes 
are usually low) and in Liber Abbaci he makes a clear distinction between these rates and the 
revenue coming from financial operations. Is there therefore a gap between such a widespread 

                                                     
1 Cfr. Boncompagni B, Scritti di Leonardo Pisano, I vol., Ed. B. Boncompagni, 2vols., Rome 1957-

1862.
2 In this case the usurer lent money on an immovable property and practically became its owner for the 

time of the loan perceiving its benefits. 
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practise and the ecclesial vetoes of the time? Or better, has the Church had a change of attitude 
towards usury? We will try to find an answer to both questions. 

Afterwards, we will analyse these kinds of problems from a mathematical point of view and we 
shall try to highlight some aspects of Leonardo’s mathematical notations. If possible, we will also 
take into consideration the links between Leonardo’s mathematical procedures and the ones used 
in the Muslim world. 

2 Usury in the Christian context 

Usury3 prohibition is the prohibition of all sorts of speculation, which admit the increased 
restitution of a money loan. It is both a sin and a canonical crime. This accepted meaning of usury, 
i.e. the collection of a money interest on money, is valid in the Christian context. In the Jewish 
community4 the term usury is also applied to different cases of loans of goods repaid by goods 
with an increased restitution.  

The Romans, on the other hand, had no objections to charging interest on loans. Compound 
interest was forbidden. During the late Republic and the Empire the permitted interest rate was 
about of 12%. The Christians emperors carried on the past policies on charging interest. 
Constantine, explicitly, affirmed the validity of agreements that involved interest payments. 

 In the Christian East, Justinian reduced the maximum rates for business loan from 12 to 6% 
and 4% per year for the illustres and those still higher in the rank. For those in charge of 
commercial establishment and for the bankers, the maximum rate was 8% per year. In the case of 
maritime loans, Justinian set a maximum of 12% per year. Compound interest was always 
forbidden. In the following centuries until the 12th century, we witness a series of different 
positions as regards the prohibition of interest. In the 12th century such prohibition is applied to the 
clergy differently from the corresponding views of the Christian West. The situation outlined 
above did not alter over the period from the early thirteenth century to the ultimate fall of 
Byzantium in 1453. The first general restriction that the Church placed on interest rate was an 
action by the Council of Nicea (325) that forbade clerics to charge interest loans. Patristic8 writers 
extended this ban to include the laymen. Canonist considered usury against the natural laws and 
invalid the Roman laws that allowed interest charge. Usury was condemned successively by the 
2nd Lateran Council (1139) with a total prohibition of usury; the 3nd Lateran Council (1179) with 
the excommunication of usurers5. In the 4nd Lateran Council (1215) there was the acceptance by 
the church of usury with a low interest rate. 

 Usury in the 12th Century 
In spite of the papal prohibition, throughout the 12th century the changed social background 

induced canon jurists to a more accurate treatment of the subject. 

                                                     
3 Cfr. “Usury”, Dictionary of the Middle Ages, 13 vols. Joseph Strayer, et al, eds., (New York: Charles 

Scribner's Sons: MacMillan, 1982-89). 
4 Cfr.Todeschini,G.,La ricchezza degli Ebrei, Centro Italiano di Studi sull’Alto Medioevo, Spoleto 1989. 
5 Their end was grim if they (or their children) didn’t give back the dishonestly received money to their 

victims, they couldn’t be buried into a consecrated land and they would go to Hell. In case the victims 
couldn’t be found, the Church took the extorted money. As a consequence of this ban, most usurers repented 
on their death-bed and their money ended up in the ecclesiastic coffers. 
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The Decretum Gratiani 6(ca.1140) states that usury occurs only in presence of a loan with 
increased restitution of money. Since the prohibition regarded only the loan, it could be disguised 
in a sale. Consequently the Decretum extended the definition of usury to any financial transaction. 
Later, some canonists applied the term usury only to loans of fungible goods with an increased 
restitution of money,excluding the benefits derived from business transactions. The concept of 
property (dominium) was the base of this distinction 7.The Scholastics found other reasons to 
prohibit usury. In fact a key- sentence of the Scholastic thought, taken from Aristotle, Thomas 
d’Aquino, St. Bonaventura, states: 

Money is sterile and does not reproduce itself 
The lender earns even when he sleeps, and his gain causes a social disaster because the rich will 
not work any longer and the poor will become poorer and poorer. 

This sentence expresses a fundamentally negative conception of any money exchange. In actual 
fact money is considered external to natural laws, it has been invented as a symbol for goods and 
takes their place, without possessing their natural vitality. Money belongs to the artificial world of 
numbers rather than to objective reality.  

Here is a second key-sentence: 

Time belongs to God therefore the usurer steals somebody else’s (God’s) time 
Until the 12th century usury was in actual fact considered as an illicit cession of the use of time or 
money, whose payment through interest was against nature, because time cannot be sold.  

During the 12th and the 13th centuries the Popes increased sanctions against usury even for good 
aims as in the case of money lent for the liberation of prisoners.  

Franciscan innovation and the debate on usury 
A further development of the debate on usury may interestingly base itself on a few 

considerations on the use of things by the Franciscan movement in the 13th century. The 
Franciscans, through their poverty vow, came to make a distinction between ownership and use of 
things. The expression “usus pauper” was referred to a moderate fruition of goods and to the 
control on their use and not to their property. The Franciscan vision strongly opposes an economic 
model based on land rent and promotes an abstract definition of the value of goods in order to 
highlight their possible use. This leads to a subsequent definition of monetary value of goods. In 
their works the Franciscans debated themes such as the abstract existence of things in a 
commercial transaction, the way to determine the value of goods, the determination of their price 
and which revenue can derive from goods. According to Olivi (1248-1298)8, it is not the “bonitas” 
of a thing to determine its price, but its possibility of use, the fluctuations of the market, its rarity 
and the appreciation of the consumers. The goods introduced in the market lose their importance, 
while their value is increased as an entity that can be bargained on the market. The price is 
therefore an abstraction and money is uniquely a symbol of a lucrative function. This new vision 

                                                     
6 Decretum Gratiani, II, c.XIX, q.V,c. VI, c. X (= Friedberg cit., I, 734 sgg.; Decretales Gregorii IX V, 

T. XIX, c. VI. 
7 When a creditor leased a house to a tenant, the property belonged to the owner and the rent he received 

was the reward for the use of his property. In this case the use of the loaned property did not involve its 
consumption by the borrower. But when the creditor lent money or other fungible goods, for instance wheat, 
to a borrower, the possession of the lent goods was transferred from the lender to the beneficiary. In this 
case, if, at the moment of the payment of the goods, the beneficiary repaid some additional money, he was 
paying for the use of the property that he owned and this increase was judged by the canonists unfair and 
contrary to natural law.  

8 Cfr.Olivi P.J, De emptionibus et venditionibus, de usuris, de restitutionibus in G. Todeschini, Un
trattato di economia politica francescana (…),p. 129, Roma, 1980. 
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reverses the previous sentence “Money is sterile and does not reproduce itself” into “money is not 
sterile and can be productive”. According to this interpretation, the use of money is to be 
distinguished from money itself and economic time is to be distinguished from historical time. The 
time of the loan is in actual fact an economic time and belongs exclusively to the contracting 
parties. They can freely dispose of this time and even sell it.  

Historical time that regards the life of all men is a different matter. 

The turn of the century: a new concept of usury 
The diffusion of the Franciscan order and its strong urban connotation resulted in the 

development of a sort of “epistemology “of the mercantile class. According to G. Todeschini9, we 
might even see on one hand, a relation between the Franciscans’ debate on poverty and the use of 
things, and on the other and, the emphasis of the time on new forms of richness. This richness was 
founded on price and currency fluctuations, on credit procedures based either on the evaluation of 
possible revenues in absence of goods or on the evaluation of other investments. 

 The difference between usury and credit were bound to get more and more evident, thanks to 
these new conceptual categories and new social balances. Some justifications for usury appear: 

Usury can be considered a wage, a sort of reward for the usurer’s work to obtain the money he 
lends. For instance, the usurer must know the markets, money fluctuations, he must be able to 
travel etc. In this context interest on loan was allowed and usury was condemned only when the 
money was meant for accumulation and not for investment. The factor of risk (periculum sortis)
was taken into consideration in case of loss of the money lent, either for the insolvency of the 
creditor or for natural accidents. In this case, the creditors could ask their debtors for 
compensations or indemnities. Uncertainty is taken into consideration (ratio incertitudinis)
appearing in the Canon laws after 1260 similarly to the categories of “certainty” and “uncertainty”. 
In comparison to the past, it became allowed to sell purchased fungible goods at a higher price if 
the place of sale was different from the place of purchase. The Church tolerated modest interest 
rates and condemned only exaggeratedly high rates.

Nevertheless the situation was still ambiguous. In fact, mortgages were still forbidden. In spite 
of this, there is evidence of a frequent recur to mortgages in everyday life and even on behalf of 
the Church.

At first, we could infer that, at Leonardo’s time, loan with interest was much more tolerated 
although the situation was still very confused and contradictory. The canon jurists had improved 
their knowledge of the phenomenon and had dealt with the problem more and more accurately; in 
the end they came to exclude that the revenues for business transactions were forms of usury.

3 The “merchant’s travel” pattern and the     
   reimbursement of a loan 

General Description 

Section Vi of Chapter XII Incipit pars vi de viagiorum propositionibus, atque eorum similium (p. 
258- 276 Liber Abbaci) contains approximately thirty problems, sixteen of which deal with the 
travels of a merchant (p. 258-266) and the remaining fourteen (p. 266- 276) concern issues related 
to loans with interests, where the calculation of the lent amount or of the reimbursement times of 

                                                     
9 Todeschini G., Op. Cit., p. 129. 
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the loan are requested. The “merchant’s travel” pattern 10 has this structure: a man first starts with 
an unknown initial capital and faces a fixed expense for every journey and finally ends up without 
any money or, alternatively, with a small amount of money. The initial capital is then sought after. 
In the second part, after introducing the procedures for the calculation of the total amount, 
Leonardo starts to solve the problems of loan. In the first “Questio notabilis de homine muttuante 
libras.c. ad usuras super quandam domum”, he talks about a usurer who lends money at a certain 
interest, obtains a household as a guarantee and cashes its revenue. The question is how long the 
debtor will take to extinguish his debt. This problem is the first of nine problems of the same type 
(“De eadem domo”). Is it usury? Generally speaking, it is so, because mortgage was still forbidden 
by the Church in the 13th century. “De milite recepturo pro suo feudo bizanti” is about a soldier, 
who used to receive a known sum of money in four payments from a king every year because of 
his feud. He was obliged to ask a rich man for a loan. This man granted him a certain amount of 
bezants on usury with a certain interest per month and deduced the payment of the soldier at every 
instalment from the capital and from the interest. The question is how many bezants the soldier 
borrowed. Such situations must have been very common in those times when it could have been 
very difficult for a feudatory to preserve his property and survive. In “De illo qui hedifficavit 
palacium” a master was asked by a rich man to build a palace, but he couldn’t anticipate the 
money necessary for the works and was therefore forced to ask his lord for a loan. He granted him 
the loan with an interest and later he deduced a certain amount of money from the price agreed 
every month. The question that arises is what amount of the money was still owed. The Section 
ends with the problem “ De duobus hominibus qui habuerunt societatem in constantinopolim”, 
quite a complex problem of evaluation of financial investments done by two partners of a society 
with its premises in Constantinople.

4 Some mathematical aspects 

In many problems Leonardo uses a form of composed fractions11. These are sums of fractions in a 
compact notation in which successive fractions have denominators, which are multiples of the 
previous ones. 

                                                     
10 This pattern has many variations concerning: a) the calculation of the fixed expenses of the merchant, 

knowing his initial capital, the interest rate and the number of trips; b) the calculation of the number of trips 
of the merchant, knowing his initial capital, the interest rate and his fixed expenses. Each trip corresponds to 
a lapse of time of the investment and is equivalent to the others. These examples are variations of the 
calculation of the total amount compound. 

11 Particularly, Leonardo uses the same type of fractions as al-Hassar (Maghreb 12th century), who was 

the first mathematician to introduce fraction lines. These fractions are: the simple fraction: 
m
n

 as n<m, the 

composed fraction; the fraction resulting from the addition of simple fractions: f 3 =
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For instance the composed fraction 
83
51

 means 
83

1
8
5

=
24
16

. Generally the composed 
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The latter form can be developed, in modern language, as a continue ascending fraction:   
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 Use of these fractions is traceable in the Arabic scientific writings12. Leonardo uses         
 «The denominators rule» which breaks up denominators into factors (not necessarily prime 
numbers). 

Factorization of denominators <100: 
12
1

62
01

 …… up to 
100

1
1010
01

;

Factorization of denominators >100:
156

1
1362
001

 that he calls the «156 rule»

etc. 
Leonardo uses the “The denominators rule” for division of regular numbers. A division of a 

number by a regular number can be accomplished by dividing successively by the factors. In order 

to divide 749 by 75, for instance, we find the «75 rule » i.e. 
553
001

;

 1) we divide 749 by 3, and obtain 249, remainder 2; 

2) we write 2 on 3: 
553
002

;

3) we divide 249 by 5, and obtain 49, remainder 4; 

4) we write 4 on 5: 
553
042

;

5) we divide 49 by 5, and obtain 9, remainder 4; 

6) we write 4 on the last 5 and writes 9 before the fraction
553
442

:

           
553
442

9 = 9+
553
442

Leonardo writes the mixed number N + 
b
a

in this way: 
b
a

N. Generally, for numbers he 

follows the Arabic way of reading from right to left. 

                                                     
12 Cf. Djebbar A., « Le traitement des fractions dans la tradition mathématique arabe du Maghreb », dans 

Benoit, P., Chemla, K., Ritter, J., eds., Histoire de fractions, fractions d'histoire, Basel: Birkhäuser, 1992, 
pp. 223-245 
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Mathematical procedures 
Besides the principal method of proportions13, Leonardo uses different calculus methods, often 

applied to the same problem. Analysing in particular the section De viagiis, we notice that the 1st

problem of sequence is solved with an almost manual calculus without demonstration, similar to 
the procedures of the “calculators” of Arabic Mu’ mal t14 (calculus science applied to commercial 
transactions).In the 2 nd problem (“De eodem “p.258) he uses the method of (simple) false position 
or regula falsi.15. Leonardo presents the method of double false position called elchataym,which is 
used on problems leading to equations of the type ax+b=c, later, in chapter 13. Besides these 
methods, he solves problems using the algebraic method which he calls regula recta,the direct 
method, which he borrows from the Arabic mathematicians. In this method the sought quantity is 
called thing” and one creates an equation containing the “thing”. The equation is stated in 
sentences without symbolism. Sometimes Leonardo applies the regula versa, starting from the 
final result at the top to reach the sought solution at the bottom. 

Interest expressions in the Liber Abbaci 
Generally, interest in the Liber Abbaci is capitalized at the end of each year. It was usually 

called “merit” from many ancients “maestri d’abbaco”. The expression16 “ to merit at the end of 
the year”,used by many ancients “maestri d’abbaco”, comes from this practice. If i is the rate of 
unit interest, the total amount at the end of each year follows a geometric progression of ratio 1+i. 
As a matter of fact, they used to define interest in terms of pennies (denari) per pound (libbre) per 
month, instead of pounds per pound per year, still calculating the interest at the end of the year. 
This is due to the fact that in the first place, penny was the smallest unit, and it is obvious that the 
rate could not be as high as to be expressed in a pound per a pound form, then at Leonardo’s time 
penny was in most western areas the only effective coin, with shillings (soldi) and pounds being 
money of account and even when silver grossi corresponding to an effective shilling were issued, 
they were still expressed in term of pennies.  

1 pound = 20 shillings; 1 shilling = 12 pennies  

If rate i = 1 penny per month; rate i =
12
1

of a shilling;  

rate i per one year =
12
1

of shilling x12 months= 1 shilling per year = 
20
1

 of pound per year. 

Therefore, if the interest equalled 1 penny per pound per month, they had to divide that penny 
by 20, thus obtaining 0.05 of pound, i.e. an interest of 5% per year. 
Leonardo perfectly explains this calculation procedure in his “Questio notabilis de nomine 

muttuante libras c. ad usuras super quandam domum” (See later p.13).  

                                                     
13 Franci Raffaella, “Il Liber Abaci di Leonardo Fibonacci, 1202-2002”, Bollettino U.M.I., La

Matematica nella Società e nella Cultura. Serie VIII, Vol. V-A, Agosto 2002. 
14 Cf. Djebbar, «Les Transactions dans les mathématiques arabes: Classification, résolution et 

circulation », dans Actes du Colloque International "Commerce et mathématiques du Moyen Age à la 
Renaissance, autour de la Méditerranée", Editions du C.I.H.S.O, Toulouse, 2001, pp. 327-344. 

15 This method is used to solve a linear equation of the form ax=b with the proposing of one false value 
and it is based upon an argument of proportion which is only valid for a linear equation ax = b. In such a 
problem, it can be noticed when words occur in this form (translated directly from Latin): “I invested 1 
penny in this capital, and gained 7 pennies. What shall I invest in order to gain 9 pennies?” 

16 Cfr Giusti Enrico,” Matematica e commercio nel Liber Abaci di Leonardo Pisano in “ La scienza 
araba e la rinascita della matematica in Occidente. Un ponte sul mediterraneo.” Ed. Il Giardino di 
Archimede, 2002. 
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It is interesting to notice that the expression that indicate usury: “ He made 2 pennies out of 1” 
(percentage interest of 100%) per term or per year is similar to the Arabic notations of interest17.

We now will describe the mathematical procedures of the most significant of the above 
mentioned problems, trying to remain as close as possible to Leonardo’s text and his notation. 
Let’s see the first problem: 

While18 going to Lucca, a merchant doubled his capital and spent 12 pennies. Then, going to 
Florence he doubled his capital and spent 12 more pennies. When he went back to Pisa he 
doubled his capital and spent 12 pennies but then he was left with nothing. Find out how much 
was his capital.

Leonardo’s Method 
The merchant keeps doubling his capital, thus 

From 1 (penny) he makes 2. This is 

written 
2
1

, and in his three trips we 

therefore have 
2
1

2
1

2
1

;

Multiplying 2 by 2 three times you 
get 8. 

You divide 8 by half and get 4, then 
you divide 4 by half and get 2 and finally 
you divide 2 by half and get 1. 

 Adding 4+2+1 you get 7. 

 You multiply 7 by the 12 pennies 
spent and you get 84 

You then divide 84 by 8, which 

results in 10+ 
2
1

, which is your original 

capital. 

Modern Method 
The general formula to solve this problem, 
supposing x is the initial capital, is given by the 
equation: 

[2[2(x-b)]-b]…= 2 xn -(1 +2+…2 bn )1 =

= 2 xn - (2 n -1)b= c.
In this specific case, being the number of trips = 

n=3, the expenses = b = 12 and the profit =c=0, we 
have: 

2[2(2x-12) – 12] – 12 =0; 
1°   2 3 x – 12 (1+ 2+4)= 8x – 84= 0 

and thus x =
8

84
= 10+

2
1

The problem can also be solved considering the 
unknown capital x as the present value of a 3-
instalment yield with an interest rate of 100%. In 
this case, the solution has the following formula  

x= R*
i
v31

 where v= (1+i) 1

and i= 1  
the v value is tabulated and can be calculated. Or  
thanks to the ratio between the amount and the 
present value of the yield we have the equation: 

x(1+i)
i
iR ]1)1[( 3

3 )12(122 33 x .

identical to 1°.  
Some explanation of the Leonardo method: his instructions are meant for calculation. In other 
words he seems to be showing the calculations you need to make in order to find the unknown 
quantity of the equation 1° reported in the right section. 

According to Djebbar 19 the merchant’s travel pattern was a “pseudo-concrete20 Mu’amalat

                                                     
17 In the Coran, usury (ribah) is often defined by the expression « he made 2 out of 1». 
18 Quidam pergens negoziando lucam, fecit ibi duplum; et expendit inde denarios 12. Qui egrediens inde, 

perrexit florentiam; fecitque ibi duplum, et expendit denarios 12. Cum rediret pisas, et ibi faceret duplum, et 
expenderet denarios 12, nil ei proponitur remansisse. Queritur, quot ipse in principio habuit. 

19Cfr. Djebbar, A., « Les Transactions dans les mathématiques arabes » Op.Cit.
20 Cfr.Djebbar A. Op. Cit.
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problems21, very popular in the Muslim Empire. It can be found in the works of Abu-kamil 
(9th),Ibn Tahir (11th)and others. The latter author could be defined a “calculator”, he reproduces the 
ancient solution without explaining the procedures, the former justifies the solution with an 
algebraic line of reasoning. Leonardo participates in both traditions. This exercise, says Djebbar22,
lead to the equation f(x)=0. 

Calculators' procedure: Ibn Tahir 
If we say: a man earned one dirham for a 

dirham and he made a gift of one dirham; then he 
earned one dirham for one dirham and he made a 
gift of 2 dirhams; afterwards he earned one 
dirham for one dirham and made a gift of 3 
dirhams. After this last gift he no longer owns a 
capital at all. How much was his original capital?

.

Ibn Tahir’s solution 
Take one, double it three times and you'll 

have 8; this will be your divider. Keep it and 
then take the first gift, which was of one dirham, 
double it and then add the second gift, which 
was of 2 dirhams. You'll obtain four. Double it 
and add the third gift, which was of 3 dirhams. 
You'll have 11. Divide it by the 8 figure you 
kept from the beginning, and you'll have a 
dirham et three eighths of dirham, which was the 
man's original capital. 

Algebraic procedure: Abu Kamil 
A man had some goods. He traded them and 

earns their equivalent in money. He gave 10 
dirhams to a beggar; then he traded his goods 
one more time and earned the equivalent of what 
was left to him. He traded his goods for the third 
time and earned the equivalent of what he had; 
again he gave 10 dirhams to a beggar but this 
time he was left with nothing. How much was 
his original capital? 

Abu Kamil’s solution  
Kamil's procedure consists in considering the 

man's capital as a good. He traded it and earned 
its equivalent in money, i.e. two goods. He gave 
10 dirhams and he was left with 2 goods less ten 
dirhams. Then he did some more trading and 
earned its equivalent, i.e. he had four goods less 
20 dirhams. He gave ten dirhams and was left 
with four goods less 30 dirhams. He still traded 
his goods and earned their equivalent. He then 
had 8 goods less 60 dirhams, equalling 10 
dirhams, because the problem's text says: he 
gave 10 dirhams and was left with nothing. 
Hence, the 10 dirhams that he still had are to be 
opposed to the 'remainder'. The goods will then 
be worth 8 dirhams and half and one fourth 

(8+
4
1

2
1

), i.e. the man's initial capital.  

In the last problem of first part,“Modus alius de viagiis”,Leonardo resolves a problem where time 
is unknown. The importance of this procedure is underlined by Leonardo himself subsequently. 
Let’s see the problem: 

A man23 had 13 bezants and with them he made a number of trips during which he 
used to double his capital and spend 14 bezants. (In the end, his capital equalled zero). Find 
out how many trips he made. 

                                                     
21 without precise geographical or social areas. CFr. Djebbar op.cit. 
22 All the oriental authors used the equation f(x)=b, to express this problem algebraically. In the western 

Muslim world, during the XIIIth Ibn Badr declared that “ 8 things minus 11 dirhams equals nothing” and Ibn 
Qunfundu arrived to the conclusion that f(x) – b= 0. Cfr. Djebbar, ibidem.

23Item quidam habebat bizantios 13; et cum ipsis fecit viagia nescio quot, et in uno quoque faciebat 
duplum; et expendebat bizantios 14. Queritur quantitas suorum viagiorum 
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Leonardo’s Method24:
We can represent the trend of the merchant’s finances in table below. Thus in the first line the 

initial capital is 13 bezants, while the residual capital is:26-14= 12; capital decrease is 13-12=1; 
                

 Initial capital  Residual Capital Decrease 
1° trip 13 12 1 
2° trip 12  10 2 
3° trip 10 6 4 
4° trip 6 … 8 

Decreases follow a geometric progression, thus in the fourth trip the decrease would be of 8 
bezants.  

We now have to divide the residual capital at the beginning of the fourth year, which is 6 

bezants, and the total decrease of the fourth year, which is 8, thus having 
8
6

 =
4
3

; this ratio 

indicates the length of the last trip which is not a whole but a fraction. The merchant then makes 

3+ 
4
3

 trips. “ But, given that it seems incongruous to say that he makes 
4
3

 of a trip, ”, says 

Leonardo25, “we teach thus how to amend this. Namely as in the trip he made double, for each 

bezant the profit is another 1; therefore in 
4
3

 of a trip the profit from the 1 is 
4
3

 of the one bezant; 

therefore he made seven from the 4 and there will be IIII trips: in the first and the second and third 
he made double, and he spent 14 in each, while in the fourth he made 7 bezants of IIII and he spent 

three quarters of 14, namely 10+
2
1

”.

Explanation 
In this case Leonardo prepares a sinking plan looking for the length of the loan and knows that 

capital decrease grows according to a geometric progression of ratio1+i in every trip.  
The decreases thus correspond to Capital Shares C s  of the progressive sinking plans. Given 

that the addition of such shares is less than the initial capital at the end of the three trips, it means 
that the debt has not been completely extinguished in the first three years, and there is still a 

                                                     
24 The equation to solve this problem is:2 13x  - (2 1x ) 14 = 0; from which you have 2 x = 14 whose 

solution is to be found in logarithms. 
This equation can also be found considering the problem (as we said before) as the research of the times 

of reimbursement of a loan of 13 bezants through a fixed instalment yield of 14 bezants, with an interest rate 
of 100%. You have to solve the equation where x is the unknown quantity: 

13(1+i) x

ì
ìx

x 1)1(14  (from the ratio between the present value and the amount of the yield) 

13*2 )12(14 xx .
25 Translation by L.E. Sigler “Leonardo’s Liber Abaci: a translation into modern English of Leonardo 

Pisano’Book of calculation”, p. 383, Springer 2002. 
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residual debt belonging to the fourth year. It is as if the residual debt was a complementary 
instalment to be paid on the due date of the time t within the fourth year. This times t results from 
the proportionality between the Capital Share at the end of the fourth year and the Residual Debt at 
the beginning of the fourth year: C 4 : 1= D 4 : t 

If the problems we have talked about so far belong to the category of the pseudo-concrete26

Mu’amalat problems, the 14 problems presented in the second part of the section De viagiis seem 
"more realistic ” with characters and backgrounds typical of late Middle Age: 

 “QUESTIO NOTABILIS DE HOMINE MUTTUANTE LIBRAS.C. AD USURAS SUPER 
QUANDAM DOMUM”

a man27 lent 100 pounds at an interest of IIII pennies per pound per month on a certain house
that yields him each year a fixed rent of 30 pounds; at the end of each year he had to take off a 
fixed amount of 30 pounds from the his whole capital (made by the original amount plus the 
interests on his 100 pounds.) 

Find out in how many years, months, days and hours the debt over the estate will be 
extinguished.

Leonardo’s Method28

Since the usurer earns 4 pennies per each pound per every month, in one year he earns 4 

shillings (in fact 1 penny corresponds to 
12
1

 shilling, but 4 shillings correspond to the revenue of 

20
1

pounds). Therefore the usurer gets 6 pounds out of 5 pounds, in fact if 
5
1

of 100 corresponds to 

20 pounds, therefore the total amount earned of the end of the year is equal to 120 pounds, so 
100
120

is equal to
5
6

. Now, since the rent is deducted from the capital and the interest every year, this 

problem can be solved according to the procedure followed for the trips, which is readapted as 
follows: 

A certain man has 100 pounds and he earns 6 pounds out of the five every trip but he 
always spends 30 pounds every trip. How many trips he will make? 

As Leonardo himself says, we must carefully analyse the reductions of the capital year by year. 

Since from 5 pounds we get 6, take 
5
1

of 100 that is 20 and add it to 100. The result will be 120 

and this is the sum the usurer had adding up capital and interest in the first year. From this sum 

                                                     
26 Cfr.Djebbar A. Op. Cit.
27 Quidam prestavit libras 100 ad usuras.IIIJ denariorum per libram in mense supra quondam domum, ex 

qua recolligebat in uno quoque anno nomine pensionis libras 30; et in capite uniuscuiusque anni debebat 
discomputare ipsas libras 30 de capitali, et lucro dictarum 100 librarum. Queritur quot annis et mensibus et 
diebus et horis domum tenere debebat.  

28The equation to be solved is: 100(6/5)n -30
1

5
6

1
5

6n

=0  If z= (6/5)  we have 2z –3(z-1)=0; 

z=3, (6/5)  = 3 thus n=

5
6log

3log
= 6.025685….= 6 years, 9 days, 2 hours. 
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you deduct the rent that is 30, you still have 90 pounds: the difference to get to 100 is 10 pounds, 

that correspond to the reduction in the first year. Once again take 
5
1

 of 90 pounds, that is 18, and 

add it to 90. The result will be 108, and this is the total amount the usurer had adding up capital 
and interest the second year. From this sum you deduct the rent, that is 30, you still have 78 
pounds: the difference to get to 90 is 12 pounds, that corresponds to the reduction in the second 
year. 

The elements of the problem can be written in a table representing the reimbursement plan at 
fixed instalments: 

Capital Interest Total Amount Fixed Instalment Residue Decreae
100 20 120 30 90  10 
90 18 108 30 78 12  
78 15.6 93.6 30 63.6 

14.4=14+
5
2

63.6 12.72 76.32 30 46.32 
 17.28= 17+

55
12

46.32 9.264 55.584 30 25.584 
 20.73= 20+

555
321

25.584 5.1168 30.7008 30 0.7008 
24.865= 24+

5555
4202

0.7008 0.1438 0.8628 30 ….. 
29.838=24.865*

5
6

Now in the first year his capital decreased by 10 pounds. In the second year his capital decreased 
by 12 pounds; therefore the reductions are proportional, that is, as 10 is to 12 (or 5 is to 6) so 12, 
that is the reduction of the 2nd year, will be to the reduction of the 3nd year. Therefore if you 

multiply 6 by 12 and divide by 5, you will obtain 14 +
5
2

, that is the reduction of the 3 nd year and 

so on… 

If you add all reductions you obtain 99+
5555
1222

that is a sum slightly inferior to 100 pounds. This means the residual debt is still to be extinguished 
in the course of the seventh year. At the end of the six years there is still a debt of 

625
438

(= 7008.0 ). As demonstrated, the reductions follow a geometric progression of ratio 
5
6

,

therefore the capital reduction in the course of the 7th year is 
5
6865.24 = 29.838. As in the 

previous problem, the fraction of time that follows the six years is given by the ratio between the 
residual debt at the beginning of the seventh year and the reduction of the capital in the 7th year, 

i.e. 
838.29

7008.0
=0.0234868. 

If you transform it in days, hours, minutes you have: 
455248.83600234868.0 , i.e. 8 days 
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462976.512462976.0 0, i.e. 5 hours 
18
7

.

 So the debt on the property is extinguished in 6 years, 8 days, 5 hours 
18
7

. Don’t forget that the 

numbers of hours calculated in a day equal 12. 

“DE MILITE RECEPTURO PRO SUO FEUDO BIZANTI”
Because of his fief29, a soldier was usually granted a yearly rent of 300 bezants by his king; this 
amount was paid in 4 quarterly instalments of 75 bezants each. 

Forced by need, this soldier had to ask for a loan; he went to see a very rich man who lent him 
a certain sum with usury. This rich man received in the end 300 bezants, deducting 75 bezants 
from the capital and its rent at every instalment. 

The interest on the loan was of 2 bezants per month every 100. 
Find out how many bezants were lent to the soldier. 

Leonardo’s Method30

“First of all, try to bring this problem back to the travel rule as follows: since in a month the 
yield is of 2 bezants every 100, every three months, after each payment, the profit on 100 bezants 
is 6 bezants: therefore for each payment he earned 106 bezants out of 100, i.e. he makes 53 out 
of 50: given that each payment is of 75 bezants, this sum can be considered as the expenses made 

on each trip. Since he earns 53 out of 50, you shall write four times 
53
50

 for the four payments like 

this: 
53
50

53
50

53
50

53
50

 and multiply these fractions as follows: 

1. 50 by 53 by 53 by 53, (i.e. 50 )533  equals 7443850 

2. 50 by 50, by 53, by 53 (i.e. 50 2 )532  equals 7022500 
3. 50 by 50 by 50, by 53 (i.e. 50 3 )53 equals 6625000 

4. 50 by 50 by 50 by 50 (i.e. 50 4 ) equals 6250000 

Add 6250000 to the three numbers you found, and you'll obtain 27441350; multiply it by 75 

and you'll have 2050601250; divide it by 
53535353

0001
, and you'll have 

                                                     
29 Quidam miles erat recepturus a quodam rege causa sui feudi in unoquoque anno bizantios 300; et 

persolvebantur ei IIII pagas; et in unaquaque accipiebat bizantios 75, hoc est paga de tribus mensibus. Qui 
cum necessitate cogetur, rogavit quemdam divitem, ut commodaret sibi tot bizantios ad usuras, pro quibus 
ipse dives acciperet illos bizantios 300, excomputando bizantios 75 uniuscuiusque page, de paga videlicet in 
pagam, de capitali et proficuo. Qui acquiescens voluntati ipsius, prestavit ei ipsos bizantios ad proficuum 
duorum bizantium, per centanarium, in uno quoque mense. Queritur, quot bizantios ipse in prestantiam 
accepit.

30 In modern form: the loan the feudal vassal asks the rich man is the actual value of a series of 
instalments, due quarterly, with a simple interest, and with a quarterly percentage rate of 6%..Translated into 

formulas this is read: V= R
4

4
4 )1(1

i
i

= 75
06.0

)06.1(1 4

The loan of the feudal vassal is then of 261.74 bezants.  
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53535353
4242633

 259 that represents the sum of bezants the soldier 

was lent ” 

Explanation 
Leonardo’s solving procedure uses the travel paradigm illustrated in the first problem, where 

the initial capital is unknown but where we know that it yields the merchant an interest of 6% for 
each period, (three months) during which he has some fixed expenses corresponding to 75 bezants. 
The following equation has to be solved: 
x is the initial capital,1+it= 53/50 = 1.06%, 75 is the fixed instalment and t =4 quarters. 

Leonardo calculates step by step the solving phases of the equation: 

x( ])
50
53()

50
53(

50
531[75)

50
53 324

x= ])
50
53()

50
53(

50
531[75)

53
50( 324

4

32234

53
)53505350535050(75x

Adding up addenda into bracket, you obtain 27441350, which, multiplied by 75, equals 
2050601250. This number is then to be divided by 53 4 ; Leonardo then breaks up 53 4  in the 

product of his factors and writes it as follows:
53535353

0001
.

 The quotient of the division is the mixed number:    

 259+ 
53535353
4242633

that represents the amount the usurer gave to the feudal vassal.  

5 Conclusions and perspectives 

It seems to be legitimate to ask oneself how Fibonacci developed the financial calculations, what 
contacts he had and what influences. This is not a simple task, if one starts asking questions. The 
loan with interest, as ancient as the world, has been strongly prohibited by the three big 
monotheistic religions, present in the Mediterranean area: Christian, Jewish and Islamic; although 
it has been actively practiced by them in different ways, both because, generally speaking, the 
interdictions within the communities are not valid among the different communities, and for the 
intrinsic differences of the prohibition. Because of the prohibition, but under the pressure of 
unavoidable financial needs, we see a discrepancy between official declarations and practice. 
Within Christianity itself, one must point out the most radical official position of Latin Church at 
least till the 12th century., in comparison with the bigger flexibility and tolerance of the Greek 
Church, the same tolerance which was also a characteristic of Eastern Christian Emperors. The 
prohibition of usury in Islamic law31 can explain the absence of interest rate problems in 

                                                     
31 Cfr. Schacht J, Entry “rib ”, from Encyclopaedia of Islam, 1st edition, t. III. 
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Mu’ mal t. If one considers, for instance, Liber Mahamalet 32, a text that appeared in Spain in 
the12th century, which is structurally similar to Fibonacci’s Liber Abbaci, there are no problems 
about loans with interest. In spite of that, one cannot forget that Jews and Christians, protected by 
Arabs, and the Arabs themselves, had a very important role as bankers and private (sarrafs) or 
institutional (jahbadhs) brokers. Moreover, it is important to focus on the Byzantine influence on 
economic and financial procedures, something that has not yet been sufficiently taken into 
consideration. Another factor of notable importance is the survival, in Northern Italy, of certain 
forms of old economy and Roman law. 

 As regards to the mathematical notation, an important precedent is the commercial tradition of 
Hindu Mathematics. According to Goetzmann 33W.N: 

“[….] For at least seven centuries before Fibonacci, Indian mathematicians were calculating 
interest rates and investment growth [….]Closer to Leonardo’s era, and very close to the spirit of 
the financial problems in the Pisano’s work, the Lilivati of Bhaskaracarya [1114-1185], dates to 
about 1150 a.d. and, like the earlier works Trisastika34 and Aryabhatiya35, contains some loans 
problems and methods of finding principal and interest”. 

Leonardo, otherwise, is the first mathematician to develop present value analysis for comparing 
the economic value of alternative contractual cash flows and a general method for expressing 
reimbursement of loans. One could rightfully suppose that his contribution, together with many 
other factors, might have contributed in bringing European merchants to a position of leadership in 
international business. 

                                                     
32 Cfr. Sesiano, J., «Le liber Mahameleth, un traité mathématique latin composé au XIIe siècle en 

Espagne», Actes du Congrès des Mat. Arabes, Alger, 1988. 
33 Cfr. Goetzmann, W.N, Fibonacci and the financial revolution, Yale ICF Working Paper No.03-28, 

2003, pp.12-14. 
34 Cfr.Ramanujacharia, R.and Kaye, G.R., 1913, « The Trisatika of Sridharacarya » Bibliotheca 

Mathematica, series, 1913, pp. 203-217. 
35 Clark, Walter E., The ryabjat ya of ryabhata, The university of Chicago Press, Chicago, 1930  

pp.38-40. 
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IRRATIONALITY AND APPROXIMATION OF 2 AND 3 IN GREEK 
MATHEMATICS 

László FILEP†

Institute of Mathematics & Informatics, College of Nyiregyháza 
4400 Nyiregyháza Hungary

ABSTRACT 
Because of the lack of original sources there exist different conjectures on how Theoodorus might have 
proved geometrically the irrationality of 3 (and some other roots), as well as on how Archimedes could 
have found his approximating values for 3. We claim that their results  can be obtained similarly to those 
of 2. Thus we start with case 2, where, unlike to other interpretations, we consider two cases of 
approximations. Moreover, we use one figure to study both the irrationality and the approximation 
problems.  In our argumentation, only concepts and methods from ancient Greek geometry are applied, 
namely antanairesis, propositions II.9 and II. 10 of the Elements, as well as some basic geometrical facts. 
This geometrical approach helps the teacher to form a descriptive idea on the abstract concept of irrational 
numbers, and even on Cantor’s axiom.  

1 Irrationality and approximation of 2

Let’s quote first propositions II.9 and II.10 that are considered generally as statements of 
“geometrical algebra”: 

Prop. II.9. If a straight line be cut into equal and unequal segments, the squares on the unequal 
segments of the whole are double of the square on the half and of the square on the straight line 
between the points of section. 
Prop. II.10. If a straight line be bisected, and a straight line be added to it in a straight line, the 
square on the whole with the added straight line and the square on the added straight line both 
together are double of the square on the half and of the square described on the straight line 
made up of the half and added straight line as on one straight line.

The algebraic form of proposition II.10 is the following: if a straight line AB=2a is bisected at C
(AC=CB=a), and extended till D from B (BD=b), then 2 22a b b = 222 2a a b . If D is 

between A and B (AD=2a-b, DB=b), then we get proposition II.9: 
2 22a b b 222 2a a b . One can easily see that these two geometrical theorems as 

algebraic identities can be brought to the same form, so probably were invented for different 
purposes. 

The usual deductive reconstruction of the “antanairesis” proof of the irrationality of the 
diagonal (b) and side (a) of a square is shown in Figure 1. 

                                                     
† Deceased.
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Steps

1

2

3

Longer

AC=b1

B1C

A1C=AE=b

Shorter 

AB=CB=CB1=a1

AB1=A1B1

A1B1=AB1

Difference

AC-B1C=AB1=a

B1C-A1B1=A1C

Step 1 again

Figure 1. Antanairesis for the square 

The statement, that step3 repeats step 1, follows from the similarity of the triangles AEB and ABC,
which can be shown easily. It is widely accepted that the early Pythagoreans  did not have a clear 
similarity (equal ratio) concept, so probably they used II. 10 to show that AFEB1 is a square, too. 
Really, applying II.10 to AC we have: b1

2+b2 =2a2+2a1
2, where b=A1C and a=AB1. If b1

2=2a1
2

(ABCD is a square), then b2 =2a2 is also true, i.e. AFEB1 is a square, too. Conversely, if AFEB1 is 
supposed to be square, then we can conclude from II.10 that ABCD is also a square. Further, the 
following relations are valid between the sides and diagonal of the two squares: 

             b1=2a+b and a1=a+b.                                   (*) 
This is the same construction what Proclus gives us in (Proclus): “when the diagonal (b) receives 
the side (a) of which it is diagonal it becomes a side (a1), while the side, added to itself (a+a) and 
receiving in addition its own diagonal (b), becomes a diagonal (b1)”. Proclus remarks that this 
was proved by II.10 of the Elements, but does not say anything on how they could have 
conjectured relation (*). We claim that they must have known the above figure. From (*) and 
II.10, one can guess, and by induction argument can prove, the following recursion formulas: 

          bn+1
2 + bn

2 = 2an
2 + 2an+1

2                                  (1) 
a0 = a, b0 = b, an+1 = an+bn, bn+1 = 2an+bn, n 1.           (2) 

Since the real length of 2 is between 1 and 2, we can start the approximation by the above 
formula either with b=1, or b=2 (taking a=1 in both cases). The values and approximating ratios 
are shown below: 

 1. a=a0=1; b=b0=1 2. a=a0=1; b=b0=2

n an bn 2an
2-bn

2 bn/an an bn 2an
2-bn

2 bn/an

0 1 1 1 1/1 1 2 -2 2/1 

1 2 3 -1 3/2 3 4 2 4/3 

2 5 7 1 7/5 7 10 -2 10/7 

3 12 17 -1 17/12 17 24 2 24/17 

4 29 41 1 41/29 41 58 -2 58/41 

5 70 99 -1 99/70 99 140 2 140/9

9

Table 1. Alternating approximations of 2
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Theon of Smyrna (c. 130) confirms the successive application of (*) in getting the approximation 
values in the left side of Table 1. His words help us also to understand the motivation behind the 
approximation 

Even as numbers are invested with power to make triangles, pentagons and the other figures, so 
also we find side and diameter ratios appearing in numbers in accordance with the generative 
principles; for it is these which give harmony to the figures. Therefor,e since the unit, 
according to the supreme generative principle, is the starting point of all the figures, so also in 
the unit will be found the ratio of the diameter to the side. To make this clear, let two units be 
taken, of which we set one to be a diameter and the other a side, since the unit, as the beginning 
of all things, must have it in its capacity to be both side and diameter. … Let us add to the side 
a diameter, that is, to the unit let us add a unit; therefore the [second] will be two units. To the 
diameter let us now add two sides, that is, to the unit let us add two units; the [second] diameter 
will therefore be three units. (Thomas, 1957, vol. I, pp. 133-134). 

One can conclude from the passage that the motivation was not practical but philosophical. The 
Pythagoreans wanted to show that even in this case the ratio can be expressed by “numbers”. We 
know from Aristotle that the Pythagorean number concept was different from ours, and generally 
was a debated concept 

And the Pythagoreans, also believe in one kind of number – the mathematical; only they say it 
is not separate but sensible substances are formed out of it. For they construct the whole 
universe out of numbers – only not numbers consisting of abstract units; they suppose the units 
to have spatial magnitudes. … All who say the 1 is an element and principle of things suppose 
numbers to consists of abstract units, except the Pythagoreans; but they suppose the numbers to 
have magnitude, as has been said before. (Aristotle, 1982, Metaphysics 1080B) 

The problem of infinite divisibility of a continuous quantity or equivalently, the existence of a 
smallest quantity (atom) also was debated before Aristotle. The Pythagoreans were atomists, so 
denied the infinity divisibility. Thus, the fact that the antanairesis proved to be endless for the side 
and diagonal of a square was not convincing enough on their incommensurability. To show that 
this view was general then let us quote again Aristotle (Aristotle, 1982, Methaphysics 983A): “For 
it must seem to everyone a matter for wonder that there should exist a thing which is not measured 
by the smallest possible measure?” The first convincing proof for everybody was probably the 
well-known indirect one that “bypasses” the infinite divisibility problem using only logical 
argumentation.  

The values in bold characters for case a=b=1 were frequently used by the Greeks. After Plato 
they are generally referred to as “rational sides and diameters” (for more details, see (Filep, 1999). 
Plato’s famous passage (Republic VIII, 546 B-D in (Plato, 1982) says: “…,the other a rectangle, 
one of its sides being a hundred of the numbers from the rational diameters of five, each 
diminished by one (or a hundred of the numbers from the irrational diameters of five, each 
diminished by two),…” This passage can be interpreted as an indirect allusion to the second case 
(a=1, b=2), to which no direct reference can be found in antic sources. However, for the probable 
use of 10/7 there are two evidences. The translator of the Codex Constantinopolitanus refers 
indirectly the use of 10/7, see (Bruins, 1964, p. 93) Heath also writes (Heath, 1921, vol.2, p. 335): 
“Heron takes 10 as an approximation of 7 2 or 98”. 
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From Table 1, one can guess the relation 2an
2-bn

2 = (-1)n+1, which can be verified by (1) and 
induction arguments. Its following rearrangement shows that the ratios bn/an tends to 2:

2

2 2

1
2 0,

n
n

n n

b
a a

 as n ,

If a=1, then a2=1 and b2=2, or - using Greek geometric terminology- the square on the diagonal of 
a square is double of the square on the side. Their ratio can be expressed by numbers, namely as 
2:1, but the ratio of the sides of these squares (b:a = 2:1) cannot. In algebra, one comes in contact 
with the symbol 2 when solving some equations. Thus, we have another motivation to define the 
symbol 2 as “number”. It is not enough to say that it is not rational, we need an affirmative 
determination. One possible way is to use the above approximate values. If n is odd, they offer a 
lower, while if n is even, an upper approximation of 2 (say when a=b=1): 1, 7/5, 41/29,…., and 
3/2, 17/12, 99/70…., respectively. Thus we can form the following series of intervals: [1, 3/2], 
[7/5, 17/12], [41/29, 99/70],….. It is easy to show that these intervals form a nest of intervals 
determining geometrically one point in the line. According to Cantor’s principle, this nest of 
intervals determines the irrational number 2, or geometrically a point on the (real) number line. 
Instead of intervals, the lower (or upper) approximation ratios alone are enough to define 2.
Using decimal fractions this leads to its production as an infinite non-recurring decimal fraction. 
By forming alternative nested intervals from the values starting from a=1, b=2, we can show that 
this inscription is not unique. 

2 Irrationality and approximation of 3

The case of 3 can be handled as that of 2 before. The only difference is that propoosition II.9 
will also be used here. Figure 2 is also similar to Figure 1. The task is here to find a common 
measure of the height and base of a regular triangle. 
Here the triangles AEB and ABC are similar, verifying that the antanairesis is cyclical. Another 
way to show that step 4 repeats step 1 is the employment of II.9 to AC, and II.10 to AD: 

B1C2 + AB1
2 = 2AD2 + 2 B1D2,  or b1

2+a2=2a1
2+2(a1-a)2,

AD2 + A1D2 = 2AB1
2 + 2 B1D2, or  a1

2+b2=2a2+2(a1-a)2.
From these equalities, one can easily get the following key equation either by modern algebraic 
manipulations or by ancient Greek geometrical considerations:  

b1
2+3a2=b2+3a1

2                              (3) 
Since b1

2=3a1
2, therefore b2=3a2 by (3), which proves that the antanairesis is cyclical. Conversely, 

from b2=3a2 (if b and a are the height and side, respectively, of a regular triangle), then b1
2=3a1

2

follows from (3) verifying that ABC is half of a regular triangle. Figure 2 shows the following 
relations between the bases and heights of the two triangles in question:  

a1=2a+b, b1= a1+a+b=3a+2b                        (**) 
As before, from (3) and (**) we can establish the following recursion formulas to approximate 3,
or in other words, to approximate the ratio between the height and base of a regular triangle: 

                 bn+1
2+3an

2 = bn
2 +3an+1

2,                             (4) 
a0 = a, b0 = b, an+1 = 2an + bn, bn+1 = 3an + 2bn, n 1         (5) 
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Steps Longer Shorter Difference 
1  BC= 

B1C=b1

AB= AD= 
CD=a1

B1C-CD= 
B1D

2 CD= 
AD

B1D AD-B1D=
AB1

3 B1D AB1=
A1B

B1D-A1B1=
A1D

4 A1D=EB= 
B1E=b 

A1 B1=AB1=a Step 1 again 

Figure 2. Antanairesis for the regular triangle 

Since 3 is also between 1 and 2, there are again two possibilities to calculate approximating 
values: 

1. a0= a =1; b0=b=1 2. a0= a =1; b0=b=2 
n an bn 3an

2-bn
2 bn/an an bn 3an

2-bn
2 bn/an

0 1 1 2 1/1 1 2 -1 2/1 
1 3 5 2 5/3 4 7 -1 7/4
2 11 19 2 19/11 15 26 -1 26/15 
3 41 71 2 71/41 56 97 -1 97/56 
4 153 265 2 265/153 109 362 -1 362/209 
5 571 989 2 989/571 780 1351 -1 1351/780 

Since the exact value of 3 is nearer to 2 than to 1, it is not surprising that the Greeks preferred to 
use the upper approximations. Heron applied both 7/4 and 26/15 in his works. Bruins quotes in 
(Bruins, 1964) latter as “the well known approximation of 3”. Archimedes seems to be an 
exception in this respect placing 3 between a lower and upper approximation value (265/153 and 
1380/780) in his “Measurement of a Circle”. Heath wrote on these values (Heath, 1921, vol. 2, 
p.51): ”How did Archimedes arrive at these particular approximations? No puzzle has exercised 
more fascination upon writers interested in the history of mathematics.” He presents some 
algebraic speculations, and quotes the conjecture of Zeuthen and Tannery namely that   3an

2-bn
2 is 

equal to -1 or 2. Table 2 confirms that their conjecture was correct, but the method behind this 
conjecture is not known. To form nested intervals here we need values from both cases, since case 
1 (a=1, b=2) gives lower, while case 2 (a=1, b=2) upper approximations: [1, 2], [5/3, 7/4], [19/11, 
26/15], etc. 

3 Concluding remarks 

As far as I know, nobody has studied the proof of the irrationality and the approximation of 2,
and 3 together. Further, nobody used II.10 to prove the irrationality of 2, 3, nor took the case 
a=1, b=2 to approximate 2. If our train of thought is correct, then Theodorus also found the 
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approximation values for 3, so they were well known in Archimedes’ time, which explains why 
he applied them without any explanation. 
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ABSTRACT 
Among the prestigious mathematical models of the XVIIIth century, there is the forgotten advection 
equation. In 1755, Euler found the equations of fluid motion for a perfect fluid. At the same time, he derived 
the advection equation for conservative systems. The advection equation is a consequence of a linearization 
process of the continuity equation. Our purpose is to present the eulerian continuity equation, and then to 
comment the methods for the solution of the advection equation, and particularly the method of 
characteristics. We emphasize on Euler’ geometrical and diagrammatic reasoning for the solution of the 
continuity equation. 

1 Introduction 

In 1755, two hundred and fifty years ago, during his golden years in Berlin, Leonhard Euler 
published, to our point of view, his most important work on the theory of the motion of fluids. 
Euler was so pleased, so enthusiastic about his equations that he wrote in Continuation des 
recherches sur la théorie du mouvement des fluides (Euler, 1755b): 

Quelques sublimes que soient les recherches sur les fluides, dont nous sommes redevables à 
Mrs. Bernoullis, Clairaut & d’Alembert, elles découlent si naturellement de mes deux formules 
générales: qu’on ne saurait assés admirer cet accord de leurs profondes méditations avec la 
simplicité des principes, d’où j’ai tiré mes deux équations, & auxquels j’ai été conduit 
immédiatement par les premiers axiomes de la mécanique […] 
Quoiqu’il ne soit pas souvent à propos de donner à nos recherches une trop grand étendue, de 
peur qu’on ne tombe dans un calcul trop compliqué, dont on ne puisse faire application aux cas 
les plus simples, il arrive précisément ici le contraire: puisque mes équations, quelques 
générales qu’elles soient, ne laissent pas d’être assés simples, pour les appliquer aisément à 
tous les cas particuliers: & par cela même elles nous présentent des vérités universelles, que 
notre connaissance en tire les plus grands éclaircissements, qu’on puisse souhaiter. 

Euler’s French is so clear, so illuminating, that all quotations will be presented in their original 
language. Theoretical fluid dynamics will make enormous progress during the XVIIIth century with 
Daniel Bernoulli (Traité des fluides, 1744), d’Alembert (Résistance des fluides, 1749), Clairaut
(Théorie de la figure de la Terre tirée des principes de l’hydrodynamique, 1743), Euler (1752, 
1755), and later with Lagrange. The resistance of fluids was the 1748 subject of the Berlin 
Academy for the 1750 prize. In 1749, Jean d’Alembert submitted his essai d’une nouvelle théorie 
de la résistance des fluides, which was published in 1752. However even if the 1750 prize was not 
attributed, we are stricken by the ambitions of the geometers of the XVIIIth century. 

In 1752, Euler wrote his first memoir about the motion of fluids. In his 1755 memoir: Principes 
généraux du mouvement des fluides (Euler, 1755a), Euler studied the general principles of the 
motion of a fluid for a three-dimensional problem. In the introduction, Euler said explicitly: 

Il s’agit donc de découvrir les principes, par lesquels on puisse déterminer le mouvement d’un 
fluide, en quelque état qu’il se trouve, & par quelques forces qu’il soit sollicité. 
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On doit aussi supposer, que l’état du fluide dans un certain tems soit connu, & que je nommerai 
l’état primitif du fluide, […] et le mouvement qui leur aura été imprimé […] 

En troisième lieu, il faut compter parmi les données les forces externes, à la sollicitation 
desquelles le fluide est assujetti: je nomme ici les forces externes […] 

Euler had in his mind the project to study the fluid flow around a vessel! It will be a very limpid 
article, “la merveille” for the historians of fluids, an important contribution of the Age of 
Enlightment. Euler’s idea was to describe the motion of a perfect fluid, with no viscosity, subject 
to any kinds of forces, by mathematical equations, more exactly by one of the earliest 
mathematical physics system of first order partial differential equations. Euler ended up with a 
system of four equations for five unknowns: pressure, the three velocity components and density. 
The missing equation was for the temperature, the link between density and pressure, but at that 
time, it was only an academic point. This period corresponded to the newly developed calculus of 
partial differential equations, the new analysis, which started in the 1740’s, and where d’Alembert, 
Euler and Clairaut contributed (Kline, ch. 22, 1972; Demidov, 1982, 1989; Youschkevitch, 1989; 
Paty, 1998). The only mathematical tool available to Euler was the concept of total differentials. 
This is why Euler wrote explicitly the following warning:

On comprend aisément que cette matière est beaucoup plus difficile, & qu’elle renferme des 
recherches incomparablement plus profondes, de sorte que s’il y reflète des difficultés, ce ne 
sera pas du côté de la mécanique, mais uniquement du côté de l’analytique […] 

Euler’s 1775 article is one of the best example of geometrical and diagrammatic reasoning. We are 
struck by its simplicity in both proofs and reasoning. Euler had mentioned some difficulties from 
l’analytique (the mathematics). Implicitly, it means that Euler derived the governing equations but 
it will not be straightforward to obtain analytical solutions. Unfortunately, such analytical 
expressions do not exist except for some simple case studies. In his conclusion, Euler will simply 
say: “l’analytique n’est pas assez cultivée.” 

It is not our purpose to discuss and to present here the Euler equations. While working on the 
continuity equation, Euler derived another equation, which is now called the advection equation. 
This equation arises from a linearization of the continuity equation. This equation is of the most 
importance in Meteorology and in Fluid Mechanics. It is this particular equation that we want to 
present. And at the same time, we would like to comment on those mathematical tools which are 
still in existence today and are most adequate in all branches of fluid dynamics, including 
numerical fluid dynamics: elementary fluid element, “eulerian” and “lagrangian” concepts of 
motion, continuity equation, total derivative, advection equation, and Lagrange’s contribution to 
the solution of the advection equation. 

2 The elementary fluid element 
Because of the complexity of the problem of fluid motion, geometers of the XVIIIth century have 
decomposed the global volume of the fluid into elementary fluid elements. In each elementary 
fluid element, the density of the fluid is assumed to be uniform. Like d’Alembert, Euler considered 
an infinitesimal small parallelepiped to be carried by the fluid motion. The use of an elementary 
parallelepiped will allow the decomposition of the motion of the fluid. This decomposition of the 
volume into small parallelepipeds corresponds to a macroscopic description of matter in 
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opposition to an atomistic description, even if Euler and Lagrange considered an infinite number 
of particles. Later, Navier (1822) will follow motions of “molecules”, which was most unfortunate. 
This split between atomists and macroscopic modelers will have enormous consequences during 
the XIXth century. 

In Euler’s article, u, v, and w are defined is three components of the velocity U at a point Z. The 
following figure (page 276a of the 1755 article) represents the path that will follow an hypothetical 
elementary fluid element: 

Figure 1. The path of a hypothetical fluid element 

Euler chose the Cartesian system of coordinates, and his fluid element is a parallelepiped, i.e., he 
studied a three-dimensional problem in space. Euler expressed very clearly that we must know 
l’état primitif du fluide, i.e., its initial values. During the time dt, the fluid element will move along 
its path (le chemin) from point Z to point Z’ (Euler’s figure seems incorrectly drawn, because the 
fluid path stays horizontal). 

Hydrodynamics or Meteorology make a clear distinction between two different approaches 
when considering the motion of fluids. Thus, an observer stays at the same position and observes 
the motion of the fluid from his position (this is called an eulerian approach), or the observer 
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moves with a fluid element along its path (this is called a lagrangian approach). In its derivation, 
Euler chose the “lagrangian” scheme. 

3 The continuity equation: the conservation of matter 
The XVIIIth and the XIXth century are characterized by the refinement of the notion of the 
continuity of a function, where Euler and d’Alembert participated extensively, from which we can 
draw a parallel between the continuity of a function and the continuity equation for fluid motion. 
Here the basic idea is that the fluid motion must never be interrupted, and this was specifically 
Euler’s concepts for the continuity of a function. Euler succeeded in mathematizing the notion of 
continuity for fluids, at a time where the notion of continuity for a function was not precisely 
defined. 

Does the name of the continuity equation carry some ambiguity? The notion of eulerian 
“continuity” is too restrictive for the study of fluid motion, because it requires differential calculus. 
Fluid dynamists preferred to call the continuity equation as the mass or matter conservation 
equation. However, Geometers of the XVIIIth century were able to express the Leibnizian “ law of 
continuity”, “the labyrinth of the continuum” into mathematical formulae (Grant, 1991; Leibniz, 
2001; Guénon, 2004). For example, the second labyrinth is on the composition of the continuum, 
on time, place, motion, atoms, the indivisible and the infinite. 

Fluids are divided into two categories: incompressible fluids and compressible fluids. Lagrange 
gave examples of water as an incompressible fluid, where the density q is constant inside a given 
volume; but air and steam belong to the category of compressible fluids, where the density q is not 
a constant. 

Already in 1750, d’Alembert derived a continuity equation for both compressible and 
incompressible flows. D’Alembert’s reasoning was correct: It is necessary that the infinitely small 
portion of the fluid included in the first parallelepiped be equal to that which shall fill the second.
Unfortunately, d’Alembert had some difficulties in translating his reasoning into equations. We 
quote Lagrange: “But these equations did not yet possess all the generality and simplicity they are 
capable of.” Euler, and also d’Alembert will not hesitate to use what Lagrange calle: le circuit 
métaphysique des infiniment petits. Euler used the same symbols for partial derivatives as for 
ordinary derivatives. 

Euler derived his continuity equation in a simple “lagrangian” way. In his equations, he 
established a link between the velocity components and a scalar function (the density q of the 
fluid). Euler remarked that at the initial time, the infinitesimal volume element is dxdydz , at the 
point Z. Because of the distortion of the different sides of the parallelepiped, the new elementary 

local volume, at the point Z’, is 1 du dv dwdxdydz dt dt dt
dx dy dz

. Here Euler ignores 

second order infinitesimals. If the fluid is incompressible, these two elementary volumes must be 
identical. It is called the conservation of volume because, in an incompressible fluid, the density is 

an invariant. Consequently, 0du dv dwdt dt dt
dx dy dz

If we divide by dt, the continuity equation is: 
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0du dv dw
dx dy dz

        (1) 

Lagrange will call this equation, the incompressibility equation. It represents the rate of change 
of the volume.  

Euler also proved the continuity equation for the most general case of compressible, elastic 
flows, and for the density q of the fluid: 

. . . 0dq d qu d qv d qw
dt dx dy dz

      (2) 

Lagrange will call this mass continuity equation as the “density equation” for a compressible flow. 
This mass continuity equation shows a sort of symmetry between space and time, the motion is 
doubly continuous, by this sort of combination of space and time. 

4 The advection equation 
After the derivation of the continuity equation, which was a relation between the velocity 
components and the density, Euler was seeking another relation drawn from the considerations of 
forces. If P, Q, R are accelerating forces on the fluid at point Z, which are acting on the fluid, 
Euler concludes that the fluid element is also solicited by the pressure surrounding the fluid. All 
forces act perpendicularly to the surface of the infinitesimal fluid element. There is no frictional 
tangential stress. Euler balanced all the accelerations, and he obtained three equations, a system of 
partial differential equations. 

The reminder of Euler’s article concerns various discussions and linearizations on the 
possibility of integrating these equations.

On page 300 of the 1755 article, Euler studied the following equation for the density q, which 
is now called the advection equation or the convection equation. In Meteorology, the advection 
refers to horizontal motion. In order to simplify the problem, Euler linearized the equation of 
continuity Eq. 2 for a compressible flow. Because the continuity equation is non-linear, Euler 
assumed that the velocity ( , , )U u v w was a constant with a, b, and c being the components of 
the velocity. It meant that Euler obtained a simplified continuity equation with only one unknown, 
the density q:

Voilà une question analytique bien curieuse, par laquelle on demande quelle fonction de x, y & 
z doive être prise pour q, afin qu’il devienne: 

0dq dq dq dqa b c
dt dx dy dz

      (3) 

…Il est évident qu’après le tems t les coordonnées x, y & x, seront transformées par le 
changement x-at, y-bt, z-ct, d’où nous concluons qu’on satisfera à notre équation en prenant 
pour q une fonction quelconque des trois quantités x-at, y-bt, z-ct. 

Euler performed an intuitive reasoning. A function ( , , )q q x at y bt z ct  possesses a 
differential: 

( ) ( ) ( )dq L dx adt M dy bdt N dz cdt  with , ,dq dq dqL M N
dx dy dz

.

And consequently:  
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dq aL bM cN
dt

Equation 4 is called the advection equation in Meteorology. We can draw a parallel with the 1746-
1749 d’Alembert solution for the vibrating string. The advection equation is a first order partial 
differential equation, but it belongs to the family of hyperbolic systems. The advection equation is 
also called a one-side wave equation. Truesdell has briefly mentioned the advection equation in 
the Opera Omnia. He just said that the solution must have the form ( , , )q q x at y bt z ct ,
with a perfect symmetry among the three space variables. The solution is even reversible in time if 
the velocity U U . Euler considered that the solution is a fonction quelconque, i.e., an 
arbitrary function. Engelsman (1980) gave an explanation to the origin of this Euler’s terminology: 

According to Euler the integration of an equation of order n is complete if the integral contains 
n arbitrary functions. In Euler’s view partial differential equations are just like ordinary 
differential equations, in that the role of the arbitrary constant is taken over by an arbitrary 
function. 

This concept of an arbitrary function will be a hot topic in mathematics for the string equation and 
also later with Fourier’s heat equation (Youschkevitch, 1989). Curiously, the advection equation 
didn’t attract enough the attention of the historians of mathematics like the string equation, 
although it belongs to the prestigious class of mathematical models of the thXVIII century 
involving partial differential equations. This advection, or conservative equation means that the 
information is conserved along the trajectory of a fluid element. Or the rate of change of a scalar 
quantity with respect to time is compensated by the advection term If the scalar quantity is the 
temperature or the pressure, and if the velocity U is available at any point Z, the information is 
simply translated along the path (le chemin).

Figure 2. Translation of a cloud along its path 

Figure 2 illustrates the motion of translation of a cloud (or rain) along its path. Without realizing it, 
Euler had in fact, all the theory necessary to produce short time weather forecasts through the 
advection equation, and he could have contributed to the solution of the 1746 problem of the 
Berlin Academy! 
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5 Lagrange and the method of characteristics 
In his 1781 article, Lagrange was interested in solving the channel problem. He had to consider the 
problem of free boundary condition at the surface of a fluid. Let ( , , , ) 0A x y z t be the equation 
of the surface bounding the fluid. Lagrange explained that we must have the same type of 
equations at the walls (another boundary condition). From the motion of the fluid, the spatial 
coordinates ( , , )x y z of a given particle becomes: 

( , , )x udt y vdt z wdt , while the time moves from t to t dt . The equation for A becomes 

( , , , ) 0dAA x udt y vdt z wdt t dt A dt
dt

. The condition on A becomes: 

0dA dA dA dAu v w
dt dx dy dz

        (4) 

In other words, the total derivative of A is zero. Eq. 4 is of the same type than the advection 
equation Eq. 3. For Lagrange, this equation was integrable by the general method, he exposed in 
1779 (Lagrange 1779). Lagrange “method” will be the genesis of an enormous progress in the 
solution of first order partial differential equations. Demidov (1982) has distinguished two stages 
in the development of the partial differential equations of the first order during the XVIIIth: the first 
one lasted to the end of the 1760’s or the beginning of the 1770’s. It was linked to d’Alembert and 
Euler. It was called the formal-analytical period. The second stage came with Lagrange, where 
Charpit participated. Lagrange wrote several memoirs on the theory of the first order partial 
differential equations in 1774, 1776, 1779 and 1787 (Kline, 1972; Engelsman, 1980; Fraser, 
1991). Lagrange proposed to solve his Eq. 7 by the method he exposed in his 1779 memoir (page 
152). Following this method, it suffices to replace the partial differential equation 7 by a system of 
four ordinary differential equations (1781, page 161). 
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1 Introduction 

It is conventional to place the birth of mathematics within Greek Antiquity at around 300 BC, the 
time of the composition of Euclid’s Elements. This convention makes sense, provided we 
acknowledge that the birth was preceded by a long gestation period. If the Euclid’s Elements was 
the first mathematical treatise in the contemporary sense of the term, there is certainly evidence of 
earlier embryonic mathematical treatises: 

in Ancient Egypt, with principally the Rhind Papyrus (c.1900 BC),
in Mesopotamia, with the cuneiform tablets of Ancient Babylon, dating from the 
first half of the second millennium BC, and
in Vedic India (1000–500 BC), with the Sulbasutras, or “aphorisms of the chord”, 
annexed to ritual texts to explain the construction of sacrificial altars of various 
forms. 

We could add to these the ancient Chinese texts of the Han dynasty (206 BC–220 AD), with the 
Jiuzhang suanshu (Nine Chapters of the Mathematical Art), and the Zhou bi suan jing
(Arithmetical Classic of the Gnomon); these are of course later than the works of Euclid but in 
style and form they show considerable similarities with Ancient Babylonian and Egyptian works. 

Common to all this corpus of pre-Euclidean mathematics, there are what we may call 
“unformulated assumptions” or self-evident truths, that is to say notions and practices which are 
used but not formally presented or integrated into a system. These are 

the plane, the principal setting for movements of figures and their study, 
a stock of elementary figures like the line segment, circle, square, rectangle, 
triangle, trapezium, cube, cylinder, together with the elements of which they are 
composed: points and lines, 
the possibility of transforming certain of these figures into each other through 
decomposition and reassembly, and 
the association of number and the figure with measure. 

I claim that these unformulated assumptions did not arise suddenly, about four thousand years ago 
in Egypt and Mesopotamia, or somewhat later in Vedic India or China, but that they were the fruit 
of a prehistory, in the sense of the development of embryonic ideas and geometric concepts arising 
out of human activity taking place over a period of two million years. There is then, in my view, a 
gestation of geometry, which preceded its birth in the form of a systematic treatment in the first 
Elements of Greek Antiquity. 

I shall give a brief presentation of this gestation during the Palaeolithic and Mesolithic periods, 
confining my remarks to what seems to me to be the most essential, namely: 

the making of stone-tools, from c.2 5000 000 BC, and 
symbolic representation in rock, cave and mobiliary art, from c.40 000 BC.

I shall then say a few words about the sequence of events from the Neolithic period up to the time 
of the Euclid’s Elements.
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2 Stone implements from the Palaeolithic to the Mesolithic 

Let us begin with a table showing a summary of the evolution of the construction of stone objects 
over a period of more than two million years, with an attempt to characterize them according to 
what interests us here, namely the creation of geometric “unformulated assumptions” (Table 1) and 
a table of illustrative examples (Table 2). Of course, we need to point out that the dates given in 
these tables are only approximate, that the separation of early hominids into distinct types is not 
exact because there were many intermediary beings, that the correlation between types of 
hominids and their industry is also not clear-cut, and that the sequence Oldowan–Acheulean–
Levallois–laminaria–microliths took place at widely different times and places. While this 
development began some two million years ago in West Africa, it is only one million years later 
that it is found in the Middle East and from as late as 780 000 BC at Atapuerca (Spain). But the 
important point for our study is to observe that there is an obvious evolutive sequence at all the 
major sites, even if it occurred much later in the Middle East, North Africa and in Europe. This 
commonality of development occurs even within each category with, for example, the progressive 
passage from thick unrefined handaxes with rough edges to slim handaxes with a smooth edge and 
good, well-defined shapes for the face. 

To what extent does this sequence produce an accumulation of mental reflexes of a geometrical 
nature? To attempt to answer this question I shall examine it from the point of view of: the object 
being worked, the procedure of the work and the finished product. 

2.1. The work object 
The natural form of the stone to be sculpted is ignored, the stone is seen as an object for an 
increasingly free creative act arising out of a preconceived project. The stone is a sort of “blank 
sheet” on which human creativity is to be expressed, which I shall call an abstract local lithic 
space. The abstraction (a negation of the existing form) in the case of the earliest worked stones 
(Fig. 2 in Table 2), whose forms differ little from the original stones chosen for the work, is at first 
modest, even if its principle is certainly present. The abstraction increases with handaxes (Fig. 3 in 
Table 2), which result in a stone or a large flake being completely, or almost completely, sculpted, 
and the abstraction becomes radical with the advent of the systematic debitage1, (Figs. 4, 5, 6 in 
Table 2) to the extent that the finished product has nothing more in common with its initial 
material; neither the original stone nor the way in which it was made is observable in the final 
product. 

2.2. The work process 
If the work object is a space, the work process is a structurization of that space. In the intentional 
act which produces the first flakes (Table 1, first line) we can see a promise of structurization; on 
the contrary, which becomes a real work process when one surface (unifacial choppers) or two 
surfaces (bifacial choppers) are created to produce the sharp edge of the worked stone. 
Furthermore the action is symmetrical when the removal of the flakes are made on each side of the 
future edge. 

With handaxes (Appendix: Table 1, second line), the symmetrical action now concerns the 
whole stone, which completely, or almost completely, fashions the result. Three tasks are 
simultaneously being carried out: the action on the core volume creates two curved surfaces, 

                                                     
1 Debitage: working stone to obtain flakes. 
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which, by their intersection, create a line, which tends, over the course of the working, to become 
regular and smooth. Unlike later systematic debitage, the volume is not initially worked so as to 
detach a surface in which a line is created. In other words, the space is not separated into a 
hierarchy of subspaces of lower dimension: the action takes place entirely within three dimensions, 
with possible returns to an earlier stage. Acheulean prepared stones, of the best type, produce a 
perimeter lying in a plane by the action of symmetrical removal of material. It is the symmetry of 
the work that produces the plane of the perimeter, by providing the object with a symmetry ‘in 
profile’ and this practical approach is the inverse of the present-day theoretical approach: with 
geometry, symmetry is defined with respect to a plane, whereas the artisan homo erectus produces 
the plane through the use of symmetrical acts. 

In the case of systematic debitage (Appendix: Table 1, third line and figs. 4 and 5 in Table 2), 
on the other hand, there is a hierarchy and independence with respect to volume, surface and line. 
Levallois stone working produces a structurization of the lithic space into subspaces, which are 
worked on in their turn. The initial volume is prepared in order to produce a plane surface for 
debitage; it can then be worked again to produce a second plane surface, parallel to the first, ready 
for another debitage. Each plane surface is worked in turn to extract one or more flakes of, in the 
best cases, predetermined forms (Levallois points and blades, i.e. triangles and rectangles); the 
final flakes, when they are not used as they are, or simply retouched, are reworked to give a great 
variety of edges: straight, notched, denticulated, concave, convex. Conceived in ideal terms, 
volume is therefore seen as being made up of parallel layers and these layers themselves can have 
a variety of designs; with handaxes, the “drawing” of the boundary evolved at the same time as the 
two surfaces of which it is an intersection. Here, on the other hand, the surface (a flake) is prepared 
first and the boundary is drawn afterwards. Thus the work process is well and truly a first concrete 
analysis of space, by its division into sub-orders (of dimension two and dimension one) 
organically linked but having their individuality and relative independence, since each is the object 
of a specific stage of production. 

The phenomenon of systematic debitage achieved its apogee during the Upper Palaeolithic and 
Mesolithic periods with the debitage of blades (Table 1, 4th and 5th lines, and fig.6 in Table 2), 
their reworking into a variety of designs (scrapers, notched blades, denticulated blades, rectangles 
etc.), followed by their reworking into standardized microliths. 
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Figure 1. Reassembly of 
removed flakes showing the 

regularity of the cuts. 
Lokalelei, Kenya, c.2.3 

million years BP. (CNRS, 
Mission préhistorique au 

Kenya) 

Figure 2. bifacial chopper. 
Hadar, Ethiopia, c.2.3 

million years BP. (Roche, 
1980)

Figure 3. handaxe found near Aurillac, 
France. Uncertain date. (Cartailhac, 

1889) 

Figure 4. Theoretical 
reconstruction of 
Levalloisian debitage. 
First and second line: 
removal of a flake from the 
first surface, dressing a 
second plane and removal of
a second flake. 
Third and fourth line: 
debitage of several flakes at 
each level (after Boëda, 
1994)

Figure 5. Levalloisian 
points. Middle Palaeolithic, 
France (Bordes, 1988) 

Figure 6. Geometrical microliths: 
segments of circles and trapeziums. 
Algeria, 7000–4500 BC. (Camps-
Fabrer, 1975) 

Table 2 
2.3. The finished product 

First we have a simple line segment formed by the intersection of two surfaces in the earliest of 
stone implements, then the symmetrically sculpted handaxe with a face view which, at the end of 
the Lower Palaeolithic, presents a variety of forms but is largely standardized (triangular, heart-
shaped, oval). So we see here a comparison of magnitudes, and abstract comparison, in order to 
achieve symmetry, as well as a ‘sense’ of proportionality, without which the creation of standard 
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forms would have been impossible. With systematic debitage, we pass progressively on to a great 
variety of figures, which stand out in contrast to the relative monotony of the handaxes. This 
comes from the possible freedom of drawing a line on a previously prepared surface, that is to say 
by the relative independence of the three subspaces. The highpoint of all this process is the 
fabrication of geometric microliths, so-called because of their shapes, principally segments of 
circles, trapeziums and triangles. But the preceding development shows that geometry did not have 
to wait for this stage for it to become manifest. 

It is thus at the very heart of the activity of making stone implements, that were created and 
developed what I shall call, for want of a better term, the first “mental reflexes” of a geometrical 
nature, an indispensable cognitive base for the later dawn of geometrical concepts. But we need to 
keep a cool head and not allow ourselves to be misled by the words: space, symmetry, subspaces 
and standardized forms; there is not yet anything at all ‘Euclidean’ in all of this because: 

the space here is only local and also lithic: it is only a context for the work. 
its structurization is only the work process for that particular space. 
the forms produced have no independence of any sort. It is true that they are present 
as idealizations in the mind of the workman before he begins his work. It is also true 
that they become more and more distant from the natural form of the initial stone, 
right up to the point of their complete separation from it. But they are not conceived 
and anticipated except as the edges of a tool. However the considerable beauty of 
certain handaxes suggests that the opposite tendency may have been present: that of 
the form itself, because it appears to have been made for pleasure. 
-it is all the more difficult to conclude that there was a geometric consciousness 
detached from the lithic work, in that the act was most certainly mute, learnt by 
mimicry and lacked a technical vocabulary. Indeed, when we hear contemporary 
traditional peoples talking about stone-tool making, it is only in terms of mythic 
history. 

3 Symbolic pictorial representations from the Upper  
    Palaeolithic 

Here we have a qualitative change of considerable significance, compared with the making of 
stone implements, in that, from the start, pictorial representation is an abstraction. It is possible 
that the skills acquired through “drawing” the edge of a tool on a Levallois flake or blade 
constituted a passage way towards pictorial representation proper, but whatever the case, the 
change of activity is radical. In the case of a drawing or engraving on the wall of a cave, as well as 
on an object, the line is created only to evoke an idea, a thing, a being of some sort, which has 
nothing whatever to do with its material reality of paint, charcoal or scratch mark. It is true that 
pictorial representations were also tools, and the most prized of tools in the minds of primitive 
peoples, since they constituted the most important instrument of ritual actions, but this action was 
only imaginary. It was believed because it was justified by stories and myths and it was sufficient 
to believe in the act for it to be effective. Certain peoples have a rather beautiful expression, all the 
more striking in that it is found in different continents, for translating the purely intellectual origin 
of pictures: both Amerindians and Australian aborigines say that their images come to them in
dreams.
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It was, then, within a specific way of thinking about the world, expressed in myth and incarnate 
in ritual, that pictorial symbolism was born, with the three great inventions, which follow from it: 

3.1. The invention of a surface of representation 
If the principal form of symbolism now became pictorial, although it could have been more 
naturally restricted to three-dimensional objects, it was because the setting for the pictorial 
symbolism, the very surface of representation, had attained a symbolic charge of considerable 
significance. It is in fact acknowledged today by many prehistorians that, as the study of 
ethnography abundantly shows, this surface of representation is fundamentally a frontier, a place 
of passage and of contact between the natural and the supernatural world, invented by the 
primitive way of thinking. The words “natural” and “supernatural” arise in fact from an abuse of 
language, since the two worlds were each equally “natural”, and were permanently interwoven; the 
human hand established contact and mediated the passage from the one world to the other through 
pictorial representation. 

The wall of the cave or shelter is, first of all, uniquely a place of passage. This does not exclude 
the exploitation of its natural relief, where some of its features are emphasised in order to make an 
apparent animal shape on the rock appear more clearly. But, over the course of time, the wall 
becomes almost exclusively a surface, a two-dimensional space: in reality, the use of the natural 
relief is marginal and from the outset the artist knows how to deceive the eye by creating an 
impression of relief. One sees also from the outset the phenomenon known as “twisted 
perspective” (Figure 7), which consists of bringing forward on the surface elements that are 
regarded as important, such as horns or antlers and doubtless hooves, while the rest of the picture 
reflects an ordinary visual impression. Later, from the post glacial period up to the Bronze Age, 
we see “flattened perspective” (Figure 8), as though the objects were spread out geomerically, 
taking no account of any visual resemblance. Firstly a simple barrier where pictures just evoke a 
passage; then the surface adopts a solidity so as to become a true locale for representation, and 
even a place where there is a deliberate suppression of the third dimension to the extent that the 
surface provides a support for partial or even total plan views, without any concern to create the 
illusion of depth. 

Figure 7. Example of ‘twisted perspective’, 
horns seen from the front and the rest of the 
body seen in profile. La Grèze, Dordogne, 
France. From (Lorblancher 1995). 

Figure 8. Cart shown in ‘flattened perspective’ 
engraved on a rock. China, 3rd millennium? 
From (Chen Zhao-fu, 1988). 
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3.2. The invention of the figure, line and point 
With pictorial representation, in contrast to stone carving, all the elements of its construction are 
there to be seen, which makes it necessary and possible, not only to be able to interpret each one of 
them, but also to link them together so that the mind passes from one to the other without a break. 
This new intellectual agility marks a decisive step in the gestation of geometry, as the reader may 
convince himself if he repeats one by one the elements used in creating the image: the line, when it 
is a boundary of an image, separates the surface into an interior and an exterior, and symbolises its 
interior. The line is there as a limit of a surface, and the limit is not only an edge, it is in fact the 
creative visual element of the surface: the eye that perceives the boundary of a mammoth does not 
stop at the line but understands what it reveals, its interior. In the same way the portion of surface 
is there as a limit of a volume which is the body of an animal, for example. Here we have 
geometric elements created by drawing and which, once consciously put in place, become: “a 
figure is that which is contained by any boundary or boundaries” (Euclid Elements I Def. 14), “a 
boundary is that which is the extremity of anything” (ibid. I Def. 13), “the extremities of a surface 
are lines” (ibid. I Def. 6) and “an extremity of a solid is a surface” (ibid. XI Def. 2). The line, even 
if it has thickness, because it has been painted, drawn with charcoal or deeply scored in an 
engraving, is in effect just there in order to evoke a boundary: furthermore, the thickness of the 
line disappears when the interior is painted with a brush or by blowing through the mouth. It is 
then, conceptually, “a breadthless length” (ibid. I. Def. 2), in other words an object of dimension 
one.

The word “evoke” here is a key idea since it is evocation that leads from abstraction to 
abstraction. To begin with, it is mythic, it is a general way of thinking: the picture evokes the 
animal. Then, it becomes purely technical: the line evokes a surface which itself evokes a volume. 
These abstractions of abstractions do not stop here; in fact, a fraction of a boundary can evoke the 
complete boundary, and this partial suggestion is often the most beautiful and most moving. More 
prosaically, a line segment symbolises the whole line. The ultimate element, the point, is also 
present in Palaeolithic art: the point is an element of the line in dotted boundaries (Figure 9) and 
even, though rarely, as an element of the surface in the case of the bison of Marsoulas (Haute-
Garonne, France), the only example known to me where an animal is made entirely of dots. The 
size of the point, when it is used to produce a dotted line, is not consubstantial with itself if one 
agrees that its function is to evoke a line or a movement, as is clearly the case in these drawings; it 
is therefore in fact, if not in its concrete representation, something which has no substance, a pure 
figment, “that which has no part” (ibid. I Def. 1). 

Figure 9. Face view of ibexes from Lascaux. Lines made up of points. 
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The objects of geometry, then – points, lines, surfaces, volumes – enter the domain of the mind as 
symbols and as abstractions of symbols. As far as figures are concerned, we have so far implicitly 
made reference to recognisable figures (essentially animals) in Palaeolithic art. These are not the 
only images; they coexist with a host of ‘signs’ which prehistorians often describe as ‘geometric’, 
and of which a large number suggest rectangles, triangles and trapeziums (Figure 10). 
Ethnographic studies show that we cannot hope to be able to ‘read’ these signs, quite simply 
because as a general rule they can have a variety of meanings and, inversely, the same reality (a 
thing, an idea or a story) can be expressed by different signs; it follows that the sign-figure, as 
opposed to the image of a recognisable object, is objectively (if not subjectively) entirely 
independent of the thing it signifies, being an artificial creation of the mind, preparing the way for 
a later study of the figures in their own right. 

Figure 10. Different signs. Rectangles from Lascaux (first three lines), ‘tectiforms’  from Font-de-
Gaume (Dordogne) (next line) and signs from the cave at Kapovaya (Russia) (last two lines). Late 

Upper Palaeolithic. 

3.3. The invention of structurization of the surface in mobiliary art 
Whereas the decorated walls of caves show no detectable collective order but rather many 
superpositions, mobiliary art (on the human body, bone tools, pendants and roundels) in general 
shows meticulously careful decoration. Superpositions are unknown and the great majority of the 
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works show a rigorous geometric organization. In wall paintings, the organization of the images, 
where it exists, is only local; it is found in many signs and also in recognisable images, as with the 
front-facing ibexes of Lascaux (Figure 9) or again in the friezes of mammoths in the Rouffignac 
caves in the Dordogne. In mobiliary art, on the other hand, the structurization is always global. It 
imposes a rhythm on the whole surface of the object, the rhythm of a frieze, made of translations 
and orthogonal axial symmetries along the axis of the object on long bones, and a cyclic rhythm 
on rondelles made of stone or bone. 

The, more or less complex, friezes are made up of zigzag patterns, impressed rhombus motifs, 
rectangles associated with dashes etc.. In every case the striking feature is the contrast between the 
rigour of the movement made by the well-determined translations and symmetries, whose axes 
have only two possible directions, and a frequent absence of care taken over the execution of the 
particular individual motif. The transformation, the movement, is the principle actor, to the 
detriment of the individual figure and its rigorous construction – reminding us of contemporary 
geometrical thought. It is known that there are only seven frieze types or, more precisely, there are 
seven subgroups of isometries which preserve a (theoretically unlimited) sequence of motifs which 
are derived from each other by the same translation; these seven types are all present in mobiliary 
art of the Upper Palaeolithic, as we can see in Table 3 and in Figure 11 of examples drawn from 
French sites. 

 
Types of friezes Transformations shown Examples 

I  
 

All: translation parallel to the 
axis (t), reflection in the axis 
(r), reflection in axes 
perpendicular to the axis (r’), 
half-turn rotations about points 
on the axis (p), glide 
reflections along the axis (g).  

Incisions perpendicular to the axis of the 
object. Very many examples from the 
earliest times of the Upper Palaeolithic 
 

II All except r Zigzags  
 

III t and p Incisions oblique to the axis of the object 

IV t, r and g Alignments of chevrons (arrow-heads)  
 

V t et r’ Alignments of groups of superimposed 
chevrons 

VI t Many friezes of animals from Late 
Upper Palaeolithic 
 

VII 

 

t and g Very rare 
 

Table 3 
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Frieze examples 
 

Object Types of friezes 
Engraved bone from La-Roche-Lalinde. Périgord. 
From (Jelinek, 1978) 
Type I. 

Alignments of chevrons (type IV) and zigzags 
(type II). Reindeer antler, Laugerie-Basse, 
Périgord. From (Lartet et Christie, 1865-1875).  

 

Oblique cuts (type III). Engraved reindeer antler, 
Grotte des Espélugues, Pyrénées. From (Piette, 
1907) 

 

Superimposed and aligned chevrons (type V). 
Engraving on bone from Placard, Charente. From 
(Piette, 1907). 

Frieze of animals (type VI). Deer antler, Laugerie-
Basse, Périgord. From (Cartailhac, 1889). 

 
 

Engraving on a length of bone (typeVII). Saint 
Marcel, Indre. From (Chollot-Varagnac, 1980). 

 
Figure 11. Examples of friezes from the Late Upper Palaeolithic (French sites) 

 
Another remarkable example of structurization is shown on the mobiliary art of roundels. The 
oldest apparently are ivory discs and rings from Brno in the Czech Republic, 28 000 BC, followed 
by the roundels of Sungir in Russia, 23 000 BC; these are approximately circular with an 
approximately central hole and with decorations lying approximately along radii (Figure 12). 
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Figure 12. Ivory roundels from Sungir, Russia. c. 23 000 BC. From (Jelinek, 1978) 

In the preceding section, figures, lines and points were shown to exist in Palaeolithic figurative art, 
and I had no hesitation in describing them as such in the Euclidean meaning of these terms. To 
what extent can we now be justified in speaking of translations, reflections and rotations here, in 
the strict sense of these terms? Furthermore, is it really legitimate to call certain signs traced on the 
walls of caves, like the rectangles at Lascaux (Figure 10), rectangles as such? Is it correct to say 
that the roundels of Sungir (Figure 12) are actually circles (with an acknowledged centre)?  

It is clear, to start with, that to refuse to use these descriptions on account of the imperfection of 
their construction is erroneous; it is a commonplace that any drawing, even carried out with the 
very best instruments, is by nature only approximate if the result is compared with its formal 
definition. We can also remark that if we decide that the translations, reflections and rotations, 
referred to above, are indeed translations, reflections and rotations in the strict sense of these 
terms, then there is no reason to refuse to give the label “rectangle” to the rectangles of Lascaux, 
nor to refuse to give the label “disc” to the roundels of Sungir. I am inclined to the view that these 
are indeed true transformations and true figures, for the following reasons. 

If we examine a particular figure, a Lascaux “rectangle” for example, there is nothing to tell us 
whether we are in the presence of a true rectangle or not; but this is exactly the case when faced 
with a “rectangle” drawn by somebody today! Disregarding the thickness of the line and the 
imperfection of the instrument of construction, we would be convinced that it is a true rectangle if 
the person making the drawing, when asked, were able to give one of these answers: 

I drew a parallelogram containing a right angle; 
I constructed, with ruler and compasses, two parallel line segments, intersected at 
right angles by two other line segments; 
you can see clearly that I have drawn a convex figure, not shrunk to a point or a line 
segment, and that it has two orthogonal axes of symmetry, each dividing my figure 
into two parts, each of which, furthermore, is a translation of the other. 

In other words, we would recognize a rectangle if, and only if, our interlocutor was able to 
describe the theoretical steps of the construction (first answer), or a practical method of 
construction (second answer), or could provide a theoretical analysis of the figure that had been 
drawn (third answer). It is therefore the ability to construct and deconstruct, synthesis and analysis, 
which provides conviction, and not contemplation of the figure itself, no matter how attentive that 
may be.  

Now, this ability certainly existed among our ancestors of the Palaeolithic periods as is shown 
by: making objects with faces possessing perpendicular symmetry (handaxes); producing ideal 
decompositions of a stone in parallel slices (Levallois debitage); and, above all, from the Upper 
Palaeolithic, analysis of the movement of an object along an axis (friezes). In this last case, it is 
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certainly a matter of analysis: from the simple alignment of dashes at the beginning we pass on, as 
can be seen in Table 3, to friezes showing just some symmetries, and all the seven possible types 
have been discovered. One can therefore conjecture that Palaeolithic peoples had produced 
translations, reflections and rotations “in practice” and that it follows that they had also produced 
rectangles “in practice”; the same reasoning is valid for rotations and for discs. 

The peoples of the Upper Palaeolithic, therefore, invented the surface of representation, the 
figure in general together with its elements (line and point), and certain basic figures, such as the 
rectangle and circle. If we just go by the ethnography of hunter-gatherers, no further purely 
mathematical development came out of these inventions; in particular they were neither given 
names, nor measured in any way. The figures were not given any justification other than by 
reference to objects or historical myths; no allusion was ever made to the symmetrical 
arrangements of figures and decorations, as if they were spontaneous “tricks of the trade”. On the 
other hand, all pictorial representation has an intellectual status of a high level in the primitive way 
of thinking, as objects for use in ritual; being entities with multiple meanings, figures thereby 
acquired, objectively, an existence independent of all signification, a phenomenon that was, 
perhaps, a necessary passage before they achieved the right to be a study in themselves, 
disencumbered from any practical or ritual use. 

4 Some remarks on the sequence of events from the 
Neolithic period up to the time of the Elements of Euclid 

4.1. The Neolithic Period 
We shall now leave the world of the hunter-gatherers to enter the world of the first settler farmers. 
To them is due the discovery of the solsticial and the cardinal points, derived from the apparent 
movement of the sun, and their use in producing a new figure – a square, rectangle or cross 
inscribed within a circle. This involves two orthogonal directions, north-south or east-west, which 
is associated with movement that may reflect the cycle of the day or the cycle of the seasons, the 
whole being a new “graphical representation” where all that exists can find its place. The 
classification of beings and their qualities according to the cardinal points is certainly found 
among non-literate agricultural peoples in Africa and in the Americas, and is strongly in evidence 
in early civilizations. From this global classification stemmed the birth of numerology with the 
great effectiveness of the number four, then the number five, if we add the centre, then the number 
seven, adding to these the zenith and nadir.  

Superimposed on the plane figuration we have just described, another figuration can be created, 
this time spatial. It is to the first agriculturalists that is due the idea that the “supernatural” world is 
“above” and, by consequence, elevation becomes synonymous with might. To the figure of the 
four cardinal “points” one can therefore add the “point” above and so produce, in principle, the 
shape of a pyramid. From being implicit in tumuli and megalithic architecture when their 
construction was orientated and endowed with a false vault, the pyramid became in Africa and the 
Americas the spatial figure which was the most symbolically charged. 

In the Neolithic Period the idea of what constituted space began to “stretch its wings”. Whereas 
we saw previously a purely local structurization in the making of stone-tools, in the drawing on 
cave walls and in the decorating of artefacts, now, for the first time, we find ourselves in the 
presence of a geometrical structurization whose purpose is to include and to order evrything which 
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exists. One could say that in earlier epochs space was just an organization of work whereas from 
this time on it becomes an organization of the world. 

Within this organization new figures were created. One of them, in the plane, being the 
encircled square, may have given birth to more general inscribed polygons which are found in 
numerous ceramic decorations for example. In three-dimensional space we now have for the first 
time the appearance of standard figures. The architecture of the period now has buildings in the 
shape of cuboids, cylinders surmounted by conical roofs and, much later, the pyramids. Small 
models of these figures have also been found, such as brick parallelepipeds (from the 6th 
millennium on) and also, from Syria and Iran, large numbers of small clay objects, dating from the 
8th millennium, principally in the shape of cylinders, spheres, cones and pyramids. An exceptional 
case is that of small engraved stone spheres found in Scotland, dating from the 3rd millennium. 
within which can be discerned an inscription of the five regular polyhedra. 

4.2.Pre-Euclidean mathematical texts in Antiquity 
I refer here to such mathematical texts, as those from Egypt (from c.1900 BC), of which the best 
known is the Rhind Papyrus, the many hundreds of Babylonian clay tablets of the same epoch, the 
Jiuzhang suanshu (Nine Chapters of the Mathematical Art) and the Zhou bi suan jing
(Arithmetical Classic of the Gnomon) from China of the Han Dynasty (206 BC–220 AD), and texts 
from Vedic India (1000–500 BC), with the Sulbasutras (Aphorisms of the Chord), which possibly 
date from the 3rd century BC.

In these texts, measure is the main preoccupation. Figures are now to be calculated, since the 
quest is to determine how to decompose them into simpler elements – line segments, squares or 
cubes – which are to be counted. Such preoccupations produced the first mathematical difficulties, 
how to find the area of a circle or the volume of a pyramid, and the first theorems to come out of 
repeated measurements. The “Theorem of Pythagoras” was known in Vedic India, in China and in 
Mesopotamia; the Section Theorem was known there and in Egypt. 

But the true stroke of genius was the inversion of what we have just described and which 
provides a salient theme in Babylonian texts and is also common in Chinese texts. Once one 
knows how to calculate a figure one can, conversely, figure a calculation. For example, the area of 
rectangle can be calculated from the product of its length and breadth; conversely the product of 
two numbers can be associated with the rectangle whose length and breadth are these two 
numbers. This is the origin of what is now sometimes called Chinese or Babylonian “algebra” 
although, in my view, it is better to call it figured calculations, or calculations carried out thanks to 
their geometrical modelling. Algebra such as is understood by the Moderns is in fact freed from all 
types of modelling thanks to the use of formal rules of procedure. It should be remarked that, if the 
measurement of figures answered to clear practical needs, figured calculus, on the contrary, is the 
source of problems and methods for which one would have the greatest difficulty in finding 
concrete applications at the time when they were invented, at least if one avoids being deceived by 
the pseudo-realistic garb in which they were clothed. Figured calculus is essentially pure 
speculation and anticipates the solution of equations without which contemporary science would 
not exist, and is a splendid proof of the power of the human intellect. 

The “historical” contribution of measurement and its associated technique, figured calculus, is 
that from henceforth number and the figure make a veritable corps, they relate in actuality one to 
the other and tend, therefore, to overshadow those functions of number and figure that are purely 
symbolic. And thus, the first mathematical texts tend to be real treatises. 
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4.3. The birth of the Elements 
The Elements of Euclid is the result of a reorganisation, revolutionarily based on a hypothetico-
deductive system, of all the “unformulated assumptions” created over the course of hundreds of 
thousands of years of human activity and thinking, to which we have given an introductory 
account. 

The novelty, in the mathematics of Greek Antiquity, does not reside so much in the existence 
of proofs, for this is present, and strongly so, in the corpus of works cited above, as in the desire to 
establish a system, with elements of departure clearly stated and a systematic chain of deduction. 
With Euclid, nothing is self-evident, everything is laid down, and it is clear that this new attitude is 
a consequence of the birth of a philosophy, by which the human intellect is no longer content 
merely to think, but to consider thinking itself and the possibility of its concepts as objects of 
study. In the same way, the mathematician is no longer to be content with the manipulation of 
numbers and figures; he seeks to justify their existence by means of basic elements, and what is 
self-evident, if recourse to it is needed, is laid down and not assumed. Thus Euclid began his 
treatise with the definitions of fundamental objects (point, line, straight line, surface, plane surface, 
angle, figure, circle, triangle, …), followed by demands or postulates which propose to the reader 
to accept the possibility of certain figures (a straight line can be drawn between any two points, a 
circle can be drawn from any centre and with any given radius, …), followed by common notions
or axioms, which are not required of the reader, but must nevertheless be laid down (things equal 
to the same thing are equal to each other, the whole is greater than the part, …). 

This was a complete break with earlier practices. The most difficult task, because it runs 
counter to traditional evidence, was probably to separate objects of geometry from their sense of 
myth and practical application; certainly their sacredness had to be abandoned, they had to be 
broken as idols. Aristotle vigorously attacked the Platonic construction of the universe and what 
we are able to understand of the ancient Pythagorean philosophy, which shows the extent to which 
the mythic prestige of number and figure was still present in Greek thought. At the start of Book I 
of his Physics, Aristotle clearly set out the new epistemology: 

When the objects of an inquiry, in any department, have principles, conditions, or elements, it 
is through acquaintance with these that knowledge, that is to say scientific knowledge, is 
attained. For we do not think that we know a thing until we are acquainted with its primary 
conditions or first principles, and have carried our analysis as far as its simplest elements. 
Plainly therefore in the science of Nature, as in other branches of study, our first task will be to 
try to determine what relates to its principles. 

In this passage, the Master defines two fundamental breaks with primitive thinking. There is first a 
“horizontal” break, since the identity between the thought and the thing being thought about is 
broken; there are in effect on the one hand “things”, and on the other hand the knowledge of these 
things. A second “vertical” break follows, that separates the branches of knowledge into 
“departments” characterised by specific aspects (first causes, first principles, elements). Here we 
have a condemnation of primitive thought, spontaneously dialectic, for which analogy was enough 
to pass from one order of research to another. 

The breaks with the past presented by Aristotle, and set in stone by the Euclidean edifice, were 
certainly awe-inspiring, and there is no need here to underline the benefit to human thought. But 
only rarely do we reflect on what we, unhappily expelled from the warm and marvellous paradise 
of primitive thinking, have in the process lost. On this, let us listen to the Taoist philosopher 
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Tchouang-tseu (4th–3rd century BC) who appears to adopt a position completely contrary to that 
of Aristotle (Tchouang-tseu, 1980, 349–350): 

When the world fell into great disorder, the sages and the saints were no longer to be found. 
There was no more unity in doctrine. Many people were content with their fragmentary views 
… In breaking the splendour of the universe, in dividing up the structure of beings and in 
reducing the integral vision of the Ancients, they who came to embrace the beauties of the 
world and to reflect the true face of the spirit were rare … How sad! … The wise men of later 
times unhappily did not see the world in its original simplicity and were no longer able to grasp 
the global intuition of the Ancients. It is to be feared that seeking the Tao will be torn apart 
through the whole world. 

This plea, voiced by many scientists today, implicitly identifies the immense task of modern 
thought: to re-establish the unity between thought and action, between theory and practice, and 
between the various sciences. In a word: to turn the natural dialectic of primitive thinking into a 
scientific dialectic, that is to say, to breathe a new life into the thinking of our unlettered ancestors. 

Translated from the French by Chris Week and Helen Goethals. 
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ABSTRACT

The first introduction of Hamilton’s quaternions in Japan was 1874. In that year and the
next, quaternions were taught as a part of a subject “Higher Mathematics” for engineering
students at Tokyo Kaisei Gakko, a predecessor of the University of Tokyo. The textbook was
“Introduction to Quaternions” by Philip Kelland and Peter Guthrie Tait.

In the last two decades of the nineteenth century, quaternions and elliptic functions were
the highest topics in mathematics taught in Japan. These topics were taught only at few
institutions of higher education, and only a few students learned these topics.

The most ardent advocate of quaternions in Japan was Shunkichi Kimura. He studied
physics and graduated from the University of Tokyo in 1888. Then he went to the United
States to study quaternions and mathematical physics, and earned Ph.D. at Yale University
under Professor Josiah Willard Gibbs. Kimura and Pieter Molenbroek intended to establish
an international association to promote and to develop researches in quaternions and related
fields, and the International Association for Promoting the Study of Quaternions and Allied
Systems of Mathematics was established in 1896.

Kimura returned to Japan in 1896. Soon after, he gave lectures on quaternions to inter-
ested persons. He intended to publish these lectures in book form, but only the introductory
part, which dealt only with vectors and not quaternions, was published in 1897. As a result,
Kimura’s book explained the usefulness of vectors — not quaternions — in geometry and
physics.

Since the last decade of the nineteenth century, main interests, studies and researches of
Japanese mathematicians have gradually shifted toward pure mathematics. Vectors and vector
analysis were regarded as topics of applied mathematics useful for studying mechanics and
physics, and studied mainly by physicists and engineers, and not by (pure) mathematicians.
Since the late 1920s, however, vectors and related topics have been treated again by pure
mathematicians, in the light of modern mathematics.

1 Introduction of quaternions in Japan

This paper deals with quaternions in Japan — introduction and teaching — mainly in
the last quarter of the nineteenth century.

The discovery of quaternions by William Rowan Hamilton was in 1843. The first
introduction of Hamilton’s quaternions into Japan was 1874, as a topic of higher mathe-
matics for engineering students at Tokyo Kaisei Gakko, a predecessor of the University
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of Tokyo1. Tokyo Kaisei Gakko was established in 1873 as an institution of higher
education giving professional education in various fields, by renaming an educational
institution, and the origin of this institution was “Yogakusho”, the Institution for West-
ern Studies, established by Tokugawa Government in 1856. At Tokyo Kaisei Gakko,
five departments of special and technical learning were intended at first: Law, Chemical
Technology, Engineering, Polytechnical Science, and Mining. Professors were invited
from Western countries.

The engineering course started in 1874 by appointing Robert Henry Smith, a gradu-
ate of the University of Edinburgh, to Professor of Mechanical Engineering. He taught
mechanical engineering and higher mathematics in the academic year 1874 – 1875, and
in the subject “Higher Mathematics” he treated quaternions and differential and inte-
gral calculus. According to “The Second Annual Report of the Tokyo Kaisei Gakko,
1874” and “The Third Annual Report, 1875” (both in Japanese; reprinted in Tokyo
Daigaku Nenpo 1993-1994, vol. 1), the contents of the “quaternions” were:

(1) principles on which the theory was based,
(2) explanation of the difference between quaternions and “ordinary geometry”,
(3) addition and multiplication of quaternions.
The textbook of quaternions was “Introduction to Quaternions” by Philip Kelland

and Peter Guthrie Tait, published in 1873 (Kelland & Tait 1873). Both authors were
professors at the University of Edinburgh; Kelland was Professor of Mathematics and
Tait was Professor of Natural Philosophy. Tait was an ardent quaternionist (Crowe
1985). This book was intended to give a first introduction to quaternions, as books on
quaternions written by Hamilton (Hamilton 1853, 1866) and Tait (Tait 1867) were far
from elementary. It consists of ten chapters, and the title of each chapter is as follows:

1. Introductory
2. Vector Addition and Subtraction
3. Vector Multiplication and Division
4. The Straight Line and Plane
5. The Circle and Sphere
6. The Ellipse
7. The Parabola and Hyperbola
8. Central Surfaces of the Second Order
9. Formulae and their Application
10. Vector Equation of the First Degree

The last chapter, written by Tait, treats physical topics, whereas all other chapters deal
mainly with geometric topics.

Quaternions are introduced in Chapter 3 geometrically, relating with vector multi-
plication and division in 3-dimensional Euclidean space. The authors are very careful
about the introduction of vector multiplication (Kelland & tait 1873, pp.32-37). Before
defining vector multiplication, a remark is given:

Whereas in Algebra we are accustomed to use at random the phrases ‘mul-
tiply by’ and ‘multiply into’ as tantamount to the same thing, it is now

1The Japanese word kaisei means to develop one’s knowledge and to carry out great works, and
gakko means school.
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impossible to do so. We must select one to the exclusion of the other. The
phrase selected is ‘multiply into’; thus we shall understand that the first
written symbol in a sequence is the operator on that which follows: in other
words that αβ shall read ‘α into β’, and denote α operating on β.

Then, vector multiplication is defined in three steps.
Step 1. The product of unit vectors i, j, k.
By using Cartesian coordinates in 3-space,

DEFINITION. If i, j, k be unit vectors along Ox,Oy, Oz respectively,
the result of the multiplication of i into j or ij is defined to be the turning
of j through a right angle in the plane perpendicular to i and in the positive
direction; in other words, the operation of i on j turns it round so as to
make it coincide with k; and therefore briefly ij = k.

Formulas such as ji = −ij, ii = −1 are deduced from this definition.
Step 2. The product of two unit vectors, not at right angles to one another.
Let α, β be unit vectors, and let OA = α, OB = β. Take OC = γ, a unit vector

perpendicular to β and in the plane OAB, and let the angle BOA = θ. Then α is
written in the form

α = β cos θ + γ sin θ

so,
αβ = (β cos θ + γ sin θ)β

Take a unit vector ε perpendicular to the plane BOA so that {β, γ,−ε} be a right-hand
sytem. Then we obtain

αβ = − cos θ + ε sin θ.

Step 3. The product of two arbitrary (non-zero) vectors.
Now let α, β be two vectors. By representing each of these two vectors as scalar

multiple of unit vector having the same direction as the given one, we obtain

αβ = TαTβ(− cos θ + ε sin θ),

where Tα means the length of a vector α (in Hamilton’s terminology, the tensor 2 of a
vector α), and ε is a unit vector perpendicular to α and β.

From the eyes of modern mathematics, this procedure of defining vector multiplica-
tion is a natural one. However, students in the late nineteenth century might have had
some difficulty in defining the product of two vectors in such a way.

Then, vector division is defined. Let α, β be two vectors and let α �= 0. The quotient

or fraction
β

α
of two vectors α and β is defined to be such that when it operates on α

it produces β, or,
β

α
· α = β. Then it can be shown that

β

α
=

Tβ

Tα
(cos θ + ε sin θ).

2Florian Cajori wrote as follows: “The tensor of the Hamiltonian quaternions was simply a numerical
factor which stretched the unit vector so that it attained the proper length. ..... The recent use of the
word “tensor” is different; the “tensor” is itself a directed quantity of a general type which becomes
the ordinary vector in special cases.” (Cajori 1993, vol.2, p. 139).
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Here cos θ + ε sin θ is a rotation operator (in Hamilton’s terminology, a versor) of
angle θ.

In this way, the product and quotient of two vectors are represented as a product
of a scalar and a versor. We define a quaternion as a product of a scalar and a versor
(in Hamilton’s terminology, a product of a tensor and a versor).

A quaternion is a sum of a scalar and a vector. This follows immediately from the
definition.

Examination questions at the final examination of the academic year 1874 – 75 were
recorded in the “Calendar of the Tokio3 Kaisei Gakko for the year 1875” (Tokio Kaisei
Gakko, 1875-1876). As to “Quaternions”, six questions were given, and the students
were assigned to answer five of these questions. Four questions were recorded, but two
were not recorded “for the want of proper symbols with which to print” (“Calendar”,
p. 98). Three of the recorded ones are as follows:

3. For the study of what class of mathematical conditions especially is
vector multiplication of much more extensive usefulness than vector addition
alone? What is the simplest form in which a quaternion may be expressed?

5. Prove that the vector from any pole to the mean point of any system
of points is the mean of the vectors to all the points of that system. Explain
the bearing of this proposition to the problem of finding the Center of Inertia
of a Material System.

6. What is the simplest form of the quaternion central equation to the
ellipse? (Of course, the meaning of the letters used must be explained.)

Judging from the records in the “Annual Report” and examination questions, an
outline of the first six or seven chapters of the Kelland-Tait’s book, that is, elements of
vector geometry using quaternions, was taught in that year. As a preliminary subject for
learning mechanics and engineering, it was sufficient, perhaps. Smith taught mechanical
engineering until 1878, but he taught “Higher Mathematics” only two academic years,
namely in 1874 – 75 (quaternions and differential and integral calculus) and 1875 – 76
(quaternions). The contents of “Quaternions” in the year 1875 – 76 were not recorded.
Differential and integral calculus in the year 1875 – 76 and “Higher Mathematics” in
the years 1876 – 77 and 1877 – 78 were taught by James Wasson, Professor of Civil
Engineering. He was a graduate of the United States Military Academy at West Point,
and taught analytical geometry and differential and integral calculus “following the
method of West Point”. Quaternions were not treated.

We mention here briefly about “Higher Mathematics” in another course. In the
original plan of the Tokyo Kaisei Gakko, there was a course “Polytechnical Science”,
where all lectures would be given in French. However, mainly for financial reasons, this
course was soon reduced to “Physics in French” course, and was abolished in 1881. In
“Physics in French” course, “Higher Mathematics” was taught by French professors,
and the level of “Higher Mathematics” in this course was the highest one in Japan
at that time. The contents were: higher algebra, differential and integral calculus,
differential equations and mathematical theory of heat. Quaternions were not treated,
as this theory was a branch of “British mathematics”. Though the term of existence

3Tokyo is sometimes spelled Tokio.
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of the “Physics in French” course was short, graduates of this course made a great
contribution to the development of physics and mathematics in Japan.

Revival of quaternions in the subjects of higher mathematics in Japan was 1880.

2 Quaternions as a subject of pure mathematics

In 1877, the University of Tokyo was established by the amalgamation of Tokyo Kaisei
Gakko and Tokyo Igakko (Tokyo Medical College), and four departments were estab-
lished: Law, Science, Literature, and Medicine. In the same year, Dairoku Kikuchi
(1855 – 1917) was appointed to a professor of pure and applied mathematics at the
Department of Science, University of Tokyo. He was the first Japanese professor of the
University. He received his secondary and tertiary education in England, seven years
altogether, first in London then at Cambridge. He studied mathematics and graduated
from Cambridge University, and returned to Japan in 1877. He was a wrangler. He
taught differential and integral calculus, analytical geometry, higher algebra, higher
geometry and mechanics in British style. From 1880, Kikuchi taught “Quaternions”
as a topic in pure mathematics for students majoring in mathematics, astronomy and
physics. The main textbook was Kelland-Tait’s book. Later, he treated quaternions
also in the subject “Analytical Geometry”.

Kikuchi considered William Kingdon Clifford’s “Common Sense of the Exact Sci-
ences” (Clifford 1885), a posthumous publication in 1885 edited by Karl Pearson, help-
ful to those who intended to study mathematics in Japan. So he gave lectures on an
outline of this book to mathematics teachers in Tokyo and surrounding area in 1885,
and translated Clifford’s “Common Sense” into Japanese. Japanese translation, “Suri
Shakugi”, was published in 1886. Among the topics treated in Clifford’s book are the
concept of vectors including two “different” products — inner product and outer prod-
uct — and the ideas of Hamilton’s quaternions and Grassmann’s alternate numbers.
Explanations about quaternions and alternate numbers are very brief and in simplified
form, however; so it is very difficult for general audience to understand the ideas of
quaternions and Ausdehungslehre by this book. Publication of Japanese translation of
Clifford’s “Common Sense” gave Japanese people an opportunity of taking a wide view
of mathematics and having a glance at some topics in higher mathematics. Actually,
“Suri Shakugi” had the effect of arousing and heightening the interest in mathematics
of a number of Japanese students.

3 The Imperial College of Engineering

We mention here briefly about another college in Tokyo, Kobu Daigakko, or the Imperial
College of Engineering4, which is a predecessor of the College of Engineering of the
University of Tokyo. This College was planned in 1871 by Kobusho, the Department
of Public Works of the Government, as a college to train students to be engineers
serving as government officials in that Department. Main factories in Japan were under
government management at that time. The actual start of this College, under the name
of Kogakuryo, was in 1873. All professors were invited from the United Kingdom, most

4The word ko (koh) means technology, engineering and daigakko means college, university.
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of them from Scotland. The principal of the College was Henry Dyer (1848 – 1918),
Professor of Civil and Mechanical Engineering. He was a graduate of the University
of Glasgow. He taught at this College until 1882. Professor of Mathematics (from
1873 to 1878) was David H. Marshall, a graduate of the University of Edinburgh.
Among the professors were William Edward Ayrton (Professor of Natural Philosophy
and Telegraphic Engineering, from 1873 to 1878) and John Perry (Professor of Civil
and Mechanical Engineering, from 1875 to 1879).

It was a six-year college of technical education. The whole course was divided into
three:

(1) the general and scientific course, the first two years,
(2) the technical course, the next two years,
(3) the practical course, the final two years.

Theory and applications, teaching and learning in school and practical training out-
side school were unified together. It was a big experiment, and it was successful. In
the general and scientific course, “Elementary Mathematics” was taught firmly — it
was a standard course of elementary mathematics with some applications to practi-
cal problems, and not the application-oriented one as in Perry 1899. In the technical
course, “Higher Mathematics” was taught to civil engineering, mechanical engineering
and telegraphic engineering students. Main contents of “Higher Mathematics” were
analytical geometry, differential and integral calculus and differential equations. Later,
“Applied Mathematics” (mechanics) was added in the curriculum. Also in the technical
course application of mathematics was taught. Ayrton and Perry used squared papers
extensively in technical education from 1876 (Perry 1899, p.27).

Judging from the curriculum, syllabi, and examination papers recorded in the “Cal-
endar” of the Imperial College of Engineering (1875-1879), vectorial quantities such as
forces and velocity were treated in mechanics and other subjects. “Quaternions” was
not a topic in the syllabus of mathematics. However, three copies of Kelland-Tait’s book
on quaternions (Kelland & Tait 1873) were kept in the Class Library of Mathematics of
this College, and, according to Kyu Kobu Daigakko Shiryo 1931, pp.163-164, one day
Professor Ayrton posed the following questions in his lecture on natural philosophy:

1. Can you add a line to a line?
2. Can you subtract a line from a line?
3. Can you multiply a line with a line?
4. Can you divide a line by a line?

It seems that these questions are related to the geometric introduction of quaternions.
However, there is no other evidence on the teaching of quaternions at this College.
Therefore, it is uncertain whether quaternions were taught or not.

In 1886, the Imperial College of Engineering and a part of the Department of Science
of the University of Tokyo were amalgamated as the College of Engineering of the
Imperial University of Tokyo.

4 Quaternions in Japan in the 1880s

Robert Henry Smith, professor of mechanical engineering at the University of Tokyo,
returned to England in 1878, and James Alfred Ewing (1855 – 1935) succeeded him
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as a professor of mechanical engineering at the Department of Science, University of
Tokyo. He was also a graduate of the University of Edinburgh, where he studied under
Professors H. C. Fleeming Jenkin and Tait. He taught mechanical engineering and
physics until 1883. He taught vectors in “Mechanics”, but it is uncertain whether he
treated quaternions in his lectures or not.

Cargill Gilston Knott (1856 – 1922) succeeded him as a professor of physics at the
College of Science of the University of Tokyo, and taught physics until 1890. Knott was
a graduate of the University of Edinburgh, too, and worked as an assistant of Professor
Tait before coming to Japan. In “The Fourth Annual Report of the University of Tokyo,
1883 – 1884”, Knott reported about his lectures and text and reference books (Tokyo
Daigaku Nenpo, vol. 2, p. 355). These books were:

Maxwell, Matter and Motion
Clifford, Element of Dynamic
Thomson and Tait, Natural Philosophy
Maxwell, Electricity and Magnetism
Thomson, Electrostatics and Magnetism.

William Thomson (Lord Kelvin) and Tait wrote two books on natural philosophy,
namely, famous “A Treatise on Natural Philosophy, vol. 1”, often called T+T′, and an
easier one: “Elements of Natural Philosophy”. It is uncertain which one was used as
a textbook. (Ewing used the latter as a book of reference for the subject “Mechanical
Engineering”.)

In Maxwell’s “Electricity and Magnetism” (1873), vectors are used extensively from
the beginning, and quaternions are used in later chapters. Maxwell, however, adds also
expressions by using components to formulas expressed by using notation of vectors or
quaternions, for the sake of audience who are unfamiliar with such notation. Knott
taught mechanics, electricity and magnetism. Vectors and quaternions were taught
relating with these topics.

In 1880s and 1890s, quaternions and elliptic functions were the highest topics in
mathematics taught in Japan. These topics were taught only at few institutions of
higher education, and only a few students learned these topics.

5 Shunkichi Kimura - the most ardent advocate of

quaternions in Japan

The most ardent advocate of quaternions in Japan was Shunkichi Kimura (1866-1938).
He studied physics and graduated from the College of Science of the University of Tokyo
in 1888. After five years of teaching at schools in Tokyo, he went to the United States
to study quaternions and mathematical physics, first at Harvard University and then
at Yale University, and earned Ph.D. under Professor Josiah Willard Gibbs. Kimura
and Pieter Molenbroek, a Dutch scientist, intended to establish an association of those
interested in quaternions and various systems of vector analysis to promote and to
develop researches in these fields, and published a notice in Nature addressed to “Friends
and Fellow Workers in Quaternions” in 1895. This resulted in the establishment of the
International Association for Promoting the Study of Quaternions and Allied Systems
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of Mathematics in 1896 (Crowe 1985). Kimura also wrote his idea in Japanese, and his
article was printed in a journal Toyo Gakugei Zasshi in November 1895 (Kimura 1895).

Kimura returned to Japan in 1896, and was appointed to a professor of physics
at Dai-ni Koto Gakko (The Second Higher School), an institution of higher education
in Sendai. Soon after, he gave private lectures on quaternions to interested persons.
He intended to publish these lectures as “Lectures on Quaternions” in book form,
in two volumes, but only the first volume, introductory part, was published in 1897
(Kimura 1897). Kimura gives a brief history of Hamilton’s quaternions, Grassmann’s
Ausdehnungslehre and other vectorial systems in the Introduction of his book. He re-
marks that, among various vectorial systems, Hamilton’s quaternions and Grassmann’s
Ausdehnungslehre have philosophical background, and says:

What is a quaternion? A quaternion is defined geometrically as an opera-
tor transforming a directed line segment to another one, by rotating and by
changing the length of the former; algebraically, a quaternion is a product or
a quotient of two directed line segments; analytically, a quaternion is a sum
of a quantity without direction and a quantity with direction. Due to these
three aspects of quaternions, formulae using quaternions have rich in phys-
ical and geometrical meaning, far more than formulae in usual analytical
geometry.

Then he says that Ausdehnungslehre and quaternions are essentially the same, and,

Those who intend to study pure mathematics should study the former, and
those who intend to study applied mathematics should study the latter.

To study quaternions, he recommends Hamilton’s “Elements of Quaternions” (Hamil-
ton 1866) or Molenbroek’s “Quaternionen” (1894, 1895) as the first step, Tait’s “Ele-
mentary Treatise on Quaternions”, 3rd edition (1890) (Tait 1867) as the second step,
and McAulay’s “Utility of Quaternions in Physics” (1893) as the third step. He says also
that among the vectorial systems based on quaternions, but using somewhat modified
notation, vector analysis of Gibbs (not published, 1881 – 84) is worthy of notice. He also
expresses his opinion about definitions of concepts relating to quaternions and his pref-
erence on notation in various vectorial systems. In short, his opinion is that definitions
and notation should reflect the nature and philosophical background of quaternions.

After the Introduction, ten lectures (chapters) are given. The title of each lecture
is as follows:

1. Vectors
2. Vector Equations
3. Conic Sections
4. Miscellaneous Curves
5. Quadratic Surfaces
6. String Surfaces, Miscellaneous Surfaces and Limited Spaces
7. Differentiation of Vectors
8. – 10. Curves and Surfaces
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In these lectures, vectors and vector geometry including differential geometry of
curves and surfaces, with some applications to physics, are treated. Quaternions are
not introduced in the introductory part of the lectures, so inner and outer products of
vectors are not treated. It is well-written, but it was very difficult for Japanese people
at that time. So the second volume, the main part of the lectures, was not published.
As a result, Kimura’s book explained the usefulness of vectors — not quaternions —
in geometry and physics. In 1900, Kimura left the teaching profession and worked as
a research engineer in the Navy to improve wireless telegraphy, and left the research
of mathematical physics. (As to the biography of Kimura, see for instance Komatu
1990-1991, vol. 2).

6 Concluding remarks

Introduction and teaching of quaternions and related topics, and researches on these
subjects in Japan in the last quarter of the nineteenth century were due in large part
to Professors Smith, Kikuchi, Knott and Kimura.

As mentioned above, in the last two decades of the nineteenth century, “Quater-
nions” was a branch of higher mathematics and was taught at only a few institutions
of higher education in Japan. Only a few people learned vectors in mathematics. On
the other hand, vectors or vectorial quantities such as forces and velocity were treated
in the courses of physics, mechanical engineering and civil engineering in their ways.

Quaternions played a role as a branch of mathematics useful for physics, especially
for mechanics and electromagnetic theory in the last two decades of the nineteenth
century. However, this role has been changed from quaternions to vector analysis early
in the twentieth century.

Since the last decade of the nineteenth century, studies and researches of mathe-
matics in Japan have gradually been oriented to pure mathematics. Main interests of
Japanese mathematicians had gradually shifted away from British or French mathe-
matics to German pure mathematics — algebra, number theory, and analysis. This
tendency was partly affected by the view of mathematics and mathematical education
of Rikitaro Fujisawa (1861-1933), Professor of Mathematics of the Imperial University
of Tokyo, the most influential Japanese mathematician at that time. Vectors and vector
analysis were regarded as topics of applied mathematics useful for studying mechanics
and physics, or a part of mechanics or electromagnetic theory, and studied mainly by
physicists and engineers, and not by (pure) mathematicians.

Since the late 1920s, however, vectors and related topics have been treated again
by pure mathematicians, in the light of modern mathematics. Since then, quaternions
have been introduced and treated algebraically, for instance, as elements of the field of
quaternions, a non-commutative field over complex numbers, or elements of an algebra
over the reals, and not geometrically.
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ABSTRACT 
An exciting appearance of History of Mathematics in School textbooks consists in naming the geometrical 
theorems and, in this way, institutionalizing them in School Education. The name Theorem of Thales 
appears at the end of 19th century- within different cultural, mathematical and educational environments- as 
attributed to different theorems in European textbooks of Geometry. An interpretation of this phenomenon 
led us to the concept of didactical reconstruction, which we think is suitable for a further study of “uses” of 
History of Mathematics in School Education.  

History of Mathematics has an extremely long and exciting history of educational or even 
didactical “uses”, as it appears particularly in textbooks through the ages. Restricting ourselves in 
Geometry textbooks and having in mind that we refer to different centuries and different cultural 
and social environments, we can consider that, since the time of Proclus’ Commentary in the first 
book of Euclid’s Elements (5th century a.D.), there are many appearances of History of Geometry 
in Geometry textbooks. Until now, as far as we know, there is no systematic study of the 
development of these appearances1. As a contribution to this history, we shall present one of the 
most important and astonishing “uses” of the history of Geometry in Geometry textbooks at the 
end of 19th century: the appearance and establishment of the name Theorem of Thales.

As the national educational systems develop and the Christian Church looses control over them, 
during the 19th century, education and textbooks enter a new phase of development. As a 
consequence of the new pedagogical and didactical demands of this century, big changes take 
place in mathematical education and particularly in the teaching of Geometry (Cajori, 1910). The 
lesson of Geometry is established in lower grades and levels of secondary education and in 
primary education. Also, the way of teaching Geometry changes radically in upper grades of 
secondary education: it becomes sometimes (in England, France and less in Germany) an exercise 
of Logic (Smith, 1900, 303), in the context of introducing students to “the art of syllogism”.  

These changes are detected in textbooks of Geometry, with respect to their content as also the 
system of their production and circulation (writers, publishers). The circulation of textbooks 
increases greatly in the number of (different) textbooks as also in the number of copies of each 
edition. Also there is an increase in the number of translations of important textbooks in several 
languages. For example, there are many translations of French textbooks in several languages, 
within which most important are the Geometry textbooks of Legendre and Lacroix (Schubring, 
1996, p. 367). 

With the exception of England, the content of Geometry textbooks (especially these for the 
upper grades of secondary education) begins to deviate more and more from Euclid’s Elements, a 
work that had been a paradigm of exposition of Geometry through all previous centuries. As an 
example of this development we can consider the significant influence of the Legendre’s Elements 

                                                     
1 The work of M. Gebhardt, Die Geschichte der Mathematik im mathematischen Unterrichte, 1912, 

remains an exception, see (Furinghetti 2001, p. 1). 
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of Geometry - first edition in 1794, (Schubring, 1996, p. 366) - on the European textbooks (as also 
those of the United States) during 19th century. Several writers follow this textbook, according to 
which the study of the circle (3rd book in Elements) precedes that of parallelograms (2nd book of 
Elements). Thus these writers change the Euclidean order of exposition of the subject matter of 
Geometry, as they consider that the concept of circle is more simple and elementary than that of 
the parallelogram (Smith, 1900, p. 230). 

Besides these and other changes in the geometrical content of the textbooks, towards the end of 
19th century, we have a more or less systematic appearance of elements that are not directly 
geometrical and do not appear to be in organic unity with the rest (directly) geometrical content of 
textbooks. These elements are supposed to be references to History of Geometry, the “historical
references”. By the term “historical references” we mean parts of the text of a Geometry textbook, 
which are supposed to refer to elements from History of Geometry and which are written in such a 
way that their omission from the rest text of the book would not cause any damage to the 
understanding of the (geometrical) text. In the first phase of their appearance in textbooks, 
historical references are not an organic part of the text and this is obvious from the place in which 
where they appear: either at the general introduction or at the introduction of each chapter, at the 
end of a chapter, or within the text but in brackets and/or lower letters, or even under the text in 
footnotes (usually with lower letters). The content of these historical references usually refers to 
the work of ancient mathematicians (either with naming of the theorems they supposed proved or 
not), sometimes containing a small summary of the evolution of Geometry or a note for some 
advanced or more specific geometrical subject and dates related to it, etc. Such historical
references are in fact not new in Geometry textbooks: they existed in older textbooks but they 
were not established and appeared only in few writers. For example, there are summaries of the 
evolution of Geometry in textbooks of 17th century2; also the name “Lunules of Hippocrates” 
appears in a textbook of 17th century3.

We believe that this (re)appearance of historical references into Geometry textbooks at end of 
19th century is related in some extent with the great advances in History of Mathematics after 
1870, mainly in England, France, Germany and Italy (Allman, 1877, pp. 160-161), in connection 
with the growing interest about historical studies in general (Allman, 1877, p. 160). This interest 
about History of Mathematics led some writers and teachers of Mathematics to try to “use” History 
in the teaching of Mathematics, in a more “systematic” way than before, see (Dauben 1999, p. 11 
quoting G. Eneström). The introduction, in particular, of references to Ancient Greece can be 
explained by the great general interest, during the 19th century, about Ancient Greece and Greek 
mathematical works4. Some of these references to Ancient Greece simply consist of naming
theorems. One of these peculiar historical references introduces the name Theorem of Euclid (only 
in German textbooks), and one more, which we study in the sequel, introduces the name Theorem 
of Thales.

                                                     
2 In (Kokomoor 1928, p. 101) we find such summaries existing in three textbooks of Beaulieu (1676), 

Leybourn (1690), Le Clerc (1690). 
3 In [Lietzmann 1912, 35] there is a reference about the name Lunes de Hippocrate de Scio appearing in 

the textbook Elemens de Geometrie of the Jesuit Pardies (1676), as well as a reference of the textbook of 
Tacquet- Whinston (1745). The above name appears also in the Modern Greek translation of the original 
edition (1710, according to (Karas, 1993, 70) of the book of Tacquet- Whinston, translated by .Voulgaris 
as o (conjugate lunes of Hippocrates of Chios) (Voulgaris, 1805, 
p. 296, p. 302). 

4 There are many editions of ancient Greek mathematical works at the end of 19th century, see for 
examples (Allman, 1877, p. 161). 
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 In Ancient Greek sources we find five main references to Thales about geometric 
achievements and some other references concerning the measurement of the height of Pyramids of 
Egypt (Plutarch, Hieronymus the Rodian, Pliny). Four of the main references are found in Proclus. 
They attribute to Thales the following specific theorems: the circle is bisected by its diameter, the 
angles at the base of an isosceles triangle are equal, vertical angles are equal and two triangles are 
equal when they have one side and two adjacent angles equal. The other main reference is found in 
Diogenes Laertius’ biography of Thales, mentioning the testimony of Pamphila that Thales first 
“inscribed an orthogonal triangle in a (semi-)circle”. In modern works of historians of 
Mathematics we find various opinions about the possibility of attribution of all above theorems to 
Thales5, but no historian accepts a naming of a theorem as Thales’ Theorem. There are three 
historians who mention this name: two of them, G. Loria (Loria, 1914, p. 22) and P. Tannery 
(Tannery, 1930, p. 67), reject it, and the other is G. Eneström, who expresses serious objections 
(Enriques, 1911, p. 57). The case of D.E. Smith is different. He has both been a practitioner in 
History of Mathematics and a textbook writer. However, it is remarkable that he never used the 
name Theorem of Thales in his texts.  

On the contrary, usually there is no discussion of ancient sources at all, when attributions of 
theorems (or even the name Theorem of Thales) are introduced in textbooks of School Geometry. 
We only find (different) choices among these theorems attributed to or named after Thales, with 
no critical discussion or argumentation. Besides, the name Theorem of Thales, as we shall see, is 
attributed to different geometrical theorems.  

Many years before the appearance of the name Theorem of Thales, historical references appears 
in Geometry textbooks, in which various geometrical achievements are attributed to Thales. Thus 
in (Voulgaris, 1805, 25) there is an attribution of the measurement of inaccessible points by 
applying the theorem that two triangles are equal when they have one side and two adjacent angles 
equal. Also Benjamin of Lesvos (1820, p. 90) attributes to Thales the theorem about the angle 
inscribed in semicircle, as well as that about the equality of vertical angles (Benjamin of Lesvos, 
1820, p. 21]. The same writer says, in the introduction of his book, that Thales has measured the 
height of Pyramids of Egypt by using proportionality of the sides of similar triangles (Benjamin of 
Lesvos, 1805, p. 6). 

The name Theorem of Thales first appears in a few French textbooks during the end of 19th

century (at least since 1882) as attributed to the (general) theorem: “Parallel lines cutting other 
lines cut them in proportional segments” (theorem of proportional line segments) (see examples of 
textbooks in (Plane, 1995, 80-81)). The same name is attributed to some special cases of the 
general theorem, as e.g.: “A parallel line to one side of a triangle cuts the other sides in 
proportional segments” (first edition of E. Combette, 1882, in (Plane, 1995, 79)) or: “Equiangular 
triangles have their sides proportional” (E. Rouché & C. de Comberousse, Reedition of 1883, in 
(Plane, 1995, p. 79). Until the decade of 1920 the name is established in French textbooks and 
appears also in the French curriculum of 1925 (Bkouche, 1995, p. 9) and in textbooks of 
Descriptive Geometry (Cholet & Mineur, 1907- 1908, p. 315). 

The theorem of proportional line segments bears also the same name in Italian textbooks of 
Geometry (Faifofer, 1890, p. 262), at least since 1885. The same naming applies to Italian 
textbooks of Analytic Geometry (D’Ovidio, 1885, p. 34) and Analytic- Projective Geometry 
(Burali- Forti, 1912, p. 92). 

                                                     
5 See for example (Cantor 1907, 134-147), (Heath 1921, 128-137), (Tannery 1887, 81-94). 
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 The name Theorem of Thales appears also in few German textbooks of the end of 19th century 
(at least since 1894), but this time it is attributed (Schwering & Krimphoff, 1894, p. 53) to a 
different theorem: “The inscribed angle to a semicircle is a right angle” (with small variations). 
The same name is established in German textbooks during the first decades of the 20th century. It 
also appears in a German Encyclopaedia of Mathematics (Weber, Wellstein & Jacobsthal, 1905, p. 
232). 

The name Theorem of Thales did not appeared in the textbooks of United States of America, 
nor in these of England, but in the case of United States we have references to Thales, concerning 
geometrical achievements as well as measurements attributed to him6. Several of these historical
references are due to D.E.Smith (Wentworth & Smith, c1913, p. 32, p. 466, p. 454).  

As a consequence of the cultural influence of France and Germany on several European 
countries, the name Theorem of Thales also appeared in those countries’ textbooks. Thus the name 
Theorem of Thales appears in Spanish (Deruaz & Kogej, 1995, p. 239), Belgian (Cambier, 1916, p. 
142] and Russian textbooks (Kastanis, 1986, p. 3) with the same sense as in French and Italian 
textbooks. The same name, but with the attribution of German textbooks, appears in Austrian, 
Hungarian (Howson 1991, p. 21) and Chech textbooks (Pomylaková, 1993, p. 620). Modern Greek 
textbooks are a singular case, since they apply first the name in the sense of German textbooks 
(Hadjidakis, 1904, p. 60) and later they apply the same name but in the sense of French textbooks 
(Nikolaou, 1927, p. 128), (Barbastathis, 1940, p. 136). 

A first attempt for an explanation of naming of theorems as above leads to the different 
(cultural) conditions holding in the mathematical education of each country. An important example 
is furnished by France, where there was a long tradition of opposition to Euclid (Schubring, 1996, 
p. 377) (Cajori, 1910, p. 182), which led to a different order of the subject-matter of Geometry 
from the Euclidean one. In Euclid, the theorem of the square of the hypotenuse (theorem 47 of the 
1st book of Elements) precedes the theory of proportions (5th book of Elements) as well as the 
theorem corresponding to that of proportional lines (theorem 2 of 6th book). In French textbooks 
this order has been reversed since the epoch of P. Ramus - something that did not happened in 
German textbooks even until the beginning of 20th century. Italian textbooks (after 1866- 1868) 
adopted the Euclidean order of exposition of the subject- matter of Geometry, because Euclid’s 
Elements was formerly taken to be the official textbook in Italian schools (Schubring, 1996, pp. 
377-378) (Cajori, 1910, p. 191). 

Meanwhile, in France, the theorem of proportional lines obtained a principal position in 
(school) textbooks, because of new developments in (academic) mathematical research in 
Geometry. After works of G. Desargues, B. Pascal, La Hire (1685), Carnot (Coolidge, 1934, pp. 
219-220), the work of J.V. Poncelet (1813, published 1822) marks the beginning of Projective 
Geometry and Affine Geometry; an important theorem, within the latter, is that of proportional 
line segments determined on two straight lines by parallel lines cutting them. These new 
mathematical developments were, in a sense, institutionalized7 in the teaching of Geometry 

                                                     
6 In (Betz &Webb, c 1912, p. 281) measurement of height of Pyramids and measurement of unaccesible 

points [68]. In (Fletcher, 1911) among other achievements, every diameter bisects a circle [496].  
7 Institutionalization is, first and foremost, a symbolic act of showing what is important and respectable 

within human society or within a context of social activity. In this sense, institutionalization in the context of 
(mathematical) education uses (names of) historical figures as Thales, Pythagoras and sometimes also 
Euclid as assigning a status to the subject taught. See also (Patronis, 2002, p. 68). 
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towards the end of 19th century, when there was a growing historical interest about Thales as a 
mathematician8, by selecting and establishing the name Theorem of Thales for the above theorem.  

This interpretations is especially supported by the case of Italian textbooks. Although Italian 
textbooks preserve the Euclidean order of exposition of theorems, Italian textbook writers tend to 
introduce elements from Projective Geometry (especially L. Cremona, see Cajori, 1910, p. 191). 
Also, there were some Italian writers who tried to blend plane and solid Geometry (textbook of R. 
de Paolis, 1884, see (Candido 1899, p. 204)) by using, again, ideas from Projective Geometry. In 
this way there was already a “preference” of Italian writers for the theorem about proportional line 
segments, which they attributed to Thales. 

The case of German textbooks is different, since there was not a change of order of exposition 
towards the direction of French textbooks. On the contrary, there was a strong preference for the 
theorem about the square of hypotenuse (the so called Pythagorean Theorem 9), as well as for 
exercises about construction of triangles (Fletouris, 1912, pp. 96-97). This preference declares a 
School Geometry which is “closer” to Euclid and misses a “blending” with Projective or Affine 
Geometry. Of course, this does not mean that academic research in Germany did not participate in 
the development of Projective Geometry, after 1830 (J. Steiner and K.C. von Staudt (Coolidge, 
1934, pp. 222-223]). It only means that German textbooks writers, being under the influence of a 
different cultural and educational environment than that of French and Italian textbook writers, 
chose a more “classic” theorem to attribute to Thales, i.e. the theorem about the angle inscribed to 
a semicirle.  

As another general remark about textbook writers’ choices we could add that, usually, names 
are attributed only to theorems, which are mostly considered as important and significant in 
School Geometry10. The name Theorem of Thales was finally established for the theorem of 
proportional lines as well to that of the angle inscribed to a semicircle, although some textbook 
writers had attributed to Thales other theorems also (such as the theorem about vertical angles 
(Kruse, 1875, p. 18)). Naming a theorem is a symbolic act which goes further than a simple 
“historical reference”.

Our study concerns elements of content of textbooks, which do not refer directly to 
mathematical concepts, but to their “historical origin”. Nevertheless, the process of manipulation 
of these elements is similar to that described as institutionalization and didactical transposition of 
mathematical concepts (Chevallard & Joshua, 1982). In fact, in our case, textbook writers are 
interested in finding a way to show the importance and significance of some theorems in the 
subject matter taught. Having already used various ways to underline the importance of a concept 
(or a theorem), they “use” history to find one more “official” way to establish it through the name 
of a great person. 

In a first phase of this process, we have some historical references to Thales in the textbooks, 
without a naming of theorems. For example, there is an attribution of a theory of similar triangles 
to Thales in a French textbook of 1866 (Rouché & Comberousse, 1866, p. v) and an attribution of 
two theorems (vertical angles, inscribed angle) in a German textbook of 1875 (Kruse, 1875, p. 18, 
p. 64). This first phase of the appearance of historical references, is corresponding to the phase 
which Chevallard and Joshua calls “paramathematical use of a concept”, i.e. the use of a 

                                                     
8 There was a growing historical interest about early Greek Mathematics, since the work of C. A. 

Bretschneider, Die Geometrie und die Geometer Vor Euklides, 1870, see (Allman, 1877, 161).  
9 In bibliography of [Lietzmann c1912, 70] there are other books in German about this theorem: J. 

Hoffmann (1819), J. Wipper (1880), H.A. Naber (1908). 
10 This is also the case of name Pythagoras’ Theorem. There is also the name Theorem of Hippocrates of 

Chios in Modern Greek textbooks of Geometry (Patsopoulos, 2003, p. 577). 
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mathematical concept in some specific context, but without a rigorous definition (Chevallard & 
Joshua, 1982, p. 187).  

In a later phase, the historical references to Thales (without any critical discussion) turn 
suddenly into naming of the corresponding theorems and using their name within the main text of 
the books. The corresponding step in the case of didactical transposition is institutionalization and 
formal definition of (para)mathematical concepts (Chevallard & Joshua 1982, pp. 200-202). The 
establishment of the name Theorem of Thales in this final case serves a didactical need by the 
“using” History of Geometry, in the particular way and interpretation given by textbook writers. 
We are thus led to speak (in analogy to didactical transposition) of a “didactical reconstruction” of 
History of Geometry, i.e. a reconstruction of History of Geometry for didactical needs.  

REFERENCES 

-Allman, G.J., 1877, Greek Geometry from Thales to Euclid, From Hermathena, vol. III, n. V, Dublin: 
Printed at the University Press by Ponsonby and Murphy. 
-Barbastathis, X.A., 1940, Theorical Geometry, For 4th, 5th, 5th classes of new type Gymnasium, Athens: 
Organisation of Edition of Textbooks [in Greek]. 
-Benjamin of Lesvos, 1820, Elements of Geometry of Euclid, Wienn [in Greek]. 
-Betz, W., Webb, H.E., c1912, Geometry, with the editorial cooperation of P.F.Smith, Boston- New York- 
Chicago-London- Dallas- Columbus- San Francisco: Ginn and Company. 
-Bkouche, R., 1995, “Variations sur les liens entre le géométrique et le numérique: Autour du théorème de 
Thalès”, in Autour de Thalès, Comission Inter-IREM Premier Cycle, pp. 7-67. 
-Burali- Forti, C., 1912, Corso di Geometria Analitico-Proiettiva per gli Allievi della R. Accademia 
Militare, Torino: Casa Editrice G.B. Petrini di Giovanni Gallizio. 
-Cajori, F., 1910 “Attempts made during the Eighteenth and Nineteenth centuries to reform the teaching of 
Geometry”, American Mathematical Monthly, 17, issue 10 (Oct.1910), 181- 201. 
-Cambier, A., 1916, Éléments de Géométrie, édition revue et complète par O. Lambot, Bruxelles: Maison 
d’Edition, A. de Boeck. 
-Candido, G., 1899, “Sur la fusion de la Planimétrie et de la Stéréométrie dans l’enseignement de la 
Géométrie élémentaire en Italie’’, L’Enseignement Mathématique, 1, 204-215. 
-Cantor, M., 1907, Vorlesungen über Geschichte der Mathematik, Erster band, Nachdruck der dritten 
Auflage von 1907, New York: Johnson Reprint Corporation - Stuttgart: B.G. Teubner, 1965. 
-Chevallard, Y., Joshua M.-A., 1982, “Un exemple d’analyse de la transposition Didactique, La notion de 
distance”, Recherches en Didactique de Mathematiques, 3, 159-239. 
-Cholet, T., Mineur P., 1907-1908, Traité de Géométrie Descriptive, Paris: Vuibert et Nony. 
-Coolidge, J.L., 1934, “The rise and fall of Projective Geometry”, American Mathematical Monthly, 41,
issue 4 (April), 217-228. 
-Dauben, J.W., 1999, “Historia Mathematica: 25 Years/ Context and Content”, Historia Mathematica, 26,
1-28 
-Deruaz, H., Kogej, N., 1995, “Le théorème de Thalès: comment est-il enseigné en Europe?”, in Autour de 
Thalès, Comission Inter-IREM Premier Cycle, pp. 233-243 
-D’Ovidio, E., 1885, Teoria Analitica delle Forme Geometriche Fondamentali, Lezioni Date nella Regia 
Università di Torino, Torino: E. Loescher. 
-Enriques, F., 1911, “Principes de Géométrie”, in Molk J. (ed.), Encyclopédie des Sciences Mathématiques 
Pures et Appliquées, Édition Française, t. III, II, Paris: Gauthier- Villars, Leipzig: B.G.Teubner, Reedition: 
Paris:  J. Gabay, 1991. 
-Faifofer, A., 1890, Elementi di Geometria ad Uso degl’Istituti Tecnici (1o Biennio) e dei Licei, 7th edition, 
Venezia: Tipografia Emiliana. 
-Fletcher, D., 1911, Plane and Solid Geometry, New York: Charles E. Merill Co. 
-Fletouris, I.S., 1912. The teaching of Science and Mathematics in German Schools of secondary education, 
according to F.A.Marotte, Bookshop D. Dimitrakou, Athens [in Greek] 
-Furinghetti, F., 2001, “A century ago”, History and pedagogy of Mathematics Newsletter, n. 48, November 
2001, p.1 
-Hadjidakis, I.N., 1904, Elements of Geometry, For the pupils of Gymnasium, 8th edition, Athens: Editions 
of P.D. Sakellariou [in Greek]. 
-Heath, T.L., 1921, A History of Greek Mathematics, Oxford: the Clarendon Press. 
Howson, G., 1991, National Curricula in Mathematics, Avon: The Mathematical Association, Bath Press. 

114



Karas, G., 1993, Science under Othoman Empire, Manuscrits and books, volume 1st: Mathematics, Athens: 
Bookshop of “Hestia” [in Greek]. 
-Kastanis, N., 1986, “A case of historical confusion in Geometry textbooks”, p. 3-4, Newsletter of the Group 
for the History of Mathematics, n. 2 (May) [in Greek]. 
-Kokomoor, F.W., 1928. “The teaching of Elementary Geometry in the Seventeenth century”, Isis, 11, issue 
1, (September), 85-110. 
-Kruse, F., 1875, Elemente der Geometrie, Berlin: Weidmann. 
Lietzmann W., 1912, Der Pythagoreische Lehrasatz, Leipzig - Berlin: B.G. Teubner. 
-Loria, G., 1914, Le Scienze esatte nell’ antica Grecia, 2nd ed. totalmente riveduta, Milano: U. Hoepli. 
-Nikolaou, N.D., 1927, Elementary Geometry, For use of the pupils of Gymnasium and Lyceum, Athens: 
D.N. Tzaka- S. Delagrammatica & Co [in Greek]. 
-Patronis, A., 2002, “Ideology and institutionalization of knowledge: Questions that History of Mathematics 
proposes in Mathematical Education and vice versa”, in Proceedings of 19th Panellenic Conference of 
Mathematical Education, Komotini: Greek Mathematical Society, pp. 63-72 [in Greek]. 
-Patsopoulos, D., 2003, ““Theorem of Hippocrates of Chios”: Constructing (the name of) a theorem for 
modern Greek textbooks of Geometry”, in Proceedings of 3rd Mediterranean Conference on Mathematical 
education, Gagatis A., Papastavridis S. (eds.), Athens-Hellas: Greek Mathematical Society, Cyprus 
Mathematical Society, pp. 573-579. 
-Plane, H., 1995, “Une invention français du XXe siècle: le théorème de Thalès”, in Autour de Thalès, 
Comission Inter-IREM Premier Cycle, pp. 68-85. 
-Pomylaková, E., 1993. Matematika, Planimetrie, Pro Gymnázia, Prometheus. 
-Rouché, E., Comberousse, C. de, 1866, Traité de Géométrie Élémentaire, Paris: Gauthier-Villars. 
-Schubring, G., 1996, “Changing cultural and epistemological views on mathematics and different 
institutional contextes in nineteenth-century Europe”, in L’ Europe Mathematique- Mythes, histoires, 
identités. Mathematical Europe- Myth, History, Identity, C. Goldstin, J. Gray, J. Ritter (eds.), pp. 363- 388. 
-Schwering, K., Krimphoff, W., 1894, Anfangsgrüde der ebenen Geometrie, Freiburg im Breigsgau:
Herdersche Verlagshandlung. 
-Smith, D.E., 1900, The Teaching of Elementary Mathematics, London-New York: Macmillan & Co. 
-Tannery, P., 1887, La Géométrie Grecque, Paris: Gauthier- Villars; reedition Paris: Gabay, 1988 
-Tannery, P., 1930, Pour l’Histoire de la Science Hellène, De Thalès a Empédocle, Deuxième Édition Paris: 
Gauthier- Villars, reedition Paris: Gabay, 1990. 
-Voulgaris, E., 1805, Elements of Geometry of Taquet, with notes by W. Whinston, Wienn [in Greek]. 
-Weber, H., Wellstein, J., Jacobsthal, W., 1905, Encyclopädie der Elementar-Mathematik, zweiter band: 
Encyclopädie der Elementaren Geometrie, Leipzig: B.G. Teubner. 
-Wentworth, G., Smith, D.E., c1913, Plane and Solid Geometry, Boston-New York-Chicago-London- 
Dallas-Columbus- San Francisco: Ginn and Company. 

115



ON THE PRINCIPLES OF GEOMETRY
An article by Torsten Brodén from 1890

Johanna PEJLARE
Department of Mathematics, Uppsala University

Box 480, SE 751 06 Uppsala
johanna@math.uu.se

ABSTRACT

We consider the Swedish mathematician Torsten Brodén’s article Om geometriens principer
from 1890. In his article Brodén gives a philosophical and pedagogical discussion on geometry
and he develops an axiomatic system for Euclidean geometry. We consider in detail Brodén’s
view on the nature of geometry, which is influenced by Helmholtz. Brodén considers geometry
to be an empirical inductive science, but at the same time he claims that geometry deals with
ideal objects that are not revealed in the immediate external experience.

We discuss the criteria Brodén gives for the basic notions and axioms of a scientific system.
He gives a criterion of independence of the axioms, and criteria that can be interpreted to
be versions of completeness and consistency. In establishing the basic notions of geometry,
Brodén considers motion, which he maintains presupposes all natural sciences. Motion, he
claims, can be reduced to the concept of point and immediate equality of distance. Finally we
briefly discuss the axioms given for Euclidean geometry.

1 Introduction

Torsten Brodén (1857-1931) studied mathematics at the University of Lund, where
he in the spring of 1886 presented his Ph.D. thesis with the title Om rotationsytors
deformation till nya rotationsytor med särskildt afseende p̊a algebraiska ytor (‘On the
Deformation of Surfaces of Rotation to New Surfaces of Rotation with Special Attention
to Algebraic Surfaces’) (Brodén, 1886). He continued teaching at the Mathematical
Seminar in Lund and at high school before he in 1906 succeeded C.F.E. Björling as a
professor of mathematics at the University of Lund (Svenskt Biografiskt Lexikon, 1925).

Brodén’s mathematical activity was unusually many-faceted. He worked in as dif-
ferent fields as elliptic functions, fuchsian differential equations, set theory and the
logical foundations of mathematics (G̊arding, 1994). A characteristic of his work was
his need to always obtain full clarity regarding basic mathematical notions. One of the
first examples of this we can see in his 1890 article Om geometriens principer (’On the
Principles of Geometry’) (Brodén, 1890) where he, several years before Hilbert’s first
attempt, develops an axiomatic system for Euclidean geometry.

Brodén published his article in the Swedish pedagogical journal Pedagogisk Tidskrift,
a journal for Swedish teachers of the secondary schools. In the article Brodén gives a
philosophical and pedagogical discussion on geometry and develops an axiomatic system
for Euclidean geometry. It seems that the article did not get a lot of attention, even
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though Brodén wrote a summary of the mathematical part of his work for the Jahrbuch
über die Fortschritte der Mathematik (1893). A reason for this might be the choice of
journal since for the international public the Swedish language was an obstacle.

Brodén’s axiomatic system of Euclidean geometry is considered in detail by W.
Contro (1985). I will in this article instead consider Brodén’s discussion on the nature
of geometry and on his view on geometry as a science. I will discuss the criteria Brodén
gives for a scientific system, and his choice of basic notions for establishing an axiomatic
system for geometry. However, I will not discuss his axiomatic system in great detail,
but only present his main ideas.

2 The philosophical discussion

Brodén’s aim with his 1890 article is mainly to take part in an ongoing pedagogical
debate on the problems in Swedish schools. He points out that there are faults and
defects in the teaching of geometry, but he does not further discuss what these are and
how to do something about them. His aim is not to call for any major reforms in the
immediate future. As a reason for this he refers to, among other things, the difficult
nature of geometry and that a thorough judgement of the scientific side of geometry
demands considerations of deep and disputed questions.

Brodén discusses the often heard statement, that the value of geometry as a school
subject is the possibility for it to be treated in a strictly ‘scientific’ way. To decide if
this statement is true, he wants to investigate on the one hand what a strictly scientific
geometry should look like, on the other hand if such a scientific character is possible or
suitable at the school level. He treats these two aspects in his article, but here I will
only consider his discussion on the former.

In his remarks on the ontological status of geometry, one clearly sees the influence
on Brodén of the ideas of Hermann von Helmholtz (1821-1894). Brodén claims that,
if geometry should have some application to the objects of nature, then it has to be
looked upon as a natural science, i.e. an empirical inductive science. But geometry is
not like any other science. Quoting Helmholtz, he states that geometry is ’die erste und
vollendetste der Naturwissenschaften’. This quote comes from Helmholtz article Über
den Ursprung und Sinn der geometrischen Sätze (Helmholtz, 1882).

Despite the fact that Brodén considers geometry to be a natural science, he con-
siders natural science to presuppose geometry (that is why geometry is ’die erste’). He
states the reason for this to be that natural science endeavours to reduce different phe-
nomena to motion, but to comprehend motion we need the ‘empty, stationary space’
as a background. In this sence one may say that motion presupposes geometry.

Even though Brodén considers geometry to be an empirical science, he claims that
geometry deals with ideal objects that are not revealed in the immediate external expe-
rience. This might seem odd at first, but shows what is typical during the last couple of
decades of the 19th century between Pasch and Hilbert. Brodén stands with one foot
in the old Aristotelian approach that geometry is founded on empirical grounds, but
at the same time he has a modern approach towards the foundations of geometry. He
does not consider these two opinions to be in conflict and draws parallels to attempts to
systematize chemistry and physics, where the ideal objects correspond to ‘atoms’ and
‘ether vibrations’. The empirical comprehension, he claims, should only be considered
as a starting point, and experience can hardly lead to logical contradictions.
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In spite of the starting point that geometry is to be considered as a natural science,
Brodén wants to point out that geometry as a logical possibility can be independent
of space and time. He maintains this since arithmetic can be considered as a logical
system independent of space and time, and geometry is nothing but arithmetic, or can
at least be ‘totally dressed in an arithmetic costume’ (p. 219).

Brodén wants to gain support for his views by carrying out a detailed examination
of the foundations of geometry.

3 The criteria for a scientific system

Brodén considers the goal of science to be to get a clear insight into the nature of
‘things’, and to describe the inner structure of the concepts in a clear way. Therefore,
he claims, a scientific system should be built up from a number of undefined basic
notions and a number of unproven axioms. He gives a number of criteria these basic
notions and axioms for a scientific geometry should fulfill. Here follows a translation of
his criteria (p. 220-221):

1. The notions should be reduced to the smallest possible number of un-
defined basic notions.

2. All theorems should be proved from a minimal possible number of
unproven axioms.

3. There should be the greatest possible degree of empirical evidence for
the axioms.

4. The axioms should form a homogeneous system.

5. The sufficiency of the axioms for arranging geometry under certain
logical forms, should be clear.

6. The axioms should be independent of one another.

We can see some similarities between Brodén’s criteria and Hilbert’s approach that
the axioms in an axiomatic system should be independent, complete and consistent.

The sixth criterion considers the independence of the axioms. The method of sys-
tematically studying the mutual independence of axioms is the method of contructing
models: the model is shown to disagree with one and to satisfy all the other axioms,
and hence the one cannot be a consequence of the others.

The fifth criterion could be interpreted as some type of completeness requirement.
With the fourth criterion Brodén probably alludes to a homogenous ontology in the

axiomatic system, i.e. a scientific system should be built up of similar components and
one should not mix different types of ‘things’ into the axiomatic system.

In the third criterion Brodén’s empirical view of geometry comes through; it should
be evident from the axioms that geometry after all is a natural science. Since, according
to Brodén, our experience can not lead to logical contradictions, this criterion may imply
some kind of consistency.

With the first and second criteria Brodén probably wants to emphasize that the
basic notions and the axioms must be chosen in an ‘intelligent’ way, i.e. we should try
to choose them in such a way that we need as few of them as possible. We see that
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a balance in the choice of axioms has to be maintained so that the second and third
criteria are fulfilled; i.e. at the same time as the axioms are chosen in an ‘intelligent’
way, the empirical evidence should still be clear.

4 The basic notions of geometry

The first thing Brodén has to do in establishing an axiomatic system for geometry is to
determine the basic notions. In doing this he continues to discuss motion to characterize
it. Since he considers geometry to be a natural science and he maintains that natural
science endeavours to reduce all phenomena to motion, also geometry must endeavour to
do the same. This may seem contradictory since he maintains that motion presupposes
geometry.

Motion, Brodén claims, is a change in certain relations between objects, i.e. motion
has to do with a collection of objects and a collection of relations between them. The
concept collection of objects Brodén reduces to simple ‘undivisible’ objects that he calls
points. Motion is then considered to be a change in certain relations between points.
But to be able to apprehend this motion a system of stationary points is required, i.e.
an empty motionless space that forms the background for our comprehension of motion.

The points in a rigid body are in mutual rest, Brodén continues, also when the body
moves. If two points A and B in a body in one moment coincide with two points C and
D in the stationary background space, and in another moment coincide with C ′ and D′,
we can say that the distance between C and D is equal to the distance between C ′ and
D′, i.e. CD = C ′D′. This notion of equal distance he reduces further to the notion of
equal distance from the same point, or immediate equality of distance, i.e. CD = C ′D.

Brodén choses to use these two notions, point and immediate equality of distance,
as basic notions in his system.

5 The axioms of Euclidean geometry

After establishing the two basic notions point and immediate equality of distance,
Brodén continues to establish the axioms from which geometry should be built up.
It is beyond the scope of this article to study Brodén’s axioms in detail. I will here only
give an idea of the main outlines of his theory.

Brodén first wants to completely determine the notion of a straight line. In the
discussion he gives in this process we see traces of the influence from Farkas (Wolfgang)
Bolyai (1775-1856). Just like Bolyai does in his Tentamen in 1832, Brodén discusses
the motion that is still possible in space when two of its points are fixed. Next to these
two points also other points are fixed, and these must be in a straight line with the first
two. But neither Bolyai nor Brodén are satisfied with a definition like this, and instead
introduce the concept of ’Einziges’. A point P is ‘Einziges’ to two points A and B if
P does not have the same distance to A and B as any other point P ′. Brodén now
gives the axiom stating that all the points that are ’Einziges’ to two arbitrary points
unambiguously determines a system of points, which he calls a straight line.

To further determine the characteristics of the straight line, Brodén gives the axioms
(p. 224):
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Every point P on a line defines an unambiguously symmetrical correspon-
dence, where the distances from two corresponding points to the point P
are equal, the distance to P from points which do not correspond are not
equal, and P is the only which corresponds to itself.

Two arbitrary points define one and only one correspondence of that kind,
where they correspond to each other.

After this Brodén gives an axiom of completeness to establish the continuity of the
straight line, i.e. the set of all points lying on a given straight line is homeomorphic to the
real numbers R. The fundamental idea is the successive construction of midpoints to two
points. He then obtains an infinite sequence of points which must have a ‘limitpoint’.
He can now characterize a correspondence between every point on a line and every
real number. In the process of establishing the completeness of the straight line, we
can trace the influence Brodén gained from Georg Cantor’s (1845-1918) theory on the
continuum.

Now the straight line is completely determined, and Brodén proceeds to determine
the plane in a similar manner, using symmetry that can be seen as a reflection in a
straight line. However, these axioms are not enough to build up Euclidean geometry. A
so-called ‘pseudo-spherical geometry’, i.e. a hyperbolic geometry with constant negative
curvature, is still possible. To exclude this he has to bring in a version of the parallel
axiom.

After this Brodén shows that Euclidean geometry is a model for his axiomatic sys-
tem. He constructs a coordinate system which may be considered as the stationary
space that forms the background and makes it possible for us to comprehend motion.
He derives the equation of a straight line and shows how he, with the help of symme-
try, can turn and translate a straight line, which may be the analogue of motion of a
collection of points or an object. From this he can derive the distance formula for two
arbitrary points. In this formula, Brodén claims, the entire plane Euclidean geometry
lies imbedded, and he now considers that he has shown that his axiomatic system is
sufficient for determining this geometry.

To finally determine three dimensional Euclidean geometry, Brodén has to give two
further axioms, saying that through three arbitrary points in space, not lying on a
straight line, there goes one and only one plane, and that two planes can not have only
one point of intersection. It is now easy to derive the distance formula for two arbitrary
points in space, and three dimensional Euclidean geometry is obtained.

6 Final remarks

After giving an axiomatic system for Euclidean geometry Brodén proceeds by discussing
the pedagogical question whether such a ‘strictly scientific’ geometry is possible or suit-
able at the school level, to determine its value as a school subject. He comes to the
conclusion that a strictly scientific character should not be present undiluted in school
setting. It is a hard balancing act between, on the one hand, keeping a scientific direc-
tion in the education and, on the other hand, taking into consideration the students’
ability. Even though the value of geometry, as a school subject, is considered to be
in its ability to be treated in a strictly ‘scientific’ way, Brodén is of the opinion that
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understanding and simplicity should have priority. It is rather a ‘practical’ than a ‘sci-
entific’ teaching that should be aimed at. At the same time, geometry education should
prepare the students for possibly more rigorous studies.
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ABSTRACT 
This paper discusses the work of three important mathematicians of the English Renaissance: Robert 
Recorde (1510-1558), John Dee (1527-1609), and Thomas Digges (1546-1595) who, as proponents of the 
new Neo-Platonist philosophy together encouraged and supported a growing community of artisans striving 
to develop new technologies with the use of mathematics. The new pedagogical approach employed laid the 
foundation for the English tradition of ‘applied mathematics’ through the seventeenth and eighteenth 
centuries, which became an important component of technical education outside the universities. 

1 Introduction 

For some time now I have been investigating the origin and growth of the mathematics taught 
outside the universities; in schools, colleges and technical institutes from the beginning of the 
Industrial Revolution in England to the end of the nineteenth century. I have been grateful for the 
opportunity to present my work at previous meetings of HPM, and at meetings of the 
‘Mathematics, Education and Society’ group (Rogers, 1999, 2000). More recently, I have become 
interested in a significant period in English history from the reign of Henry Tudor to that of 
Elizabeth 1, 1 where political, economic, and cultural forces come together to give rise to a ‘New 
Philosophy’ part inspired by the rediscovery of classical sources, and part by the technical needs 
of economics and empire, where mathematics is seen as the foundation and inspiration for new 
approaches to science. (Alexander, 2002) 

The major figures that I discuss here, Robert Recorde (1510-1588), John Dee (1527-1609) and 
Thomas Digges (1546-1595) were not the only outstanding contributors to science and philosophy 
in this period. However, their contributions to the teaching and promotion of mathematics as an 
important subject made a significant contribution to the development of new scientific 
methodology. The movement to which these men contributed was seeking a new philosophical 
synthesis to express and relate both the capacities of men and the processes of nature in equal 
measure, neither being subordinate to the other. Economic development, defence of the realm, and 
expansion of empire depended on advances in navigation, which were probably the most 
significant factors which led to mathematics becoming a subject whose skills and applications 
were sought by many. By the mid sixteenth century there was a demand for instruction in the 
geometry and astronomy needed for navigation, surveying, horology, cartography, gunnery and 
fortification. and during this period there developed a class of artisans who eagerly sought 
instruction in mathematics. The vital contributions to this movement lie in the important works of 
a few major authors; visionaries of their age who laid the foundation of the “Mathematical Arts’ 
which were to develop both into the scientific foundation for the investigation of Natural 

                                                     
1 The period from Henry VIII (1457-1547), Edward VI (1537-1553), Mary 1 (1516-1558) and Elizabeth 

1 (1533-1603) 
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Philosophy, and into the accepted curriculum for the mathematical education of the ‘unschooled’ 
class of artisans. 

2 Practical mathematics in England  

Sources of practical mathematics were not easily available. In the late 12th Century, the Artis
Cuiuslibet Consummatio, appeared, which besides covering heights distances and areas, shows 
how to calculate the altitude of the sun and stars, tell the time, and use the astrolabe and quadrant. 
Capacities of various containers are also dealt with, and arithmetic with integers and fractions 
including methods for finding square roots is demonstrated (Victor, 1979). The Algorismus 
Vulgaris of Sacrobosco (c.1230–1256) was also available in manuscript. Typically, it contains a 
collection of rules with no examples but it did introduce the Hindu-Arabic notation. Various other 
derivative tests existed, but all were in Latin. The anonymous An Introduction for to Lerne to 
Recken with the Pen (1537) was translated from the Dutch (Bockstaele, 1960) and was enlarged in 
1546 to: 

An Intorduction for to lerne with the pen, or with the counters accoding to the trewe cast of 
Algorisme, in hole numbers or in broken and certayne notable and goodly rules of false 
position thereto added, not before sene in our Englyshe tonge, by which all manner of difficile 
questions may be safely dissolved and assoyled. 

A new genre of mathematics books began with the publication of the Treviso Arithmetic in 1478 
written in the Venetian dialect. Other commercial texts followed, but it took some time before any 
of these began to arrive in England. The De arte supputandi libri quattuor (1522) of Cuthbert 
Tunstall (1474 – 1559) was the first book printed in England devoted exclusively to mathematics 
and was based on selections from Pacioli's Summa. Rudolff’s Die Coss (German 1525) and Stifel’s 
Arithmetica Integra (Latin 1544) soon appeared, but Hughes (1993) argues that Algebrae
compendiosa by Scheubel (Paris 1551) is Recorde's major source for his algebra. It took the work 
of Recorde, Dee and Digges to make many of these and other continental sources available in 
English, and to develop the beginnings of the mathematical education programme for the common 
man. 

3 Robert Recorde (1510-1558)

Recorde studied medicine at Oxford gaining a B.A. in 1531. He then went to Cambridge and 
gained his M.D in 1545 and moved to London. He became a civil servant and in 1549 Edward VI 
appointed him controller of the Bristol mint. In 1551 he was appointed to be surveyor of mines and 
monies in Ireland but was recalled to England in 1553 on the death of Edward VI. Mary Tudor 
then attempted to reinstate the Catholic Church. Recorde was a Protestant and as a consequence of 
a dispute with the Earl of Pembroke, one of Mary’s close supporters, Recorde died in prison in 
1558.

Along with many followers of the ‘New Philosophy’ of the time, Recorde was a Neoplatonist, 
believing that rational thought and experience can lead to new knowledge. Recorde published the 
first English Algebra, but he is remembered as an educator, as one who passionately believed in 
the worth of mathematics to the common man. His desire to help the ignorant and unlearned, was 
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typical of one committed to the idea of the ‘commonwealth’, the well-being of all men. He wrote 
many elementary textbooks with a very deliberate policy in mind. He wanted to produce a 
complete course of mathematical instruction and wrote his books in the order in which he thought 
that they should be studied. He therefore wrote all his books in English using clear and simple 
explanations. As a consequence, his work was the most popular and widely read of all authors in 
English well into the seventeenth century. He had a deep faith in the potentialities of mathematics, 
not only for the solution of fundamental questions of natural philosophy, but also in the fields of 
civil law and administration.  

His series of books started from simple arithmetic: The Grounde of Artes teachyng the worke 
and practise of Arithmeticke 1540, and progressed along The Pathway to Knowedg, containing the 
first principles of Geometrie (1551), (the only one of his books not in dialogue form), followed in 
1556 by The Whetstone of Witte, described as ‘the second part of arithmetic’ which dealt with 
‘surde numbers’ (irrational numbers) and ‘the Cossike practise’ (algebra) which is famous for his 
use of the equals sign. Finally, in 1557 he produced The Castle of Knowledge, a treatise on 
Ptolemy's version of astronomy. Two other books by Recorde, The Gate of Knowledge and The
Treasure of Knowledge, if they were ever completed, have not survived.2

Recorde’s The Grounde of Artes contains operations with Arabic numerals, computation with 
counters, proportion, and the 'rule of three', all arithmetic being studied in the natural numbers. 
The first version had further editions in 1549 and 1550. In 1552 he published a second enlarged 
version extending the work to rational as well as whole numbers and included such topics as 'false 
position'. The book is written in dialogue form and depicts a discussion between the Master and a 
Pupil in order to justify the purpose and usefulness of the new knowledge, and guides the reader 
through a variety of skills and operations useful in commerce, crafts, and other practical problems. 
All calculations were done in Hindu numerals, and it greatly assisted their adoption. This book 
was very popular and was reprinted and re-edited in various versions until 1673. 

Copernicus’ ‘De revolutionibus’ appeared in 1543. Passages in Recorde’s Castle of Knowledge
(1557) refer to this theory, and it is likely that Recorde knew about this some time before the 
publication of this book.It would be tempting to think that Recorde read Copernicus, but (Lloyd, 
200; 266-267) suggests that Recorde’s source was Aristarchus of Samos3 who thought that the 
earth revoled round the sun, and also revolved on its own axis. However, Recorde distances 
himself from true Copernicanism due to his own political and religious situation at the time.
(Clarke, 1926) 

4 Pedagogy and the New Philosophy 

Recorde’s system of teaching was in the main stream of some of the most advanced pedagogical 
ideas at the time. His opposition to rote learning and the blind acceptance of ancient authorities, 
his appeal to observation as the basis of evidence and to reason as the means of judging that 
evidence, reflected and developed principles originally put forward by Roger Bacon. 

                                                     
2 The verso of the title page of the Pathway refers to more advanced geometry which Recorde claims to 

have presented in The Gate of Knowledge. No copy of this has yet been discovered. 
3 Heath (Manual, 1963; 270-271) states that while we have no direct evidence from Aristarchus’ own 

writings, Archimedes clearly refers to this hypothesis. Heath does not give a reference to this passage, nor is 
there anything in Heath’s Works of Archimedes 1897/1912. See also Coumo (2001, pp. 79-81) who refers to 
this as a ‘well known’ hypothesis. 
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A number of educational reformers (Erasmus, Melanchthon, Ramus. and Colet, Cheke and 
Ascham in England) were all opposed to the method of disputation as the only aim of university 
teaching. However, before any changes could be made, the principle of independent thought had to 
be established, which meant the liberty to criticise, and possibly reject, the ideas of Aristotle. 
Hence all original scientific thinkers at this time had to break with scholastic authority and join the 
‘Anti-Aristotelian’ movement. In its place they stressed practical application and utility as more 
desirable aims of education. (Johnson & Larkey, 1935 p.79) This reform in education was an 
inevitable consequence of the rediscovery and translation of classical works in Greek, Arabic and 
Hebrew from the Eastern Mediterranean and Arab sources4.

The principal proponent of reform who developed his ideas most clearly and systematically 
was Peter Ramus (1515-1572)5 His revision of Aristotle’s logic made it more relevant to everyday 
thought and applicable to the analysis of practical problems. In this, he advocated a closer union 
between rhetoric and logic, between the art of exposition and the art of argumentation. 

In the work of Recorde, we see similar attention to the processes of exposition and 
argumentation in helping the student to achieve understanding of the subject in question. Both 
Recorde and Ramus put practical use ahead of abstract theory, and both put great emphasis on the 
correct order of teaching and devised a definite methodology, which they applied consistently in 
their writing. While the focus of Ramus’ work was relatively broad, (virtually all his scientific 
works appeared after 1565), Recorde’s attention was almost exclusively on mathematics and its 
applications; his general plan had been formulated, and his first book published in 1540, predating 
Ramus by about fifteen years. According to Johnson & Larkey (1935 pp.80-81) “there is no 
evidence that Ramus had a knowledge of English”, and since all Recorde’s work was in English, it 
was hardly known on the continent of Europe at this time. The development of similar 
methodologies by these men appears quite independent.  

Recorde’s Philosophy is exemplified by the illustration on the title page of the Castle of 
Knowledge which combines the Aritstotelian and Ptolemaic distinction between the unstable 
sublunary sphere and the stable superlunary sphere, and contrasts this with the Neoplatonic world 
of ideas and forms, illuminated by the sun which can be intelligible to the true philospher, and the 
world of shadows and uncertainites, illuminted indirectly. (Lloyd 2000; 269-270) 

It is commonly seene that when men will receive things from elder writers, and will not 
examine the thing, they seeme rather willing to erre with their ancients for company, than to be 
bold to examine their workes or writings. Which scrupulosite hath ingendred infinit errors in all 
kinds of knowledge, and in all civill administration, and in every kinde of art. (Recorde, Castle
of Knowledge, 1556, p. 171). 

5 John Dee 1527-1609 

Dee entered Cambridge and gained his B.A. in 1545 and M.A 1548 In 1547 he travelled briefly to 
Louvain and in 1548 moved to Paris where he studied with Frisius and Mercator and where his 
lectures on Euclid gained him a considerable reputation. He declined a post at the university and 
returned to England in 1551.He travelled often to the continent and gained a considerable 

                                                     
4 See Russo (2004, pp. 335-349). 
5 Among his considerable output Ramus published a number of works on improving mathematics 

teaching from Arithmeticae Libri Tres (1555) to other works on geometry arithmetic and algebra; the last 
published posthumously in 1586. He was killed in the St. Bartholomew massacre of 1572. 
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reputation for his treatises on navigation and navigational instruments which were deliberately 
kept in manuscript (since they were professional secrets), and for more than 25 years he acted as 
an advisor to various English voyages of discovery. 

Dee revised Recorde’s Grounde of Artes in 1561 making corrections and adding his own 
commentaries. It was published in 1562 and was reissued in 1579, 1582 and 1590. In 1568 he 
published Propaedeumata Aphoristica which contains a mixture of mathematics, physics, 
medicine and astrology and presented the work to Queen Elizabeth. Elizabeth was impressed and 
Dee was employed for some time as her offical astrologer. 

In 1570 Billingsley’s first English edition of Euclid was published and was carefully and 
thoroughly edited by Dee. The “Mathematicall Praeface” he wrote for this is probably the best 
known of all his work. In it he not only describes in detail the relations between different areas of 
mathematics and their applications but also puts forward his manifesto where a knowledge of good 
arts and sciences and natural and moral philosophy teaches us to regard the natural world as God’s 
creation, but that while “Many other artes also there are which beautifie the minde of man but of 
all other none do more garnishe & beautifie it, then those artes which are called Mathematicall.” 
(Dee 1570 ii) An important part of the preface is the “The Groundplat6 of my Mathematicall 
Praeface”, where he details his classification of mathematics into Principal and Derivative areas 
where pure number and magnitude are related to Arithmetic and Geometry, and a list of 
applications including Astronomy, Astrology, Music Cosmography, Navigation, Statics, 
Pneumatics, Architecture and Perspective. 

Dee was a champion of the ‘New Philosophy’. His practice of astrology was closely linked to 
his Neo-platonic philosophy and founded on mathematical relations. He supported these views 
because they formed an intrinsic part of a general scheme of thought which was developed by a
prioi reasoning and reached an insistence that there were discoverable, all-permeating numerical 
harmonies underlying the manifestations of the physical world.7 Dee became possibly the principal 
proponent in England of an approach to nature which was developed by later experimentalists and 
laid the foundations for the methods of modern physical science. While the sixteenth century form 
of this ‘New Philosophy’ gradually became obsolete, its general approach matured and stimulated 
much of the scientific development of the seventeenth century. (Calder, 1953) 

6 Mathematicks and magic 

While at Oxford, Dee constructed a simple mechanical device for a play, by which an actor 
appeared to fly. This event gave rise to his reputation (which in some ways he was disposed to 
encourage) as a “Conjuror”, one who was probably in league with the devil. “Thaumaturgicke” 
was the name he gave to ‘mathematical magic’ or the way in which unschooled people could be 
amazed by devices which relied upon mechanics, pneumatics or optics for their operation, and in 
his “Mathematical Praeface” he says, 

 “Thaumaturgicke, is that art mathematicall, which giveth certaine order to make strange 
workes, of the sense to be perceived, and of men greatly to wonder at. By sundry means, this 

                                                     
6 A ‘plat’ was a plan, a diagram, or a proposal for work. 
7 See, for example (Dee, 1570 j) in the next section. 
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Wonderworke is wrought. Some by Pneumatithmie8. ….. Some by waight….Some by stringes 
strayed, or Springs, therewith imitating lively Motions. Some by other meanes, as the images of 
Mercurie…..” (Dee, 1570 Aj)9.

During the latter part of his life, Dee did spend much time working with Edward Kelley, (who 
was a charlatan) attempting to communicate with spirits, although Dee himself appears to have 
believed that this was possible. This did considerable damage to his reputation as a scientist, and it 
is only recently that a clearer understanding of Dee’s position has emerged (Calder 1953; Culee, 
1988).  

The confusion of mathematics with magic has a long history. Since mathematics was used in 
astrology, which was viewed as superstition by the church, so genuine mathematicians were 
looked upon with suspicion by the ignorant, and Astrologer, Mathematician and Conjurer were 
virtually synonymous. According to the sixteenth century English version of the story of Dr. 
Faustus, having sold his soul to the devil, “he became the most famous name of all the 
mathematicians that lived in his time.”(Zetterburg, 1980, p.85) 

Recorde explains that Roger Bacon “was accompted so greate a necromancer” because he “was 
in geometrie and other mathematicall sciences so experte, that he could dooe by them such thynges 
as were wonderfull in the syght of most people” (Pathway to Knowledge 1551 f.3v), and Dee 
praised number as the means by which we may achieve spiritual heights: 

“All thinges (which from the very first originall being of thinges, have been framed and made) 
do appeare to be Formed by the reason of Numbers. For this was the principall example or 
pattern in the minde of the Creator. ……By Numbers propertie therefore, of us, by all possible 
meanes (to the perfection of the Science) learned, we may both winde and draw our selves into 
the inward and deep search and vew, of all creatures distinct virtues, natures, properties and 
Formes. And also farder, arise, clime, ascend, and mount up (with Speculative winges) in spirit, 
to behold in the Glas of Creation, the Forme of Formes, the Exemplar Number of all things 
Numerable: both visible and invisible; mortall and immortall, Corporall and Spirituall.” (Dee, 
1570 j).  

Dee here is not only alluding to the Pythagorean belief that ‘all is number’, but is also putting 
forward the belief that mathematics underlies everything that is made, and mathematical 
knowledge is the key to our understanding of the nature of the universe and its creator. This is a 
substantial claim which is at the basis of Dee’s approach to all kinds of natural phenomena, and to 
his belief in the power of mathematics. 

Most people of the time were ignorant of even simple arithmetic and geometry. Recorde, Dee 
and other natural philosophers of the time wrote about their subject with great enthusiasm in order 
to promote their own work, and to arouse an interest in mathematics particularly among the 
growing class of artisans who they thought most likely to become their students. Thus, 
mathematical writers of this period were likely to attribute all kinds of wonders to the famous 
philosophers and mathematicians of the past, which often only intensified their own reputation as 
‘conjurors’ in the eyes of the general public. At this time it was not uncommon for mathematical 
books to be burnt, and apparently, following the foundation of the Oxford chairs in mathematics 

                                                     
8 Pneumatithmie concerns the properties in motion of water, air, smoke and fire. Today we might call 

this pneumatics, but at that time it included the propertied of all substances which could ‘flow’ or move 
either freely, or confined in pipes or other vessels. 

9 The pagination of Dee’s preface uses his own alphabetic system: j is the first page, ij the second, iij the 
third, and after iiij (four) he uses a.j, a.ij until a.iiij, then b.j, etc. 
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and astronomy in 1619, some parents kept their sons away from the university in fear of them 
becoming contaminated by the ‘Black Art’ (Taylor, 1954, p.8). 

7 The geometry of war  

From the early fourteenth century the introduction of gunpowder and the use of artillery brought 
about a change in the design of fortifications, and the most outstanding artists Giotto, Pisano, 
Cellini, da Vinci, Michelangelo, (who were also military advisers to their patrons) were all 
employed at one time or another to plan, construct or supervise fortifications. (Hale, 1997). 

The production of a gun in a single casting led to ordnance with a longer and more accurate 
barrel and the ability to turn the gun in the vertical and horizontal plane led to techniques for 
calculating and predicting ranges. During the sixteenth century the ability to calculate the effect of 
artillery in war often became the deciding factor and mathematicians responded to the challenges 
of the new situation. Artillery tables were drawn up to record the size and weight of the shot and 
the amount of powder needed for different types of ordnance, and conversion tables for the 
measures used in different countries. In 1537 Nicolo Tartaglia produced his Nova Scientia, and in 
1546 Questi Inventioni Diverrsi, both dealing with the trajectory of shot, and the design of 
instruments for ranging the gun. (Bennett & Johnston, 1996, p. 20) The trajectory of the projectile 
was described in three parts: a straight line for ‘violent motion’, a circular arc for ‘mixt motion’, 
and a vertical line for ‘natural motion’ showing how Aristotle’s Physics determined the 
mathematical theory.10

8 Thomas Digges (1546-1595)  

Digges received his early education from his father Leonard, but his father died when he was 
fourteen years old. Thomas decided that he wanted to continue his father's work and thereafter 
John Dee acted as a father to Thomas.  

Thomas served with the English forces in the Netherlands from 1586 to 1594, and in 1556 
completed his father’s book Tectonicon; an elementary surveying manual in which he had drawn 
on continental sources. This was a popular book which went through many editions. In 1579 he 
completed Stratioticos, a book for soldiers including construction of fortifications and was the first 
English work on ballistics. He was put in charge of the fortification of Dover harbour in 1582. 
Thomas wrote on Platonic and Archimedean solids in Pantometria which again, was started by his 
father and which he finished in 1571. This work contains Digges' description of how lenses could 
be combined to make a telescope. Although Digges and Dee were working together at this time 
making accurate astronomical observations there is no evidence that they constructed a telescope. 

A new star, often called Tycho Brahe's supernova appeared in 1572, and Digges’ Alae seu 
scalae mathematicae (1573) includes observations of it’s position and trigonometric theorems 
which could be used to determine it’s parallax. The observations are particularly impressive 
making Digges one of the ablest observers of his time. Dee published his own work on the 

                                                     
10 Although Galileo had shown that the trajectory of a projectile was a parabola, even in the mid 

seventeenth century, works were still being published where still prevailed. See Galileo: Discorsi e 
demonstrazioni matematice intorno a due nuove scienze Leyden 1638 (Fourth day). 
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supernova and the two were often bound together and sold as a single volume. In his translation of 
Book I of De Revolutionibus (1576), Digges rearranged Copernicus’ material giving exposition of 
the main features of the heliocentric theory first, followed by the objections of opponents and 
Copernicus’ refutations of them.11 Digges became the leader of the English Copernicans and used 
his observations of the supernova to justify the heliocentric system. 

9 The first mathematical lecturer, and Gresham College  

Due to the work of mathematicians like Recorde, Dee and Digges, in the latter part of the sixteenth 
century there began a campaign for publicly financed instruction in the sciences in the city of 
London, the burgeoning centre of commercial activity. In 1588, a group of merchants, with the 
support of the Privy Council12 provided the salary for a lecturer, and on the 4th of November 1588, 
Thomas Hood gave his inaugural address as the first Mathematical Lecturer of the City of London. 
Hood was a Londoner, and had gained his MA at Cambridge. He was an enthusiastic and popular 
lecturer, and published a number of textbooks in English. In his lecture he catches the patriotic 
mood of the country, which had just survived an attempt at invasion. (Johnson, 1942) He then goes 
on to extol the virtues and usefulness of mathematics, not only in the military and commercial 
world, but also emphasises the utility of mathematics to enhance the skills of the navigation, on 
which we depend not only for commercial expansion, but also for the defence of the realm. There 
was a significant superiority in practical mathematics in England during the sixteenth century. 
Interest in mathematics was more widespread, the mastery of fundamentals more certain, and the 
standard of achievement set for students by the material in the textbooks was generally higher than 
on the continent. The great value placed on applied mathematics by the Elizabethan middle class is 
one of the most significant characteristics of the age (Johnson & Larkey, 1935, p.86; Feingold, 
1984). 

The support for the lectureship lasted until about 1594, when by this time, London was the 
centre where scholars in the sciences could make contact with artisans, technicians and instrument 
makers. A few years later, in 1597, Gresham College the ‘third university’ in England was 
established. The professors of astronomy and geometry (among them Gunter and Wren for 
Astronomy and Briggs and Barrow for Geometry) became the chief promoters of liaison between 
scholars and craftsmen throughout the seventeenth century. The Gresham College Society, 
meetings of scientists for the promotion of ‘Physico-Mathematicall Experimental Learning’ which 
began about 1645 became the Royal Society in 1662. 

By the beginning of the 17th Century there was a thriving community of ‘Mathematical 
Practitioners’ in London, and on the basis of common mathematical principles a whole range of 
astronomical, surveying and navigational instruments were invented, improved and refined for 
popular use (Webester, 1975). These advances in technology were attributable to the accumulation 
of small improvements, essentially empirical, collaborative and democratic, which were used to 
demonstrate the manner in which intelligent application could lead to economic progress and 
intellectual advancement by Francis Bacon (1561-1626) in the development of his system of 
Natural Philosophy. This was to have its most popular and powerful expression in The

                                                     
11 This was A Perfit Description of the Celestiall Orbes, published as an appendix to his father’s 

Prognostication Everlastinge (1576) and reprinted seven times by 1605. 
12 The Privy (= private) Council is the official body appointed by the King to provide advice on general 

matters of state and to ratify legal decisions. 
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Advancement of Learning (1605). Dee’s ‘Groundplat’ and the practical work of Recorde and 
Digges had laid the theoretical and practical foundation for the technological and scientific 
development that was to come in 17th century England. 
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APPENDIX 1 
A selective comparative list of ‘Landmark Texts’ and Texts published in English. 

These books are often cited as the major mathematical texts of their time. For comparison, the 
books cited in the paper are included in bold, and the languages in which they are published are 
noted. 

Items marked with an asterisk * are considered to be possible early sources for Robert Recorde. 
Even though local languages were becoming popular, there was still much published in Latin, even 
into the seventeenth century. By the latter part of the sixteenth century, continental sources had 
become more available in England. 

Mid 13th Cent: Sacrobosco: Algorismus Vulgaris (Latin)* 
1478 Treviso: Arithmetic (Venetian) 
1494 Pacioli: Summa de arithmetica, geometria proportioni et propornionalita (Latin) 
1522 Tunstall: De arte supputandi libri quattuor (Latin)* 
1525 Rudolff: Die Coss (German) 
1525 Dürer:Unterweisung der Messung mit dem Zirkel und Richtscheit (German) 
1537 Tartaglia: Nova Scientia (Latin) 
1537 Anonymous: An Introduction for to Lerne to Recken with the Pen (English Tr. from Dutch)* 
1540 Recorde: The Grounde of Artes (English) 
1543 Copernicus: De revolutionibus orbium coelestium (Latin) 
1544 Stifel: Arithmetica integra (Latin)  
1545 Cardan: Ars Magna (Latin)
1546 Tartaglia: Questi Inventioni Diversi (Italian) 
1550 Ries: Rechenung nach der lenge, auff den Linihen vnd Feder (German) 
1551 Scheubel: Algebrae compendiosa (Latin)(Recorde’s source for algebra?)* 
1551 Recorde: The Pathway to Knowledge (English) 
1556 Recorde: The Castle of Knowledge (English) 
1556 Thomas Digges: completed his father’s Tectonicon (Latin) 
1557 Recorde: The Whetstone of Witte (English)
1562 Recorde: The Grounde of Artes (Dee’s revision) (English) 
1568 Dee: Propaedeumata Aphoristica (Latin) 
1570 Dee: The Mathematicall Praeface to the Elements of Geometrie of Euclid of Megara
(English) 
1570 Billinsley: The Elements of geometrie of Euclid of Megara (English) 
1571 Thomas Digges: completed his father’s Pantometria (Latin)  
1571 Viète: Canon Mathematicus (Latin)
1572 Bombelli: L’Algebra (Italian)  
1573 Thomas Digges: Alae seu scalae mathematicae (Latin) 
1576 Thomas Digges: A Perfit Description of the Celestiall Orbes (English) 
1576 Leonard Digges: Prognostication Everlastinge (English) 
1579 Thomas Digges: Stratioticos (Latin) 
1585 Stevin: De Thiende (Dutch)  
1586 Stevin: De Beghinselen der Weeghconst (Dutch)  
1591 Viète: In artem analyticam isagoge (Latin) 
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Infinitesimal Calculus starts, with Leibniz’s paper: Nova Methodus pro Maximis et Minimis, 
itemque tangentibus, quae nec Fractas nec Irrationales Quantitates moratur, et singulare pro illis 
calculi genus, published in 1684 in Acta Eruditorum. Later Leibniz publishes another article on 
this “new theory” in Acta Eruditorum (1686) 

The brothers Bernoulli were great spreaders of Calculus. Betwen 1691 and 1692 Jean Bernoulli 
teaches the Marquis Guillaume de l’Hospital in Paris. The new theory of Infinitesimal Calculus 
was na important part of these lessons. 

In 1696 the Académie Royale des Sciences de Paris published Marquis de L’Hospital’s book: 
“Analyse des Infiniment Petits, pour l’Intelligence des Lignes Courbes”, the first Differential 
Calculus book. 

This book had a huge repercussion in the academic world. It was both attached and defended. 
On 17 July 1700 Michel Rolle starts a fierce attack on L’Hospital’s book at the Académie Royale 
des Sciences de Paris. At that time the author was away from Paris and the book’s great defender 
was Pierre Varignon, backed by his correspondence with Jean Bernoulli.

ROLLE’S CRITICISM WAS BASED ON TWO MAJOR TOPICS: 
Insufficiency and lack of logic rigour of the concepts and fundamental principles of the 
“new calculus”. This was eventually settled in the works of Cauchy, specially in the 
book: “Cours d’analyse de l’École Politecnique” of 1821, and Weiestrass’s works (1872) 
Showing, by examples, that the “new calculus” lead to errors, in the sense that it did not 
yield the same results obtained by previous methods, for instance by Hudde’s method. 

The German mathematician Johann Hudde created a mechanical process for finding double roots. 
Its rule was described in a letter to Frans van Schooten which was published in the Latin edition of 
Descartes Géometrie in 1659. It is a simple process for finding the double roots that appear in 
Descartes’ circle process. 

In Section X of Infiniment Petit, L´Hospital shows that his method is analogous to 
Descartes’and Hudde’s: Nouvelle manière de se servir du calcul des différences dans les courbes 
geométriques, d’où l’on déduit la Méthode de Mrs. Descartes et Hudde. 

EXAMPES OF ROLLE’S CRITICISM OF INFINITESIMAL CALCULUS 
He presented in a Mémoire à l’Académie Royale des Sciences, in the section of 12 March 

1701, three examples where the methods of Hudde and L’Hospital are contradictory in the search 
for maxima and minima of algebraic curves. 

Rolle’s first example is the curve with equation: 
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A second example presented to the Académie by Rolle, in order to criticise the Differential 
Calculus was the curve with equation: 
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The third example is the geometric curve with equation: 

 for x 0.

Conclusion

Rolle’s criticisms presented to the Académie against Differential Calculus were refuted. His 
examples were corrected by Varignon, with the help of Bernoulli. It was show that all three 
contained calculation mistakes and eventually confirmed the process presented by L’Hospital for 
the calculation of maxima and minima of a curve. 

I shall concentrate on Rolle’s examples. In the first example Rolle shows that Differential 
Calculus determines only one critical point on a curve while Hudde’s method gives three. In the 
second example Differential Calculus determines two critical points and Hudde’s method only 
one. Finally in the third example Differential Calculus shows that the curve does not admit critical 
points while Hudde’s method finds one. In this paper I exhibit the errors made by Rolle when 
applying the Differential Calculus process in order to obtain critical points. 

REFERENCES 

-Blay, M., 1986, “Deux moments de la critique du calcul infinitesimal: Michel Rolle et Geoge Bekeley”, 
Rev. Hist. Sci., a. XXXIX /13, 223-283. 
-Costabel, P., 1965, “Pierre Varignon (1654-1722) et la diffusion en France du Calcul Différentiel et 
Integral”, Conférence donnée au Palais de la Découverte le 4 Décembre 1965, Histoire des Sciences, s. D, n. 
108, 19-23 
-Edwards Jr., C.H., 1982, The Historical Development of the Calculus, New York: Springer (pp. 127 – 129). 
-“Histoire et Mémoires de l’Académie Royale des Sciences pour l’année 1703”, Histoire, p. 65 
-Itard, J., 1948, “Fermat précurseur du Calcul Differentiel”, Archives Internationales d’Histoire des 
Sciences, n. 4, 589-610. 
-L’Hospital, M., 1696, Analyse des Infiniment Petits, pour l’Intelligence des Lignes Courbes, Paris: De 
l’Imprimerie Royale (p. 164). 
-Montucla, J.F., 1960, Histoire des Mathématiques, t. III, Paris: A. Blanchard (pp. 111-116). 
-Reyneau, C., Manuscrit de la Bibliothèque Natinonale, Fds Fr 25302 fol144-155. 
-Whiteside, D.T., 1960-62, “Patterns of mathematical thought in the later Seventeenh Century”, Archive for 
History of Exact Sciences, 1, 179-388. 

ax
cbyyx

22

xxy 2442

133



Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006 

THE FASCINATING HISTORY OF LOGARITHMS

Bob STEIN 
California State University - San Bernardino 

5500 University Parkway -San Bernardino- CA 92407 - USA 
bstein@csusb.edu

1 Introduction 

In today’s electronic world we take computing power for granted, but complicated arithmetic was 
not always so easy. Logarithms “by shortening labor, doubled the life of the astronomer,” 
remarked Laplace, but today’s students find “natural” logarithms to be anything but natural and 
logarithms in general to be confusing. Here we will examine the history of logarithms, the 
remarkable individuals involved, and some of the surprising discoveries they made, and we will 
comment on the implications of this history for teaching.  

We will find it convenient to view the history of logarithms as falling into three periods. The 
first period begins with observations relating arithmetic and geometric progressions and 
culminates in the creation of practical logarithm tables and slide rules in the 1620’s. The second 
period involves the discovery of “natural” logarithms and infinite series for computing them and 
culminates in establishing the connection between logarithms and exponents. The third period, 
applying techniques of calculus to logarithmic and exponential functions, and extending their 
domains to complex numbers, culminates in Euler’s work of 1748. 

2 The first period 

2.1 Early history 
Logarithms arose as a computational device, based on a simple observation about arithmetic and 
geometric progressions. In an early example of this, Nicholas Chuquet, in his Triparty en la 
science des nombres (1484) listed powers of 2 next to the integers from 0 to 20 and observed that 
multiplication in one series corresponds to addition in the other.  

0 1 2 3 4 5 6 7 8 9 10 
1 2 4 8 16 32 64 128 256 512 1024 

For example, to multiply 16 by 32, just add the 4 and 5 immediately above them: 4+5=9; the 
product of 16 and 32 is the number below the 9, namely 512. Such observations are known as far 
back as ancient Mesopotamia1. Al-Samaw’al2 (1125-1180) had noticed the same thing and had 
extended his list to what we would now write as 2-7. Nicole Oresme (1320-1382) even proposed 
laws for operating with what we would now write as rational exponents. Christoff Rudolff, in his 

                                                     
1Neugebauer and Sachs, p 35 cite a tablet, which juxtaposes 

1

4
,
1

2
,
3

4
,1 and 2, 4, 8, 16. 

2Al-Samaw’al, son of a Hebrew poet, wrote his most important mathematics at age 19, then became a 
physician. Of his medical books, only one, The Companion’s Promenade in the Garden of Love, about sex, with 
erotic tales, still exists. Al-Samaw’al converted to Islam at age 40. 
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Coss (1525) extended Chuquet’s observation from powers of 2 to other powers. Michael Stifel, in 
his Arithmetica integra (1544), extended Chuquet’s list, making -1, -2, and -3 correspond, 

respectively, to 1
2

, 1
4

, and 
1
8

. Today we can sum up their observations in one basic law, 

xmxn=xn+m, but exponents did not exist in those days, either as an established notation or as a 
clearly defined concept. Thus, while each writer mentioned above made what amounts to a start 
on a theory of exponents, each one in effect started from scratch, and none of them appear to 
have glimpsed the immense consequences that could follow from this simple idea.  

The time intervals between the dates mentioned above decrease more or less geometrically, as 
fits the topic, and that alone might lead one to predict big progress in this area in the early 
seventeenth century; that is just what happened. It was a time of geographic exploration and 
economic expansion, fueled by scientific discovery and technological progress, and these 
changes fed each other to spur even more advances. New, more accurate trigonometric tables 
were computed, and the use of decimal fractions was winning converts and was advocated, 
notably by Viète (1579) and Stevin (1585). In this setting two men, Joost Bürgi (1552-1632) and 
John Napier (1550-1617), saw how to use Chuquet’s observation about powers to revolutionize 
computation. They worked independently and led very different lives. Even though they both 
built on the same fundamental idea, their work differs as strikingly as the men who created it.  

2.2 Bürgi 
Joost (or Jobst) Bürgi, from Lichtensteig, St. Gall Canton, Switzerland, was trained as a 
clockmaker but had no advanced academic education. In 1579 he came to Cassel to serve the 
Landgrave (Count) Wilhelm IV, who, aided by instruments built by Bürgi, compiled extensive 
astronomical observations. Wilhelm so admired Bürgi’s ingenuity and skill that he referred to 
him as “a second Archimedes.” In 1603 Bürgi went to the court of the Holy Roman Emperor 
Rudolph in Prague, to which Johannes Kepler had come three years earlier in order to work with 
Tycho Brahe, the great Danish astronomer. After Brahe’s death in 1601, Kepler and Bürgi 
continued to collaborate for many years. As Kepler pored over Brahe’s tables and worked on his 
now famous laws of planetary motion, he faced daunting computational problems and eventually 
grew frustrated at his colleague’s delay in publishing his tables, writing at one point that “this 
man, a procrastinator and guardian of his secrets, abandoned his child at birth and did not rear it 
for publicity.” In fairness, Bürgi was very busy designing and making his wondrous devices. A 
stunningly beautiful clock made by him in the 1620’s is in a Vienese museum today.

Bürgi noted that Chuquet’s table (above) is of no practical value, since most numbers are not 
part of the geometric sequence 1,2, 4, . . .. To handle other numbers, Bürgi’s key insight was to 
use as the ratio of his geometric progression a number only slightly larger than 1. Figure 1 
illustrates Burgi’s idea using 1.1 as the ratio of the geometric progression. This table is only 
approximate, since digits after the fourth decimal place were simply dropped to save space. Still, 
within the limits of accuracy of the table: 

• Adding values of n corresponds to multiplying powers of 1.1n.
• Subtracting values of n corresponds to dividing powers of 1.1n.

Bürgi’s Arithmetische und geometrische Progress-Tabulen (Arithmetic and Geometric 
Progression Tables) (Prague, 1620) appeared in two colors, with the arithmetic progression in red 
and the geometric progression in black. Of course, he regarded the red numbers not as exponents 
but simply as members of an arithmetic progression. Bürgi’s geometric progression had a ratio 
not of 1.1 but of 1.0001, which required a great deal of calculation on his part! Specifically, 
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Bürgi calculated his geometric progression to 2038 terms. The next term, which we would write 
today as, 1.000123,028, exceeds 10, so he did not compute it. Calculation of these numbers is 
easy in principle; shift the number four decimal places, and add it to the original. Great care is 
needed, however, because an error on any term of the sequence automatically infects all 
subsequent terms.  

Bürgi multiplied all entries in geometric progression by 108, in effect shifting the decimal 
point to avoid fractions. He advocated the use of decimal fractions, but here he chose to avoid 
fractions of any kind. Also, Bürgi’s red numbers were not the exponents themselves but 10 times 
the exponents. This meant that the product of black numbers did not correspond exactly to the 
sum of red numbers, since one had first to deal with the extra power of 10. 

N Approximate 
value of 1.1n

n Approximate 
value of 1.1n

n Approximate 
value of 1.1n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1.1
1.21
1.331
1.4641
1.6105
1.7716
1.9487
2.1436
2.3579
2.5937
2.8531
3.1384
3.4523
3.7975
4.1772
4.5950
5.0545

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

5.5599 
6.1159 
6.7275 
7.4002 
8.1403 
8.9543 
9.8497 
10.8347 
11.9182 
13.1100 
14.4210 
15.8631 
17.4494 
19.1943 
21.1138 
23.2252 
25.5477 

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

28.1024 
30.9127 
34.0039 
37.4043 
41.1448 
45.2593 
49.7852 
54.7637 
60.2401 
66.2641 
72.8905 
80.1795 
88.1975 
97.0172 
106.7190 
117.3909� 

Figure 1 

Figure 1 points the way for further developments. Specifically, root calculations, such as the 
square root of an odd numbered entry in the table, seem to cry out for the invention of fraction 
exponents. For example, to find 17.4440 1.130 , halve the exponent 30 to get 1.115, which 
the table shows as 4.1763. What could be more natural than to apply the same process to 
19.1884=1.131 to get 19.1884 1.115 1

2 —or, for that matter, to take the seventh root by 
dividing the exponent by 7? Again, it would seem natural today to apply the table in figure 1 to 
numbers outside of the range from 1 to 10 by means of scientific notation. These ideas apply also 
to Bürgi’s table, but they are natural only in hindsight, since they need exponential notation. 
Bürgi first thought of his table in the 1580’s and completed it in 1610, a quarter century before 
Descartes introduced exponential notation for positive integers and a full century before the first 
clear explanation of rational exponents, both positive and negative, appeared in print3. Bürgi did 
not get his table printed for another ten years. While Bürgi delayed, Napier published his tables 
and thus gained fame as the inventor of logarithms. 

                                                     
3Descartes’ introduction of exponents appears in La Geometrie (Geometry)(1637). The first complete 

presentation of rational exponents is in Charles Reynaud’s Analyse demontrée (Analysis Demonstrated), 
Paris, 1708. 
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2.3 Napier 
Like Bürgi, John Napier based his table on a geometric progression written juxtaposed to an 
arithmetic progression, but in the details it is different, a reflection of the unusual man who 
created it.  

Napier was born in 1550 to young parents (his father was 16, his mother only a little older) at 
the family estate, Merchiston Castle, near Edinburgh. The family name is said to reflect an 
ancestor’s valor in battle (he had “na peer”). At age 13 John was sent to St. Andrews University, 
but he did not graduate. Instead, he left to travel at length in France, Holland, and possibly in 
other countries as well. In the course of his travels he learned encountered Catholicism, and it 
reinforced his strong Calvinist, anti-Catholic views.  

Napier returned to Merchiston in 1571, married Elizabeth Stirling in 1572, and settled down 
to a life of running the family estate and a variety of other enterprises. He entered into an 
arrangement with a local outlaw leader to share the spoils of a hunt for secret treasure, and he ran 
controlled experiments (unusual at the time) to try to improve the fertility of his land by applying 
manure. He also set the price of shoes and boots in Edinburgh, presumably a responsibility that 
came with his station as a laird. Elizabeth Stirling died in 1579 leaving a son and a daughter. 
Napier then married Agnes Chisholm, who bore ten more children.  

During this time at Merchiston, Napier worked on a tract, The Plaine Truth of the Revelation 
of Saint John, which he wrote in the style of Euclid’s Elements, with propositions and proofs. 
The culminating results of the work were that the Pope is Antichrist and “the day of God’s 
judgement appears to fall betwixt the years of Christ 1688 and 1700.” This book appeared in 
1593 and sold very well, going through at least ten editions in Napier’s lifetime and 21 in all. 
Translations of the work were printed in several languages.  

Like much of Europe at that time, Scotland was beset by bitter and vicious confrontation 
between Catholicism and Protestantism; in Scotland’s case this was compounded by a history of 
clan warfare. After the Scottish civil war of 1570-1572 many people believed that Scotland’s 
King James VI might convert to Catholicism and ally himself with Spain in order to take over the 
English throne. Spain, a leading Catholic power, gave credibility to this prospect (and no doubt 
boosted the sales of Napier’s book) by aggressively contesting British sea power and by 
launching in 1588 a vast fleet to conquer Britain. Storms scattered and wrecked the Spanish 
armada, thus alleviating the threat to England. To Napier’s dismay, many of his countrymen 
smugly took this as evidence of England’s naval superiority. He was one of relatively few to 
attribute the Armada’s disaster primarily to luck. As a result he turned his inventive imagination 
to weaponry, describing his ideas in detail. These included a rapid-fire gun, which he claimed 
could kill 30,000 Turks without the loss of a single Christian (i.e. Protestant). He is said to have 
tried his weapon successfully on some animals in a field. He also wrote prophetically of an 
artillery weapon that would “clear a field of four miles circumference of all living creatures 
exceeding a foot of height”, of an “enclosed military chariot, double musket proof” with a “living 
mouth of metal”, and of “devices for sailing under water”.  

Napier’s originality and practicality show in his mathematics. His contributions to spherical 
trigonometry, a field vital for navigation, are still known today as “Napier’s analogies” and 
“Napier’s rules of circular parts.” He invented “Napier’s rods,” also sometimes called “Napier’s 
bones,” showing multiplication tables for integers up to 9 9 (Figure 2). These became very 
popular and were made, sold, and used for centuries after he died. By arraying rods next to each 
other one could do long multiplication without memorizing the tables. In Rabdologiae Seu 
Numerationis per virgulas libri duo, published in 1617, Napier explained the rods in detail. 
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Another section of the same book discussed decimal fractions and advocated the use of the 
decimal point.4

Figure 2a 

Figure 2b 

                                                     
4Decimal fractions gained acceptance in Europe a couple of centuries after decimal numeration for 

whole numbers. Simon Stevin (1548-1620), who was born in Bruges and spent much of his adult life in 
Holland as an engineer and teacher, published two books advocating the use of decimal fractions (but not 
the decimal point). The larger of these, De Thiende (On Tenths), was published in Flemish and in French 
(as La Thiende (The Tenth) in 1585; an English translation appeared in London in 1608. 
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Napier published his logarithm tables in his 1614 in Mirifici Logarithmorum Canonis Descriptio
(Miraculous Law of Logarithms Described). This book contained 90 pages of tables and 57 of 
explanation; interestingly, it used the word “logarithm” only in the title. Napier coined the word 
“logarithm” from the Greek logos (ratio) and arithmos (number), but presumably he did this at 
the last minute, too late to use it in the body of the work. In the preface, Napier stated that he had 
begun the project some twenty years before. Napier also wrote a more complete explanation, 
Mirifici Logarithmorum Canonis Constructio (Miraculous Law of Logarithms Constructed), but 
it was not published until 1619, two years after his death. The delay in publishing the Constructio
may have involved the question of whether it would sell, but it may also reflect Napier’s concern 
that his tables, remarkable as they were, still needed improvement. Briggs’ comment below 
supports this view, and indeed, at the end of the tables in the Descriptio Napier himself remarked, 
“Nothing is perfect at birth.”  

Napier’s goal in constructing his tables is clear from his preface: 

Seeing there is nothing (right well-beloved student of mathematics) that is so troublesome to 
mathematical practice, nor doth more molest and hinder calculators, than the multiplications, 
divisions, square and cubical extractions of great numbers, which beside the tedious expense 
of time are for the most part subject to slippery error, I began therefore to consider in my mind 
by what certain and ready art I might remove those hinderances. 

Napier’s approach to this eloquently stated goal was as idiosyncratic as the man himself, as the 
following description from the 1616 translation of the Descriptio shows: “The Logarithme 
therefore of any sine is a number very neerely expressing the line, which increased equally in the 
meane time, whiles the line of the whole sine decreased proportionally into that sine, both 
motions being equal-timed, and the beginning equally swift.” Confused? Napier obtained his 
geometric and arithmetic progressions by visualizing two particles moving along parallel lines, 
one at a constant rate, the other at a decreasing rate proportional to the distance remaining to a 
fixed point. Consequently, as his arithmetic progression increases, his geometric progression 
decreases. The first term of the progression was 10,000,000, and the common ratio was 1-10-7.
Ultimately, Napier tabulated, for each minute of arc from 0° to 45°, the logs of the sine and 
cosine, and his logarithms (which we denote by Naplog) conformed to the rule 

Naplog(xy)=Naplog(x)+Naplog(y)-Naplog(1). 
Calculations with Napier’s logarithms are not as straightforward as with later logarithms, because 
Naplog(1), which is not 0, persistently turns up as a complicating nuisance. 

The actual construction of Napier’s table demonstrates his ingenuity and tenacity, but it is 
difficult to follow. Napier needed to calculate about 1,000 times as many terms as had Bürgi. He 
seems to have begun by calculating the first 100 terms of his progression, but at some point the 
enormity of the task led him to take a short cut. The idea was to calculate a geometric progression 
with a much larger ratio, then transform the terms to the terms of the progression he wanted and 
fill in the gaps by interpolation. The result is only approximately a geometric progression, and 
even the simplified task is Herculean. Regardless of arithmetic errors that were later found, the 
result is a monument to Napier’s vision and effort. 

Why did Napier calculate logs of sines rather than of numbers? Why did he make his 
geometric progression decrease when the arithmetic progression increased? And where did he get 
his idea of moving particles? We will never know the answers to these questions. Fire destroyed 
Napier’s original manuscripts, and the book about him by his great grandson Mark Napier seeks 
to convey the incorrect notion that Napier got his ideas in isolation from others. In the absence of 
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hard evidence, there are straws to grasp. Napier’s interest in spherical trigonometry would 
naturally predispose him toward trigonometrical calculations, but there was another factor at 
work.  

In the 1590’s Napier was visited by Dr. John Craig, personal physician to James IV of 
Scotland, at which time Craig explained a method of multiplication called prostapheresis. The 
method was based on new, improved trigonometric tables and relations such as 2sinXsinY=cos(X-
Y)-cos(X+Y). With this method, one could replace multiplication by subtraction as in the 
following example. To multiply 8742 by 3459: 

1. Look up angles X and Y whose sines are .8742 and .3459.  
2. Add and subtract to get X+Y and X-Y.
3. Look up the cosines of X+Y and X-Y and subtract them.  
 4. Divide by 2 to get sinX sinY or (.8742)(.3459).  
 5. Move the decimal point as needed. 

(Of course, decimal fractions were not generally used then, but this modern explanation shows 
the idea of prostapheresis.)  

Where did Craig learn of prostapheresis? Probably from none other than Tycho Brahe.5 In 
1590 King James IV of Scotland, en route to visit Anne of Denmark, whom he eventually 
married, encountered stormy weather and was forced to put in, as luck would have it, at the (then) 
Danish island of Hven, site of Brahe’s astronomical observatory. Brahe, who used prostapheresis 
extensively in his own calculations, entertained the royal party for several days until the weather 
cleared. It is believed that Craig was part of that party.6 Could that be why Napier thought in 
terms of logs of sines? Making the geometric progression decrease while the arithmetic 
progression increases makes the logarithms of sines positive, which Napier may have found to be 
appealing.  

A second straw in the wind is that Napier may have visited Padua at a time when Galileo, with 
his keen interest in moving objects, was there. Could that be why Napier thought in terms of 
moving particles? 

2.4 Reaction to Napier’s table 
Idiosyncratic though it was, Napier’s table had immediate and forceful impact. Edmond Gunter 
(1581-1626) published the first table of common logs of trigonometric functions in 1620.7 He 
also created the first logarithmic scale of numbers, on which, with the use of calipers to measure 
distances, calculation could be done mechanically. Soon after, probably in 1621, William 
Oughtred put two logarithmic scales next to each other to create the first slide rules, which he 
made both in linear and circular models. Meanwhile, on the Continent, Kepler grew increasingly 

                                                     
5Tycho Brahe (1546-1601) was born into nobility but rejected the worldly career path his stepfather 

chose for him and instead studied science, especially astronomy and alchemy. His alchemy served him 
well when much of his nose was cut off in a duel with another student arising from a dispute as to who was 
the better mathematician. He fashioned a prosthetic nose of noble metals and wore it for the rest of his life. 
Eventually King Frederick II of Denmark granted him the island of Hven as a location for an astronomical 
observatory, supported in feudal fashion by the farming and fishing of the island's inhabitants. Brahe 
designed and constructed excellent instruments for observing the precise locations in the sky of celestial 
objects, and he compiled meticulous records of observations of the planets. After Frederick II died, Brahe 
lost favor with the young successor and resettled in Prague, where Kepler came into posession of Brahe's 
data and used it in the discovery of his famous laws of planetary motion. 

6In 1698 one J. Craig published “The Quadrature of the logarithmic curve” in the Philosophical 
Transactions; is this a relative of Dr. Craig? 

7Gunter also invented the word “cotangent” and abbreviated “sinus complementi” as “co.sinus”, which 
was later shortened to “cosine.” 
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frustrated, first with Bürgi’s delays and later, when Napier’s tables appeared, with a lack of a 
clear explanation of how they were constructed. He experimented with the tables and was 
satisfied with the results they gave, but without knowing how Napier created them he felt he 
could not trust them. After corresponding with his old mentor, Kepler produced his own table of 
logarithms, which was published in 1624. 

In London, two young professors at Gresham College turned their full attention to the 
Napier’s table as soon as they received it. One, Edward Wright, translated Napier’s Descriptio
into English but then left England with the British East India Company and did not live to see his 
translation published in 16168. The other, Henry Briggs (1561-1631), immediately began to 
devote his lectures to the Descriptio and to correspond with Napier. At term’s end he departed for 
Merchiston. This was a difficult journey, not without danger from bandits, and he arrived after 
considerable delay, just as John Marr, who had arranged to be present at Briggs’ arrival, was 
saying to Napier, “Ah, John, he will not come.” Briggs later wrote: 

[...] being most hospitably received by him, I lingered for a whole month. But as we talked 
over the change in the logarithms he said that he had for some time been of the same opinion 
and had wished to accomplish it; he had however published those he had already prepared 
until he could construct more convenient ones if his affairs and his health would admit of it. 
But he was of the opinion that the change should be effected in this manner, that 0 should be 
the logarithm of unity and 10,000,000,000 that of the whole sine; which I could not but admit 
was by far the most convenient.9

This led to the first table of Briggsian or “common” logarithms, which appeared in 1617 as 
Logarithmorum chilias prima (Logarithms of the First Thousand), a 14 place table of logs of 
whole numbers from 1 to 1,000.  

Briggs’ approach to creating a table was very different from Napier’s. For his geometric 
progression, he wanted a ratio only infinitesimally greater than 1, and he coined the term 
ratiuncula for it. If log 10=1, he reasoned that log 10 =.5 (Napier had introduced the decimal 
point in his Descriptio). Taking 54 successive square roots, all to 32 places, brought Briggs to 

log102 51 =0.000 000 000 000 001 022 553 194 560 259 21  
log102 52 =0.000 000 000 000 000 511 276 597 280 129 47  
log102 53 =0.000 000 000 000 000 255 638 298 640 064 70 
log102 54 =0.000 000 000 000 000 012 781 914 932 003 235  

Briggs used 1+102 54

as the ratio of his geometric progression, associating with 10 the number 
254 0.000 000 000 000 000 012 781 914 932 003 235 

=1.801439851 1016 0.000 000 000 000 000 012 781 914 932 003 235 
= 2.302585092994045. . ., which we recognize today as the natural log of 10. He built up his 

table, calculating first the logarithms of prime numbers and then using the results to find the 
logarithms of composite numbers. Like Napier’s work, Briggs’ was a prodigious feat. Briggsian 
logarithms had the advantage that the integer part, which he called the “characteristic,” simply 
shifted the decimal point, so that all that was needed was a table of the decimal fraction parts of 

                                                     
8Edward Wright (1559-1615) was a Cambridge fellow who was known as a good sailor and tutored 

Henry, Prince of Wales.  
9From the preface to Briggs' Arithmetica logarithmica (Logarithmic arithmetic) f 1624.  
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logarithms, or, what amounts to the same thing, of logarithms of numbers from 1 to 10, for which 
he coined the term “mantissa.” Another advantage the new system is that log(x)+log(y)=log(xy).

In Briggs’ Arithmetica logarithmica of 1624 he extended his table up to 20,000 and also 
included the logs of numbers from 90,000 to 100,000. He continued to work on this project, 
writing to John Pell:  

My desire was to have those Chiliades that are wantinge betwixt 20 and 90 calculated and 
printed, and I had done them almost by my selfe and by some frendes, whom my rules had 
sufficiently parted, and by agreement the business was conveniently parted amongst us;10

2.5 Low scoundrels 
Before Briggs could complete his project, however, Adriaan Vlacq, a bookseller in Gouda, 
Holland, saw the commercial possibilities in publishing a completed version of Briggs’ table of 
logarithms of integers from 1 to 100,000. Vlacq was not a mathematician, so in late 1625 he 
contracted with one Ezechiel de Decker to “raid” Brigg’s tables and fill in the gap from 20,000 to 
90,000. The plan was to continue Briggs’ approach; first calculate the logarithms of prime 
numbers, then use those to get the logarithms of composite numbers. The work of actually 
finding the primes was to be done by Vlacq, who knew the necessary arithmetic but no advanced 
mathematics. Vlacq was also to translate Briggs’ Latin text, which de Decker could not otherwise 
read. De Decker’s part of the work would be to calculate the logarithms of 3,593 prime numbers. 
Evidently, he did not pursue this with enough zeal to suit Vlacq, who brought Lourend 
Borremans into the effort and served a summons on de Decker obliging him to complete half the 
table by May 1, 1627 or forfeit his right to any compensation for his efforts. At that point it 
seems to have occurred to de Decker to add log 2 to the Briggsian logs of all numbers from 
10,001 to 20,000, thus obtaining the logs of the even numbers from 20,002 to 40,000 (One can 
almost hear his mind working; logs of the even numbers are half the table). He then realized he 
could fill in the logs of the odd numbers by interpolating. Using this method, which was different 
from what he had contracted to do with Vlacq, de Decker completed the tables, publishing the 
first part in 1626 and the second part in 1627. He included a preface explaining that the table was 
computed independently of the project he had undertaken with Vlacq. This must have infuriated 
Vlacq, who no doubt felt double-crossed. In 1624 he had obtained an official “privilege” (like a 
copyright?) to publish the tables, even before entering into his deal with de Decker. Did Vlacq try 
to destroy de Decker’s tables? All we know today is that hardly any copies survived. In fact, the 
second part, though mentioned in the preface to the first, was generally thought never to have 
been printed at all until in 1920 a copy was found in a Utrecht life insurance company library. In 
1628 Vlacq reprinted de Decker’s table, even using de Decker’s typesetting but substituting his 
own preliminary material for de Decker’s and never mentioning de Decker at all. “Vlacq’s” 
tables were widely used for many years thereafter.  

2.6 Pedagogical considerations 
At this point the development of logarithms would very likely have been considered complete, 
were it not for some unexpected developments. However, we can already see some interesting 
lessons for today’s teachers of mathematics. First, we should not slight the study of arithmetic 
and geometric progressions. These simple but fundamental sequences, discrete analogs of linear 
and exponential functions, are worth studying in their own right. Second, the basic idea of 

                                                     
10Letter of October 25, 1628, quoted in Bruins. 
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logarithms can be understood with relatively little grasp of exponents. In fact, almost all the 
mathematics mentioned so far can be understood by pre-algebra students.  

3. Second period 

3.1. An Unexpected Connection 
With publication of Vlacq’s tables, interest in logarithms might have declined but for a discovery 
about curved areas. The study of such areas had fascinated mathematicians since ancient times. 
Greek mathematicians, notably Archimedes, had ingeniously calculated some curvilinear areas 
and were tantalized by the challenge of computing precisely the area of a circle, a problem which 
had stimulated new interest in the 17th century. Nobody at the time suspected a link between 
logarithms and curved areas.  

One of those who studied curvilinear areas was Bonaventura Cavalieri (1598-1647), a Jesuate 
(not Jesuit) who, encouraged by his teacher Galileo, wrote a book, the Geometria indivisibilus 
continuorum (1635). Cavalieri calculated the ratios of areas under the curves y=xn to those of 
rectangles which contain them for n=1, 2, and 3, (Figure 3 shows the case n= 3). For n=1 he 
found the ratio to be 1/2, and for n=2 he found it to be 1/3, both of which results were already 
known. 

Figure 3 

The case n=3, however, broke new ground, and Cavalieri found that ratio to be 1/4, a result 
which fitted with the first two in a pattern. In a later work, published in 1647, he extended the 
pattern up to n=9, and in every case he found what would be expressed in modern terms by 
saying that the area under xn from 0 to b is bn/(n+1). He did not carry his results any higher n, 
because to do so required a formula for f(m)=1n+2n+3n+. . . + mn for higher values of n. 
Cavalieri was evidently unaware that in the years 1614-1631 Johannes Faulhaber (1580-1635) in 
Germany had already published those formulas for n up to 17. Cavalieri did, however, state 
without proof the generalization to any positive integer power n.  

At around the same time, independent of Cavalieri, Pierre de Fermat (1601-1665) stated and 
proved Cavalieri’s theorem more generally. (The exact date of this work is not known; Fermat’s 
discoveries are hard to date, because he did not publish them but instead communicated his 
results in letters. Boyer, in A History of Mathematics, dates this proof at “sometime after 1629.”) 
Fermat was able to prove that for any positive integer n the area under the curve y=xn from x=0
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to x=b is 
b n 1

n +1
. Fermat’s ingenious proof is presented in many books. He extended his 

argument to handle the unbounded areas beneath curves of the form y=
1

xn to the right of the line 

x=1, in all cases showing the area under the curve to be 
b n 1

n +1
 . The only case which did not fit 

this formula was the area under the hyperbola y
1
x

 , which would, in modern notation 

correspond to the case n=-1. That case remained a challenge to mathematicians. The man who 
met the challenge may well have done so before Fermat found his results, but he did not realize 
what he had done!  

Gregory of Saint Vincent (1584-1667) was that man. He was a Belgian Jesuit, who wrote his 
treatise, the Opus geometricum quadraturae circuli et sectionum coni (Geometrical Work on the 
Squaring of the Circle and of Conic Sections) in the period 1620-1624. Unable to find a 
publisher, in part because his book was 1250 pages long, he sought assistance from the Vatican, 
even to the extent of going to Rome in 1625-1627, but to no avail. Then he settled in Prague, 
only to have to flee to Vienna when the army of Gustavus Adolphus attacked the city and all 
Catholics in it. In his haste, St. Vincent left his papers behind. A student rescued them, but they 
did not catch up with him (he continued to travel) until 1641, when he was back in Antwerp. 
Eventually, in 1647, he published his Opus himself, but it was greeted harshly by learned critics. 
The chief complaint about the book, even beyond its bulk and disorganization, was Gregory’s 
claim to have squared the circle. That claim was in the title, and the frontespiece depicted the 
problem of squaring the circle as a fierce monster which was slain, its skin stretched between the 
Pillars of Hercules, while nearby a beam of sunlight passed through a square frame held by a 
flying cherub, only to cast a circular image on the ground! Buried in the confusion, however, was 
a gem first noticed in 1649 by another Belgian Jesuit, Alfonso Antonio de Sarasa (1618-1667). 
St. Vincent had shown that the area underneath the hyperbola xy=1 to the right of the line x=1 has 
a peculiar property: if the x-coordinate grows geometrically, the area under the curve grows 
arithmetically. Associating the two progressions yields logarithms, which were soon dubbed 
“natural” logarithms, because they arise from a “natural” curve rather than from a geometric and 
arithmetic progressions which had been made up simply to create logarithms. 

De Sarasa’s result, interesting in its own right, took on additional significance with the 
publication in 1655 of Arithmetica Infinitorum by John Wallis (1616-1703). Wallis had studied 
mathematics with William Oughtred, and, like Oughtred, his primary training was in religion. He 
was also an accomplished linguist, had served the Pariamentary Party in the English Civil War by 
breaking Royalist codes, and from the 1640’s on attended the meetings of what became the Royal 
Society. His Arithmetica Infinitorum is remarkable for its daring approach. Here Wallis 
developed his own theory of integration, with which he first rederived some results that were 
already well established, then extended the results of Cavalieri and Fermat to fraction exponents. 
(Descartes had introduced positive integer exponents in 1637. Wallis implicitly extended that 

definition, assigning to the sequence of squares the “index” 2, assigning the “index” 
1
2

to the 

series
1
1

,
1
2

,
1
3

,
1
4

,. . . and the “index” 
3
2

to the sequence 1,   8,   27,  64, . . .). 

Wallis next applied his theory of integration to calculate the area of a circle, in the process 
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inventing the “love knot” symbol for infinity, coining the words “interpolation” and “continued 
fraction,” and coming up with the infinite product which still bears his name.

3.2 Newton and Mercator 
Young Isaac Newton (1642-1727), who had read the Arithmetica Infinitorum, also learned of de 
Sarasa’s result and wrote (probably in late 1664), “In ye Hyperbola ye area of it beares ye same 
respect to its Asymptote wch a logarithme dot[th its] number.”11 At around the same time Newton 
used Wallis’ idea of interpolation to extend the binomial theorem to exponents other than 
positive integers. The page of his notebook (Figure 8) showing this work does not mention 
logarithms, nor do his first uses of the infinite series for (1+x)-1 to compute areas under the curve 
y=(1+x)-1, again not mentioning logarithms explicitly. Later, however, he explicitly used these 
areas to compute logarithms. First he substituted -x for x and subtracted to get 
1
2

ln
1 x
1 x

x
x3

3
x5

5
x7

7
.  .  .  , a series which, because it has no even terms, 

converges faster than the series for ln(1+x). Then by choosing x so that
1 x
1 x

n , he computed 

the natural logarithms of prime numbers. In a letter of 1676 he wrote, “I am ashamed to tell you 
to how many places I carried these computations, having no other business at the time. . . . But 
when there appeared that ingenious work, the Logarithmotechnica of Nicolas Mercator (whom I 
suppose made these discoveries first) I began to pay less attention to these things. . ..”12

Indeed, Newton was not the only mathematician to calculate logarithms by putting together 
the pieces furnished by de Sarasa and Wallis. Huygens did it, and so did Hudde. However, the 
explicit use of infinite series for hyperbolic areas to calculate logarithms is usually credited, as it 
was by Newton, to Nicolaus Mercator13 in his Logarithmotechnica (Logarithmic Teachings) 
(1668). The first 13 chapters of this work, published separately in 1667, were devoted to 
computing logarithms without any reference to geometry at all. He inserted 10,000,000 geometric 
means, which he called ratiunculae (“little ratios”-an idea and a term that Briggs had used in 
1624) and then called the logarithm of any number the number of ratiunculuae between that 

number and 1. The fourteenth and last chapter treats the area under the hyperbola y=
1

1 + x
 as a 

logarithm function, which could be computed as the series 

                                                     
11Whiteside, vol 2, p. 457 
12Newton, Letter to Henry Oldenburg, October 24, 1676, quoted from Ronald Callinger, ed. Classics of 

Mathematics. Prentice-Hall, Englewood Cliffs, NJ 1995. 
13 The Mercator map projection was invented by not by Nicolaus Mercator but 1569 by the Flemish 

geographer Gerhard Mercator (or Gerhard Kremer) (1512-1594). This projection greatly enlarges the sizes of land 
masses near the poles, making, for example, Greenland look larger than South America, but it has one very 
practical feature. A captain could draw a straight line on a map between two points on opposite shores of an ocean, 
and from that line could be read a course heading, which, if maintained without deviation, would bring the ship 
across the water correctly. Gerhard Mercator did not explain the theory behind his map, a topic addressed by 
Edward Wright in 1599. Nicolaus Mercator (real name Kaufmann 1620-1687) was a mathematician, physicist, and 
astronomer. He was born in Hollstein (then in Denmark, now Germany), travelled extensively, and then settled in 
London, where he was an early member of the Royal Society. In 1683 he moved to Versailles, where he designed 
and built the fountains. He died poor and angry, however, because Louis IV refused to pay him for his work unless 
he converted to Catholicism. In a published note of 1666 Mercator promised to prove that the correction involved 

in the correct spacing of parallels of latitude on a Mercator projection is given by ln tan
2

, where  is the 

latitude. However, James Gregory published a proof before Mercator got to it.  
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ln(1 x) x
x2

2
x3

3
x 4

4
.  .  . , which Mercator used but did not actually write. 

Mercator referred to the logarithms calculated from the area under the hyperbola as “natural 
logarithms.”14 He observed that natural logarithms differ from Briggsian or “common” 

logarithms by a constant factor, and he calculated 
1

log10
0.43429 as the factor needed to 

convert from natural logarithms to Briggsian or “common” logarithms. 

3.3 Pedagogical considerations 
The definite integral can be introduced in an appealing way through the use of the history of 
integration of powers of x. In that context, and understanding logarithms as arising from 
arithmetic and geometric progressions, natural logarithms may seem almost natural to beginners. 

4 Third period: Synthesis 
By 1660 there were, in effect, two concepts of logarithm. On the one hand there were the 
logarithms found in tables, and on the other hand there were natural logarithms based on areas 
under a hyperbola. There was considerable interest in understanding how these two kinds of 
logarithms were related. At this point, however, nobody was thinking of logarithms as exponents. 
Wallis had implicitly defined negative and fraction exponents in his book of 1655, and Newton 
later went on to make his definitions explicit, but the first clear identification of logarithms with 
exponents was made by Wallis himself in his Treatise of Algebra, Both Historical and Practical,
most of which was written in the early 1670s, though it was not published until 1685. The first 
explicit statement of the link between what we now call logarithmic and exponential functions 
was made by Johann Bernoulli in a letter of 1694, where he used xx=y as equivalent to xlnx=lny.

4.1 Halley 
Edmond Halley (1656-1742) is remembered today chiefly for “his” comet, but he pursued a 
broad range of scientific and mathematical interests. Halley objected both to Napier’s definition 
of logarithms and to the hyperbolic definition, and in 1695 he proposed his own15, based on the 
old idea of ratiunculuae. If a and b are numbers greater than 1, and x>0, with (1+x)m=a and 

(1+x)n=b, then the ratio 
m
n

 would give the ratio
log a
log b

, at least for infinitesimal x and infinite m

and n. Turning this around, he observed that if m=n, so that (1+r)n=a and (1+x)n=b, and n grows 
infinitely large, the numbers a and b will have the same logarithm in two different systems of 
logarithms, and the ratio r:x will be the factor by which logarithms in one system are multiplied 
to get logarithms in the other. Halley used Newton’s binomial expansion for 1 q 1/ m , and then 
in effect he let m  to develop series for logarithms. He next exploited those series cleverly 
to propose a way to calculate logarithms that was much less tedious than those which had been 

                                                     
14The name “natural logarithms” seems to have been first used by Pietro Mengoli (1625-1686), who 

followed Cavalieri as professor at Bologna; it seems to refer to the fact that these logarithms arise from the 
study of a conic section, a kind of curve that even the ancient Greeks would consider natural, in contrast to 
other logarithms, which are contrived or, as Napier originally called them, “artificial” numbers. 

15 Halley, E., “A most compendious and facile Method for constructing the Logarithms, exemplified 
and demonstrated from the Nature of Numbers, without any regard to the Hyperbola, with a speedy 
Method for finding the Number from the Logarithm given”, Philosophical Transactions of the Royal 
Society, 19 (1695), pp. 58-67. 
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used by Napier or Briggs. Halley then turned to the converse question of finding the number 
whose logarithm is given, coming up with exponential series in the process. Halley concluded: 

Thus I hope I have cleared up the Doctrine of Logarithms, and shewn their Construction and 
Use independent from the Hyperbola, whose Affections have hitherto been made use of for 
this purpose, though this be a matter purely Arithmetical, nor properly demonstrable from the 
Principles of Geometry. Nor have I been obliged to have recourse to the Method of 
Indivisibles, or the Arithmetick of Infinites, the whole being no other than an easie Corollary 
to Mr. Newton’s General Theorem for forming Roots and Powers. 

Although Halley insisted that logarithms be defined numerically, “without any regard to the 
Hyperbola,” he readily applied logarithms to geometric problems.16

The question of the meaning of logarithms was pushed in a different direction by Johann 

Bernoulli, who in 1702 found the equationarctan z 1
i
ln 1 iz

1 iz
, which led him to inquire 

about the meaning of logarithms of negative numbers.17 This inquiry seems to have aroused little 
interest from other mathematicians at the time, but in 1712-13 Leibniz and Bernoulli 
corresponded at length about the meaning, if any, of logarithms of negative numbers. Highlights 
of the correspondence, given in English translation by Cajori; show the confusion typical of early 
stages of research into a new field. The concepts of function, exponent, and complex number 
were gradually coming into focus, as was that of logarithm. In this period, too, Charles Reynaud, 
in his Analyse demontrée (Analysis Demonstrated) (Paris, 1708) gave the first complete 
presentation of rational exponents. 

4.2 Cotes 
Roger Cotes’ (1682-1716) paper “Logometria,” (Ratio Measure) published in the Philosophical 
Transactions of the Royal Society in March, 1714, was the only work of Cotes to be published in 
his lifetime. It builds on the work of Halley, to whom it is dedicated. Cotes used Halley’s ideas 
about infinitesimal ratiunculae to define the "measure of a ratio," by which he meant its 
logarithm. It had been recognized since Bürgi's time that that the closer to 1 the ratio of the 
underlying geometric progression, the more accurate would be the resulting table. Briggs had 
taken this to its practical extreme with the use of powers of 1+102 54

, but now, some 90 years 
after Briggs, Halley and Cotes actually envisioned the result of using infinitesimal ratiunculae. In 
that case the linearity that Briggs had used so effectively to 32 place accuracy after calculating 
his 54 successive square roots would apply to the entire table, so that if a number 1+ x >1 were 
assigned a measure (logarithm) x, then the measure of 1 x m  would be mx. These 
considerations determined logarithms only up to a scale factor however, and it was this scaling, 
Cotes asserted, that led to the different systems of logarithms. Cotes called ratio of the scale 
factors of two systems of logarithms their “modular ratio.”  

That much had been done by Halley, but now Cotes used new ideas and techniques of 
calculus to improve and extend Halley’s work. He imagined a point with logarithm My (where M
is the modulus of the particular system of logarithms being used) as moving along a line, and he 

                                                     
16Halley, Edmund, “An Easie Demonstration of the Analogy of the Logarithmick Tangents to the 

Meridian Line or sum of the Secants: with various Methods for computing the same to the utmost 
Exactness, by E. Halley”, Philosophical Transactions of the Royal Society, 19 (1695), pp. 202-214. 

17This equation arises by integrating 
1

1 z 2  by partial fractions. 
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set My
z x
z x

, where x is variable but z is constant. Differentiating by the product rule, he, then 

expanded the quotient MÝy 2M
zÝx

z2 x2  as a series and integrated to get 

y x
z

x 3

3z 3

x 5

5z 5

x 7

7z 7 . . .. Similarly, Cotes calculated the measure (logarithm) m of 

the ratio1 v in the system of logarithms with modulus M as 

m M v v2

2
v3

3
v4

4
v5

5
. . .  Then he calculated powers of 

M
m

 by taking powers 

of the series to invert the function m and express 1 v as the 

series1 v 1
m
M

1
2

m
M

2 1
6

m
M

3 1
24

m
M

4 1
120

m
M

5

.& c . If this is the number 

whose logarithm is , then in the system with modulus 1, the number whose logarithm is 1 must 

be 1 1
1
2

1
6

1
24

1
120

& c.  Although this series appears earlier in Halley’s work, Cotes 

calculated this number and its reciprocal to twelve places and recognized its importance. Euler 
later named this number e.  

The significance of Cotes’ results seem to have been widely overlooked, despite the 
prominence of the journal in which they had appeared. After Cotes’ death in 1716 his cousin 
Robert Smith succeeded him as Plumian Professor of Astronomy and Experimental Philosophy at 
Cambridge. Smith gathered Cotes’ work, including the "Logometria" and published it in 1722 
under the title Harmonia Mensurarum, Sive Analysis & Synthesis per Rationum & Angulorum 
Mensurae Promotae.(Harmony of Measures. . .) 

There Smith included under the title “Logometria” not only the original article, which is 
designated as Part 1, but some additional material as well. In what Smith called Part 2 Cotes 
remarked on “[t]hat Harmony of Measures, which is so strong that I propose a single notation to 
serve to designate measures, whether of ratios [logarithms] or of angles.” Then he considered 
measures of angles, noting that the arc of a circle contained between the sides of an angle would 
be an obvious candidate for the measure of an angle, were it not dependent on the size of the 
circle. Some standard or “modulus” was needed, and for this Cotes used the radius of the circle. 
Smith included Cotes’ calculation of the modular angle, directly analogous in concept and 
method to his calculation of the modular ratio. Cotes’ result, which he calculates as 
approximately 57.295° but does not name, is a unit of angle measure which, though used 
implicitly for centuries in India and for generations in Europe, does not seem to have been 
otherwise formally recognized until the 19th century, when it was named the radian. 

An even more remarkable result is buried in the Scholium Generale of Logometria. 
Discussing the surface of an ellipsoid of revolution, Cotes referred to a diagram and stated18:

For if some arc of a quadrant of a circle described with radius CE has sine CX and sine of the 
complement of the quadrant XE, taking radius CE as modulus, the arc will be the measure of 
the ratio between EX +XC -1  and CE, the measure having been multiplied by -1 , but I 
leave this to be examined in more detail by others who will think it worthwhile. Moreover, 
from the foregoing can be understood the extent of the relationship between the measures of 
angles and of ratios […]” 

                                                     
18Bickley, op cit, p170 
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Understanding the “measures of ratios” as logarithms and the “measures of angles” as arcs, this 
states explicitly what we would write today as iln(cos + isin ) = . Except for a sign error19,
this is the logarithmic form of the identity later made famous by Euler, ei cos i sin .

Why did such a significant paper, so prominently published, cause so little stir? One reason 
for this may be Cotes’ use of Newton’s notation for fluxions (derivatives) and fluents (integrals), 
augmented by some unique notation of his own, which, though entirely appropriate, may have 
made his work difficult for readers in Continental Europe, who were used to the elegant notation 
developed by Leibniz. A second reason may be the beginning of the paper, which restates ideas 
from Halley and others but does so in a way that seems bound to discourage readers. Ronald 
Gowing quotes Edmond Stone, “in general an admirer of Cotes’ work,” as writing, “Mr. Cotes 
has done this thing in imitation of Dr. Halley, although more short, and yet with the same 
obscurity, for I appeal to anyone, even of his greatest admirers, if they know what he would be at 
in his first problem […] without having known something of the matter from other principals.20”
Finally, Cotes expressed his identity iln(cos + isin ) =  not algebraically but only in words 
which seem to suggest that he did not attach much significance to this identity but rather viewed 
it as something of an aside.  

4.3 Euler 
Leonhard Euler (1707-1783) brought order to this situation, as he did to so many areas of 
mathematics. He had long been interested in logarithms, exponential functions, and related 
topics, and he had introduced the symbol e for the base of natural logarithms as early as 1727. In 
his Introductio in analysin infinitorum (Introduction to Infinite Analysis) of 1748 Euler 
introduced the ideas of function and inverse function. He defined the general exponential 
function ax in terms of its power series, named the number e as the sum of the power 

series1 x
x2

2!
x3

3!
.  .  ., and showed its importance as a fundamental constant. He defined 

the logarithm function to the base a as the inverse of the exponential function ax, thereby 
introducing the concept of the base of logarithms, and he showed how to convert logarithms from 
one base to another. He linked logarithms and exponential functions to trigonometric functions, 
having observed through his work on differential equations that ei cos i sin  Euler 
clearly recognized the importance of this formula and investigated its consequences. Taking x=
he produced the celebrated identityei 1 0 , which elegantly links the most fundamental 
constants and operations of mathematics21. Euler’s treatment of logarithms and exponential 
functions does not feel badly dated today. It is at once the capstone of all that had gone before 
and the foundation of further developments in mathematical analysis, especially in the theory of 
complex variables.22

                                                     
19This sign error is pointed out by Ivo Schneider in his article on de Moivre, where he also shows (p. 

234-235) that de Moivre, in a 1708 letter to Jakob Bernoulli, came very close to discovering the same 
identity.  

20Gowing, p. 23 
21After deriving this identity, Benjamin Pierce turned to his class at Harvard and said, “Gentlemen, that 

is surely true, it is absolutely paradoxical, we can't understand it, and we don't know what it means but we 
have proved it, and therefore we know it must be the truth.” 

22Euler also settled the question of the logarithms of negative numbers, showing that the logarithm of 
any complex number has infinitely many values, all differing by integer multiples of 2 i, and that the 
logarithms of negative numbers are pure imaginary numbers. 
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Euler’s Introductio in analysin infinitorum, technically a “precalculus” book, was a marvel of 
clear mathematical exposition, and as such it was widely read. It assimilated, reorganized, built 
on, and to some extent replaced what had gone before.  

4.4 After Euler 
Euler’s definition of the loga x  was effectively unchallenged until Felix Klein, in his 1908 
book, Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis,

used t 1dt
0

x
 as a formal definition of the natural logarithm. Many calculus books today use 

Klein’s definition, and many beginning calculus students find it confusing. As the title indicates, 
Klein’s was a retrospective treatment of mathematics for readers who were familiar with 
logarithms as a computational tool and also knew some calculus. Having no need to explain the 
material to beginners, Klein could reorganize the subject with an eye to elegance and efficiency 
of presentation. An integral, viewed as a function of its upper limit, is a continuous function, so 
defining the logarithm in this way freed Klein from any need to prove that logarithms are 
continuous functions. Furthermore, because the inverse of any continuous function is continuous, 
Klein needed no further arguments to show that exponential functions are also continuous. 
Klein’s is indeed an elegant treatment of logarithms, but it should be rated PG, meaning that it is 
fit for youngsters today only with professorial guidance. Curiously, many “high end” treatments 
of calculus have used Klein’s definition of the logarithm without offering a parallel treatment of 
angles (defining the arc sine function, for example, as an integral, which is thus automatically 
continuous and differentiable, and defining the sine function as the inverse of the arc sine.) Once 
again, Cotes had pointed the way but was ignored. 

5 Scientific notation 

What we now call “scientific” notation arose in the nineteenth century, used by physical 
scientists as a convenient way to write very large and very small numbers. Sometime in the 
twentieth century the use of this notation to indicate precision (distinguishing place holding zeros 
from significant zeros) was added, and the names “scientific notation” and “floating point” 
notation were introduced. There seems to be remarkably little hard evidence as to when these 
ideas were first explained in print.  

5.1 Pedagogical Implications
For more than three centuries, students encountered logarithms initially as a computational tool, 
using tables of common logs. If they went on to higher mathematics, their early experience with 
logarithms was a foundation on which to build the transition to natural logarithms and the 
definition of a logarithm as an integral. Today, electronic calculation has obviated the need to 
teach computation with logarithms, and the first encounter with logarithms is often a rather 
abstract treatment of natural logarithms. All too often, this first encounter is unsuccessful, 
because logarithms are introduced out of the blue, with little connection to what the students have 
learned before. It would seem sensible to teach about logarithms by retracing highlights of their 
historical development. Perhaps with this approach logarithms will seem less mysterious, more 
human, more understandable, and even natural. 
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The Educational Times (ET), a long-lived pedagogical journal, had an irregular existence over the 
past century and a half. It was first published in the fall of 1847 as The Educational Times, A 
Monthly Journal of Education, Science, and Literature. Adopted by the College of Preceptors in 
1861 as their official publication, it was published as The Educational Times and Journal of the 
College of Preceptors until 1918. During that period ET served as an outlet for men and women to 
exhibit their mathematical skills. 

The College of Preceptors was incorporated by Royal Charter in London in 1849 having been 
formed three years earlier as the College of Teachers. Its main objectives were to promote sound 
learning, advance interest in education among the middle class, and provide means to raise the 
status and qualifications of teachers. In order to accomplish those goals, training was offered to 
those entering the teaching profession and periodic examinations for certification were 
administered to both teachers and students. The group aimed to establish education as a subject of 
study in colleges and universities. A union was formed to make provisions for the families of 
deceased, aged, or impoverished members. In addition, the organization strove to facilitate better 
communication between teachers and the public. At monthly meetings, held at Bloomsbury Square 
in London and open to the public, notices and summaries of important educational movements 
were announced and papers concerning the theory and practice of education were read by 
members. A section of ET devoted to mathematical questions and their solutions was officially 
launched in November 1848. Since the 1950s, the College has instituted courses in management 
training for teachers contemplating administrative careers. The association reverted to its original 
title “The College of Teachers” by Supplemental Charter in 1998. 

During the late nineteenth century and early twentieth centuries, ET contained notices of 
available scholarships, lists of successful candidates on examinations given by the College, notices 
of vacancies for teachers and governesses, numerous book reviews, and textbook advertisements. 
To many, the most singular feature of the monthly journal was the section devoted to mathematical 
problems and their solutions. For an informative account of the early history of the ET see Delve, 
2003.

From 1847 to 1915, more than 18,400 problems were posed in the pages of ET1. Solutions were 
received from all over the world. Problems were first posed in ET in 1848. Numbered problems 
first appeared in the August 1849 issue. Our classification schema includes information on 86.6 
percent of the problems posed in ET. Solutions were submitted to 81 percent of the problems 

                                                     
1 From 1915 to 1918, ET was published quarterly without a section devoted to mathematica problems. Problems 

numbered 18,139 to 18,702 were sent to individual subscribers on a monthly basis. Solutions to some of these problems 
appear in Mathematical Questions with their Solutions from the Educational Times. There are no problems numbered 
from 834 to 843, from 949 to 1010, from 2010 to 2109, and from 2120 to 2219. 
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posed. Proposers submitted their own solutions for 25.8 percent of the problems. For 16.4 percent 
of the solved problems the proposer’s solution was the only answer submitted and published.  

The majority of problems posed in ET came from the United Kingdom (59.82%), Ireland 
(7.83%), India (7.13%), France (6.31%), and the United States (5.5%). Other countries from which 
submissions were received include Italy, Germany, Russia, Australia, Sweden, Canada, 
Switzerland, The Netherlands, Spain, Belgium, Dagestan, South Africa, Bohemia, Austria, 
Holland, Ceylon, Malaysia, Mauritius, New Zealand, Malta, and Hong Kong. The country of 
origin remains unidentified for about 8 percent of the problems posed, but the majority of theses 
are most likely from the United Kingdom.  

The first editors of the department of mathematical questions and solutions were Richard 
Wilson and James Wharton of St. John’s College, Cambridge. When Stephen Watson of 
Haydonbridge and William John Clarke Miller of Yorkshire assumed the editorship of the 
department in the late 1850s, the quality of the problems and their solutions rose dramatically 
(Delve 1994). Miller’s directions for submission of problems to ET were few: “Make your answers 
as short as possible, write each question and answer on a separate sheet of paper with your name at 
the top of each, and remember to pay the postage in full!” He was mathematical master and vice-
principle of Huddersfield College in Yorkshire until 1876 when he became registrar, secretary and 
statistician to the General Medical Council. While in London, he was elected a fellow of the Royal 
Statistical Society and a member of the London Mathematical Society (Finkel 1896). 

Miller served as editor for MQ from 1862 until illness forced him to retire in 1897. During his 
tenure, annual subscriptions to ET were often offered to the best solutions to a designated prize 
problem. For many years he endeavored to publish solutions at most two months after the problem 
had been published. Although he usually responded affably to contributors, he would not let 
substandard submissions go unnoticed as he once advised a correspondent to “apply to the office 
of the College of Preceptors where there is, we believe, a mathematical class.” (Miller 1853) 

For many years ET consisted of twenty-four pages in double columns. By 1902 ET had 
expanded to forty-four pages of double columned print. Space in ET was at such a premium that 
less than a page and a half was normally devoted to the mathematics section. Various departments 
constantly vied with advertisements for space. On one occasion Miller wrote, “Want of space 
necessitated the omission of several solutions this month.” (Miller 1853a). The next month he 
wrote, “In consequence of the great pressure of advertisements and reports from the College, the 
mathematical matter is necessarily abridged this month.” (Miller 1853b). On several occasions in 
the 1850s the mathematics section was completely omitted. Other features were similarly affected, 
as the following notice indicates: “Owing to the great pressure on our advertisement column, we 
have been obliged to omit all our classical correspondence, several reviews, mathematical 
solutions, &c., which are on type and will appear next month.” (Anon 1862). 

The mathematics section was so popular, and space for it in ET so restricted, that from 1864 to 
1918, problems and solutions that had appeared in the journal were republished semiannually in 
Mathematical Questions with Their Solutions from the `Educational Times’(MQ). According to 
Miller, MQ “has been issued with the view of affording increased space for the publication of the 
problems and solutions sent for insertion in the mathematical columns of The Educational Times,
and in a form suitable for the library, and convenient for reference. To the mathematics contained 
in each number of the journal about an equal quantity is added, and the whole is then printed off 
every month, and published in half-yearly volumes.” (Miller 1866). 

In 1897 Miller was succeeded by Daniel Biddle, a member of the Royal College of Surgeons 
and Fellow of the Royal Statistical Society. Five years later, Constance Marks became the third 
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and last editor of the ET mathematical department. She added subject and author indices to MQ 
and short articles and poetry to each issue of ET. Women submitted one-third of the mathematical 
articles published in ET during Marks’ editorship. Marks, who held a Bachelor’s degree from the 
University of London, also submitted solutions to a number of ET’s mathematical problems during 
her tenure. 

Most nineteenth-century mathematical textbooks did not contain pages of diverse exercises as 
do modern texts. It was customary for teachers and students to seek out or create their own 
applications of theory. ET proved to be an invaluable source of practice problems to anyone 
interested in mathematics. The first publications of the Cambridge mathematician G.H. Hardy and 
the philosopher Bertrand Russell appeared as solutions to problems in ET. Other prominent 
subscribers include John Couch Adams, Emile Borel, Ernest Césaro, Augustus De Morgan, 
Francis Galton, Charles Hermite, Felix Klein, Magnus Mittag-Leffler, James Clerk Maxwell, 
Simon Newcomb, and Benjamin Pierce. The algebraist William Clifford claimed that ET did more 
to encourage original mathematical research than any other European periodical (Clifford 1897). 

The most notable and significant male contributors to the mathematics section were J.J. 
Sylvester and Arthur Cayley. Other eminent British contributors included William Burnside, 
Charles Dodgson, Thomas Archer Hirst, Thomas Kirkman, W.W. Rouse Ball, Peter Tait, and 
William Thompson (Lord Kelvin). European contributors included Eugene Catalan, Gaston 
Darboux, Jacques Hadamard, and Edouard Lucas. American contributors included Benjamin 
Finkel, Asaph Hall, Raymond Clare Archibald, and Artemas Martin. 

The percentages of types of problems posed in ET are illustrated in Table 1.

TYPE PROPOSED PERCENTAGE

GEOMETRY 53.72

ALGEBRA 10.02

ANALYSIS 9.35

APPLIED MATHEMATICS 8.68

NUMBER THEORY 5.98

GEOMETRIC PROBABILITY 4.82

COMBINATORICS 2.38

PROBABILITY & STATISTICS 1.89

TRIGONOMETRY 1.67

ARITHMETIC 0.85

RECREATIONAL MATHEMATICS 0.38

LOGIC 0.26

Table 1 

The earliest numbered mathematical contribution to ET from a woman appeared in 1853. 
However, prior to 1871, there were only fourteen contributions from women. Four of the eleven 
were geometry problems posed by Kate Sullivan, two of which solutions were never published. 
Between 1871 and 1916, women posed about 1.7 percent of the problems. During that same period 
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6.2 percent of the published solutions can be attributed to women. After 1902, nearly all of the 
mathematical contributions made by women were made by the editor Constance Marks. While 
many of the women contributors either did not marry or continued to use their maiden names, 
contributors using only an initial for their first name and the use of pseudonyms undoubtedly 
prevented the identification of several female contributors. Approximately 650 posed problems 
and 300 solutions were ascribed to contributors using pseudonyms, such as Mathematicus, 
Geometricus, Analyticus, Hibernicus, Rusticus, Function, Amicus, Nominus Umbra, Professor 
Touché, Phylomath, Ingenous, Pen & Ink, Madam F. Prime, Asparagus, and Abracadabra. In the 
early volumes of MQ the use of pseudonyms was rampant but it declined dramatically after 1870. 

Tables 2 and 3 illustrate the percentages of problems posed and solved by men and women. A 
goodness-of-fit test at the 0.05 level of significance, indicates that there is a significant difference 
in the types of problems posed by women as opposed to those posed by men, but no significant 
difference in the types of problems solved by men and women. 

TYPE PROPOSED  PERCENTAGES FOR THE 
13918 PROBLEMS POSED 

BY MEN

PERCENTAGES FOR THE 
254 PROBLEMS POSED BY 

WOMEN
GEOMETRY 54.04 47.62

ALGEBRA 10.04 4.76

ANALYSIS 9.04 4.08

APPLIED MATHEMATICS 8.78 8.84

NUMBER THEORY 6.13 0.68

GEOMETRIC  
PROBABILITY 

4.97 19.73

COMBINATORICS 2.09 1.36

PROBABILITY & 
STATISTICS 

1.91 8.84

TRIGONOMETRY 1.38 0.00

ARITHMETIC 0.85 2.04

RECREATIONAL 
MATHEMATICS 

0.43 0.68

LOGIC 0.34 1.36

Table 2 

The most prolific female contributor was Christine Ladd who, in later life, spent much of her time 
studying visual perception in the research laboratories of G.E. Miller in Göttingen and Hermann 
von Helmholtz in Berlin. Ladd was the valedictorian of her high school class at Wilbraham 
Academy in Central Massachusetts. She studied at Vassar College and taught secondary school 
mathematics in upstate New York. At Vassar, under the influence of astronomer Maria Mitchell, 
Ladd concentrated her studies on physics. Nineteen of the problems she posed in ET went 
unsolved, and the analytical skills she demonstrated in her solutions garnered the attention of J.J. 
Sylvester at Johns Hopkins. In 1874 she asked readers to determine the velocity of a coach given 
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the radii of the hind and fore wheels, the distance between their centers, and the fact that a particle 
thrown from the larger hind wheel fell on the highest point of the smaller fore wheel. 

Ladd went on to study mathematics under Sylvester’s supervision at Johns Hopkins. Her work 
in symbolic logic was influenced by Charles S. Pierce and Bertrand Russell. Ladd completed the 
requirements for a doctorate in 1882. At the time however Johns Hopkins did not grant degrees to 
women. Ladd eventually received her doctorate from Johns Hopkins forty-four years later. In later 
life she was instrumental in breaking down social and educational barriers, enabling women to 
pursue graduate degrees in Germany. 

TYPE PERCENTAGE OF 
16203 PROBLEMS 

PROPOSED

PERCENTAGES 
FOR THE 11500 

PROBLEMS 
SOLVED BY MEN

PERCENTAGES FOR 
565 PROBLEMS 

SOLVED BY WOMEN

GEOMETRY 54.13 54.36 57.90

ALGEBRA 9.82 9.79 9.71

ANALYSIS 9.05 8.99 8.19

APPLIED 
MATHEMATICS 

8.73 8.80 8.57

NUMBER THEORY 6.13 6.25 2.29

GEOMETRIC  
PROBABILITY 

5.04 5.14 4.19

COMBINATORICS 2.09 2.13 0.95

PROBABILITY & 
STATISTICS 

1.91 1.95 2.09

TRIGONOMETRY 1.33 1.35 3.05

ARITHMETIC 0.78 0.80 1.71

RECREATIONAL 
MATHEMATICS 

0.41 0.41 0.38

LOGIC 0.31 0.32 0.57

Table 3 

Among the women contributors to ET, Sarah Marks solved the most problems. Marks developed 
her strong mathematical background at Girton College in Cambridge, England during the late 
1870s. In 1883 she solved a problem, posed by Miller, of determining the radius of a spherical ball 
that when dropped into a full conical wine glass of given depth and vertex angle caused the 
greatest overflow. 

When she married William Ayrton in 1885, in addition to taking her husband’s name, Marks 
changed her first name to Hertha. The name was suggested by some of her friends who compared 
her to the Teutonic goddess Erda. Inspired by research that her husband had abandoned, Ayrton 
began experimenting with electric arcs, which were widely used for lighting at the time. Her 
research generated significant industrial and commercial interest, eventually leading to the 
production of more reliable searchlights and improvements in the performance of movie 
projectors. She became the acclaimed European expert of the electric arc and was commissioned to 
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write a series of papers for The Electrician that formed the basis for her book, The Electric Arc
(Ayrton 1902). 

Ayrton was a very successful scientific researcher at a time when women were just beginning 
to be recognized for their scientific work. She was the first woman elected to a British electrical 
engineering society and authored the first paper written by a woman to be read before the Royal 
Society of London (Ayrton 1901-02). In 1901 Ayrton began investigating wavelike motions and 
the development of ripple marks on the sea floor. Her discoveries showed how sand ripple 
formation applied to coastal erosion and sandbank formation.She was the first woman invited to 
read one of her own papers before the Royal Society (Ayrton 1911) and the first woman to be 
nominated to be a Fellow of the Royal Society. Although she had her husband’s support, the 
Society, on the advice of counsel, rejected her nomination, citing that “it had no legal power to 
elect a married woman to this distinction.” (Mayson 1992). In 1906 she was awarded the Royal 
Society’s Hughes Medal for her original research on electric arcs and sand ripples. During her later 
years she devoted much of her time to women’s and social causes, and was an active member of 
the National Union of Women’s Suffrage Societies (Tattersall & McMurran 1995). 

While at Girton, Ayrton and Charlotte Angus Scott formed a mathematical club whose goal 
was to “answer any mathematical questions that may arise.” (Sharp 1926). Perhaps the 
encouragement by students and faculty women received at Girton explains why almost 40 percent 
of all solutions to problems in ET by women were submitted by women from Girton.  

The Girton women who contributed to ET usually did so while at school or soon after leaving 
to begin their teaching careers. Their clever solutions and some of the ingenious problems they 
posed indicate that these women were persistent, logical thinkers with solid foundations in 
algebraic, geometric, and analytic reasoning. This was most likely due to Girton’s rigorous 
academic course of study, which included taking the formidable mathematical tripos, an 
examination that was required of every student pursuing an honor degree at Cambridge. 

Scott was the first woman to achieve first class honors on the mathematical tripos when she 
was bracketed with the eighth wrangler on the 1880 Cambridge examination. The exam was a 
fifty-five-hour ordeal spread over nine days. At the time, women were admitted to Cambridge 
examinations only by courtesy of the examiners. Thereafter, as a result of Scott’s achievement, 
women were formally admitted to the tripos, their results publicly announced, and, if successful, 
they were given certificates of achievement. The certificates, however, were in no way equivalent 
to a degree from Cambridge University. 

In 1882 in ET, Scott showed that if K is the orthocenter of a triangle, P a point on the 
circumcircle of the triangle, and if PK intersects the pedal line of P in Q, then Q bisects PK and the 
locus of Q is the nine-point circle of the triangle. Scott remained at Girton until 1885, serving as a 
lecturer in mathematics. During that period, she attended Cayley’s lectures in modern algebra, 
Abelian functions, number theory, semiinvarients, and the theory of substitutions. Under his 
supervision, she took an external D.Sc. degree with honors from the University of London 
becoming the first British woman to receive a doctorate and the second European woman, after 
Sofia Kovalevskaia, to receive a doctorate in mathematics.  

Scott migrated to the United States and became an active and prominent member of the 
American mathematical community. As chair of the mathematics department at Bryn Mawr, a 
position she held for nearly forty years, she supervised seven doctoral dissertations and 
undoubtedly influenced and inspired many young students. In addition to her teaching and 
administrative duties at Bryn Mawr, Scott organized a Mathematics Journal Club where faculty, 
students, and prominent visitors discussed their research. She published two dozen research 
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articles, read a dozen papers at meetings of the American Mathematical Society and published an 
advanced undergraduate geometry text (Scott 1894). 

Scott was one of the most active American mathematicians at the turn of the century (Kenschaft 
1987). She worked in the field of algebraic geometry and focused on analyzing singularities of 
algebraic curves and investigating properties of planar curves of degree higher than two. Her work 
was widely recognized in Europe as well as in America, and she had the curious distinction of 
being the only woman included in the first edition of Cattell’s American Men of Science (Cattell 
1906). She served for a number of years with Frank Morley as co-editor of the American Journal 
of Mathematics, a journal founded in 1878 by Sylvester at Johns Hopkins. Scott served two terms 
on the Council of the American Mathematical Society. In 1905 she was elected a vice-president of 
the AMS. Seventy years passed before another woman, Mary Gray of American University, was 
elected to that position. Scott was also a founder of the College Entrance Examination Board and 
served for a time as the Board’s chief mathematical examiner.  

Ada Isabel Maddison’s contributions to the mathematical section of ET were generally 
trigonometric or geometric in nature. She earned a first class on the 1892 mathematical tripos and 
took an external degree, with honors, from the University of London. A fellowship gave her the 
opportunity to take up graduate studies at Bryn Mawr under Charlotte Scott’s supervision. A year 
later Maddison was awarded Bryn Mawr’s Garret Fellowship, which she used to travel to 
Göttingen and attend the lectures of Felix Klein and David Hilbert. 

Maddison returned to Bryn Mawr in 1896 where she received a PhD in mathematics. She was 
awarded Girton’s Gambel Prize for her paper on singular solutions of differential equations and 
geometric invarients. She took a position as assistant to Bryn Mawr President M. Cary Thomas 
and was responsible for much of the routine administration of the college. However, she was best 
known at the time for her handbook on college courses open to women (Maddison 1896). 

Kate Gale, like Maddison, received an external bachelor’s degree from Trinity College, Dublin. 
Before emigrating to South Africa, she served for two years as assistant mistress at a private 
school in Brighton, for three years as second mistress at St. John’s School in Worcester Park, and 
for nine years as headmistress at the Blackheath Centre School. In South Africa, she was a 
mathematical mistress in Wynberg and then, for many years, joint headmistress and co-owner of 
the Milburn House School in Claremont near Capetown (Tattersall & McMurran 1995a). In 1882 
she showed that if 3n zeros are placed between 3 and 7 the resulting number is divisible by 37. In 
addition, given a semicircle with base AB, center O, and P a point on the circumference of the 
semicircle, Gale was able to determine the mean area of all triangles AOP.

Margaret Meyer’s ET solutions exhibited a thorough knowledge of geometry, calculus, 
mechanics, and physics. Meyer was an assistant mistress at the Notting Hill School for three years 
before returning to Girton to serve as a resident lecturer from 1888 to 1918. She was also Girton’s 
Director of Studies in Mathematics from 1903 to 1918. In 1907 she was awarded a Master’s 
degree from Trinity College, Dublin. During World War I, she conducted aeronautical research for 
the British government. She was one of the first women elected to become a Fellow of the Royal 
Astronomical Society. Meyer was an avid mountaineer and served for three years as president of 
the Alpine Club. In 1883 she solved a geometry posed by J.J. Sylvester concerning the distance 
between the orthocenter and circumcenter of a triangle. That same year, she determined the 
conditions under which a number has the sum of its digits 10 and twice the number has the sum of 
its digits 11. 

Emily Perrin obtained a first class on the 1883 mathematical tripos. She taught for two years at 
Cheltenham Ladies’ College before returning to Girton for two years as a senior lecturer in 
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mathematics. In 1888 she interrupted her career to nurse her invalid father and, after his death, 
served as an assistant in Karl Pearson’s statistical research laboratory at University College, 
London. She posed the problem of given any triangle and point P to determine the line through P
that bisects the area of the triangle. 

Frances Evelyn Cave-Browne-Cave was bracketed with the fifth wrangler in 1898, behind G.H. 
Hardy and James Jeans. She received an external M.A. degree from Dublin’s Trinity College in 
1907 and a titular M.A. from Cambridge in 1926. She served with Perrin as a statistical research 
assistant to Pearson in London and published two papers in barometric statistics. Cave-Brown-
Cave returned to Girton where she served as a Lecturer in mathematics from 1903 to 1936 and as 
Director of Studies from 1918 to 1936. 

In addition to the women discussed above, Table 4 lists several other American and British 
women who made notable mathematical contributions to ET. Philippa Fawcett placed above the 
senior wrangler on the 1890 Cambridge mathematical tripos.i Belle Easton, Lizzie Kittridge, and 
Frances E. Prudden were educated at the Union School in Lockport, New York. The school, 
founded in 1848, was the first regional public high school in the United States. Kittridge and 
Prudden graduated in 1873 with a class of eight, Easton in 1875 with a class of seven. All three 
came under the influence of Asher B. Evans, the school’s principal. Evans, a graduate of Madison 
(now Colgate) University, had an outstanding reputation and talent as a mathematical problem 
solver. He held an honorary M.A. degree from the University of Rochester and was a regular 
contributor to the mathematical section of ET.

Alice Gordon, submitted her solutions from the Barnwood House, a private hospital for the 
insane in Gloucestershire, England. Her contributions indicate that she held both a Bachelor’s and 
a Master’s degree. It is not clear whether Gordon was a patient or member of the staff. 
Gloucestershire County records show that in 1891 there was a single female patient, aged 40, with 
the initials AG who resided at the Barnwood House. In the mathematical section of ET, she was 
able to show that no cube except 8 when increase by 1 is square. 

The identity of Elizabeth Blackwood, B.Sc., remains a mystery. Among the women 
contributors, Blackwood posed the greatest number of problems, thirty-five of which went 
unsolved. Before settling in Bolougne-sur-Mer, she submitted contributions from London and 
New York. Her forte was geometric probability and she devised instruments to verify her 
probabilistic solutions experimentally. She once asked readers that when given a point in a 
quadrant of a circle and a line though it to find the probability that the line intersects the arc of the 
circle. E.B. Seitz, professor of mathematics at the Missouri Normal School (now Northeastern 
Missouri State University) known for his expertise in solving geometric probability problems, 
solved nine of the problems Blackwood posed2.

During the late nineteenth century a number of women with various educational backgrounds, 
several of whom were embarking on teaching careers, took advantage of the mathematical section 
of ET to test their knowledge and practice their analytical skills. Thanks to the efforts and 
encouragement of the mathematical editors of ET, we have a record of the contributions made by 
women a century ago. Most female contributors did not become research mathematicians or 
scientists, but this only emphasized the fact that a woman need not be an “anomaly” to be 
proficient at mathematics. The remarkable women who contributed mathematical problems and 
solutions to ET deserve to be recognized for their significant role in establishing, and securing, a 
place for all women in mathematics. 

                                                     
2 Seitz, hailed as the most distinguished American mathematician of his day, died at age thirty-seven 

from typhoid leaving a wife and four children (see Finkel, 1894).
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Table 4 lists the women who contributed to ET, Their locale, and the numbers of posed and 
solved problems attributed to each of them during their active period. Solutions to problems 
appearing in ET required a good understanding of algebra, trigonometry, calculus, triangle and 
circle geometry, and the basic concepts of physics and mechanics. Careful examination of the 
problems and solutions suggests that female contributors had or were acquiring solid mathematical 
backgrounds. In many instances their geometric, algebraic, and analytical reasoning skills were 
equal to that of their male counterparts. Women who contributed to ET were seizing the 
opportunities that higher education offered them. Their accomplishments helped eradicate the 
notion that “strenuous mental effort” might inflict injury “on their fragile and sensitive brains.” 
(Phillips 1990).

name locale number of 
solutions 
submitted 

number of 
problems 

posed

total number 
of submissions

active MQ 
period

Christine Ladd Connecticut, 
Boston, New York 

82 53 135 1872-1899

Sarah Marks 
(Hertha Ayrton) 

Girton 95 22 117 1881-1899

Belle Easton Lockport NY 81 26 107 1874-1893

Elizabeth 
Blackwood  

London, New York, 
Boulogne-sur-mer 

23 76 99 1872-1897

Alice Gordon Gloucester 41 36 77 1885-1905

Constance 
Marks 

London 50 9 59 1899-1918

Charlotte Scott Girton, Bryn Mawr 25 9 36 1880-1888

Emily Perrin Cheltenham, Girton, 
London

24 4 28 1885-1992

Kate gale Girton, Brighton, 
Surry

21 0 21 1881-1891

Margaret meyer Girton 20 0 20 1882-1885

Frances E. Cave Girton 15 0 15 1903-1908

Isabel Maddison Girton, Cardiff 13 1 14 1886-1899

Lizzie 
Kittredge 

Boston MA 13 1 14 1873-1892

Gertrude Poole Cheltenham 10 0 10 1887-1888

Fannie Jackson Towson MD 7 1 8 1889-1897

Edith J.D. 
Morrison 

unknown 7 0 7 1909-1915

Miss Stephens unknown 5 0 5 1853

Kate Sullivan unknown 2 3 5 1850-1853

Mmillicent 
Colquhoun 

Inverness 4 0 4 1872

Myra Greaves Bolougne-sur-mer 3 1 4 1871

Hanna Noylen unknown 3 0 3 1887-1888

Hilda Hudson Newnham 2 1 3 1890-1892
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madame F. 
Prime 

unknown 0 3 3 1892-1896

Annie Chartres unknown 2 0 2 1898

Emma Essennell Coventry 2 0 2 1882

Frances Prudden Lockport NY 2 0 2 1872

Beatirce A. 
Ward 

Cheltenham 2 0 2 1884

madame 
Thérèse 

unknown 2 0 2 1892-1893

Mary Sullivan Co. mayo, ireland 2 0 2 1850

Philippa Fawcett Newnham 0 2 2 1897-1898

Lucy Baker unknown 1 0 1 1889

M.A. Clarke Birmingham 1 0 1 1872

Edith K.A. 
Hughes 

Stroud 1 0 1 1899

Eleanor 
Robinson 

Newnham 1 0 1 1888

Margaret 
Francis Evans 

Girton 1 0 1 1891

Gertrude 
Griffith 

unknown 1 0 1 1896

Ellen Rhodes Helensborough 1 0 1 1871

Isablela M. 
Ward 

Bolougne-sur-mer 1 0 1 1871

Catherine 
Riorden 

macroom, co. cork 1 0 1 1850

Catherine 
Sullivan 

Co. Mayo, Ireland 1 0 1 1850

Adelaide Hall unknown 1 0 1 1885

Alice Huxham unknown 1 0 1 1885

Table 4. Women contributors to The Educational Times
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1 Introduction 

The introduction of graphical representations in mathematics, aimed at visualizing relationships 
between variables, was a first step towards the conceptualization of variable. The works of 
Nicholas Oresme (1320-1382) contain notions that would nowadays be assimilated to data 
visualization: Oresme, in the fourteenth century, represented velocity graphically and performed 
infinite sums based on their geometric representation. Today, Oresme’s works provide a reference 
for the pedagogical analysis of the value of representation. 

Oresme was a philosopher, economist, mathematician, and physicist, and one of the founders of 
modern science. He was born in Normandy in 1320 and died at Lisieux, in 1382. In 1348 he was a 
student of theology in Paris. In 1356 he became grand master of the Collège de Navarre, and in 
1362, already master of theology, he was named canon of Rouen. He became dean of the chapter 
on March 28, 1364 and Bishop of Lisieux on August 3, 1377. 

Oresme devised a system of geometric coordinates and established the logical equivalence 
between data tabulation and data plotting. He proposed the usage of a graph for representing a 
variable quantity whose value depends on another variable. Attributed to Oresme is the first proof 
of Merton’s theorem, which states that the distance traveled by a body with uniform acceleration, 
in a fixed time, is the same distance that the body would travel if it were moving at a constant 
velocity equal to its velocity at the middle point of the trajectory. In De proportionibus 
proportionum, Oresme uses a fractional exponent for the first time – although, naturally, not with 
the modern notation. Oresme also worked with infinite series and argued in favor of an infinite 
void beyond Earth. 

Nevertheless, according to Clagett: 

This brilliant scholar has been credited with [...] the invention of analytic geometry before 
Descartes, with propounding structural theories of compounds before nineteenth century 
organic chemists, with discovering the law of free fall before Galileo, and with advocating the 
rotation of the Earth before Copernicus. None of these claims is, in fact, true, although each is 
based on discussion by Oresme of some penetration and originality. (Clagett, 1968, p. 3) 

2 Quantity and quality 

Oresme’s most important contributions to mathematics are contained in his work Tractatus de 
configurationibus qualitatum et motuum (A Treatise on the Configurations of Qualities and 
Motions). 

The aristotelian search of quality and quantity categories stresses the difference of intentio
(intensity) in qualities, as opposed to the numerical increment in quantities. A quantity, for 

                                                     
† Deceased.
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instance a surface, grows through the annexation of another quantity. In contrast, a quality, such as 
wisdom, grows in a completely different way: the wisdom of two persons does not result in a 
double wisdom. Similarly, two glasses of warm water do not produce hot water (heat was 
considered a quality before the invention of the thermometer in the seventeenth century). Even 
more significant is the study of the motion of bodies, which was then considered a quality; 
velocity variation was widely debated in the thirteenth and fourteenth centuries – in fact, the 
extrapolation of quantitative ideas to qualities originated in the discussions around motion that 
took place in this period. 

This extrapolation materialized as calculatio, an application of the Euclidean theory of 
proportions to theological concepts – in particular to qualities, including motion. Oresme proposed 
one possible application of Euclides’ theory of proportions to qualities, which consists of 
geometrically representing the variability of a quality’s intensity. Oresme represents variable 
values, in particular the velocity of a body at any point and at any given instant, by means of a line 
segment with a direction. 

3 The theory of configurations 

Oresme’s path was paved by scholastic philosophers. In this context, the study of bodies supposes 
two types of measures: the measure of the body’s extensions (length, area, volume) and the 
measure of its intensities (heat, for example). In the former case, the measure is a property of the 
body, in that it occupies a place in space; in the latter, the measure is a characteristic of 
“something” that belongs to the body, be it constant or variable in time. 

Oresme uses the term “configuration” in two different, albeit related, senses. The first sense is 
denoted primitive and the second, derived. In the primitive sense, configurations refer to the 
fictitious and imaginative usage of geometric figures to graphically represent the intensity of 
qualities and the velocity of motions. The line at the base of such figures represents the subject
(the body, the place) in the case of linear qualities, or time, in the case of velocities; the lines 
perpendicular to this base represent the intensity of the quality from one point to another of the 
subject, or the velocity of motion from one instant to another. The complete figure, composed of 
the set of perpendicular lines, represents the total distribution of intensities of the quality, or, in the 
case of motion, the “total velocity”. The total velocity is equivalent, from the dimensional point of 
view, to the space traveled by the body during the considered time interval. Thus, the 
configuration of a quality with uniform intensity is a rectangle. A quality with uniformly variable 
intensity that starts at zero is represented by a right triangle. Similarly, motions with uniform 
velocity and uniform acceleration are represented, respectively, by rectangles and by right 
triangles. 

For Oresme, the differences between configurations in the primitive sense replicate, in a useful 
and advantageous way, the differences that are internal to the subject. Hence, the external 
configuration represents a sort of internal array of intensities, which can be called the essential 
configuration of the subject. This notion leads to the second meaning of the term “configuration” 
in Oresme’s work. In the derived sense, the configuration’s meaning ceases to be purely spatial or 
geometrical, since one of the involved variables – the intensity – is not essentially spatial. 
However, variations in intensity can still be represented by variations in the length of line 
segments. 
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The key point of the theory lies in the relationship between the two meanings of the term 
configuration. Oresme claims that any figure or configuration can be used to describe a quality, as 
long as the heights of the configuration (the ordinates) at two different points of the base have the 
same ratio as the intensities of the qualities in the same points of the subject.

4 On the configuration of qualities 

The Tractatus, which was probably written in 1350, is organized in three parts. The first part starts 
by establishing the principles of the theory of figures and applies them to the extensions, that is, to 
the entities that are essentially permanent or stable in time. Oresme then associates the theory with 
the internal configurations of qualities. Throughout this part of the treatise, Oresme suggests ways 
in which his theory can be used to explain several physical and psychological phenomena.  

The second part of the treatise describes an adaptation of the theory aimed at describing 
motion, which is to say successive entities. Once again, after describing the geometrical and 
external aspects of the theory, Oresme presents a detailed analysis of certain sound and musical 
effects, based on the study of the true nature of motion that any given essential configuration 
yields. Oresme concludes this second part with an extensive discussion of magical and 
psychological phenomena, explained through essential configurations of motion. In fact, Oresme’s 
intention is to attack magic by means of physical arguments, in the same way as he discusses 
elsewhere1 the reasons behind the mathematical arguments against astrology. 

Finally, in the third part of the treatise, Oresme returns to the geometrical figures previously 
used to represent qualities and motions and demonstrates that the foundation principles for 
comparing different qualities and motions lie in the comparisons of the areas of such figures. 

5 Representation 

The central element in Oresme’s work is, evidently, representation – the possibility of imbuing a 
figure with the essential characteristics of a phenomenon which, in principle, are invisible to the 
producer and to the observer of the figure. Such a figure allows one to “operate” with the 
represented characteristics as if they were the actual hidden characteristics of the phenomenon in 
question, such that meaningful conclusions be drawn about them. The conviction that there exist 
an essential isomorphism between phenomenon and representation, such that to each point of a 
body (or trajectory) corresponds one and only one value of the quality (which is proportional to 
the ordinate in the figure), allows one to abstract away the phenomenon and focus the discussion 
on the representation. 

Clearly, a series of tacit assumptions underlie Oresme’s representations. Firstly, that it is 
possible to know the “real” intensities of the qualities, in order to produce segments that are 
proportional to these intensities. Secondly, that the variation of the quality’s intensity is 
continuous and therefore can be modeled by means of continuous figures. Finally, that the areas – 
and hence the intensities of the qualities – and the relationships they represent are preserved during 
transformations. 

                                                     
1 E. Grant (1960): « Nicole Oresme and his De proportionibus proportionum », Isis Vol. 51, pp. 293-

314.
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In this paper, we will present examples of Oresme’s representations and of the computations he 
performed with them. We will analyze the arguments with which he justified the tacit hypotheses 
mentioned above. This analysis is aimed at understanding the initial efforts of students in 
accepting an arithmetic or calculus concept based on geometrical figures. 
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ABSTRACT 
Rote learning of Euclid’s Elements in English schools in the 1860s came increasingly under fire, leading to 
the foundation of The Association for the Improvement of Geometrical Teaching (now the Mathematical 
Association) in 1871. In this article we look at two Englishmen on different sides of the Euclid divide: 
Thomas Archer Hirst and Charles Lutwidge Dodgson (Lewis Carroll). Further information can be found in 
(Richards, 1988) and (Brock, 1975). 

1 Introduction 

Euclid’s Elements [3] was probably written around 300 BC. It consists of thirteen books, on plane 
geometry, proportion, arithmetic, number theory and solid geometry, organised in an axiomatic 
and hierarchical way, with each successive result depending on the initial axioms and postulates or 
on previous results. Most of the results take the form of theoretical propositions that are stated 
formally and then proved; others are constructions that are then justified with a formal proof. The 
language is geometrical throughout: even the arithmetical results are presented in terms of lengths 
of lines rather than numbers. There is no discussion of practical problems. 

For 2000 years the Elements was used for teaching: in Alexandria, in European universities, 
and latterly in the English private schools. The first printed edition of 1482 was in Latin and the 
first English edition was Henry’s Billingsley’s 1570 translation, with a preface by John Dee. After 
this there were many hundreds of printed editions, and it has frequently been claimed that the 
Elements is the second most frequently printed book of all time, after the Bible. Indeed, over two 
hundred editions appeared in England between 1800 and 1850, and a nineteenth-century edition by 
Isaac Todhunter sold more than half a million copies. 

2 In praise of Euclid 

In most English private schools the Victorian curriculum consisted mainly of the Classical 
languages of Latin and Greek, together with some Divinity. For those schools that taught 
mathematics, Euclidean geometry was the standard fare, being regarded as the ideal vehicle for 
teaching young men how to reason and think logically. Based on ‘absolutes’, the subject of 
geometry fitted in with the Classical curriculum, thereby providing ideal training for those who 
expected to go on to Oxford and Cambridge Universities and the Church. The Elements became an 
important constituent of examination syllabuses, being required not only for the ancient 
universities but also for entrance to the Civil Service and the Army. In particular, in the late 
nineteenth century, Oxford students aiming for a Pass degree had, besides Latin and Greek, to 
offer either logic or mathematics, the latter consisting of quadratic equations and a few 
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propositions from the early books of Euclid; those studying mathematics for an Honours degree 
would be expected to study the first six books of Euclid. 

A justification for the benefits of geometry in general is well expressed in the following 
passage from William Whewell’s Of a Liberal Education (p. 30) which appeared in 1845:  

There is no study by which the Reason can be so exactly and rigorously exercised. In learning 
Geometry the student is rendered familiar with the most perfect examples of strict inference 
[…] He is accustomed to a chain of deduction in which each link hangs from the preceding, yet 
without any insecurity in the whole: to an ascent, beginning from the solid ground, in which 
each step, as soon as it is made, is a foundation for the further ascent, no less solid than the first 
self-evident truths. Hence he learns continuity of attention, coherency of thought, and 
confidence in the power of human Reason to arrive at the truth. We require our present 
Mathematical studies not as an instrument (for the solution of today’s mathematical problems) 
but as an exercise of the intellectual powers; that is, not for their results, but for the intellectual 
habits which they generate that such studies are pursued. 

3 Anti-Euclid 

There were those, however, who were opposed to the over-formalistic approach of Euclid and 
other Greek geometers. They regarded such a strictly logical approach as obscure and unsuitable 
for beginners. It was too artificial, they said, in its insistence on a minimal set of axioms and its 
requirement that all constructions should be carried out with straight-edge and compass only. 

Another objection was that the formal study of Euclid required too much rote learning, often 
with no understanding, and that it failed to encourage independent thinking; indeed, the story is 
told of an Oxford examination student who reproduced a proof from Euclid perfectly, except that 
in his diagram he drew all the triangles as circles. Even as early as 1832 Baden Powell, the 
Savilian Professor of Geometry, had complained that, while several mathematics students had ‘got 
up’ the four books of Euclid, not more than two or three could add vulgar fractions.  

It was a time of change. A growing middle class was demanding a more practical approach to 
mathematics and the traditional classical education was becoming increasingly irrelevant. In his 
Presidential address to the Mathematics and Physics Section of the British Association in 1869, 
James Joseph Sylvester (1869-70) was forthright in his condemnation of the old ways: 

The early study of Euclid made me a hater of geometry, which I hope may plead my excuse if I 
have shocked the opinions of any in this room (and I know there are some who rank Euclid as 
second in sacredness to the Bible alone, and as one of the advanced outposts of the British 
constitution) […] 
No one can desire more earnestly than myself to see natural and experimental science 
introduced into our schools as a primary and indispensable branch of education: I think that 
study and mathematical culture should go on hand in hand together, and that they would greatly 
influence each other for their mutual good. I should rejoice to see mathematics taught with that 
life and animation which the presence of her young and buoyant sister could not fail to impart, 
[…] Euclid honourably shelved or buried ‘deeper than e’er plummet sounded’ out of the 
schoolboy’s reach […] 
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4 The 1860s 

In the 1860s the feeling grew in some quarters that examinations should not be based on a single 
book. Several texts were proposed as alternatives to Euclid’s Elements – at first a trickle, and then 
a flood. A Schools’ Inquiry Commission was set up which, in the words of Augustus De Morgan 
(1868, p. 71), 

[…] has raised the question whether Euclid be, as many suppose, the best elementary treatise 
on geometry, or whether it be a mockery, delusion, snare, hindrance, pitfall, shoal, shallow, and 
snake in the grass […] 

These words appeared in De Morgan’s review [(1868) in the Athenaeum of John Maurice Wilson’s 
Elementary Geometry (1868), one of the most respected and widely used rivals to Euclid. De 
Morgan generally supported Euclid, but as a logician, realised that the logical arguments that 
appeared in the Elements were not as flawless as its supporters made out. He continued (ibd., p. 
73): 

We feel confidence that no system as Mr. Wilson has put forward will replace Euclid in this 
country. The old geometry is a very English subject, and the heretics of this orthodoxy are the 
extreme of heretics: even bishop Colenso has written a Euclid. And the reason is of the same 
kind as that by which the classics have held their ground in education […] 

We only desire to avail ourselves of this feeling until the book is produced which is to 
supplant Euclid; we regret the manner in which it has allowed the retention of the faults of 
Euclid; and we trust the fight against it will rage until it ends in an amended form of Euclid. 

Following Sylvester’s lecture to the British Association, the BA set up a Euclid Committee, 
consisting of Arthur Cayley, William Clifford, Thomas Archer Hirst, Henry Smith, George 
Salmon and Sylvester himself, to decide on a way forward. In the following year, on 26 May 1870, 
Rawdon Lovett proposed an Anti-Euclid Association, and by October it was able to circulate a list 
of twenty-eight members. This quickly re-formed itself into the Association for the Improvement 
of Geometrical Teaching (AIGT), which held its first meeting at University College, London, on 
17 January 1871 (AIGT, 1871), and which set itself the task of producing new geometry 
syllabuses and texts. Its first president was Thomas Archer Hirst, (Brock & MacLeod, 1980; 
Gardner & Wilson, 1993). 

5 Case study 1: Thomas Archer Hirst 

Thomas Hirst (1830-1892) did not have the mathematician’s usual training, in that he did not 
study at Oxford or Cambridge Universities. Growing up in Yorkshire and leaving school at the age 
of fifteen, he was articled to an engineer, surveying for the West Yorkshire railway. In 1850 he 
went to the University of Marburg, Germany, where he was awarded a doctorate for researches in 
geometry. After further studies in Göttingen and Berlin, he returned to England, where he taught at 
Queenwood College, near Salisbury. The teaching at Queenwood emphasized practical work, and 
Hirst taught geometry in the context of surveying.  

Following further years in France and Italy, Hirst settled in London where he taught at 
University College School; here, his geometry teaching combined the traditional (Euclid) with the 
practical (surveying). In 1865 he became Professor of Mathematical Physics at University College 
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(one of only seven physics professors in the country), and in 1867 he moved sideways to take up 
the Chair of Mathematics, left vacant by De Morgan who had resigned. A strong supporter of 
women’s education, Hirst announced a series of geometry lectures in Lent Term 1870 to the 
Ladies’ Educational Association: 

A Course of Twenty-Four Lectures on the Elements of Geometry will be given by Professor 
Hirst, in the Minor Hall, St. George’s Hall, Langham Place, on Mondays and Fridays at 11.A.M. 
(beginning on January 17), should a sufficient number of tickets be applied for before Christmas. 
The Lectures will be of an elementary character requiring no previous knowledge of the subject, 
the extent to which it will ultimately be carried being dependent upon the progress of the class. Fee 
for the Course of 24 Lectures, £11.1.6; Governesses £1.1s.  

These lectures were very successful. At the first one, as he recalled in his diary (1980, p. 1857): 

About 60 were present and they listened to me with the profoundest attention. At the end of the 
hour a slight applauding shuffle of their feet was audible. Only 30 had entered their names as 
students of the class. A few days afterwards however I heard the number had risen to 57. 

One appreciative student wrote (1980, p. 1857): 

I was sorry not to be able to wait to offer my congratulations on the success of your lecture – 
carefully prepared – admirably delivered and received with the most perfect attention – What 
more will a great Teacher desire for a beginning. And some of them may learn what a line is 
and a surface. I am flattering myself that I have mastered the plane. Yours is the first lecture I 
have ever heard […] 

The lectures continued to go well, and by the ninth lecture, on 14 February, Hirst was able to write 
(1980, p. 1858): 

They still work well, one or two only have confessed inability to follow and a desire for private 
instruction. Some tell me of stopping up till midnight to solve exercises. In my exercise box I 
found some Valentines […] 

Finding that his various teaching duties left him with too little time for his beloved geometrical 
researches, he resigned his Chair in April 1870, taking up the less arduous and more remunerative 
post of Assistant Registrar and Treasurer of the University of London. He was by this time also 
General Secretary of the British Association and Treasurer of the London Mathematical Society. 

It was shortly after becoming Assistant Registrar that he became the first President of the 
Association for the Improvement of Geometrical Teaching. His experience as a practical geometer, 
his two spells of schoolteaching, and his lectures to the Ladies’ Educational Association made him 
ideally suited for this role. While continuing with this role, Hirst became President of the London 
Mathematical Society (from 1872-1874) and a Vice-President of the Royal Society. He also gave 
up his University of London post in 1873 to become the first Director of Studies at the new Royal 
Naval College in Greenwich.  

Under his leadership the AIGT embarked on a programme of producing revised geometry 
syllabuses and textbooks. In 1875 a Syllabus of Plane Geometry was produced (AIGT, 1875). By 
1878, at his valedictory Presidential address (Brock, 1975, p. 30; Brock & MacLeod, 1980, p. 
2071), he was able to claim that: 

Elementary Geometry is no longer regarded as a long-since perfect branch of knowledge; it is 
no longer classed with the seven orders of architecture […] that cannot be touched without 
being spoiled. On the contrary […] the elements of geometry, so far as principles and methods 
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of exposition are concerned, constitute not a dead but a living science, susceptible still of being 
improved, and still capable of furnishing new matter of thought to both teacher and Student. 

6 Case study 2: Charles Lutwidge Dodgson 

On the opposite side of the Euclid divide was Charles Dodgson, better known as Lewis Carroll, 
author of Alice’s Adventures in Wonderland and Through the Looking Glass. After receiving his 
degree from Oxford University in 1854 he became Mathematical Lecturer at Christ Church from 
1855 to 1881, where he was responsible for teaching Euclidean geometry and other subjects. In 
1860 he wrote a Syllabus of Plane Algebraic Geometry to help his geometry students, described as 
the algebraic analogue of Euclid’s pure geometry and systematically arranged with formal 
definitions, postulates and axioms. In later years he gave an algebraic treatment of Euclid’s Book V
on proportion, taking the propositions in turn and recasting them in algebraic notation, and of 
Euclid’s Books I and II. These pamphlets all appear in (Abeles, 1994). 

Sometimes he allowed his whimsical sense of humour to take geometrical form. In 1865, he 
wrote Dynamics of a Parti-cle (Dodgson, 1865) a witty pamphlet concerning the election for the 
Oxford University parliamentary seat. For example, his ‘definitions’ parodied those of Euclid 
(Euclid, 2002, p. 1; Dodgson, 1988, p. 1018): 

EUCLID: A plane angle is the inclination of two lines to one another, which meet together, but 
which are not in the same direction. When a line meeting another line makes the angles on one 
side equal to that on the other, the angle on each side is called a right angle. An obtuse anger is 
one, which is greater than a right angle.
DODGSON: Plain anger is the inclination of two voters to one another, who meet together, but 
whose views are not in the same direction. When a proctor, meeting another proctor, makes the 
votes on one side equal to those on the other, the feeling entertained by each side is called right
anger. Obtuse anger is that which is greater than right anger.

While Hirst was campaigning to replace Euclid’s Elements by newly devised geometry books, 
Dodgson was a great supporter of the Elements and bitterly opposed to these aims. In 1879 he 
wrote a celebrated work, Euclid and his Modern Rivals (Dodgson, 1869), dedicated to the memory 
of Euclid, in which he carefully compared the Elements, favourably in every case, with several 
rival texts by A.-M. Legendre, Benjamin Peirce and J. M. Wilson and others. To reach a wider 
audience, Dodgson cast it as a drama in four acts with four characters: Minos and Radamanthus 
(two of the judges in Hades), Herr Niemand (the phantasm of a German professor), and Euclid 
himself. 

Dodgson introduced his book as follows (Dodgson, 1879, Preface):

The object of this little book is to furnish evidence, first, that it is essential, for the purpose of 
teaching or examining in elementary Geometry, to employ one textbook only; secondly, that 
there are strong a priori reasons for retaining, in all its main features, and specially in its 
sequence and numbering of propositions and in its treatment of Parallels, the manual of Euclid; 
and thirdly, that no sufficient reasons have yet been shown for abandoning it in favour of any 
one of the modern Manuals which have been offered as substitutes. 

He also refers to the numbering of well-known results (Dodgson, 1879, p. 11): 
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The Propositions have been known by those numbers for two thousand years; they have been 
referred to, probably, by hundreds of writers […] and some of them, I.5 and I.47, for instance – 
the ‘Asses’ Bridge’ and ‘The Windmill’ – are now historical characters, and their nicknames 
are ‘familiar as household words’. 

‘The Asses’ Bridge’, or pons asinorum, is the proposition that the base angles of an isosceles 
triangle are equal, while ‘The Windmill’ is Pythagoras’s theorem. On another occasion, Dodgson 
wrote whimsically about the latter: 

It is as dazzlingly beautiful now as it was in the day when Pythagoras first discovered it, and 
celebrated the event, it is said, by sacrificing a hecatomb of oxen – a method of doing honour to 
Science that has always seemed to me slightly exaggerated and uncalled-for. 
One can imagine oneself, even in these degenerate days, marking the epoch of some brilliant 
scientific discovery by inviting a convivial friend or two, to join one in a beefsteak and a bottle 
of wine. But a hecatomb of oxen! It would produce a quite inconvenient supply of beef. 

7 Conclusion 

Following Hirst’s retirement as President of the AIGT, subcommittees were set up for solid 
geometry, higher plane geometry and geometrical conics, and the Association decided to produce a 
textbook of elementary plane geometry. In 1883 Books I and II of the textbook were published, 
followed three years later by Books III, IV and V. Meanwhile, the Association had decided to go 
outside its original brief and set up subcommittees in other areas of mathematics – starting with 
arithmetic and mechanics. In 1894 the Association published the Mathematical Gazette for the 
first time, a publication that still exists. Three years later the AIGT was renamed The 
Mathematical Association, a name that survives to this day.  

Meanwhile, the tide was flowing against those who wished to preserve Euclid’s Elements. In 
1887-88 Oxford and Cambridge decided in their examinations ‘to accept proofs other than 
Euclid’s provided that they did not violate Euclid’s order’. By 1903 this also had disappeared, 
when they decided ‘to accept any systematic treatment, and not to be bound by Euclid’s order’. 
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ABSTRACT 
John Blagrave (1558? - 1612) was a gentleman mathematician of Reading in England. He wrote 4 books 
concerned with mathematics, the last one dealing with the art of constructing sundials. His funerary 
monument features the 5 Platonic solids. This article consists of 4 parts. The first describes Blagrave’s life. 
The next gives details of his books. The funerary monument is described in detail with the location of other 
similar monuments in the third part. The final part gives an outline of how his sundial constructions can be 
used in the secondary classroom with or without the aid of dynamic geometry software on a PC or TI 
graphing calculator. 
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1 His life 

The date of John Blagrave’s birth is not known but is believed to be about 1558. He lived at 
Southcote Lodge, Swallowfield, near Reading. He was able to use the mathematical books in the 
library of Sir Thomas Parry, one of the leading Berkshire gentry, and this inspired him to become 
a self-taught professional mathematician. The varied work he did include land-surveying and the 
design, erection and repair of sundials. These interests meant he became involved in inventing new 
mathematical and navigational instruments. The instruments, being quite complex, needed 
comprehensive instructions and so he wrote books to accompany their use. It is of interest to learn 
that he also produced the wood blocks with which the illustrations were produced, perhaps due to 
a serious financial loss between 1577 to 1583. These instruments, although capable of producing 
more accurate results than many in use, never really became established as they were so delicate 
and required very stable bases. The navigator and seaman found them too difficult to stabilise and 
so remained with the more sturdy instruments already in use. 

John travelled to London fairly frequently to either provide or explain his instruments to those 
desiring them. In 1596 he could be found in a lodging within ‘Maister Greene’s Wharfe’ near 
Charing Crosse, or traced through Ralphe Jackson’s, at the ‘Sign of the Swan’ near St Paul’s or at 
William Matts, the stationer’s at the ‘Sign of the Plough’ over St Dunstan’s Church, Fleet Street.  

John, the second son of John Blagrave and his wife Anne Hungerford, devoted himself to 
mathematical studies and was esteemed as the flower of Mathematicians of his age. His principle 
work, The Mathematical Jewel, was published in 1585. He possessed a house at Swallowfield, 
where he sometimes lived, but he usually describes himself as ‘of Reading’ and from his will and 
from other evidences it appears that he lived at Southcote Lodge, which he held under a lease 96 
years, dated 1596, from his elder brother Anthony at a rent of £10 per annum. After his death it 
was occupied first by his brother Alexander and then by his nephew Daniel, from whom the 
corporation of Reading had difficulty in getting the rent, £50 per annum which was secured on it 
to that body under John Blagrave’s will. 

John Blagrave was buried in the same grave as his mother in the churchyard of St Laurence’s. 
Today the church stands at the end of Blagrave Street and Friar Street. 

2 His books 

His four main books were as follows. 

The Mathematicall Jewel.  

Shewing the making, and most excellent use of a singuler Instrument so called: in that it 
performeth with wonderfull dexteritie, whatsoever is to be done, either by Quadrant, Ship, 
Circle, Cylinder, Ring, Dyall, Horoscope, Astrolabe, Sphere, Globe, or any such like heretofore 
devised: yea or by most Tables commonly extant: and that generally to all Places from Pole to 
Pole.

This was written in 1585. The Jewel was a new form of astrolabe and John himself engraved the 
plates in 1584. It appears that the Jewel would work with a single plate of thin card or brass, the 
latter form being used by those who could afford to pay for it. Previously many plates for different 
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latitudes were needed adding to the cost. A woodcut of a new pattern of armillary sphere made and 
cut by the author is on the title page. 

As well as describing the use of the instrument the book contains anecdotes of personal events 
and local incidents such as the setting up of a dial on the wall of Sonning Church in 1581 by which 
to set the church clock. I do not know what the original price was, but a copy of the 1587 edition 
sold for 3/- in 1684, and Robert Hooke bought a cheap copy in Duck Lane in 1675. 

Baculum familiare… 
A Booke of the making and use of a Staffe, newly invented by the Author, called the Familiar 
Staffe.

This was published in 1590 and dedicated to Sir Francis Knollys. Blagrave’s Familiar Staffe was 
invented in 1589 when he observed the shooting of a piece of captured Armada ordnance at Grays 
Court, Oxfordshire, the seat of his patron, Sir Francis Knollys. The staff, shown on the title page 
of the book, was engraved with scales for range finding, and for determining the heights and 
distances of inaccessible objects (Readers familiar with the cross staff will appreciate the principle 
involved.). It had peaceful and military applications. 

Astrolabium Uranicum Generale…  
a Necessary and Pleasant solace and Recreation for Navigators in their long journeying. 

Six years after the Baculum familiare Blagrave published this book (1596). 
A map (Nova orbis terrarum Descriptio) engraved by Benjamin Wright accompanied the book. 

Uranical was the term then used to mean heavenly. The instrument could be used to demonstrate 
the Copernican (sun-centred) or Ptolemaic (earth-centred) system. Much research on this 
instrument was performed by Dr. R. T. Gunter who read a paper on it to The Society of Antiquities 
on 21 March 1929. By that time the instrument was known only by name, as no complete example 
was in existence. Museums had components, but nobody knew how they all fitted together. The 
discovery of a map with a curious diagonal scale forms the basis of a detective story far stranger 
than fiction in the solution of how the instrument works. A full description is inappropriate here, 
and the interested reader should follow this up in [Aked]. 

The Art of Dyalling 
dedicated to Sir Thomas Parry, Chancellor of the Duchy of Lancaster, was written in 1609. In 
1968 Da Capo Press reprinted it in facsimile. 

This work, although not easy for the modern reader, is exceptionally clear and practical.  

The first booke teacheth Geometrically, and in a manner Mechanically out of the Theoricke of 
the Art to make Dials, to all Horizons, and to all Wals or Plaines whatsoever, or howsoever 
declining, reclining or inclining, after the plainest manner: Fit for the Capacity of men of 
ordinary understanding, yet differing much from all that hath bene heretofore written of the 
same Art by any other. 
The second part, teacheth by a more Artificial way to make Dyals, not onely to all Horizons, 
walles, or other plaines, howsoever declining, reclining or inclining: but also to concave and 
convex plaines, and to set the 12 signes and the howres of any other country in any dyall, and 
many other things to the same Art appertaining. Wrought by diverse newe conceites of the 
Author, never yet extant by any other. 
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Blagrave refers to the gnomon of a dial (the piece that casts a shadow) as the “cocke”, and 
illustrates his work profusely. Towards the end of his book (chapter 32) he explains how to draw 
lines to give the hours of any other place. 

3 His monument 
In 1996 John Fauvel heard that I was going to a meeting in Reading and asked me, if I had the 
opportunity, to take some pictures of the memorial to John Blagrave in the church of St. Laurence-
in-Reading. 

It is unusual because each of the ladies surrounding it holds one of the Platonic solids. The lady 
on John’s left holds a cube (cubus); the one above her sports a dodecahedron (dodicadron). On his 
right he is offered a tetrahedron and above that an octahedron. The icosahedron (icozedron) of the 
apical lady is missing. Other examples of polyhedral funerary sculpture exist: in the church at 
Wimborne St. Giles (Dorset), Salisbury cathedral and Merton College chapel at Oxford. The 
author would appreciate learning about any other similar features. John Blagrave himself holds a 
quadrant in his left hand and on orb in his right. In the decoration surrounding the plaque a pair of 
compasses, a set square and a quadrant appear on the left and a ring dial (a portable altitude 
sundial) and other instruments on the right.  

The plaque below John reads as follows. 

JOHANNES BLAGRAVVS 
TOTVS MATHEMATICVS CVM 

MATRE SEPULTUS OBIIT 

HERE LYES HIS CORPES, WHICH LIVING HAD A SPIRIT 
WHERIN ALL WORTHY KNOWLEDGE DID INHERIT 
BY WHICH WITH ZEALE OUR GOD HE DID ADORE 

LEFT FOR MAIDSERVANTS AND TO FEED THE POORE 
HIS VERTUOUS MOTHER CAME OF WORTHIE RACE 
A HUNGERFORD, AND BURIED NEERE THIS PLACE 

WHEN GOD SENT DEATH THEIR LIVES AWAY TO CALL 
THEY LIVED BELOVED AND DIED BEWAYLD OF ALL 

DESEASED THE IXTH OF AUGUST 
ANNO DOMINI MDCXI 

I passed the pictures on to John Fauvel and thought little more of John Blagrave until I began to 
look for historical applications of mathematics that would be useful when using dynamic geometry 
software. 

4 The classroom work 
I believe that classroom work should be as varied as possible. The following activity which may 
have been one with which Blagrave was familiar involves pupils in some mathematics of his time 
and appeals to many since it is not a static activity. The experiment has been re-enacted many 
times during 2004 and 2005 with groups of people from age 11 upwards. 
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The word “rood” can be traced back to the Germanic “rute” and from there to the Old English 
rod. We know a rood today as a large crucifix often found beside entrances to old churches (for an 
example see Romsey Abbey (Hampshire, UK)). It is also a measure of land area of about a quarter 
of an acre or 40 square rods. 

However the rood in which we are interested here is a linear unit which ranged from 16.5 to 24 
feet in length at various times and in different countries. At 16.5 feet it was identical to the 
surveyor's rod. In a book on surveying by Koebel in the 16th century he mentions that the surveyor 
should request that on leaving the church service 16 men should stop as they come out and stand in 
a line with their left feet touching the others, heel to toe. Then the length of the 16 feet gives the 
“right and lawful” rood. Dividing by 16 then gives an average foot. (Why 16? Perhaps this gives 
sufficient people to produce a valid sample and still makes division easy since 16 is a power of 
two and so four successive halvings gives the mean foot.) This method of random selection was 
used with my Year 7 class at The Mountbatten School, Romsey, UK as they left my lesson, 
repeated with our school staff (with their right feet) as they left a morning briefing, and then 
reiterated with some of the attendees at the Symposium X van de Historische Kring voor Reken 
Wiskunde Onderwijs (The historical group for arithmetic and mathematical education) in The 
Netherlands. 

Mountbatten School staff’s rood was 4.40 metres 

The respective results were 4.14m, 4.40m and 4.68m, all well short of today's rod (5.03m) but 
longer than the old German rute (3.8m). Further data was obtained at the History and Pedagogy of 
Mathematics Conference held in Uppsala, Sweden during July, 2004. Here 16 mixed adults gave a 
result of 4.58 m and 16 males yielded 4.85m. This generated much discussion. Does this indicate 
that foot length has reduced over the last 5 centuries? (Perhaps manual labour in the fields leads to 
bigger hands and feet.) Has shoe length reduced? (The illustration shows the men wearing shoes, 
but these seem similar in shape to today's footwear.) How much does age matter? In future years 
we will do this experiment with different year groups and measure the sexes separately. We 
will then be able to use the data to compare the groups, an excellent opportunity for statistical 
coursework. 

Opportunities for using history of mathematics and real data in the classroom do not come 
often. By involving pupils and using their data they feel ownership of the data and are eager to see 
how they measure up to other groups. 

Secondary classroom work using sundials by [Ransom] has been published by The 
Mathematical Association in their journal Mathematics in School. The work described here links 
in well with that and uses the work of John Blagrave to lend a historical aspect to the work. 
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Pupils in the secondary classroom in England and Wales are now supposed to use dynamic 
geometry software as part of their mathematical education and Cabri-Géomètre II is an ideal tool 
to use to draw an east facing sundial. It is a challenge for high attaining pupils to interpret the 
original page and use it to construct a sundial for an east-facing wall as not only do they have to 
interpret the language but they also have to deal with an unusual font. These pages are 
transliterated here, as it is simpler to use the transliteration in the classroom. 

Chap. 23 
How to make the East and West wall Dyals in any Oblique Horizon or Latitude 

In all oblique latitudes, the Dyall to the East, & West walles, are no other but the Equinoctiall 
or right Horizon Dyall, deviating just 90. degres, which amounteth to just five howers: and 
therefore the cocke alwaies standeth five howers from the twelve of clocke line, which being a 
thing so certaine, they are in every Latitude more easily to be made than any other deviating 
right Horizon Dyall: for being the deviation is always 90. degrees given, and that the plaine of 
these two walles, do in every Latitude lye in the plaine of the Meridian circle of the Horizon: 
therefore every line drawen thereon is a Meridian, but the Horizontall line it selfe is indeede 
both the Horizontal Meridian, and the Meridian of the wall, and above that line, the Artrée line 
must of necessity be elevated so much as the latitude of the place commeth to, which with us is 
51 degrees 35 minutes. 

Therefore when you come to an East wall, first drawe thereon the Vertical line A.G.B. and the 
Horizontal line C.G.D, as the 11th chapter teacheth, crossing each other square at G. Then on G, 
opening your compasse towards the North, describe an Arch cutting A.G. at F. and D.G.at E. 
So is F.G.C a Quadrant. Then let E.H. in E.F. so many degrees as your Latitude, or poles 
elevation gotten by the 13. Chapter commeth into, which for us here at Reading is 51. degrees, 
35. minutes: Then draw the line H.G.L, the same I say, must needes be the Artrée line of the 
world, elevated according to the Arch H.E. above D. the North end of our Meridian line C.D. 
Then crosse that Meridin H.G.L. with I.G.K. which line I.G.K. must needs lye in the plaine of 
the Equinoctiall cirkle, by the first Chapter, because it crosseth the Artrée L.H. square: Then 
draw Y.D. parralell to I.K. of such width from I.K. as you meane your diall shall be of: Then let 
L. in H.G.L. as farre from G as you measure the height of your dials cocke G.Z. shall be, and 
thereon describe your Equinoctiall semi-cirkle N.G.P. according to the reason of the third 
Chapter, unto which cirkle I.G.K. shall be the touch-line. Then draw the diametre N.L.P. 
parralell to I.G.K, and devide N.G.P. into twelve equall parts, through every of which twelve 
parts, from L. extend lines to crosse the touch-line I.G.K, as you see L.I, and L.K, and L.N, and 
L.P, and L.D. ec. Lastly by every of those cossings P.D.G.V.W.X. and K. draw lines parralell 
to G.H, but all comprehended or cut off by I.K. and Y.D. and those shall be the hower-lines of 
this diall, of which the artrée line G.S. wherein the cocke G.Z. must stand, shall be 6 of clocke 
in the morning, by which you may easily number the other howers, as here you see. The cocke 
must be a long square plate, erected in G.S. in length equall to G.S, and in height equall to G.L. 

(Blagrave, 1609, p. 52-4)

For most pupils I use a more direct approach using the following set of instructions as they are still 
learning how to use the software. They are written so they can be used with or without the 
software. 

1 Draw a vertical line (AGB). 
2 Mark a point at G and draw a perpendicular line through it (CGD). 
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3 Draw a line through G at an angle equal to your latitude to GD. This is shown on the diagram 
as the line through L, G and H. 

(If you use dynamic geometry software you can draw any line and grab it later to rotate it about 
G until you have the required angle by using the angle measure tool.) 

4 Mark a point on the line just drawn at L such that GL is equal to the height of the gnomon.  
(The gnomon is the technical term for the part of the sundial that casts a shadow. You can make 

it as tall as you like.) 
5 Draw a line through G perpendicular to HGL. This is the line IK. 
6 Draw a line through a point Y, parallel to IK at a distance suitable for the width of the 

sundial. 
7 Draw a semicircle with centre L and radius LG. 
(If you are using dynamic geometry software it is easier to draw a full circle.) 
8 From L draw lines at 15˚, 30˚, 45˚, 60˚ and 75˚ clockwise to LG until they touch IK at T, V, 

W etc. 
9 From L draw lines at 15˚ and 30˚ anticlockwise to LG until they touch IK. 
10 From the points where the lines in 8 and 9 touch IK to the line YD draw line segments 

parallel to GH. These are the hour lines. 
11 Number the hour lines as shown. 
The sundial has now been drawn. 
To make it work you need to mount a gnomon along GS as shown, perpendicular to the plane 

of the sundial. Mount it on a vertical east facing wall. 
The following is a screenshot of the resulting dial using the dynamic geometry software. 

Schools without easy access to dynamic geometry software on a PC can use Cabri Junior on TI83+ 
or TI84+ graphing calculators. The instructions can be followed just as easily with the advantage 
that when the construction is completed pupils can then take them outside, attach a gnomon to the 
screen by using a piece of Post-it label cut to size, orientate the calculators and tell the time! 

To see such a sundial one need only visit Andover in England. In 2000 I had the good fortune 
to be involved with the calculating, delineation and orientation of the pair of sundials on Walking 
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Man, a 2 metre high bronze statue of a man holding a pair of east and west facing sundials above 
his head. The artist responsible for the statue and its production was Claire Norrington. Needless 
to say I used John Blagrave’s construction to show the art of dialing lives on! 
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Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006 

PANEL: ORIGINAL SOURCES IN THE CLASSROOM 

Otto B. BEKKEN, Evelyne BARBIN (coordinator), Abdellah EL IDRISSI  
Frédéric MÉTIN, Robert STEIN 

The main purpose of this panel is to introduce and to develop the idea of articulation between 
teaching levels for the purpose of using of original sources. Our questions are: What kind of 
sources? For what purpose? What is really an original source? What should be an original source 
approach? 

Contribution by
Evelyne Barbin 

Centre François Viète, IREM des pays de la Loire, Université de Nantes, France
evelyne.barbin@wanadoo.fr

In a contructivist approach of mathematical teaching, the relations between saying, seeing, writing 
and thinking is essential. For this purpose, the examination of original sources by teachers is an 
excellent way to analyse the different functions of various mathematical inscriptions: images, 
texts, figures, symbols. In this perspective, it is also very interesting to give original sources 
directly in the classroom.  

Charles Sanders Peirce explains that the only manner to communicate an idea is by the way of 
an «icon». So, we propose to give examples of using « historical icons » in future teachers training 
and in the classroom for young pupils (8 - 12 years old).  

I’ll begin with my own experience with future teachers, which are students in my university. 
The subject of the learning is the historical relations between numbers and figures. The « historical 
icons » are used to go from a figure to a text, to go from a text to a figure, to see the geometrical 
aspects in a disposition of operations on numbers, to see the combinatorial aspects in a 
construction of a geometrical figures. 

I’ll continue with pedagogical experiences in classroom made by Françoise Cerquetti and 
Annie Rodriguez. They used original images and manuscripts concerning operations on numbers, 
mathematical recreations, roman friezes, moroccan engravings, and so on. 

Contribution by  
Otto B. Bekken  

Agder University College, Kristiansand, Norway  
Otto.B.Bekken@hia.no 

At my basis there is a philosophy of mathematics and its development, teaching and learning. 
Mathematics as I see it, can best be understood through some key quotes: 

Axioms, theorems, proofs, definitions, theories, algorithms, formulas, symbols,... yes, of 
course. But problem situations and strategies to understand them are the essence of mathematics. 
(Paul Halmos) 

The essence of the genetic method is to look to the historical origins of an idea in order to find 
the best way to motivate it, to study the context in which the originator of the idea was working in 
order to find the “burning question” which they were striving to answer. From a psychological 
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point of view, learning the answers without knowing the questions, is so difficult that it is almost 
impossible. The best way is to ignore the modern approach until we have studied the genesis 
(Harold M. Edwards, 1977) 

In fact, mathematics has grown like a tree, which does not start at its tiniest rootlets and grow 
merely upward, but rather sends its roots deeper and deeper at the same time and rate that its 
branches and leaves are spreading upwards. Just so … mathematics began its development from a 
certain standpoint corresponding to normal human understanding, and has progressed, from that 
point, according to the demands of science itself and of the then prevailing interests, now in the 
one direction toward new knowledge, now in the other through the study of fundamental 
principles. Felix (Klein, 1945) 

Every inventor, even a genius, is always the outgrowth of his time and environment. His 
creativity stems from those needs that were created before him, and rests upon those possibilities 
that, again, exist outside of him. That is why we notice continuity in the historical development of 
science. No discovery appears before the material and psychological conditions are created that are 
necessary for its emergence. Creativity is a historically continuous process in which every next 
form is determined by its preceding ones. (Lev Vygotsky in Moll, 1995) 

The mathematics framework of 1997 for Norwegian schools holds social constructivism and 
guided reinvention as the philosophical basis for teaching and learning, and includes five 
components: 

1. Problem solving, applications, modeling 
2.  Meaningful concept formations – reasoning and proofs 

Skills - with and without calculators or computers 
Communication through language and symbols – etymology 
History and culture - epistemology 

The use of historical sources can facilitate all these components. This takes time so we cannot 
approach all mathematics learning in this way. For our educational system it may be necessary that 
the sources are in Norwegian, if not it may be useful to do some adaptation. I can here hopefully 
discuss with you three examples from my own, or my M.S.-students’, attempts to use original 
sources in mathematics teaching:  

Focus on the use of original sources:- what kind of sources, - for what purpose, 
- in 3. year of upper secondary school: from C.F.H. Arentz on diofantine equations 
- in 1. year of college/university: from C. Wessel (Cardano-Viète) on imaginary numbers 
- in 2. year of college/university: from N.H. Abel on calculus / real analysis 

Contribution by  
Abdellah El Idrissi  

GREDIM – ENS, Marrakech, Morocco   
a_elidrissi@hotmail.com 

Original sources in  the classroom: toward an approach 
1- What is really an original source (OS)? 
2- What should be an original source approach (OSA)? 

These are the main questions will be discussed in this participation. Our wish is to provoke a 
debate around some intrinsic aspects of the use of OS in classroom. 

1- What is really an original source (OS)? 

186



During a few years ago, one can observe some passion to the use of original sources in HPM and 
researchers and teachers becomes more familiar to it. The reason is probably that the OS is 
interesting initially by its originality; it exerts a fascination on the spirit. One of the required 
effects is undoubtedly, beyond the insuring of credibility, the impact of the graphic and 
calligraphic aspects of the manuscript, of the original document. 

Trying to analyse the nature of the exploited texts, we realize the diversity of the conceptions 
and definitions adopted for an original source. 

In the practice, many researchers and teachers have usually the wish or the need to work on 
Egyptians, Babylonians, Hindus, Chinese, Greek, Arab, or Europeans mathematics. However, for 
various reasons, such sources the users would like to be original are non-existent, are not 
accessible, are unreadable, and are misunderstanding… Then we are satisfied with not necessarily 
OS using rewritings, translated, symbolized, commented and explained versions of that original 
ones. Nevertheless, we continue to qualify original such use. In our opinion, there is a difficulty to 
define what an OS is in the HPM context. 

For the historian, an OS is a document or a paper taken in its first form, its rough state, as 
produced by its authentic author. Moreover, historians classify sources into primary, secondary, 
tertiary and so on, depending of their nearness to the studied phenomenon. Will we adopt the same 
definition? Does an OS have to be “very old” and “handwritten”?  

In fact, and even if each work is original from an absolute point of view, it is difficult to give 
an objective and definite answer to these questions. It seems that for instance we should put up 
with the “common sense” and be satisfied by the “oldest and most accessible document” as an OS 
definition. Nevertheless, is not there a risk to compromise the idea of OSA? 

2- What should be an original source approach (OSA)? 
For this question, we will focus on some methodological difficulties of the use of OS in HPM. In 
the first question, which is mainly of historiography we tried to locate OS compared with 
secondary, translated, formalized, explained sources, etc. The second one that concerns the OSA 
locates us in a purely pedagogical level. We should speak about original source approach as we 
speak about biographical approach, project approach, chronological approach, solving problems 
approach, and so on. That list is not exhaustive and these approaches have to be combined and 
diversified. Here, the “approach” concept refers to that one of “models of teaching”.  

Thus, for HPM uses, in addition to the difficult choice of sources and the subjectivity of this 
choice, we have to admit the problem of the concrete exploitation of sources in classroom. It is not 
always necessary to “welcome” the sources in classroom; the teacher can use them for himself, as 
re-source. The teacher can also use OS in the classroom. In this case, he should realize a serious 
analysis before introducing sources. In fact, all researchers and teachers use original sources in 
their work and the temptation is large to found an OSA. This temptation is broken by various 
difficulties can be synthetically classified as follows: 

The choice of sources to use 
The analysis of these selected sources 
The activities to be suggested to the learners 
The management and articulation of these activities 
The assessment of the effect of OS on the learning and teaching 

In our opinion, any OSA should take in account these difficulties. The challenge is to balance 
between the “history” and the “pedagogy” and between “objectivity” and “subjectivity”. 

As a conclusion  
We conclude simply by two quotations referring respectively to the two asked questions above: 

187



1- It is easy to a modern mathematician to conceive an idea on the running of the Greek 
Mathematics. The main work of Archimedes, Apollonius, Euclid, etc. was well edited and 
translated with competency. […] As soon as one acquires a vigorous basis, works as those of 
Heath can be used as guides.[…] 
(Neugebauer, 1957) 
2- The study of original sources is the most ambitious of ways in which history might be 
integrated into the teaching of mathematics, but also one of the most rewarding for students 
both at school and at teacher training institutions. 
Jahnke et al., History in Math Education, §9, in (Fauvel, van Maanen, 2000). 
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Contribution by  
Frédéric Métin  

IREM of Dijon, France 
frmetin@wanadoo.fr 

In the final scene of the famous film the Planet of the Apes, Taylor discovers the statue of liberty 
as he is riding along the shoreline and he suddenly realizes that this planet is his own. In Pierre 
Boule’s original novel, another scene calls our attention; Zira first considers Ulysse (Boule’s hero 
real name) as more than a gifted beast when he draws “the figure of Pythagoras theorem”.  

These two anecdotes can be linked with what happens in the classroom when we propose 
activities based on reading of original texts: 1°) the words seem so strange to the readers as if 
words were coming from another world, pupils are not used to these ways of writing scientific 
matters, 2°) suddenly, they become conscious that the words speak of their own world (even if it is 
in the past), and 3°) the underlying mathematical matters allow them to understand the text. So the 
first step is generally to make sense of all the prints, the second is to translate them into common 
language  

Here are three examples of using history in the classroom, with further reflections. 
1) Baudhayana-Sulbasutra, 1.5 (undated): In order to construct a square on a given line, one has 

to use a cord with ties at both ends, marked at its middle, and then at the fourth part and at the 
middle of one half-cord. The two ties are fastened at a distance equal to the half-cord, and the 
entire cord is stretched in a certain direction… (See original text) The obscurity of the text hides 
an unusual utilisation of the famous Pythagoras triangle 3-4-5. Reading this text, none of the 20 
math teachers undergoing a training course did discover at first Pythagoras theorem; maybe the 
classical example of a 13-knots rope is so strong that we can’t imagine obtaining the equivalent 
only by divisions in two. The discussion focused on the dates: did the Indians be aware of the so-
called Pythagoras theorem? Destabilization of specialists: first effect. 

2) Jean Bullant’s squaring of the rectangle (1564): Well, squaring the rectangle is less exciting 
than squaring the circle, but the method can be found in a lot of books. Indeed, the arts students I 
propose the text to don’t know Jean Bullant, chief architect of the Duke of Montmorency, now 
totally forgotten. An occasion for me to some irrelevant questions such as: What was the first 
name of the Duke of Montmorency? (You’ll never find it. He was called Ann…) Essentially, and 
in modern terms, the method consists of drawing the proportional mean between length and width 
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of the rectangle, but the students do not know it. My question here is always: “Is it true?” How can 
they answer this question? First reaction: measuring length, width, and side, calculating, doubting: 
the margin of error being too wide, the calculation doesn’t allow them to conclude. So, I hope they 
are convinced of the necessity of mathematical proof (using Pythagoras theorem they all know.) 

3) L’Hospital explanation of differentials (1696): In France, pupils aged 16 have to learn 
derivation, without knowledge of continuity and but a few practice of limits, especially my pupils 
who are involved in commercial, computing or economics studies. For some years, I have had 
difficulties teaching meaningful calculus, since the aim is success in the exams. I decided to ask 
the classes to read the first pages of L’Hospital’s Analyse des Infiniment petits, and try to make 
sense of it (in the classroom, with me.) It is an enlightening text, explaining the nature of 
differences, i.e. infinitely small increases of the variable. The reading is uneasy, because of the 
abstract nature of these mathematical beings (useful fictions?), we spend a lot of hours, but it’s 
worth it: my pupils make deep algebra, wondering, maybe for the first time: “What do mean these 
different letters? Why da=0, when dx is not? What is exactly dx?” The problem then is to come 
back today, give up dx, and learn the language of derivatives… 

In the first two examples, the matter was to rediscover familiar notions wearing different 
clothes, and to explain old methods by the means of new words; the activities are undertaken with 
pleasure, and their result is pleasure too (of rediscovering, of alternative points of view.) The third 
one is more painful… Introducing new mathematical notions might be quite difficult by using 
original texts, and it could be fruitful almost only for the best ones. However, I hope it permits to 
deeply understand what a derivative is, even if I wonder whether I will keep on inviting L’Hospital 
in the classroom! 

Contribution by  
Robert Stein

California State University, San Bernardino, USA  
bstein@csusb.edu 

On the use of original sources 
Note first of all that for the mathematics representing the vast bulk of time and most of the very 
fundamental parts of mathematics, no original sources are available. Ahmes’ copied an earlier 
papyrus-which may or may not have been “original.” Most of the Greek mathematics we know 
today comes to us through the filters of many translators and commentators. The Zhoubi suanjing
and the Jiuzhang suanshu probably take their ideas from earlier works. Is the mathematics in 
quipus “original?” Probably not in most cases, but we may never know. In short, it is safe to say 
that what we have of most early mathematics comes to us nth hand, where the size of n depends on 
the circumstances but is often much greater than 1. We have much more complete information 
about the mathematics developed more recently, but even there the issue of which sources are 
original can be tricky. 

I want to put aside the unresolvable issue of what is an “original” source to discuss the use of 
such sources. I think we have two places where we might consider the use of such sources: In the 
study of mathematics, and in the study of the history of mathematics. Let us consider them 
separately. 

1. In the study of mathematics, history is not the main point, but it can be a powerful and practical 
tool for teaching. 
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a. To add human interest 
b. To motivate the study of mathematical questions by returning to the settings in which 
they were, as Toeplitz says, “burning issues.” However, Toeplitz himself cautions against a 
purely historical approach, as contrasted with his “genetic” approach. The genetic approach 
focuses on historical issues that are carefully selected to show key developments and 
ignores everything else, including most of the history of those ideas. 
Some outstanding examples:  

1. Toeplitz, Calculus: A Genetic Approach - no original sources, but occasional 
selected quotations, translated and stated in modern terms 
2. Bressoud, A Radical Approach to Real Analysis - no original sources,  but 
occasional selected quotations, translated and stated in modern terms 
3. Polya. Induction and Analogy in Mathematics and Mathematical Discovery - uses 
history whenever it is helpful, which is often. Only almost - original source is a 
translation (with some change of notation) of a paper by Euler on sums of divisors. 
4. Edwards, Fermat’s Last Theorem - another “genetic” approach, confines itself 
overwhelmingly to translations, etc. 
5. Lakatos, Proofs and Refutations – built around a drama which mimics history. The 
footnotes document the history and include many direct quotes, but there are few 
examples of original sources. 

Why are these outstanding writers skimpy in their use of original sources? 
1. Original sources are not available for all the ideas they present. 
2. Even if sources are available that can be accepted as “original” there are problems 
with using those sources: 

i. They may require translation 
ii. They may use archaic notation or symbolism 
iii. They may approach the subject in a way that is not what you want in 
your class. (e.g., a topology text which uses closure rather than open sets 
as the basic concept.) 

Conclusion: For the study of mathematics, as opposed to that of history of mathematics, original 
sources (or even fairly original sources) are usually not available, and even when they are, they are 
often more trouble than they are worth. 

2. For the study of history of mathematics, a lot depends on the goals of the study. 
It’s a math course, after all, (at least when I teach it) and it has mathematical goals.  
It also has other goals, such as appreciation and understanding of the origins of mathematical 

ideas and how they evolved. e.g.  
The evolution of concepts, such as number, function, and proof 
The evolution of symbolism and its relation to concepts  

What sources meet those goals? 
a. Expository materials play a major role here, setting the stage, presenting the ideas in ways 
that modern users can readily grasp, putting the material in perspective, and offering 
interpretations.   
b. Materials that reflect the original work, even though they themselves are not necessarily 
original. Like the “period instruments” so often used for renaissance and baroque music 
performances, these materials need not be original to convey tones and nuances that of their 

190



time. For this purpose, a translation into a language I or my students can read may be 
invaluable. 

3. Then where can original sources be valuable? “Original” sources can play a unique and 
invaluable role is for individualized study in depth of a particular topic in the history of 
mathematics. The deeper understanding which is the goal demands the use of sources as original 
as possible. At this level, considerable time may be spent translating the material into modern 
language, analyzing the meaning of symbols and terms, and interpreting the source in its historical 
context. However, where those uses of time might be seen as wasteful in other contexts, here they 
are the very essence of the activity. 
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ABSTRACT 
The Middle Ages were not a time of great scientific discoveries in Europe. However, in spite of the pressure 
to conform to Church doctrines, some notable mathematicians emerged. Among them a French monk who, 
centuries before Fibonacci, introduced the Indo-Arabic numerals to Europe and created a “super abacus” 
which became a direct ancestor to our modern calculation techniques. 

The goal of this presentation is to show how the history of numbers is vital to teaching and learning 
mathematics. One obvious benefit is that children learn to appreciate human ingenuity through the ages, 
which in itself is fascinating. The main benefit, however, will be that they will follow a natural sequence of 
learning through the invention of their own written and mental processes. The rich historical context of 
human problem solving easily solicits creativity and enthusiasm from the students. Ultimately, children 
develop a deeper, and more meaningful conceptual understanding. This is in sharp contrast with the all too 
familiar repetitive exercises and memorization of facts and techniques. 

Workshop participants discovered the history of numbers and calculations from approximately 50 000 
BC to this century and they learned to operate the super abacus invented by Gerbert d’Aurillac around the 
year 999, as well as its recently reinvented modern counterpart. This latter tool will be shown to have the 
extraordinary benefit of naturally developing basic mental computational strategies. Concrete classroom 
activities were also presented. 

In most classrooms, children learn how to add, subtract, multiply and divide by following 
prescribed routines. The problem is that too many do not understand the underlying mathematical 
processes involved and must be taught the same techniques year after year.  

If we look at the evolution of various number systems through the ages, two observations 
emerge: first, advanced civilisations took very long periods of time to overcome what are now 
obvious limitations to their systems; secondly, the conceptual development of these systems 
occurred in relatively well defined steps. Transferring these observations to the classroom can 
dramatically change the way children learn arithmetic. It also opens up a window into how all 
children develop cognitively. In fact, most of mathematical history preceding the 18th century, 
dating back 50 000 years, can be relived in the classroom. Everyone, if placed in a context of 
problem solving and discovery, will reinvent number history. All children can naturally do so 
between five and ten years of age.At age five children operate the same way cavemen or nomadic 
shepherds did, using various objects to “count one to one”. By age nine, children make extensive 
use of the modern base ten positional system. 

The history of human ingenuity shows that human beings, by need, invented computational 
tools that were more and more powerful and efficient. Written techniques came about between 500 
AD and 1500 AD. These precursors to our modern techniques are of utmost importance when 
working with children. They will help students apply meaning to the algorithms that are so 
prevalent in our modern day occidental classrooms.  

In the early elementary grades, we often have children do concrete manipulations before having 
them learn the symbolic techniques. This seems logical until we realise that the transition between 
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the two seldom occurs naturally. Students manipulate… and then, at some point, they learn the 
techniques we show them. This is where most children stop trying to understand mathematics. 

50 000 years of human ingenuity 
reinvented in… 5 years?

Historically, a major step was taken when the concrete system (used for fast computations) was 
fused with the symbolic system (used to represent numbers). It all started with the invention of 
zero in Northern India around 500 AD. However, due to religious wars, Christian Europe did not 
easily accept the Indian number system. It took the open-mindedness of Gerbert d’Aurillac, a 
French monk who later became known as Pope Sylvester II, to travel to Spain at the time of the 
Moorish invasion. He was the first to introduce the Indo-Arabic numerals to Europe and, most 
importantly, he created a new type of abacus called the super abacus. This tool integrated the 
manipulation of tokens with the newly acquired numbers and this was done through the use of 
apices, a Spanish word, meaning token. Unfortunately, his invention was not widely used in 
Christian Europe due to the fears associated with anything originating from the Islamic world. 
Two hundred years later, however, it had evolved towards the written techniques of Fibonacci 
who, by the Renaissance, was able to start the dissemination of techniques partly invented almost a 
millennium before by monks of northern India. 

Many years of fieldwork in elementary classrooms have confirmed that combining the concrete 
and symbolic systems is, for most students, a very critical step. An appropriate amount of time 

Historical 
date

Computation Tools Systems and Concepts Learning Sequence Age 

?

- 30 000 

-15 000

Pebbles 
Shells  
Fingers & Body counting 

Notches (tallies) 

Notches (tallies)

Concrete counting 
Term to term correspondence 

Grouping

Metaphorical thinking

Number conservation 

Explicit grouping 

4 to 5 
y.o. 

5 to 6 
y.o.

 - 3 500 

- 3 000

Pebbles  
Clay balls  

Clay tablets 
Hieroglyphic 
Numerals

Shape value 
Additive system 

Symbolic representation 
Egyptian numbers

Base ten blocks 
Implicit grouping 
Concrete operations 

7 to 8 
y.o.

-500

0

500

1000

Abacus 

Bead counters 

Zero 

«Arab» numerals 
Gerbert’s Abacus

Chinese numerals  

Multiplicative system 
Place value numeration 
Modern numeration system 
(India) 

Left to right concrete 
calculations 

Place value 
Counting boards 
Concrete operations 

Mental calculation  

8 to 9 
y.o. 

1 200 

1 600 

2 000

Pen and paper in Europe 

Modern algorithms 
Calculators

Left to right symbolic 
calculating 

Right to left calculations

Written algorithms 

Speed counting 

9 to 
10
y.o.
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should therefore be allotted to understanding d’Aurillac’s powerful tool. Amazingly, by an 
interesting twist of fate, it has recently been reinvented by Michel Lyons, an author and pedagogue 
from Montreal, Canada.  

In addition to allowing students to increase their mathematics culture and their understanding 
of written algorithms, the use of this super abacus has one more very important outcome: it helps 
to develop the natural mental calculation processes. In fact, the recent reintroduction of the 
superabacus can be likened to what the Chinese and Japanese abaci did for school children in the 
Orient. Using an abacus to compute in a concrete way prepares the students to perform the same 
calculations mentally. One reason is that mental calculation requires us to consider the larger 
numbers first. In addition, by working with the abacus, the student makes extensive use of 
compensation strategies, which are the cornerstone of mental calculation. The student thereby 
learns to compute from left to right and naturally adapts the numbers for greater computational 
efficiency. 

Some might object to the fact that these students may not be proficient with the traditional right 
to left techniques. This is a very small price to pay given that these students will be able to do most 
computations in their heads. Furthermore, right to left techniques were invented around the 17th

century for reasons that simply do not apply anymore. The future of arithmetic computation 
clearly lies in the realm of technology and the mind. Not in the realm of pen and paper. 

A second goal of this workshop will be to demonstrate that mathematical thinking is primarily 
analogical in nature.  

To be truly efficient as a mathematical thinker, one must invest as much effort in the 
metaphorical context of a situation as is usually put in rigorously working out the solution. The 
historical context, through storytelling and by other means, offers many delightful ways of 
connecting today’s students to meaningful discovery while increasing their motivation and their 
mathematical understanding. 
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ABSTRACT 
In this study I shall consider educational aspects of the development of ratio and proportion, focusing on the 
arithmetization undergone by these concepts in the light of the relations between mathematics and music. 
Since such relations, even if confined to the context of ratio and proportion, are fairly wide-reaching and 
also that the process of arithmetization is quite complex, we shall concentrate mainly on the instructional 
aspects of a structural peculiarity presented in such a fascinating dynamics. This peculiarity is the so-called 
compounding ratios, a curious feature present in the structure of ratio since the Classical Period whose 
irregular transformation into the operator multiplication is quite representative of the importance of 
theoretical music in the arithmetization of ratios. As a consequence we shall also point out features of the 
differences between identity and proportion, which are capable of being didactically explored with a 
mathematic-musical approach. 

The reason for choosing music for the present approach is not only historical, but more specifically 
didactic insofar as the subtle semantic differences between compounding and multiplication and also 
between identity and proportion are clearer if one thinks of ratios as musical intervals when looking at such 
constructs. Grattan-Guinness (Grattan-Guinness, 1999, p. 11) argues that the well-known difficulties in 
teaching fractions can be alleviated by converting the latter into ratios, and thus using a musical approach. 
These considerations corroborate the need to explore didactically specific contexts in which differences 
between given constructs manifest themselves more clearly.  

This approach is also historical: the Classical Greek practice of manipulating ratios, predominantly 
performed up to the 14th century (Katz, 1993, p. 291), belonged to an important tradition in the treatment of 
ratios, which is capable both of opening the minds of students to the notion of analogical structures 
underlying concepts concerning apparently different fields and of inviting them to put themselves in the 
place of the scholars who created and practiced such a tradition. It thus promotes an understanding of the 
scientific structures in the light of which certain mathematical concepts were handled and thus, too, an 
understanding of the apparently senseless way in which such mathematical concepts were manipulated for a 
long time before reaching the today’s form. An awareness of these practices facilitates the acquisition of a 
flexible attitude concerning previous structures when confronting new problems, an essential tool for the 
resolution of problems and for creativity in mathematics.  

The present approach also helps to reveal, by means of simple concepts such as ratio and proportion, the 
epistemological process often involved in the construction of mathematical theories, i.e. that of initially 
borrowing the structures of pre-existent analogical theories that then develop autonomously in their new 
context and adapt themselves to the practical problems with which the new theories come to grips in the 
course of their development. 

In order to fulfill the aforementioned aim we shall first of all introduce some historical aspects of ratio in 
mathematical-musical contexts as well as of the corresponding structure in which compounding makes 
sense, and then follow these with examples of the practice of compounding on the monochord and by the 
didactic-epistemological aspects that underlie such a practice. 

1 Historical considerations: compounding ratios or musical 
intervals? 

Mathematics and music have deep links already known since Antiquity. In the so-called 
experiment of the monochord, Pythagoras did not just establish correspondence between musical 
intervals and ratios of a string, but connected musical consonances to simple ratios - octave: 1:1/2, 
fifth: 1:2/3, fourth: 1:3/4. Pythagoras’ discovery through the monochord experiment casts light on 
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a large number of discussions about musical theory that have ratios as their main characteristic. It 
is quite probable that, for cultural reasons, the Greek mathematicians, along with his 
contemporaries and predecessors, conceived of the theory of ratio as a generalization of music, 
inasmuch as the proprieties of strings and comparisons between pitches, as well as calculations 
related to such magnitudes through ratio and proportion, were an important part of mathematics 
from the Pythagoreans until Euclid (Grattan-Guinness, 1996, p. 367).  

This raises questions concerning the mathematical theories underlying the manipulation of 
ratios from Antiquity until the late Middle Ages, especially in musical contexts. The influence of 
both theoretical and practical problems confronted by music throughout its history are of great 
importance for the epistemological awareness of the history of ratio in dynamics of mathematical 
education, an awareness which can be useful for instance in grasping differences between basic 
albeit misunderstood concepts resulting from the definition of ratio, such as those that exist 
between compounding and multiplication, identity and proportion among others, differences 
which are hard or impossible to notice when these concepts are approached for instance only in 
arithmetical contexts.  

There are several themes on the relation between mathematics and music or even between 
ratios and musical intervals which can be explored in mathematics education. We will concentrate 
here on an intriguing characteristic of the structure originally associated with the concept of ratio, 
namely compounding ratios, which we could call an operator, although it never attained the status 
of a technical term in mathematics (Sylla, 1984, p. 19). Such an operator occurred tacitly in 
contexts involving ratios since the Classical period up to the 17th century, being eventually 
superseded by multiplication. 

The structural change is from conceptions of operations - compounding ratios - strongly tied to 
contiguous musical intervals to theories that admit the composition of general ratios - 
multiplication - with an essentially arithmetic character, for example, the idea that a ratio is equal 
to a number. The point is how to approach in classroom dynamics an epistemological change such 
as this, which occurred in the course of the development of ratio, in such a way that one succeeds 
in creating an ordinary situation in which such a difference manifests itself more clearly than it 
does in purely arithmetical domains. 

When one considers that this transitory structure with which ratios were very partially and 
irregularly equipped over a long period of their history is derived from musical contexts and also 
that compounding makes no sense out of musical contexts, it is quite reasonable to take music as 
the scenario for approaching such differences, since here the previous structure attached to ratio 
stands out. But before moving on to the instructional aspects of such a topic, we will have to delve 
into compounding ratios in more detail. 

Some indicators of the different theories attached to the concept of ratio are found in 
connection with issues such as Euclid’s restriction on the operation of composition with ratios
implied in definitions 9 and 10, Book V as well as in proposition 23, Book VI (Heath, 1956, p. 
248). Such operations consisted of compounding ratios of the type a:b with b:c to produce a:b,
which then allows the repetition of this process with c:d and so on. 

This operation, which had strong musical affinities, required in general that given a sequence of 
ratios to be compounded the second term of a ratio should equal the first term of the next ratio. 
Mathematically speaking, there is no reason to define this operation in such a way and we would 
not so define it unless we first observed its significance from a musical point of view, which 
understands what is otherwise a purely mathematical phenomenon as the adjoining of contiguous 
intervals. For instance, (2:3).(3:4) :: (1:2) is structurally equivalent to the musical combination of 
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the interval of a fifth with that of a fourth in order to generate an octave. Now, Pythagoras’ 
Experiment seems to inform us of two things, whose didactical-epistemological implications we 
will try to point out later on. The first and more general point it makes is that mathematical ratios 
underlie musical intervals. But it also tells us more specifically that the compounding ratios
underlie the composition of musical intervals, and even that, due to this link, composition of ratios 
in a Euclidean fashion is handled in this way. Quite apart from the interest which it holds for the 
historian of science, this ontological difference deserves attention in educational contexts. 

We will try to propose now how to explore in didactic-pedagogical contexts these two 
completely different understandings of ratio, one geometric-musical where ratio has no semantic 
proximity with number and the other, where ratio is semantically a number, capable of being 
multiplied in the same way as numbers are multiplied. In order to emphasize such an important 
epistemological change present in the history of ratio, we will make use of musical contexts.  

2 Practicing mathematics / music:
compounding ratios / intervals on the monochord 

The problems described below were applied in workshops in mathematics/music carried out in São 
Paulo. The workshops comprised activities that reproduce, directly or analogically, meanings 
involved simultaneously in mathematics and in music. They were more concerned with the creation 
of circumstances that favor experiences of similarities between schemes behind the original and the 
reconstructed situations, than with the mere denotative reproduction of the former situation. 

Compounding on the monochord is a case in point. Compounding in Euclid’s sense must 
definitely not be put in the same category as multiplication although the former presents structural 
similarities with the latter. Both differences and similarities between compounding and 
multiplication concerned with musical and arithmetical fields respectively can be better felt and 
grasped with the help of an enriched reconstruction in learning/teaching context of the 
monochord’s experiment. Such reconstruction can encourage students with promising tendencies 
in music to get interested in mathematics and vice-versa. Such crossing capacity not only 
stimulates the relationship between both areas and the related skills but also demands mathematics 
skills in musical contexts and musical skills in mathematical contexts through an simple 
arrangement involving elementary concepts. 

Concerning the pertinent part of the workshop, monochords were first handed out to the 
participants who were initiated into the perception of basic musical concepts, such as musical 
interval, necessary for the following performance. Once the students discovered by means of the 
monochord the ratios 1:2, 2.3 and 3:4 underlying the basic Greek consonances octave, fifth and 
fourth, respectively, one can set problems like: 

- Let L be the length which produce a determined pitch in the monochord. What is the length 
necessary to produce a pitch obtained raising the original one by an octave and a fifth, following 
by the lowering of two fourths? Listen to the resulting pitch in the monochord and compare that 
with the pitch obtained on the piano. Comment.  

- Let do be the pitch corresponding to the length L. Which is the pitch provided by the length 
32L/27? Indicate in terms of superposition of fourths, fifths and octaves, the successive steps to 
reach that result. In raising a fourth from the given pitch, what are the pitch and length obtained? 
Listen to resulting pitch in the monochord comparing it with the pitch obtained on the piano.  

Such problems in particular, presented in a workshop with children between 11 and 14 years 
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old in Estação Ciência - a museum for dissemination of science, culture and technology within the 
University of São Paulo -, for instance, demanded simultaneously musical and mathematical 
aptitudes and/or at least could awaken curiosity of students who were at first interested exclusively 
in either mathematics or music. Depending on where each student’s greatest potential lies, students 
solve these kind of problems either by finding the interval and checking the compounding ratios 
which provide it or by finding the combination of ratios that when compounded provide the 
requested interval, and checking the interval.  

Such problems provide one with the opportunity not only to experience, perhaps even 
unconsciously, the compounding of ratios but also to simulate operations with ratios in Greek and 
medieval musical contexts, inasmuch as the students have as basic operational elements the perfect 
consonances, that is, the discrete ratios 1:2, 2:3 and 3:4, which in this context have no categorical 
relation with numbers in principle, but are merely instruments for comparison.  

In order to illustrate my points, it may be worthwhile to describe some of the reactions that 
occur in solving these problems. I will take as an example a workshop for students of the ‘8th 
serie’ - around 14 years old - carried out at ‘Escola de Aplicação’ in São Paulo. Because of size 
limitations, I will confine my discussion to some approaches to the first problem as well as some 
questions which were raised as a consequence. In this case, the solutions passed basically from a 
geometric approach to an arithmetic one.  

First of all, the students were familiarized in the workshops with intervals and compounding of 
musical intervals/ratios in the monochord. This experience enabled them to compound contiguous 
intervals or mathematical ratios where the endpoint of the second magnitude of the first ratio 
coincided with the first magnitude of the second ratio - ratios of the type a:b with b:c - which is 
what they saw in the monochord during the familiarization. The classroom was then divided into 
groups comprising students of different tendencies in order not only to make possible different 
kinds of interpretations of the problems but also to provide an appreciation of the diversified 
potential of each group since all problems would eventually claim the use of at least music and 
mathematics skills. 

Initially, they were asked to solve problem one using a ruler with only four divisions and a 
compass. After visualizing how compounding operated in the monochord, students evinced 
basically two tendencies in solving the problem: one tendency was to make the calculation by 
always transferring the ratios to the string and dividing the string into as many parts as the 
denominator and then taking the number of parts that were in the numerator - in the case of 2:3 
two parts of the strings previously divided in 3 parts - which is clearly compounding in the classic 
sense. Other students tried to find the resulting note - in the case a la - but tried to check such a 
result by compounding the ratios 1:2, 2:3 and decompounding the ratios 3:4 two times, as in the 
first case. In order to perform this operation they availed themselves of the operation, used in the 
first step-by-step demonstrations, of the basic consonance - octave, 1:2; fifth, 2:3; and fourth, 3:4. 
In general, they found the part of the string which when sounded resulted in the note la without 
knowing precisely to which ratio or note such a point or pitch corresponded. 

In this first stage, no arithmetical interpretations resulted. They did the procedure as in the 
demonstration of the consonances, in which we used rule and compass to build similar triangles in 
order to divide a segment in 2,3 and 4 parts. The following question emerged:  

- Do we get the same result if I change the order of the procedure? 
They figured it out from a musical point of view, an approach which makes the answer fairly 
intuitive, since compounding is nothing but the ‘addition’ and ‘subtraction’ of intervals. Such an 
interpretation makes the commutativity of this operation more intuitive. It shows also to some 
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extent how the musical context could facilitate the ‘feeling’ of the meaning of such a property in 
the structure of ratio.  

The situation provided also a suitable context for moving on to the following question:  
- How could we compound musical intervals when we know only the lengths of the strings 
whose ratio provide each interval? Again without metric ruler.  

In this case some students tried to adapt by trial and error the first term of the second ratio to the 
second term of the first by taking ratios equivalent to the second term expressed as multiples of its 
two original magnitudes. A musical solution also emerged. For this, they tried to hear the intervals 
defined by each pair of strings by singing their compounding and sometimes keeping the partial 
result in a keyboard in order to keep the tuning. They confirmed the result doing it musically 
sometimes step by step, at other times at the end of the operation, based on the initial musical 
auditive experience with intervals and consonances. They could do it almost automatically, 
subsequently verifying the length of the string that corresponded to the discovered pitch. To 
accomplish such an operation they must always find the ‘musical’ fourth proportion insofar as in 
each step they have a reference ratio and the first factor of a second ratio that provided the lower 
note over which the reference interval should be translated.  

Others students even tried a mixed solution by guessing through hearing the probable ratio 
from which they could give a good guess as to the factor by which it was necessary multiply both 
factors of the second ratio. In all cases the students often make use of a proportional pair of strings 
which are naturally not equal but that have some property which makes them similar in some way 
to the first pair. This feeling of similarity realizable by hearing is one important point that 
pervaded many different situations in these workshops and both emphasized and eventually eased 
the differentiation between proportionally and equality, a feeling which disappeared when they 
later faced the problem with an arithmetical approach using a metric ruler. The advantage of the 
musical approach in comparison with the geometrical one consists in the fact that the former 
provides the feeling, based on a perceptive skill, that both pairs of magnitudes are not equal but 
that at the same time they have a common attribute, which is musically the interval defined by 
them. In the face of such similar ratios/intervals, some comments like the following were heard:  

- They are not equal but one is ‘as if’ it were the other. 
The rationalization of such a feeling was refined when not only harmonic but also melodic 
versions of the same ratio were provided. Then some comments like the following one appeared: 

- The notes ‘walked’ or ‘climbed’ with the same step.  
They are probably doing albeit not necessarily consciously a musical or logarithmical approach. 

In order to provide a similar visual perception by geometry, on the other hand, the four 
magnitudes should be laid in a particular configuration - not necessary in music -, which was also 
approached - as the following shows - in order to strengthen such a differentiation. 

In such a dynamics, the following question came out. 
- Could we calculate it only once? 

Then similarity was introduced so that one could build precisely the proportional second ratio in 
such a way that its first term had the same measure of the second term of the first ratio, 
emphasizing a geometric/musical connotation to proportionality. 

Still without metric rule, it was possible to pose the following question: 
- Could we calculate the compounding of all ratios applying it at the end to the monochord? 

One possibility was to do it analogically to the geometric procedure using now whole numbers, 
which involves the knowledge that a:b :: ma:mb - proposition 18 of Book VII of The Elements - 
going on working technically just with integers. In such a dynamics the following question came 
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out:
- What do we do to compound a:b with c:d when there is no integer m so that mc = a?

When we dealt only with geometrical magnitudes this question did not arise, since one can always 
adapt one magnitude to another but that is not the case with whole numbers to be adapted to each 
other using integer multiples. 

In this case, one must multiply the numerator and denominator of both ratios, resulting as 
factors c and b respectively which make the original compounding proportional to (ac:bc).(bc:bd)
:: ac:bd. Based to some extent on the trial and error experience done before with geometrical 
magnitudes, they tried now to do something analogical with integers represented geometrically 
which resulted eventually in the use of the Minimal Common Multiple between b and c.

The compounding of all ratios was curiously very easily done with intervals, that is, from a 
determinate interval with a certain low pitch, they could build the correspondent equivalent 
interval - proportional ratio - from hearing and feeling the same ‘growth’ of interval.  

The comments and questions mentioned above concerning the solution of the first problem 
reflect to some extent the dynamics of this workshop. The example mentioned above tried to 
reflect partially how the workshops could provide a suitable environment to experience this 
arithmetic sense of ratios, by introducing this approach before turning to the metric ruler.  

The problem was repeated allowing the use of metric rule and gradually ratios and 
compounding were equated to decimal numbers and multiplication respectively, thus diminishing 
the emphasis in the differentiation between identity and proportionality. 

It was possible to realize that the problem became even more interesting insofar as one could 
restrict the available tools for the solutions: compass, non-metric ruler, metric ruler, instruments - 
which provide different meanings to ratio and proportion, and could get the student to operate at 
times with compounding, and at other times with multiplication. Such an enriched arrangement 
proves useful not only for illustrating the importance of ratio as a medium for comparison but also 
and most importantly for providing a context for practicing the differentiation between both 
compounding and multiplication as well as between proportionally and identity within a 
meaningful practical situation.  

3 Didactic-epistemological aspects 

Besides the difference between compounding and multiplication, there are deeper differences 
within the arithmetization of ratios that become transparent through the aforementioned 
arrangement, such as that between identity and proportion. In Euclid, the idea of equality of ratios 
is not as natural as that of numbers or magnitudes. Such a way of establishing relations between 
ratios gains greater meaning when we consider that on the monochord, for instance, do - sol and la
- mi are the same intervals - in this case, a fifth - but they are not equal, inasmuch as the latter is a 
sixth above the former, or even that do-sol ‘is as’ la-mi. The identity is normally a philosophically 
difficult concept to be worked out in learning/teaching dynamics. Such difficulty can be eased by 
stressing the distinction between identity and proportion in mathematical/musical contexts, where 
such differences become clearer when visible and ‘audible’.

The problems and the device mentioned above also encourage the perception of such a 
difference insofar as the students can hear the intervals provided by proportional ratios like 9:12 
and 12:16 - both are fourths, that is, the same intervals, but they are not equal - which are 
proportional but definitely not identical. This elucidates by the use of mathematics and music the 
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differences and similarities between both concepts which also contribute to the better 
understanding of the identifications of ratio and fraction and of proportion and equality. It opens 
several possibilities for exploration of such concepts in both contexts. For instance, they can find 
the forth proportional and deduce what is the associated pitch or reciprocally, given an interval, 
they can figure out the note which will produce the same interval given a determinate lower pitch: 
both situations deal with proportional magnitudes in mathematical and musical contexts 
simultaneously. The students must not necessarily be aware of the epistemological procedure 
underlying such dynamics. What is actually important is that they experience such a situation and 
thus establish a reference with which they can bridge and anchor the comprehension of future 
situations involving these concepts. In the same way, the experience will enable them to detach 
concepts associated with fixed areas and interweave them in a more general context. 

The aforementioned arrangement in teaching/learning as well as the long history of ratio and 
proportions show that, within the rich semantic field associated with these concepts, ratio was a 
natural vehicle for human beings to use in comparing different contexts through proportions, that 
is, analogies. In this sense, the proposition that 3:2 corresponds to a fifth, as well as that one that 
the aforementioned intervals of fourths are proportional mean that these two concepts pertaining to 
mathematical and/or musical fields are capable of being compared to one another by means of the 
ratio of numbers and the interval between notes through proportions. In this sense, it is possible to 
experience that the geometrical/musical proposition A:B::C:D is semantically distinct from yet 
structurally similar to the arithmetical proposition A÷B = C÷D, as well as that the corresponding 
cases in which ratios are not proportional and fractions are not equal.  

Reciprocally, by means of the device of the monochord, ratio and proportions are viewed as 
instruments for evaluating the degree of similarities between different contexts. Such a device can 
also help the comprehension of the categorical distinction between ratio and proportion—
sometimes misunderstood—inasmuch as ratio is clearly viewed as a definition involving two 
magnitudes of the same kind whereas proportion functions in all the aforementioned situations 
either as a logical proposition to which one may attribute a valuation or as a tool to make a 
proposition true. In the case, such a difference is experienced through the question about the 
plausibility of the equality between two intervals or of the proportion between two ratios. The 
differences between these two mathematical entities are less ambiguous when understood in this 
way than when viewed in purely arithmetical contexts.  

4 Conclusion

The present musical approach widens our comprehension of ratio and proportion in mathematics 
not only because of its historical-cultural contextualization and the interdisciplinary aspect which 
underlies it, but also, and most importantly, because of the role that analogical thought plays in the 
construction of meaning, in this case, that of ratio and proportion. If we wanted to extend Kieren’s 
argument (Kieren, 1976, p. 102) about rational numbers to ratios, we could claim that to 
understand the ideas of ratios, one must have adequate experience with their many interpretations. 
Throughout the history of mathematics and theoretical music, ratio and proportions assumed 
different meanings with discrete or continuous natures in regard to geometry, music and/or 
arithmetic. Among such meanings, ratio can be seen as a tool of comparison by means of 
proportions, a musical interval, a fraction, a number, an invariant with respect to proportion, a 
common thread between distinct contexts with regard to proportions whereas proportion can be 
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seen as a vehicle to compare ratios, an equality, a relation, a function etc. The aforementioned 
device not only provides a fertile ground for the understanding of the subtle differences and 
structural similarities underlying the diversity of interpretations associated with ratio and 
proportions but also contributes to constructing and to experiencing in a broader way their 
associated meanings.  

In a general sense, discovering common schemes and archetypes is an efficient way of 
constructing concepts that concern in principle different areas. An analogy or metaphor used in a 
sensible and discerning way may re-configure a student‚s thought in a problematic situation of 
learning, enabling a better understanding of matters that escape immediate intuition, or that seem 
too abstract to him/her, such as the many interpretations associated with ratio and proportions as 
well as with the wide variety of structures historically associated with them. 
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ABSTRACT 

Both the history of mathematics and mathematics education are well-established disciplines. The 
question naturally arises whether and to what extent these two important subjects may fruitfully 
interact. Part of the international community of mathematicians and mathematics educators think 
that this question can be answered in the affirmative, whereas another part believes that not only 
the history of mathematics cannot help to improve mathematics education but also it may lead to 
confusion. In this presentation the author gives reasons for answering the above question in the 
affirmative. 
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ABSTRACT 
The present paper consider, in some way, an important side of our recent work, see (Castagnola, 2002) 
about the use of history in mathematical education. In particular we want to follow an historical path about 
the resolution of second degree equation, but, at the same time, we show how a dynamic geometry software 
like Cabri-Geometry II Plus can be used in a classroom to “follow” the investigations that have led to the 
discovery of important mathematical concepts. 

It is well known that both Euclid and Descartes had to consider different types of second degree 
equations because of their geometrical interpretations of parameters. Today, also thanks to software like 
Cabri, we can show, in a geometrical setting, that there is only one second degree equation. 
The key point is that we can rediscover mathematics as it was originally discovered, but in a faster and 
easier way thanks to technology. This can be especially motivating in secondary education. 

1 Introduction  

Both the general learning of algebra as the study of relations among variable quantities and the use 
of algebraic tool to solve equations represent often for the student a particularly delicate process. 
On the other hand, from an historical point of view, it is often tried to validate the solving process 
by means of the sure tools of the Euclidean geometry. Also today it may be better understood an 
algebra built on pictures, possibly dynamic and manageable, created before by suitable software 
and after in one’s own mind. 

2 Algebra and geometry in Euclid 

Traditionally Book II of the Euclid’s Elements (but also part of Book VI) is considered as an 
example of “geometrical algebra” [this name was given at the end of XIX century by Zeuthen], 
also if this name can be misleading because the formulation is completely geometrical. We don’t 
want to enter into the merits of debate concerning geometrical algebra (still far from over) that has 
seen engaged some famous mathematicians as Unguru, Van der Waerden, Freudenthal and Weil. 
We want instead to stress that the so called problems of applications of areas, also if explained and 
solved in geometrical way, can be considered equivalent to first and second-degree equations. 

                                                     
1 (Associazione per la Didattica con le Tecnologie, ADT is the Italian version of T-cubed or T3)
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S

a - x x

x

a
Figure 1

This problem is equivalent to solving the equation 
(a x) x = S.

Basically we have to find two numbers x and a x when we know their sum and product. So we 
meet again a typical problem of the Babylonian numerical algebra. 

Lastly, in the hyperbolic application we have always to find a rectangle of a given area, but its 
base exceeds the given segment [in Greek hyperbola means exceeding] and the exceeding part is 
equal to the height of the rectangle. 

S

a - x x

x

a

Figure 2
We arrive again to a quadratic equation 

(a + x) x = S.

The elliptic application 
Let us consider the proposition II, 5:  

If a straight line be cut into equal and unequal segments, the rectangle contained by unequal 
segments of the whole together with the square on the straight line between the points of 
section is equal to the square on the half. 

For let a straight line AB be cut into equal segment at C and into unequal segment at D.
A BC D

MK

F

L H

E G

Figure 3
We say that the rectangle contained by AD, DB together the square on CD is equal to the square on 
CB. This proposition is true because DB = BM = AK and AC = CB = BF and therefore the 
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rectangles ACLK and DBFG have the same area. 
Geometrical solution of a quadratic equation 
Suppose in the Figure 3 that AB = a and DB = x; than 

                                                                (a x) x = area of the rectangle ADHK
                                                                              = area of gnomon CBFGHL.

If the area of the rectangle is given (S = b2, say) and if a is given (= AB), the problem of solving 
the equation 

ax x2 = b2

is, in the language of geometry: To a given straight line (a) to apply a rectangle which shall be 
equal to a given square (b2) and shall fall short by a square figure, i.e. to construct the rectangle 
ADHK.

Using the language of algebra we have 

2
aAC CB  and 

2 2
a aCD AD AC a x x

and the II, 5 translates into the algebraic formula 
2 2

( )
2 2
a ax a x x ,

that is 
2 2

2

2 2
a ab x

2
2

2 2
a ax b

2
2

2 2
a ax b .

The other solution is 
2

2

2 2
a aDB a x b .

REMARK. Obviously a necessary condition to construct the rectangle ADHK is that 
2

2

2
a b or 

2
a b  and this is equivalent to say that the discriminant of our quadratic 

equation is not negative. 
But in what way would a Greek mathematician have solved the problem of finding the point D

that determines the solution? He would have drawn the segment AB = a and have found the 
midpoint C. Then he would have drawn CO = b perpendicular to AB and have produced OC to N

so that ON = CB
1
2

a ; and with O as centre and radius ON he would have described a circle 

cutting AB in D. Then DB (or x) is found and therefore also the required rectangle ADHK.
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Figure 4 

The hyperbolic application 
Let us consider the Proposition II,6: 

if a straight line be bisected and a straight line be added to it in a straight line, the rectangle 
contained by the whole with the added straight line and the added straight line together with the 
square on the half is equal to the square on the straight line made up of the half and the added 
straight line. 

A BC D

H
MLK

E G F

Figure 5
Also in this case, we can easily see the truth of the proposition from the figure. 
Geometrical solution of a quadratic equation 
Suppose in the Figure 5 AB = a and DB = x; then 

                                                        (a + x) x = area of the rectangle ADMK.
If the area of rectangle is equal to a given square (b2), the problem is to solve the equation 

ax + x2 = b2

i.e., in the language of geometry, to apply to a given straight line a rectangle which shall be equal 
to a given square and shall exceed by a square figure.

To solve the equation (always geometrically) 
ax + x2 = b2

we draw BQ = b perpendicular to AB, join CQ and, with centre C and radius CQ, we describe a 
circle cutting AB produced at D. Thus BD (or x) is found. 
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A BC

Q

D

MK L H

E G F

Figure 6
From Euclid’s point of view there would be only one solution in this case. 
The Proposition II,6 enable us also to solve the equation 

x2 ax = b2

in a similar manner. We have only to suppose that AB = a and AD (instead of BD) = x
[therefore BD = x a], than 

x (x a) = b2.
Thus we can find D (and therefore AD or x) by the same construction as that just given. 

3 The quadratic equation in Descartes 

In the Book I of the Geométrie (1637) Descartes gives detailed rules to solve quadratic equations. 
He uses, with a different approach, the classic Greek geometry; particularly the problems of 
applications of areas (Bos, 2001). What is the difference between the Euclid’s method and the 
Descartes’ method? In the Euclid’s Elements the treatment is only geometrical and we interpret the 
geometrical results in an algebraic manner. In the Geometry [La Geometrie, 1637] Descartes 
begins with a geometrical problem and translates it into an algebraic equation [this is the analytical
part of the method of the Geometry], but an equation is not a solution. For example, the problem of 
two mean proportionals [a : x = x : y = y : b] can readily be reduced to an equation, namely, x3 = 

a2b; this equation has an explicit algebraic solution, 3 2x a b , but the cubic root sign does not 
give any guidance about how such a root can be geometrically constructed. Algebraically the 
problem may be considered solved by the explicit formula, geometrically it is not. For this reason, 
Descartes completes the solution of the problem by finding the appropriate geometrical 
construction of the roots of the equation [this is the synthetic part.] In particular in the book I, 
Descartes shows how to solve the following equations 

x2 = ax + b2                                                                   [x2 ax = b2  (hyperbolic application)] 
x2 = ax + b2                                                                 [x2 + ax = b2  (hyperbolic application)] 
x2 = ax b2                                                                    [ax x2 = b2  (elliptic application)] 

For such equations concerning plane problems, Descartes gives the standard construction by using 
straight lines and circles. 
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The hyperbolic application 
a) Equation: x2 = ax + b2.

Given two line segments a and b [Figure 7] is required to construct a segment x satisfying

x2 = ax + b2.

1. Draw a right angled triangle AOB with OA = 
1
2

a, OB = b and AOB = 90°. 

2. Draw a circle with centre A and radius 
1
2

a.

3. Prolong AB; the prolongation intersects the circle in C.

4. x = BC is the required line segment. 

[Proof: BA intersects the circle in D; by Elements III.36 BC BD = OB2, i.e., x(x a) = b2, so 

x2 = ax + b2.] 

Moreover 2 21
4

AB a b , whence 2 21 1
2 4

CB x CA AB a a b . Descartes ignore 

the second root, which is negative. 

a

b

x

O B

A

C

D

Figure 7

b) Equation: x2 = ax + b2.

The construction is the same of previous case: it is enough to put x = BD.

In this case we have 2 21 1
2 4

x AB AD a a b .

The elliptic application 
Equation: x2 = ax b2.

Construction: 
1. Draw a line segment AB = a, with midpoint O.

2. Draw a semicircle with centre O and radius 
1
2

a.
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3. Draw the line perpendicular at B to segment AB and mark on that line BP = b in 
the half-plane where the semicircle is. 

4. Draw a line through P parallel to AB. It intersects the semicircle in Q and R and S
and T are the projections of Q and R onto AB.

5. x = PQ = SB is the required line segment, but also x = PR = AS is a solution. 
[Proof: By Elements VI.8 BP2 = SB AS = PQ PR, i.e. b2 = x(a x), so x2 = ax b2.] 

In fact, if SB = x, then 2 21 1
2 4

SB OB OS a a b ; and if AS = x, then 

2 21 1
2 4

AS AO OS a a b

a

b

A BO

P
QR

T S

Figure 8

4 The solution of a quadratic equation with CABRI 

It is well known that the solution of the general quadratic equation 
ax2 + bx + c = 0  (a  0) 

is equivalent to solve the following system of equations 
2

0
y ax bx c
y

The first equation represents geometrically a parabola and the second one is the equation of the x-
axis. Therefore to solve the quadratic equation is equivalent, from a geometrical point of view, to 
find the intersection points of parabola with x-axis, that is the x-intercepts. 

Using a dynamic geometry software like CABRI it is possible to use the three parameters a, b,
c as the lengths, with sign, of three segments, then to build the parabola y = ax2 + bx + c and to see 
how it is possible modify that curve when we modify the parameters and then discover how the 
roots of the equation depend on parameters. In particular, by means of the tool calculator, it is 
possible to see the connection between the discriminant (b2  4ac), which determines the existence 

or not of the roots, and the ordinate of the vertex of the parabola 
2 4,

2 4
b b acV
a a

.
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2
x

2

y

a*x*x+ b*x+cy=

a=  
b=  
c=  

1,51
3,05
1,54

Drag  a, b, c
Discriminant: - 0,02

a

b

c

x

y P

Figure 9 

5 Conclusions 

For a long time the quadratic formula is considered a fundamental knowledge from the students. 
However students learn very often such a formula by hearth and use it in a mechanical way 
without worrying about the conditions of its validity. 

A path like that we have here outlined can help the student to give meaning and concreteness to 
used symbols and also to realize that it is not necessary any more to consider different solving 
methods for “different” quadratic equations. 
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ABSTRACT 
The method of polygonal approximations is an old technique dating at least back to ancient Greek 
Mathematics. For example, historically, this method was used to find an approximation of p. In the 
introductory section of the paper, we will first outline this traditional method. Then we will use the method 
of polygonal approximations to calculate the center of gravity of certain plane regions, such as semi-circles, 
and sections of parabolas. In contemporary mathematics, one usually resorts to methods of integral calculus 
to find the center of gravity of such objects. Our results are interesting since we are using a well-known old 
technique in a novel way to calculate the center of gravity of some plane regions. The topic discussed in this 
paper provides a good opportunity for the instructor to integrate the history of mathematics into the teaching 
of mathematics.  

1 Introduction 

The method of polygonal approximations is a very old technique dating back to ancient Greek 
mathematics, and perhaps beyond. Euclid, and especially Archimedes used this method to perform 
many calculations concerning circles, see (Burton, 1995; Heath, 2002) For example, Archimedes 
used polygons of 6, 12, 24, 38, and 96 sides to approximate a circle from inside (inscribe) or 
outside (circumscribe), successively, to find an approximation of . In particular, he was able to 

show that 
7
13

71
103 . This result was given as Proposition 3 of Archimedes’ work 

“Measurement of a Circle”, which we will include below, see (Heath, 2002): 
Proposition 1.1 (Archimedes) 

The ratio of the circumference of any circle to its diameter is less than 
7
13  but greater than 

71
103 .

One can modify this ancient idea of approximating a circle by polygons to obtain other 
descriptions for : For example, by inscribing polygons of sides 4, 8, 16, 32,...... inside a circle, 
one can obtain the following result, see (Kay, 1994): 

22.........2222lim n

n
 (n radicals)  (1.1) 

The above equation (1.1) can be used to find accurate approximations for , just using a 
calculator. 

In order to fix the ideas, let us illustrate how to find the area of a circle using the method of 
approximating a circle by polygons. The calculation shown below is well-known, and even though 
it is not identical to the method used by Archimedes, it certainly has roots in his ideas. 

Consider a circle of radius r, and inscribe a regular n-gon in this circle, where 3n  is a 
natural number. See the following figure: 
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r

r

O

P3

P2

Pn

P1

Figure 1.1. Approximating a circle by a regular polygon 

Consider any one of the triangles in the above diagram, such as the triangle 21POP . Then it is 

clear that the 21 POP  is given by n/2 . From trigonometry, we know that the area of any 
triangle is equal to one-half times the product of any two sides times the sine of the included angle. 
Thus we obtain that the area of the triangle 21POP  is given by )/2()2/1( 2 nSinr . The entire 
regular n-gon consists of n identical triangles such as the triangle 21POP . Thus, the total area nA
enclosed by the regular n-gon is given by the following: 

)/2()2/1( 2 nSinnrAn  (1.1)  
The area of the circle can be obtained by calculating the limit of nA  as n gets large. In order to 

perform the following calculation, we used the well-known limit in calculus that 1/lim
0

Sin ,

see (Larson, 2002): 
222 1.2.)2/1(

)/2(
/2

lim.2.)2/1(lim rr
n

nSinrA
n

n
n

  (1.2) 

In this way, one can obtain the area of the circle as 2r .
For more than one reason, it is quite important for the student to be aware of the above type of 

calculation: 
(1) It helps develop an appreciation for the history of mathematics. 
(2) The method provides an early motivation for the concept of limit. For example, the student 
will become aware of the fact that as n becomes larger and larger, the inscribed n-gon becomes 
closer and closer to the circle.  
(3) Most importantly, similar approximation methods can be used in other parts of 
mathematics. 

One main goal of the paper is to elaborate on the item (3) mentioned above. Polygonal 
approximations are indeed useful in many branches of mathematics. The paper discusses how to 
use the polygonal approximations to calculate the center of gravity of several types of plane 
regions. This topic provides a good opportunity for the instructor to integrate the history of 
mathematics into the teaching of mathematics. 

2 The center of gravity of a semi-circle 

In this section, we will show how to calculate the center of gravity of a semi-circular region by 
using the method of polygonal approximations. Consider a semi-circle of radius r, centered at the 
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origin O of a coordinate system OXY. We want to find the coordinates of the center of gravity G of 
this region. 

r
r

O
Pn P0

P1

P2

P3

Pn-1

Figure 2.1. The center of gravity of a semi-circle 

One can of course, use integral calculus to perform the above calculation, see (Larson, 2002). For 
example, each coordinate of G is given by the quotient of two integrals. This is the common 
method of finding the center of gravity in contemporary mathematics. However, our proposed 
method of calculating G does not involve integrals. It is based on the polygonal approximation 
method described in section 1. 

Divide the circumference of the semi-circle into n equal parts by using the points 
),( iii rSinrCosP  where nii / , for ni ,.....,1,0  where n is a positive integer. Let 

),( iii tsG denote the center of gravity of the triangle ii POP 1 , for ni ,.....,1 . Recall that the 

center of gravity of a triangle is the same as the centroid of the triangle. Moreover, the coordinates 
of the centroid of a triangle can be obtained by averaging the x-coordinates of the three vertices, 
and by averaging the y-coordinates of the three vertices separately, see, (Loney, 1962). Therefore, 
we obtain the following expressions for the x-coordinate is  and the y-coordinate it  of the center 

of gravity of the triangle ii POP 1 for ni ,.....,1 :

3/)( 1 iii CosCosrs  (2.1) 

    
3/)( 1 iii SinSinrt  (2.2) 

Our method relies on combining the centers of gravity of the triangles ii POP 1  one at a time: Let 

),( iii vuC denote the combined center of gravity of the triangles ,.......,, 2110 POPPOP and

ii POP 1  for ni ,.....,1 . For example, ),( 222 vuC  denotes the center of gravity of the region 
consisting of the combined triangles 10 POP  and 21POP . Since the areas of these two triangles are 

equal, the center of gravity ),( 222 vuC  of the combined object lies on the midpoint of the centers 
of gravity 1G  and 2G  of two individual triangles.Therefore, 2u  and 2v  are given by 

2/)( 212 ssu  (2.3) 
2/)( 212 ttv  (2.4)

We will now find the center of gravity ),( 333 vuC  of the object formed by combining the two 

triangles 10 POP , 21POP  with the triangle 32 POP . Since the combined area of the two triangles 

10 POP  and 21POP  is twice as large as that of the triangle 32 POP , the point 3C  can be obtained 

by dividing the line segment 32GC  into the ratio 1:2. Thus we obtain that 

3/)2()21/(])2()1[( 23233 ususu . Using equation (2.3), this simplifies into 

3/)( 3213 sssu  (2.5) 

Similarly one can show that 
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3/)( 3213 tttv  (2.6) 

The equations (2.5) and (2.6) define the center of gravity ),( 333 vuC  of the object formed by 

combining the three triangles 10 POP , 21POP , and 32 POP . Proceeding in a similar fashion, one 

can obtain the center of gravity ),( nnn vuC  of the object formed by combining all the triangles 

,.......,, 2110 POPPOP and nn POP 1  as follows: 

nsu
n

i
in /

1
 (2.7) 

ntv
n

i
in /

1
 (2.8) 

One can further simplify the equations (2.7) and (2.8) using the equations (2.1) and (2.2). The 
equations (2.2) and (2.8) imply that 

n

SinSinSinr
v

n
n

i
i

n 3

)(2)(
1

1
0

  (2.9) 

However, since nii /  for ni ,....,1,0 , it is easy to see that 00 nSinSin . This 

yields that )3/(2
1

1
nSinrv

n

i
in . In order to simplify the numerator, one can use the 

following standard fact about trigonometric series. It is known that for any real numbers , ,
and for any positive integer n

]2/[
]2/[]2/)1([))1((.......)(

Sin
nSinnSinnSinSinSin  (2.10) 

Therefore, using the above equation (2.10), one can make the following simplifications: 

n
Cot

n
r

n
Sin

n
CosSin

n
r

n
Sin

n
nSinn

nn
Sin

n
rvn 23

2

2

22
3
2

2

2
)1()2(

2
3
2

(2.11) 

Similarly, by using equations (2.1), (2.7), and a trigonometric series similar to equation (2.10), one 
can make the following calculations: 

0

2

22
3
2

2

2
)1()2(

2
3
2

n
Sin

n
CosCos

n
r

n
Sin

n
nSinn

nn
Cos

n
run  (2.12) 

In fact, it is not a surprise to observe that nu  must be zero, using the symmetry of the figure. The 

equations (2.11) and (2.12) define the coordinates of the center of gravity ),( nnn vuC  of the 
region formed by combining all the triangles ,.......,, 2110 POPPOP and nn POP 1 . In order to 

calculate the center of gravity ),( yx  of the semi-circle, one needs to calculate ),(lim nnn
vu .

Clearly, 0lim nn
ux . In order to calculate nn

vy lim , we will use the equation (2.11) as 

follows: 
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Thus we obtain that the center of gravity of the semi-circle is given by ))3/(4,0( rG .
What we just discussed above is a non-standard method of calculating the center of gravity of a 

semi-circle. In some sense, it shares the ideas used by Archimedes and others. Our proposed 
method is important because, it gives the instructor an opportunity to integrate history of 
mathematics into contemporary teaching of mathematics. It is also a good idea for a student to re-
calculate the center of gravity of the semi-circle using integrals, just to observe that both answers 
agree. 

As we see in the next section, our new method can be used to calculate the center of gravity of 
a variety of other types of regions. 

3 The center of gravity of some other regions using 
polygonal approximations 

In this section, we will briefly illustrate how to modify the polygonal approximation method of the 
previous section to calculate the center of gravity of another type of region. For example, consider 
the region bounded by the parabola 21)( xxf  and the x-axis. See the following figure: 

O xnx0 x1 x2 xi-1 xi

Pi

Pi-1

Figure 3.1. The center of gravity of a parabolic region 

The lower boundary of the above region is the interval [-1, 1]. Divide this interval into n equal 
parts using the points ix  where, 1...1 1210 nn xxxxx  where n is a positive 

integer. Then one can write nixi /21  for ni ,......,1,0 . Let ),( iii yxP be the point on the 
parabola corresponding to the x-coordinate ix , where )( ii xfy  for ni ,......,1,0 . Let 

),( iii tsG and ia  denote the center of gravity and area, respectively, of the triangle ii POP 1 , for 

ni ,.....,1 . It is easy to see that 3/)( 1 iii xxs  and 3/)( 1 iii yyt  where ni ,.....,1 .

One can also show that nxxa iii /)1( 1 , for ni ,.....,1 . As before, let ),( ii vu denote the 
combined center of gravity of the triangles ,.......,, 2110 POPPOP and ii POP 1  for ni ,.....,1 .
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Then we can show that 
n

i

n

iiin ayyav
11

1 3)( . We can gradually simplify this last 

equation to obtain that )15/(4)5/2( 2nvn . Then we calculate that 5/2lim nn
v , which is 

the y-coordinate of the center of gravity of the parabolic region. By symmetry, the x-coordinate 
must be zero, so the center of gravity of the parabolic region is located at )5/2,0( . It is also 
important to compare the above method to that of Archimedes, finding the center of gravity of 
parabolic segments, see (Heath, 2002). The students are also encouraged to use modern integration 
methods to arrive at the same answer, see (Larson, 2002). 

It must be noted that similar polygonal approximation methods can be used to find the center of 
gravity of several other regions including cardioids and sections of astroids. Due to lack of space 
we will not be able to include further details here. 

4 Conclusion 

In teaching and learning mathematics in a contemporary setting, it is still important to look back at 
the history of mathematics. The historical methods are important not just due to their own sake, 
but also because they can provide new insights to discover non-standard methods of calculation. If 
current mathematics is taught in this spirit, the students will develop a genuine appreciation for the 
efforts of the pioneers of the subject. 
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ABSTRACT 
This paper treats the role of the history of mathematics in promoting abilities which concern mathematics as 
well as the other disciplines delivered in school. To exemplify the possibilities offered by history we present 
a questionnaire for secondary students to whom some elementary notions of the history of mathematics were 
presented during the mathematical classes. The questionnaire was a means to check which ideas about the 
development and the nature of mathematics students have developed in studying mathematics and in the 
same time to make them reflect on some important aspects of mathematics. The use of original sources in 
this questionnaire promotes activities of making conjectures, of interpreting texts, and reflecting on 
language. The same questionnaire has been used with secondary teachers of humanistic disciplines to show 
them the potentialities of history for an integrated approach to teaching in schools which have a humanistic 
orientation. 

1 Introduction 

Since more than one century ago, the didactics of mathematics was concerned with the role of the 
history of mathematics in classroom daily activities. But the teachers who are interested in this 
topic (they are so many) use only occasionally history in mathematical activities. Some questions 
may derive from this poor use; one of them seems to me very relevant: maybe, aren’t teachers 
convinced that history of mathematics has specific objectives that apply to more general contexts 
than that of mathematics classes? 

In the Italian secondary upper school addressed to humanities (students aged 14-18) the 
suggestions of the Ministry of Education encompass historical, methodological-epistemological 
and interpersonal communication themes (Dematté, 2004). The application of these indications 
may be a source of problems for teachers or, more frequently, may induce teachers to ignore them. 
The short considerations in the following show that the history of mathematics regards all these 
themes and thus may be useful to fill the requirements of the programs. As discussed by Radford, 
Boero and Vasco (2000), didactical activities may regard socio-cultural aspects: history may 
provide the idea that mathematics arose in context and with methodological procedures analogous 
to other sciences, experimental science above all. Through the history of mathematics 
epistemological obstacles are seen in a new perspective. The analysis of original sources outlines 
many ways to communicate in mathematics: different numeration systems; words, figures and 
numerical examples, symbols; equations and diagrams;... The rigour of formalism is not always 
present in historical documents, even if we consider the most important mathematicians. From the 
linguistic point of view, mathematical documents are often examples of non literary texts. 

We may say that the history of mathematics contribute to characterize mathematics teaching in 
upper secondary school with humanistic orientation, since may go across the disciplines through 
the exploitation of their common objectives. To pursue this goal the history of mathematics must 
have a “strong” role, say it has to be based on didactical activities that are directly inherent to 
history. Examples of such activities are: 

                                                     
1 Home address: Via Madonnina 14, 38050 Povo di Trento. 
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- the student delineates the historical evolution of algebraic language, specifically the way to 
expound a reasoning has changed: from words, to abbreviations, to symbols 

- the student describes the life or the works of a mathematician, telling about historical 
(political, economical, social) events that characterise his age 

- the student interprets a passage by Al-Khuwarizmi and translate in the modern language by 
using modern symbols to write equations. 

The strong role refers to interdisciplinary themes: linguistic, historical in a broad sense, 
economical, sociological, see (Furinghetti, 2002). Beside this strong role we may have a “weak” 
role, when the use of history is confined to mathematics, as in the following examples: 
- starting from historical sources such as Fibonacci’s Liber abaci or Treviso Arithmetic (Swetz, 

1989) the student describes how to subtract two numbers “in column” through reflection on 
digits’ positional value 

- the student considers a Pythagorean tern and explains the relation among its component 
numbers [it’s helpful to know the Egyptian “rope method” used to draw a rectangular 
triangle].

To make explicit my idea about the strong role of history, in this paper I present a questionnaire on 
the history of mathematics, addressed to second/third year secondary upper school (15 to 16 years 
old students), which is aimed at investigating their ideas about the development of mathematics. It 
was prepared by a group of teachers under the guidance of the author of the present paper, by 
using texts of history and readers such as (Bagni, 1998; Boyer, 1968; Fauvel & van Maanen, 2000; 
Kline, 1972; Odifreddi, 2003; Smith, 1958; Strujk, 1986). Some month before answering the 
questionnaire the students (60 altogether) have had some notions of history of mathematics. The 
questionnaire was used also with prospective teachers to make them reflect on the role of history 
in teaching and learning. Moreover, since the activities dealing with the strong role of history 
should involve also secondary teachers of humanistic disciplines, a group of such teachers 
answered the questionnaire through interviews carried out by the author. Excerpts of these 
interviews are reported in (Demattè, 2004b): they show that adults with a good humanistic culture 
may answer a mathematical questionnaire by exploiting their capacity of critical reasoning, of 
relating pieces of information, of dealing with language. 

2 The questionnaire on the history of mathematics 

1. Leonardo Fibonacci lived: 
A. during the period of Magna Graecia’s highest splendour  
B. in the period previous to the expansion of Rome’s domination 
C. in the period in which Arab empire dominated most of the Mediterranean area 
D. in the period in which Italy recovered the classical tradition, Greek and Latin 
E. in none of the periods indicated in the previous points 
2. The work of the Arabic mathematicians is remembered above all: 
A. for the use of an algebraic symbolism, generally shared 
B. for increasing the contribution of Sub-Saharan mathematics  
C. for its influence on the mathematics of the Far East 
D. for the exchanges with American mathematics 
E. for creating a link between Greek and European mathematics 
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For the items 3 to 8 refer to the line of time here reproduced. 

DCBA

1000 B.C. 2000 A.D.

E

3. Identify in which of the periods indicated with A, B, C, D, E Archimedes lived 
A, B, C, D, E 
4. Identify in which of the periods indicated with A, B, C, D, E Euclid lived 
A, B, C, D, E 
5. Identify in which of the periods indicated with A, B, C, D, E Descartes lived 
A, B, C, D, E 
6. Identify in which of the periods indicated with A, B, C, D, E Al-Khuwarizmi lived 
A, B, C, D, E
7. Identify in which of the periods indicated with A, B, C, D, E Pythagoras lived 
A, B, C, D, E 
8. The theory of probability that you know began: 
A. during the classical Greek Age 
B. a few years before the birth of Christ 
C. during the period of the Roman Empire 
D. in the European Middle Ages 
E. after the Renaissance  
9. Choose the sentence which better characterizes the geometry of Euclid’s Elements in 
comparison to the Egyptian geometry of the second millennium B.C.: 
A. the first one is more inclined to rigor, the second one to practical applications  
B. the first one makes more use of algebraic symbolism than the second one 
C. the first one concerns plane geometry, the second one only solid geometry 
D. the first one provides for rules of calculation, the second one is still lacking in it 
E. the first one is a complete treatise, the second one lacks the concept of equivalence 
10. Rafael Bombelli gave fundamental contributes above all: 
A. to probability 
B. to descriptive statistics 
C. to Euclidean geometry 
D. to the solution of equations 
E. to the use of the co-ordinate geometry 
11. Which is the most recent practice in mathematics? 
A. to use symbols to indicate numbers 
B. to use signs for the operations +, -, ·, :
C. to express problems with words
D. to use drawings 
E. to prove
12. In the development of algebra there are stages labeled as: a. rhetorical, b. syncopate, c.
symbolic. Associate the right descriptions to the above labels: I. Each author use personal 
abbreviations. II. A symbolism, accepted by the whole community of mathematicians, is 
used. III. Problems and their solutions are completely expressed with words 
A. a-I  b-II  c-III 
B. a-II  b-I  c-III 
C. a-III  b-I  c-II 
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D. a-II  b-III  c-I 
E. a-III  b-II  c-I 
13. “It should be well understood that in multiplication two numbers are necessary, namely the 
multiplying number and the number multiplied, and also the multiplying number may itself be the 
number multiplied, and vice versa, the result being the same in both case. Nevertheless usage and 
practice demand...” (Treviso Arithmetic translated in Swetz, 1989) 
Which property is expressed in this quotation? 
A. a·(b+c)=a·b+a·c 
B. a·b=a·c 
C. a·b=b·a 
D. ab=ba

E. a·(b·c)=(a·b)·c 
14. The birth of the theory of probability, according to most scholars, is linked to: 
A. problems about gambling 
B. interrogatives about genetics 
C. inquiries of geometrical nature 
D. considerations of the first censuses 
E. The answer is not present in the previous options 
15. The first written mathematical documents in Europe date back: 
A. to the third millennium B.C.  
B. to the second millennium B.C. 
C. to the first millennium B.C. 
D. to the first millennium A.D. 
E. to the second millennium A.D. 
16. The first written mathematical documents in China, date back: 
A. to the third millennium B.C.  
B. to the second millennium B.C. 
C. to the first millennium B.C. 
D. to the first millennium A.D. 
E. to the second millennium A.D. 
17. The methods of statistical survey have historically allowed to answer the following 
questions, except:
A. what the number of inhabitants of a certain Region was 
B. what the sum to pay for an insurance was 
C. who the best leader for a people was 
D. what the probability to live until 80 was 
E. what the acceptance of a product was 
18. Various causes have impeded the development of the theory of probability in particular: 
A. the scarce abilities of calculations with fractions 
B. the lack of knowledge about direct and inverse proportionality 
C. the scarce development of the studies of mathematical logic 
D. the belief that it is difficult to investigate scientifically the future 
E. the lack of interest for natural phenomena 
19. Some recent books about the history of mathematical logic quote Aristotle (4th

century B.C.) as really important author. The more recent author who is quoted as really 
important is Leibniz (17th - 18th century A.D.). That is mainly due to the fact that: 
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A. the authors of the period between 4th century B.C. and 18th century A.D. are poorly known 
today 

B. the themes dealt with by the authors of ancient times and of Middle Ages were the same dealt 
with by Aristotle 

C. the study of logic was abandoned in the period between the 4th century B.C. and 18th century 
A.D.  

D. Leibniz re-proposed a few centuries later the themes already dealt with by Aristotle 
E. Leibniz belonged to a civilization that had nothing in common with Aristotle’s one 
20. The scholars of the history of science think that mathematicians in ancient Rome didn’t 
give a significant contribute to the development of the discipline above all because: 
A. the Greek mathematicians had introduced the concept of demonstration in geometry 
B. geometry and arithmetic in the time of ancient Rome didn’t have common aspects 
C. the Roman system of numeration allowed calculations with very big numbers 
D. abacus was a very precise instrument and it was suitable to the practical aims of the Romans 
E. the mathematical knowledge at disposal were enough for their applications 
21. Which ones of the following quotations are not translations of true quotations? 
1) “In the dice game there is a very clear reason that some points are more advantageous than 
others; this reason is that those points can more easily and more frequently be obtained than these 
ones…”

GALILEO GALILEI, Works, t. XIV (1630). Our translation. 
2) “Though in gambling, in which only chance decides, the results are uncertain, yet the 
quantities that can be won and the ones that can be lost are determined in it.” 

CHRISTIAAN HUYGENS, De raziociniis…, chapter I (1656). Our translation. 
3) “It is not possible, though the exigencies of practical nature require it, to establish without 
doubt, the probability of an event because uncertainty makes it impossible to associate a number 
to an aleatory event.” 

JAKOB BERNOULLI, Ars Conjectandi, part I (1713). Our translation. 
A. only the quotation 1 
B. only the quotation 2 
C. only the quotation 3 
D. the quotations 1 and 2 
E. the quotations 1 and 3 
22. Which ones of the following quotations are false [neglect the fact that some have been 
translated]. 
I. “The same attribute cannot belong and not belong at the same time, to the same subject, from 
the same point of view. It is impossible that contradictory terms are true at the same time.”

ARISTOTLE, Metaphysics 3; 6; Our translation. 
II. “Definition 1 – Identical or coincident are those terms of which one of them can be substituted 
everywhere instead of the other one, without altering the truth. For example, «triangle» and 
«trilateral»...”

GOTTFRIED WILHELM LEIBNIZ, Opusc. et Fragm. inédits; Our translation. 
III. “It is a generally admitted truth, that the language is an instrument of human reason and not 
simply a means for the expression of thought.”

GEORGE BOOLE, Laws of Thought, III. 
A. the quotations I and II 
B. the quotations I and III 
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C. the quotations II and III 
D. the quotations I, II and III 
E. None of the previous quotations is false 

The following quotation will be used in the two successive questions. 
“The nine figures ..................(X)................. are these 

9  8  7  6  5  4  3  2  1 
Consequently, with these nine figures, and with this sign 0, that the Arabs call zephyr, whatever 
number will be written, as shown below. In fact, the number is a collection or an aggregate of 
units, that for its degrees, grows to the infinite. Among them, the first degree is composed of the 
units that are included from one to ten. The second one is composed of the tens that are included 
from ten to hundred. The third one, from the hundreds that are from hundred until thousand. The 
fourth one from the thousands that are from thousands to ten thousands and so the sequence of 
degrees to the infinite, ...............................(Y)...................... In the writing of numbers, the first 
degree begins from the right, the second one, really, follows the first one towards the left. The 
third one follows the second one. The fourth follows the third, and the fifth follows the fourth, and 
always like this, towards the left, one degree follows a degree.” 

LEONARDO FIBONACCI, Liber Abaci, chapter I; Our translation. 
23. In the gap marked with (X) the original text relates to civilizations where it is believed 
our place-value decimal numeration including the zero symbol originated: 
A. the Chinese 
B. the Indian 
C. the Persian 
D. the Greek 
E. the English 
24. In the previous quotation, a sentence has been omitted where there is the dotted gap 
marked with (Y). Which one? 
A. each one can be as much as its antecedent 
B. each one is equal to the double of its antecedent 
C. each one is ten times its antecedent 
D. each one is ten times, hundred times etc. of its antecedent 
E. each one shows a value that does not depend on its antecedent 
25. “ 1921

543
1232

146
When, then, someone wants to add up as many numbers as he likes, he should put them in a table 
[…] and then we begin to get together, using our hands, the numbers of the figures that are in the 
first degrees of all the numbers that were put into the addition, going up from the inferior number 
to the superior one, .....................................(X)..................................... Then the numbers that are 
in the second degree are added up and again the tens will be kept…” 

 LEONARDO FIBONACCI, Liber Abaci, chapter III; Our translation. 
In the gap marked with (X), a sentence has been omitted. Which one? 
A. then, the intermediate terms will be computed and the result of the addition will be written, 

paying attention to the order 
B. then, according to what the abacus teaches, the sums to be written will be found, according to 

the way used by the Indians 
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C. then the rule of the algorists will be followed, abandoning the techniques usually used by the 
abacists 

D. then, the units are written over the first degree of the numbers and the tens are kept with the 
hands

E. then, the thousands are written over the first degree of the numbers and the tens of thousands 
are kept with the hands 

26. According to the mathematical knowledge of their times, which of the following problems 
would Pythagoras and his disciples been able to solve? 
I. Find the value of the unknown quantity in a proportion 
II. Use a rule to compute the sum of the first n natural numbers 
III. Solve some system of simultaneous linear equations with rational coefficients 
A. I and II 
B. I and III 
C. II and III 
D. I, II and III 
E. None of the previous problems 
27. Which of the following figures better illustrates Archimedes’s definition? 
I call concave in the same part a line so that, taken any two points on it, the segment of straight 
line that connects them, either all of them fall in the same part as regards the line, or some of them 
fall in the same part and the rest of them on the [line] itself: without none of them falling in the 
other part. 

ARCHIMEDES, About Sphere and Cylinder.

A. 

B.

C.

D. 

E.

28. The method of the co-ordinates (analytic geometry) developed from the 16th century, 
when the mathematicians: 
A. had at their disposal a valid algebraic symbolism 
B. had sufficient knowledge of plane geometry 
C. became acquainted with the first examples of plane curves 
D. became able to solve quadratic equations 
E. became acquainted with the Egyptian method of false position 

Items 29 and 30 refer to the two documents here reproduced.
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Arithmetic triangle in Ssu Yuan Yii Chien 
(Chu Shih-Chieh, 1303) 

Arithmetic triangle in Traité du triangle aritmétique  
(Blaise Pascal, 1654) 

29. From the comparison of the two documents the following information about the 
writing of numbers in China in the 14th century emerges, except:
A. a symbol indicated zero 
B. the unit was indicated with “ “

C. number 6 was indicated with “  ” 

D. number 9 was indicated with “  ” 

E. number 15 was indicated with “ ”
30. The fact that the arithmetic triangle appears in so different moments and contexts (China 
at the beginning of the 14th century, France in the 17th century) is presumably due to the fact 
that: 
A. the European post-Renaissance culture paid attention to the Chinese culture 
B. Pascal had studied the developments of Chinese mathematics 
C. Chinese and European mathematics had had exchanges 
D. the arithmetic triangle has applications in various mathematical topics  
E. At least one of the two documents is false 
31. The symbol for zero was introduced to: 
A. make the Roman numeration easier 
B. improve the place-value numeration 
C. represent the identity element in the addiction 
D. indicate the measures of very little sizes 
E. complete the numbers of the oriented line. 
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32. From the previous figure [taken from The Exact Science in Antiquity by O. Neugebauer], 
we can deduce that: 
A. the Romans had direct contacts with Indian mathematics 
B. in some period, Greece and Egypt had a common mathematical culture 
C. the Egyptian mathematics could not spread among other peoples 
D. the inhabitants of Italy before the Etruscans didn’t know mathematics 
E. during Hellenism, the Greek and Persian mathematicians didn’t have contacts 
33. The problem “Divide seven piece of bread into equal parts among four people” dates 
back to: 
A. ancient Egypt 
B. classical Greece 
C. Roman times 
D. European Middle Ages 
E. early Renaissance
34. Egyptians, Indians, Chinese: documents exist revealing
the knowledge of Pythagorean terns by some of these 
ancient people, without they having had contacts with 
Pythagorean school. Who of them had this knowledge: a

c
b

A. Egyptians and Indians 
B. Egyptians and Chinese 
C. Indians and Chinese 
D. Egyptians, the Indians and Chinese 
E. None of the previous people left documents about Pythagorean terns 
35. From the Dresden Codex displaying Maya numbers 
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The second column on the 
left, from top to down, 
displays the numbers 9, 9, 16, 
0, 0. The last column on the 
right displays, among others, 
the numbers: 
A. 2; 3; 8 
B. 13; 5; 7 
C. 4; 3; 5 
D. 9; 11; 14 
E. 4; 15; 18 

3 Comments and preliminary conclusions 

Some items of the questionnaire require the interpretation of originals sources. Items like these 
may highlight competencies connected essentially with linguistic abilities. About this fact, a 
question may arise, that is inherent to the opportunity that mathematics education may establish a 
collaboration with other disciplines to construct linguistic abilities, in a broad sense. My answer is 
yes: among the aspects of mathematics in didactics, mainly the history of mathematics implies the 
use of many communication modalities, the interpretation of originals, the productions and 
validation of conjectures. 

When the questionnaire was administered in the classroom, I didn’t have the aim to gather data 
and elaborate statistical analysis on them. So, I quote these data with a little reluctance, but one 
thing seems to me meaningful: only 22 students out of 60 in total supplied the correct answer in 
item 24, while the teachers answered without hesitation. This item is about positional value of 
figures in our number system, so, in principle, the obstacle is not represented by mathematical 
lacks in the strict sense. The obstacle is mainly in the inability to recognise a well known concept 
in the context of a reasoning. This evokes the theme of  “which mathematics for citizens?” that, I 
think, concerns more the methodological aspects than the content aspects. The majority of students 
will not use mathematics in their future job, nevertheless it is desirable that people have scientific, 
and, in particular, mathematical interests. We think that these interests may be supported by the 
capacity to understand and to produce a mathematical reasoning. I refer to interests for 
mathematics as a socio-cultural process. The terms ‘sociological’ and ‘cultural’ suggest the placing 
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of mathematics in an interdisciplinary context. So, we return to the essence of the present article. 
Going across disciplines through the history of mathematics is linked to the process of 
“humanising” mathematics, see (Furinghetti, 2005). I would add that from the interviews with 
teachers I had the impression that also the reverse process may be promoted, say the process of 
“mathematising” humanistic disciplines by showing that both scientific and humanistic disciplines 
are aspects of the path towards the construction of citizens’ rationality. 
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ABSTRACT 
Based on ‘Mathematics Activity as a Human Endeavor Projects’, this paper focused on four arguments for 
discussing why we use historical tools and computer software in mathematics education. Four arguments, 
namely, mathematization, mediational means, theory of embodiment and hermeneutics, were used for 
illustrating mathematical activity as a human endeavor; epistemologically with the example of perspective 
drawing theory and cognitively with an example of studying an ellipse compass.  

Introduction 

Why do we use tools and software in mathematics education? The answers must differ depending 
on what mathematics educators aim for in mathematics education and what kinds of activities are 
expected in the mathematics classroom. If mathematics is recognized as an ideal world and if 
mathematical discovery, a kind of activity, in this world need not be related to the physical world, 
tools and software are necessary if only for helping the explorer discover because there are other 
ways of discovery. On the other hand, if we recognize mathematics and mathematical activity from 
the viewpoint of various mathematics learning activities in the mathematics classroom as shown 
by Bartolini Bussi (2000), we can not cut the relations between physical tools and mathematical 
ideas, or between computer software and mathematical ideas. History of mathematics is best 
resources for tools in mathematics. 

There is some traditional usage of educational tools including software and physical tools for 
educational aids to learn mathematics but these do not necessarily need to be used in a scientific or 
daily life context because they are developed for educational purposes. They have been devised to 
express and manipulate mathematical ideas for developing students’ knowledge of mathematics. 
Against these traditional views of educational tools, this paper illustrates four theoretical 
arguments to use tools and computer software to know and experience mathematics as a human 
Endeavor with an epistemological example of perspective drawing and a cognitive case study of 
ellipse compass. At the middle part in this paper, the website of historical and cultural tools for the 
people who prefer alternative arguments is introduced. Furinghetti and Paola (2003) illustrated the 
process of preparing historical materials for the classroom. The website developed with same idea 
and included fifty examples for teaching mathematics as a human endeavor. 
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2 Four arguments for understanding mathematics as a 
human endeavor 

There are a number of arguments by which mathematics activities as a human endeavor are 
explained with tools and computer software. The first is a mathematician’s argument explained by 
Freudenthal (1973) using the word mathematization: organizing reality by mathematical means is 
called mathematizing. He argued that to teach mathematics as a given is an anti-didactic inversion, 
and that students should reinvent mathematics as well as mathematicians invented mathematics via 
organizing reality. Based on his mathematical experience and historian’s experiences, he described 
the learning process through mathematization with van Hiele levels and emphasized the 
importance of reflection on experience at lower levels for overcoming discontinuity between 
levels. 
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This means that students should experience the mathematization of reality. People are used to use 
tools in their life with mathematical reasoning and developed mathematics via reflection of 
experiences. For example, today, different perspective drawings such as one-point, two-point or 
three-point perspective drawings are taught as a composition technique for drawing pictures in art 
classes. Historically, perspective drawing has been explored by painters, such as Francesca, da 
Vinci and Dürer, with tools such as Figures 1 and 2 which have only one visual point. They 
introduced mathematical (or geometrical) perspectives with these tools for overcoming (or 
enabling the reflection of) traditional drawing techniques of the Middle Ages. They developed 
these tools that enable them to organize and depict reality. Using geometrical techniques, they 
developed a perspective theory of drawing. This theory included the idea of eye-beams was later 
re-mathematized into projective geometry by Desargues and Pascal based on the idea of the 
families of lines (‘ordonnance’ by the world of Pascal). 

The second argument is known as the Vygotskian theory in which mediational means such as 
physical and psychological tools function inter-subjectively and higher mental reasoning in inner-
subjectivity is mediated by them. Cultural tools usually have special inter-subjective meanings 
(Wertsch, 1991) and cognitive development is described with changing of mediational means. In 
Figures 1 and 2, each painter in research substituted their drawing tools as mediational means from 
the drawing board to the actual picture. When medieval painters before 15th century directly 
painted onto drawing boards, they used some traditional ways of drawing that were very far from 
perspective drawing. The screen window which was introduced in Renaissance painting functions 
as a mediational means of perspective drawings.  

Painters researched the use of the screen window to draw what they actually saw and tried to 
translate their geometrical experience to their drawing board (see Figure 6). Figure 6 is explained 
by Figure 7 of Dynamic Geometry Software (from now on DGS). At that age, how to draw the 
depth of pictures was an essential problem. Based on the idea of Figure 7, painters could know 
how to draw the depth with Figure 6. The idea of Figure 6 was expanded to the anamorphose 
through inclining screen windows such as Figure 8. 

The third argument is the theory of embodiment (Lakoff, Nunez, 2000), which explains even 
higher mathematical concepts originating in some metaphors derived from bodily motion. One can 
not understand mathematics appropriately without reliable metaphors for it. The theory gives a 
central role to appropriate metaphors of bodily motion for understanding abstract mathematical 
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ideas and overcoming discontinuity of learning process. History of mathematics is treasure of 
metaphors which people used derived from their bodily motion. In Figure 3, the Theorem of 
Desargues is explained by Figure 4, which uses the same metaphor as the pictures in Figures 1 and 
2. Projective geometry generalized the eye-beam metaphor. The eye-beam also existed in pictures 
of Christ in the middle ages but it was not a human eye-beam. It came from heaven and eyes of 
God. Painters imagined the existence of God and trying to draw the benediction with eye-beam 
from God or heaven on the drawing boards. These new tools treated the eye-beam like the eye-
beam of a human painter and humanized reality. Through the use of these geometrical tools, it was 
possible to see reality as a human construction and enable people again to use eye-beam metaphors 
as well as Euclid did at his Optics. 

The fourth argument is humanization based on hermeneutics that the understanding of 
mathematics in a social context includes the developer’s own, author’s or another’s perspective 
(Janke, 1994). To understand mathematics as a human endeavor, it is necessary to try to imagine 
the developer’s or author’s perspective just as we experience it by ourselves. Mathematics is most 
reliable subject to represent, or reinvent by other people and thus, understanding mathematics 
include expecting other people’s mind. Historical tools enable us for getting developer’s 
perspective. 

Because we know the meaning of Figures 1, 3 and 4, we can imagine the activity in Figures 5 
and 6, and imagine the mind of da Vinci and his view of the world. If we understand the Figure 6 
as Figure 7, we understand well that there is only one perspective drawing theory even if, in art, it 
is technically explained with many kinds of composition such as one-point, two-point or three-
point perspective drawings. If we do not know the perspective drawing tools used in Figures 1 and 
2, and if we do not imagine that the structure is the same as looking outside through a window, we 
cannot imagine the process by which mathematics developed. Today’s perspective drawing theory 
in art that counts the number of vanishing points is only one technique for the composition of a 
given picture. It is not only graphics theory but also does not include the theory of perspective 
drawing that da Vinci and Dürer developed in their day.  

Counting the number of vanishing points of the picture of da Vinci in art classroom in school 
teaches technique for composition of picture but lacks trying to interpret it as a human endeavor: 
For interpreting, it is necessary to imagine the author’s/painter’s wishes at that age trying to 
explore with tools. This personal interpretation was not constructed without the tools of Figures 1 
and 2. 

All four arguments are useful to explain why we should use historical and computer tools, such 
as Dynamic Geometry Software, in mathematics education. If mathematics is activity as a human 
endeavor, we teach mathematics via mathematization of reality. Tools are functioning as 
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mediational means to alternate reality, to bridge discontinuity of learning process and give us 
necessary metaphor. Tools enable us finding the existence of inventor, getting inventers 
perspective and imaging why he/she tried to invent and how significant it was. 

The mathematics activity as a human endeavor project directed by Isoda aims to develop 
innovative teaching and contents. It began with use of innovative technology in 1993 and was 
since enlarged to include the use of historical technology under the influence of the works of 
Dennis and Confrey (1995), Bartolini Bussi (1993), and Maanen, J (1991). The project has 
developed more than ten examples in each year and has included activities that students can use to 
interpret historical texts or their English translations through technology from 1998 to the present. 
The some parts of the project websites explain how to develop and how to use historical tools. 
Teaching programs with these tools and historical text for three class room hours in high school 
had developed and the effects of teaching had evaluated from these four arguments. From the 
results, we could conclude that all of programs gave strong impact for knowing mathematics as a 
human endeavor and they could not experience it without using of historical tools.  

3 A case study with a historical tool and today’s software 

To validate students’ mathematics experience with tools and computer software so that they 
recognize mathematics as a human Endeavor, a case study (Isoda, 2000) was planned to 
demonstrate how undergraduate students changed their attitudes to mathematics by using an 
historical tool and modern software. 

Figure 10 

Lesson aim and plan 
Four lesson hours in mathematics education method class were used. The lessons aimed to enable 
students to experience hermeneutics in mathematics history, to interpret the historical text with 
technology in an historical context, and to understand mathematics as a human endeavor. Students 
who attended the class were pure math or informatics students in the undergraduate program. 
Before the lessons, they had not attended any class in mathematics history. They knew only the 
names of famous mathematicians as the names of theorems. A few of them had not read any 
original or translated historical texts. They did not know the pantograph as a drawing tool and had 
no experience using Dynamic Geometry Software. The sequence of lessons was as follows: 

First lesson: Using an original picture of Schooten, students explored the locus which was 
drawn by the compass of ellipse made with LEGO. 

Second lesson: Students learned how to construct the locus using DGS (Cabri). 
Third lesson: Students drew the compass of ellipse using DGS. 
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Fourth lesson: Students read the texts of Descartes’ ‘Geometry’ and Rules for the 
direction of the mind’, drew the locus using DGS to understand the meaning of the text, read the 
text of Pascal’s ‘Panse’ and “Spirit of Geometry’, and then discussed their interpretation. 

Impact of the historical tool 

In the first lesson, the teacher presented Schooten’s picture (1646, Figure 10, see Maanen 1992) 
and asked students to guess the locus of E. Many students drew some curves and others drew some 
segments (see Figure 11). Then, the teacher asked students to make the mechanics of Figure 11 
using LEGO. Students made it and drew locus. Through the process of making it, students soon 
began to change its conditions. Students discussed how the curves were changed depending on its 
conditions (Figures 12 and 13). The teacher informed that the locus is an ellipse just in case of 
AB=AD. Students tried to consider the case once more but the time left was too short to find the 
proof.  

After the lesson, students described their opinion as follows: 
I could understand using mechanics more than only imaging locus in my mind. Until using it, I 

understood ellipse by the equation and I had never considered how to construct it.  
We could not use tools until we know how to use it. I realized that to design tools and explore 

the way of using them are the issues of mathematics itself.  
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The teacher began the lecture that the ancients used to use rope to draw a circle and an ellipse. 
I could experience the similar situation via the LEGO: The ancients must have constructed their 
knowledge of mathematics through this kind of exploration.  

I never experienced such interesting construction in math lesson like this. I really wanted to 
demonstrate the reason why an ellipse was drawn.  

I never thought that the linear motion could produce an ellipse  
These opinions expressed the effect of LEGO mechanics for exploring curves and implied that 

their views of mathematics had changed as well as their concepts of curves. And especially, the 
italic parts of the opinions indicated that they interpreted the using of mechanics from historical 
perspectives which must be similar to the perspectives of the ancients or Descartes. 

Changes of belief via exploring with the software and the tool 

In the second and third lessons, students learned the construction by DGS, and then, they began to 
construct the mechanics on DGS. At the fourth lesson, students read the text of Descartes, 
explored the meanings with DGS and read the text of Pascal. After discussing their opinions, they 
described their opinions as follows.  

For me, mathematics was symbolized by the words ‘memorize theorems’ and ‘knowing the 
ways of calculation’. I only learned a few parts of history, but I could know that those 
mathematicians’ ideas and their ways of explorations are far from today’s mathematics. The 
reason why the ancients preferred mathematics for the initiation of philosophy must be 
mathematics was not difficult or mathematics was integrated enough to understand. 
Unfortunately, the image of today’s mathematics is too hard for the people. Through using tools, 
we can demonstrate in the classroom how ancient mathematicians explored comprehensible 
mathematics.  

Before the lessons, I thought today’s school mathematics was the most refined and thus, the 
most simple mathematics. But I experienced that the ancient mathematics and tools had specific 
reason which should be used and easily understandable. This is a new perspective for me.  

I did not think about the way of construction any other ways but in the textbook. I learned that 
the historical textbook and tools tell us a lot of unknown methods. And through the interpretation 
of history, I could know other aspects of mathematics. 

People imagine problem solving from the word ‘mathematics’. Although, I only learned some 
history of mathematics, I know the importance of knowing the roots of problems and ideas.  

I believed that to deduce from the assumption to conclusion is the formal way of mathematics. 
Through the lessons, I learned that the analysis of mechanics by which to try to find the solution 
and the reasoning of other representations in the case of obstruction. From the history, I learned 
another face of mathematics.  

These opinions, especially in the italicized sentences, indicated that those four lessons strongly 
impressed on them the need to reconsider their belief in mathematics as a human endeavor. At the 
same time, some opinions implied that their belief about mathematics before the lessons was not 
appropriate for future mathematics teachers who are to teach mathematics as human activity. 

Evaluating the four arguments in the case study 

Mathematization was impossible through the use of tools. Because of the many kinds of curves 
shown in Figures 12 and 13, students wanted to prove in case of AB=AD that it was an ellipse and 
why others were not. This implies that students had a wish to mathematize because they wanted to 
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explain a mechanism mathematically. Tools and software enabled students to develop special ways 
of reasoning in manipulating LEGO and in the construction of the figure by DGS, which simulates 
the motion of LEGO. Students developed a new perspective about ancient mathematics and 
understood that there is specific understandable reason why tools had been used. Tools and 
software enabled them to develop appropriate metaphors of motion. Some students had expected 
that the linear motion of D could produce the linear motion of E and never anticipated that it 
would produce a curve. Students developed a metaphor that the arm AB rounds at A when D
moves linearly. This metaphor constructed that the point E rounded horizontally by the ratio AB to
BE and vertically by the ratio AB to DE. The historical tool and software, enabled students to 
remind developer’s reasoning. Because the lesson started from a historical picture of ellipse 
compass and gave it meaning within a historical tool for reminding developer’s perspective, 
students could understand mathematics as a Human Endeavor. 

The case study illustrated that to understand mathematical activity as a human endeavor one 
cannot do without the tools and software because it is necessary to get inventor’s perspective. 
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ABSTRACT 
The purposes of this article are to sketch a holistic picture of the birth of the Fundamental Theorem of 
Calculus. In particular, the focus will be on the work of Isaac Barrow, of Newton and Leibniz’s. It will be 
also considered a conjecture about Archimedes’ work concerning this theorem. 

After this historical picture the paper will discuss the pedagogical values of using these materials in 
teaching calculus to college students. 

1 Introduction 

Differing from conventional instructional order, historical development of integral calculus 
preceded that of differential. Origins of integral calculus date back to as early as ancient Greece, in 
efforts to find area, volume, and arc length. Basic idea of integration is considering an area as 
approximated by the sum of areas of many thin parallel rectangular strips—as the number of strips 
increases infinitely, width of each strip approaches zero. One can then calculate area as the limit 
approached by the sum of the areas of these strips. On the other hand, differentiation was initiated 
from the problem of deriving slope of the tangent to a curve and calculating instant velocity. Key 
point for both concepts is treating instant rate of change as the ultimate value of average rate of 
change, not explicitly recognized until the 17th century. Intuitively, derivative and definite integral 
are two seemingly disparate notions: one based on the limit of a sum of a growing number of 
vanishing elements, another on the limit of a difference quotient. ‘’The Fundamental Theorem of 
Calculus manifests the fantastic mutually inverse relationship between the two, in the same sense 
of addition and subtraction, or multiplication and division. Discovery of the striking inverse 
relationship between these concepts is deemed the root idea sustaining the whole of calculus, and 
it should be noted that over a century of investigation was needed to attain its present status. The 
significance of establishing the link is pinpointed by Howard Eves: “In any collection of GREAT 
MOMENTS IN MATHEMATICS, the discovery of the fundamental theorem of calculus would 
surely appear” (Eves, 1983, p. 38). The chief foci of this paper are sketching its brief history and 
discussing classroom activities introducing this great moment of mathematics to Taiwanese 
college students. 

2 The development of the Fundamental Theorem of  
   Calculus 

Newton and Leibniz share the honor of invention of calculus and independently proposed the 
Fundamental Theorem of Calculus, yet they were not the first cognizant of the inverse relation 
between processes of integration and differentiation. From a current point of view, several earlier 
mathematicians, either implicitly or explicitly, had captured the inverse essence of these concepts. 
Some particular cases even had been established. Newton’s famous motto holds: “If I have seen 
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further than others, it is because I had stood upon the shoulders of giants.” It is the time to find out 
what these giants are. 

The time before Isaac Barrow 
In the early 17th century, Evangelista Torricelli recognized the inverse relation between integration 
and differentiation holding for generalized parabolas. In modern terms, Torricelli actually showed 
that 

n
nx n x
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x

dx
ddxx

dx
d

1

1

0
, where n is a natural number 

In 1655, John Wallis considered the more general cases of n as a rational number and negative 
exponents in his Arithmetica Infinitorum (The Arithmetic of Infinites), believed to have exerted 
decisive influence on Newton’s early mathematical development. In fact, Fermat and Torricelli 
earlier established Wallis’s work on the case of rational number, yet their works were never 
published until somewhat later (Mahoney, 1973). Initially, Fermat viewed constructing a straight-
line segment equal in length to a given algebraic curve as impossible. Shortly before 1660, as 
infinitesimal techniques were increasingly applied, this belief turned questionable (Boyer, 1959). 
First rectification of a curve was that of semi-cubical parabola y2 = x3 in 1657, proposed by 
William Neil (Appendix). Upon hearing of Neil’s work, Fermat was motivated to carry out 

rectification of the more general semi-cubical parabola 32 xmy . As seen in Figure 1, for any 

point P on the curve 32 xmy  with abscissa OQ (length as a) and ordinate PQ (length as b),
Fermat showed how the length of subtangent RQ (length as c) is 2a/3. Let ordinate QP  to the 
tangent line be erected at distance e from PQ, the length of segment PP , in terms of a and e,

is .1
4
9
m
aePP  Note that, for sufficiently small values of E, point P can be seen as on the 

curve, whose length, in this manner, may be treated as the sum of segments like P P . Meanwhile, 

by virtue of the fact that 1
4
9
m
aePP , total sum of these segments actually is the area under 

the parabola .1
4
92

m
xy  It is therefore obvious that the quadrature can be obtained as long as 

the length of the curve is determined. 

Figure 1 

Apparently, Fermat reduced a problem of rectification by connecting tangents and the question of 
quadratures. Surprisingly, for all his deft use of infinitesimals in a variety of areas, he still failed to 
recognize this critical relation, denying himself the honored title of “true inventor of the calculus” 
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(Boyer, 1959). The man first overtly aware of generality of the Fundamental Theorem of Calculus 
was James Gregory in 1668, exerting a significant influence on Isaac Barrow’s work. 

The Work of Isaac Barrow 
Following Galilei’s pioneering work, study of the time-motion curve probably led Barrow to 
intuitive understanding of the inverse relation between tangent and quadrature problems. In 
Lectiones opticae et geometricae (Geometrical Lectures) of 1669, Barrow proposed the earliest 
and clearest, though incomplete, version of the Fundamental Theorem of Calculus. His result may 
be described as follows (Edwards, 1979; Eves, 1983): 

Let the y- and z-axis be oppositely oriented as shown in Figure 3. Given an increasing positive 
function y = f(x), denote by z = A(x) the area between the curve y = f(x) and the segment [0, x]
along the x-axis. Given a point D(x0,0) on the x-axis, and let T be the point on the x-axis such 
that DT = DF/DE = A(x0)/f(x0). Then the line TF touches the curve z = A(x) only at the point 
F(x0, A(x0)). 

Figure 2 

Barrow concluded the theorem merely by asserting that line TF touches curve z = A(x) only at the 
point F(x0, A(x0)) rather than explicitly indicating TF as the tangent to z = A(x). Since slope of TF

is )(
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, if Barrow further asserted TF is a tangent line to curve z = 

A(x); this result would lead to a conclusion that )()( 00 xfxA , the Fundamental Theorem of 
Calculus. Barrow typically dealt with tangent-quadrature problems in a geometrical fashion; this 
cumbersome geometrical approach may have precluded his gaining insight into this theorem.  

Newton and Leibniz’s work on the Fundamental Theorem of Calculus 
Contrary to previous infinitesimal techniques mostly based on the determination of area as a limit 
of a sum, Newton considered the rate of change of a desired area and calculated said area via anti-
differentiation (Edwards, 1979; Struik, 1969). Let A(x) denote the area BCD under curve y = f(x)
(Figure 3) and regard this area as vertically swept out by segment BC moving to the right with unit 
velocity, i.e., x  =1. 
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Figure 3 

Extend CB to F, so that BF = 1, and complete the rectangle BDEF. Newton then asserted fluxions 
of areas BCD and BDEF should be BC and BF, respectively ( BFxBCy , ). Thus, the 
derivative of the area under the curve y = f(x) is y = f(x) itself: 

).(xfy
x
y

Obviously, Newton’s approach is dynamic in nature. Nevertheless, despite his crucial insight 
into this important relation, Newton did not yield rigorous proof. 

On the other hand, as a logician and philosopher, Leibniz delayed formal study of mathematics 
until 1672, when he was sent to Paris on a diplomatic mission. Similar to Fermat’s fashion, 
Leibniz studied rectification problem by means of a problem of quadrature. In a 1677 manuscript, 
Leibniz introduced the Fundamental Theorem of Calculus: 

Figure 4 

Given curve z = f(x) (Figure 4), if it is possible to find the curve y = g(x) such that the slope of 

tangent 
k
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, where k is a constant, then ,kdyzdx
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dx
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so the area under the 

original curve is kydykzdx . A quadrature problem was thus reduced to inverse tangent 

problems. Namely, in order to find the area under the curve with ordinate z, it suffices to find a 

curve whose tangent satisfies condition .z
dx
dy  Setting k = 1 and subtracting the area over [0, a]

from that over [0, b], we then obtain 
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In addition to borrowing from Fermat’s approach, Leibniz’s idea here is also quite akin to Neil’s 
use of auxiliary curve while solving rectification problems (Appendix). 

A Conjecture about Archimedes’ Work on the Fundamental Theorem of Calculus 
It is widely held that the notion of the Fundamental Theorem of Calculus was first acknowledged 
in the 17th century. Nonetheless, it could date back to ancient Greece if we look at Archimedes’ 
work in more detail (Eisenberg & Sullivan, 2002; Grattan-Guinness, 1997). In his Measurement of 
A Circle, Archimedes derives area A of a circle by saying: 

The area of any circle is equal to a right-angle triangle in which one of the sides about the right 
angle is equal to the radius, and the other to the circumference of the circle. 

What Archimedes said here is that the following two figures have the same area. 

Circle of radius r and circumference C Right triangle of base r and height C

Figure 5 

Once the result is obtained, we see the area A of a circle with radius r equals ½ (rC) = ½ r (2 r) = 
r2. How did Archimedes get this idea? What thought underlies this proposition? Contrary to his 

reductio ad absurdum employed to prove this theorem, Archimedes perhaps viewed a circle as a 
combination of infinitely many concentric circles, so that its area can be regarded as an infinite 
sum of the “width” of circumferences. He then got all circumferences straight and piled them up to 
form a right triangle whose height is r and base is the longest circumference C (Figure 6), as 
Abraham bar Hiyya ha-Nasi interpreted (Grattan-Guinness, 1997). 

Figure 6 

If this conjecture stands, Archimedes would become the first to recognize the mutually inverse 
relation between integration and differentiation. While viewing a circle as a combination of 
infinitely many concentric circles, Archimedes regarded circumference C(r) as instant rate of 
change of area A(r) of a circle i.e., dA(r)/dr = C(r). Conversely, when evaluating area of the 
right-angle triangle with height r and base C, he actually summed up infinitely many of C(r) to get 

the area of a circle with radius r i.e., )()(
0

rAdrrC
r

, essentially the Fundamental Theorem of 

Calculus. If this is the case, it is curious why Archimedes went no further. Did he fail to perceive 

241



this vital fact? Was he unaware of the importance of the notion of rate of change at this time? It 
may be also interesting to know whether any 17th century mathematicians got insight from 
Archimedes’ work. 

Emergence of the Fundamental Theorem of Calculus affords us a clear-cut example between 
discovery and recognition of significance (Eves, 1983). Of all mathematicians prior to Newton and 
Leibniz, Fermat and Barrow exhibited the closest thinking to this newborn discipline. Fermat 
appeared to realize the inverse relation between these types of problems, but seemingly restricted 
his attention to solving geometrical problems. Barrow provided a geometric theorem elucidating 
the inverse relationship, yet failed to recognize the key essence of his result. He reduced inverse-
tangent problem to quadratures, yet did not go reverse direction. Besides, in some sense, his 
geometrical approach indicated a retreat to the idea of indivisibility of Cavalieri (Boyer, 1959). 
Newton and Leibniz’s contribution not only conceptualized the Fundamental Theorem of Calculus 
as a crucial fact, but also effectively employed it to advance earlier infinitesimal techniques to a 
powerful algorithmic instrument for systematic calculation. It also should be noted that rigorous 
structure was lacking both in Newton and Leibniz’s proofs of the Fundamental Theorem of 
Calculus, in that the knowledge for the foundation of calculus was not well established during their 
era, something for which they were not responsible. Rigorous proof was not available until 
Cauchy, more than 100 years later.  

3 The implication in mathematics teaching 

Discovery of the Fundamental Theorem of Calculus cannot be seen merely as some effective 
methods created for solution of problems involving tangents and quadratures. Its half-century-long 
evolution not only shows a typical mode of forming of mathematical knowledge but also reflects 
human facets in constructing this great scientific endeavor. In an epistemological point of view, 
this historical event is quite worthy of being taught in school. In my historical approach college 
calculus course, instead of presenting students the statement and proof of the Fundamental 
Theorem of Calculus directly, I introduced the aforementioned historical processes to my class and 
investigated how students reacted to it. First of all, I assigned handouts regarding the development 
of the Fundamental Theorem of Calculus, including Fermat, Barrow, Newton, and Leibniz’s 
approaches shown above. All students were asked to study and think about the handouts. One 
week later, several students were chosen at random to explain the historical methods on the board 
and were also reminded that the formal proof did not appear until Cauchy. This classroom activity 
was designed to offer students an opportunity to realize various fashions and approaches of 
thinking among mathematicians. Following the presentations, I reviewed Archimedes’ method of 
deriving area of a circle (students were aware of it at the outset of the course) and proposed the 
aforementioned plausible conjecture. It was hoped, in this manner, they would attain holistic grasp 
of the significance and historical context of the Fundamental Theorem of Calculus. The context 
categorized the role of each mathematician as: 

(1) Archimedes: potentially recognizing the theorem; 
(2) Fermat: connecting the concepts of tangents and the question of quadratures; 
(3) Barrow: only one step short to the discovery of the theorem; 
(4) Newton: discovering and interpreting the theorem by using dynamic approaches; 
(5) Leibniz: extending Neil and Fermat’s methods to attain the result; 
(6) Cauchy: proving the theorem. 
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Thereafter, students were asked to write down (a) their realizations and thoughts about the 
discovery and progress of the Fundamental Theorem of Calculus and (b) who made the most 
significant contribution. Major responses to the discovery of the Fundamental Theorem of 
Calculus are listed below. 

Mathematical knowledge is attributed to mathematicians’ constant effort 
Most significant perspective among students was the progress of mathematical concepts is a 
continuing effort made by mathematicians. As one of students Li indicated: 

The progress of calculus was quite complicated and sophisticated. Fermat’s method of tangent 
and Archimedes’ use of concentric circles were amazing! But one thing for sure is the ultimate 
result was generated by means of mathematicians’ enduring efforts. 

Another student Chen professed: 

When I see so may mathematicians’ approaches, I cannot but marvel that the Fundamental 
Theorem of Calculus we learn today was obtained through so many mathematicians’ 
hands…No wonder Newton said: ‘If I have seen farther, it is by standing on the shoulders of 
giants’! 

Further, many students regarded the growth of mathematical knowledge as a relay race, as 
manifested in Shao’s description: 

Calculus must be developed from geometry, I guess. Beginning with Archimedes’ approach of 
deriving the area of a circle by means of the area of a triangle, then Torricelli, Fermat 
(connecting tangent slope and area), until Barrow, Newton, and Leibniz’s insight into the 
problem, calculus seemingly experienced multifarious features and manners. The process was a 
little bumpy. However, after a series of relay races, proof of the Fundamental of Calculus was 
finally given. 

Aforementioned statements suggest students may achieve an appropriate understanding about the 
role human beings play in the making of mathematics. 

Formation of mathematical knowledge is a long-term accumulation process 
Besides recognizing mathematicians’ role, some students even understood that ongoing incubation 
is unavoidable for the growth of mathematical knowledge, as seen in Gerng’s response: 

I can only say it (the progress of mathematics) is a snaky way. Dating from Archimedes’ likely 
discovery to Cauchy’s proof, it took thousands of years. Some were one step away from the 
discovery, and some proposed result without giving proof…These concepts might not be 
immediately understood by mathematicians at the time. Therefore, to some degree, long-term 
development is necessary. 

Student Lin displayed a sophisticated view that development of mathematics is an endless course: 

The developmental process of calculus is like a puzzle, accumulated slowly. Starting from the 
area deriving by using infinity and limit, then discovering the relationship between 
differentiation and integration, until a rigorous proof emerged. Almost all mathematical 
methods reveal that the progress of mathematics is a procedure of the heir of ancient sages and 
initiation of posterity, a never-ending puzzle [italics added]. 

The phrase “a never-ending puzzle” to a great extent appropriately depicts the dynamic image of 
the formation of mathematical knowledge. 
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Discovery may not necessarily lead to verification. 
Students’ responses also showed they might have realized the establishment of mathematical facts 
may not be trouble-free at mathematicians’ hands and recognizing a concept guarantees nothing 
about its validity. As Huang indicated: 

Throughout the whole development of the Fundamental Theorem of Calculus, it can be seen 
that some had unconsciously found the law; some studied again the same topic, motivated by 
others’ fresh insight. Even the discoverer may fail to prove the result. 

A student, Wu, cited failure to give proof as attributable to personal blind spots, while Chiou 
proposed a probable answer to this issue: 

Several mathematicians could nearly become the creator of calculus. Unfortunately, some 
important details were missing. I guess they probably focused on some other problems then and 
merely treated it as a problem-solving tool [italics added]. Thus a concrete organized study was 
lacking. 

We are too often eager to probe facts hidden behind appearances. Chiou’s response alerts us that 
historical study should not impose our own stories on the evidence of the past.  

Newton and Leibniz made the most significant contributions. 
While students’ opinions on the mathematician with the most crucial contribution to the 
Fundamental Theorem of Calculus were varied, a clear image emerged (12 of the 36 students) 
crediting Newton and Leibniz, as seen in Liao’s claim:  

Newton and Leibniz made the most noteworthy contribution, since they identified the mutually 
inverse relationship between differentiation and integration, which was hard to discover. 
Barrow and Archimedes almost found it but failed to explicitly propose it… Cauchy gave the 
proof, but he couldn’t make it without Newton’s work. 

Lin praised Newton and Leibniz’s achievement by saying: 

The situation at that time could be described as all is ready but a timely kick. It was they who 
made that critical shot, revealing all mysteries. But nobody identified this point before them. 
Hence I think they made the major contribution. 

Moreover, a large portion of students (10 of the 36) considered the accomplishment should be 
accorded to Fermat. Chen claimed that,  

In many aspects, Fermat’s approaches were so similar to modern ones. Though he did not point 
out explicitly, a rudiment was formed, paving the way for Newton and Leibniz. Calculus 
couldn’t be discovered so early without him. 

Students’ replies highlight a view that enlightened ideas are the most valuable in generating 
mathematical knowledge. Verification of knowledge, which professional mathematicians 
frequently stress, was seemingly almost ignored. 

4 Conclusion 

Stressing humanistic value in the making of mathematics is a central theme of this article. As 
taught in traditional curriculum, emphasizing literacy of computational skills and its utility in the 
real world, mathematics has long lost its human face. Reviewing history of mathematics would 
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yield a clear image of mathematical knowledge as motivated either by environmental stress 
(sociocultural factors) or hereditary stress (mathematicians’ intellectual curiosity across 
generations). Both stresses coincidentally indicate the indispensable role of humans at different 
places and in various times. Besides imparting skills, education is an important means for 
transmitting human culture and values across generations, which have often been less focused, 
even totally skipped, in our educational systems. For eliciting students’ interest of learning 
mathematics, teachers tend to emphasize the utility of mathematics, yet hide from their students 
the excitement and intrinsic spirit of the discipline as a result. A humanistic approach thus has 
been suggested to remedy this sad situation (Tymoczko, 1993 Davis, 1993). 

Classroom activities introduced in this article convey a belief that mathematics is a discipline 
with a human perspective and history, putting it among the humanities. Thus to introduce students 
to humanistic mathematics is to show them human intellectual adventure in mathematics, 
challenging dogmatic teaching styles requiring them to follow lecture and practice recipe-like drill 
(Hersh, 1993). Mathematics is the creation of concepts and exploration in facts. Bronowski (1965) 
indicated: “Science is not a mechanism but a human progress, and not a set of findings but a search 
for them” (p. 63). It should be stressed that the search for the beautiful result of the Fundamental 
Theorem of Calculus not only is the great moments of mathematics but that of humanity. 
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Appendix 

Figure 7 

To calculate the length of curve y = f(x) over [0, t] (Figure 7), Neil subdivided the interval [0, t]
into an indefinitely large number n of infinitesimal subintervals, the ith one being [xi-1,xi]. Let si

denote length of the ith piece of the curve y = f(x) joining the corresponding points (xi-1, yi-1) and (xi,
yi) then 2/12
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for computing the value of s, Neil introduced a curve z = g(x) such that the area Ai over [0, xi] is  
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We can see that the proper choice of the auxiliary curve is )()( xfxg and the link between 
quadratures and tangents indeed was implicitly shown by Neil’s method. 
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ABSTRACT 
In this paper we describe the laboratories carried out with secondary students aimed to teach mathematic in 
a different way, especially by stressing the interdisciplinarity fostered by mathematics. 

The subject around which the laboratories were developed is the figure of Leonardo Da Vinci. We 
exploited the nature of his multifaceted genius to approach different subjects and their links with 
mathematics. 

1 Introduction 

Leonardo lives the creative moment of the passing to the modern science and constitutes the more 
mature expression of the symbiosis of art, techniques and science. 

His extraordinary autonomy, his omnivorous eclecticism, his anachronism, the restlessness of 
his research, are expressed in the full range and by the complexity of his investigation of nature. 
His way of expressing himself by aphorisms gives the impression of the incompleteness and of not 
exclusive character of knowledge. 

We chose Leonardo as exemplar figure of artist-scientist to try a different approach to didactics 
of mathematics. Many didactic activities are suggested by an even partial examination of his work; 
his search interests numerous territories of teaching and involves mathematics in many different 
fields. 

In particular, we organized twelve workshops, some of which referred specifically to 
mathematics, by exploiting the wealth of cues. 

Leonardo and Perspective Leonardo and the Adda River Leonardo and the sense of depth  
Leonardo and Anatomy Leonardo’s Errors The Writing of Leonardo 

Leonardo and Rebus Leonardo and Geographic Maps Leonardo and Philosophy 
Leonardo and Geology Leonardo and Mechanics Leonardo and Botanic  

Table 1. Workshops 

Students are guided in their activities by the analysis of Leonardo’s drawings in order that they 
could, indeed, take part to the construction of knowledge in a way full of curiosity and motivation. 
In this paper we briefly present the workshops that more explicitly interest mathematics. 
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2 The laboratories 

Homo vitruvianus  
Proportions constitute one of milestones of Leonardo’s scientific search. In particular, first 
anatomic studies are grounded on proportional schemas that were used to determine factors of 
weight and balance in human body. The Homo Vitruvianus (1490) is an example of the 
interrelation between arts and proportions; it illustrates the canon of human proportions that 
Vitruvio, the Roman architect of first century b. C., postulated as premise to his architectonic 
theory. The Vitruvio’s text that Leonardo transcribes in Italian translation, proposes to insert a 
human figure in a circle and then in a square. Leonardo avails himself of drawing as language: in 
order to produce a visual synthesis of vitruvian demonstration he simultaneously represents two 
different superposed, transparent images, suggesting the possibility of a motion from the one to the 
other. 

Class activities consisted in determining and comparing proportions. By executing bodily 
measures, students, instead of resorting to ordinary meter, constructed and made use of two 
instruments of the Renaissance, the Exempeda and the Normae; these were described by Leon 
Battista Alberti in De Statua (1454) and were by him conceived in the attempt to settle the ideal 
proportions by deriving them from human body. The assessment’s activity have interested the 
comparison of fractions; for example, students had to put in order some figures according to 
measures of two bodily parts, by referring to corresponding vitruvian ratio. 

Map of Imola 
In Leonardo’s times knowledge of European, Asian and African sites ones were almost 
completing; America was just discovered. Then the need of a new representation of the world 
began to be perceived: a representation that should translate reality according to rigorous measures 
and to more accurate ratios of scale. This translation started just by Leonardo. In particular, 
Leonardo constructed in 1502 the map of Imola, which marks the birth of modern urban map. Its 
setting involves probably two distinct operations: the measures of distances, of size of buildings, 
of length of streets, and the determination of radial angles. The last one is important in order to 
correctly represent reciprocal ratio among elements or to derive unknown measures from that 
already taken. If, for example, we are able to determine the orientation of three points and their 
distances from the point of observation, we can infer the proportion between their distances. 

The class’s activity consisted in the construction of a map of a room of the school by using the 
Leonardo’s technique: an articulated activity that needs linear and angular measures, the use of 
properties of triangles and proportions, as well as the correct determination of the succession of 
actions. 

2020
When Leonardo talks about mathematics, he refers to a group of sciences that are parts of natural 
philosophy. Mathematics is the foundation of his scientific research and of his interpretation of 
natural phenomena. But Leonardo possesses limited mathematical knowledge, as his many 
miscalculations demonstrate, like that made in reckoning 2020.

The class’s activity consisted, first of all, in locating the Leonardo’s error, then in calculating 
2020 by using the minor number of operations and, in the last, in comparing used procedures and in 
finding the less “heavy”; weight of a procedure is obtained by assigning a different weights to the 
four elementary operations and by summing up weights of the used operations. 
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This error seems due to a procedure founded on a form of induction of esthetic type. This form 
of induction is often used in history of mathematics; the most common example is, perhaps, the 
triangle of Tartaglia – Pascal. But it often brought to errors, as, for example, that made by Leibniz 
with the conjecture that nk-n, when k is odd, is divisible by k.  

As second type of activity, students develop some of these procedures by using an electronic 
sheet.

The perspective window 
In a juvenile sheet of the Atlantic Code, which contains studies of hydraulics, Leonardo represents 
a perspective window, an apparatus that is useful for mechanical reproduction of objects and 
persons: the represented young man is absorbed in drawing an armillary sphere on a screen. This 
apparatus was devised by Leon Battista Alberti and is based on the Alberti’s principle of “veil”, as 
plane of intersection with visual cone. In some texts about 1490, that were destined to the Trattato
della pittura, Leonardo describes two systems of perspective windows, that became famous by 
Dürer’s drawings thirty five years after: the one of “veil” or glass, on which the observed image is 
sketched in order to transfer in a sheet of paper; and the other of the grid, in which the glass is 
substituted by a grid, the same that the portraitist used to prepare the sheet of paper on which to 
report the features of the observed figure.  

In this workshop students prepare a perspective window similar to the one represented by 
Leonardo. By using it, students determine the law of inverse relation between dimension and 
distance, which rules linear perspective. 

Further Leonardo, as illustration of the Pacioli’s book De Divina Proportione, represents the 
tridimensionality of the regular solids and of the solids of Archimedes. While these forms were 
analyzed in abstract terms by ancient mathematicians, they possess, in Leonardo’s drawings, a 
likeness his contemporaries were unable to do. Students use the perspective window in order to 
make a realistic representation of some solids. 

3 Didactical considerations 

Function of History 
In the activities here presented history is used according to modalities we previously presented 
(Longoni, 1998): history works as a site in which thought (and then the consequent didactical 
activity) fronts real questions and difficulties. A particular meaning is acquired by the Leonardo’s 
language of drawing; the fact that students are guided in their activities by the analysis of 
Leonardo’s drawings contributes to create a wealthy environment in which curiosity and 
motivation could positively interact in the construction of knowledge. 

We now propose a different use of history in teaching mathematics and sciences. Leonardo 
offers further opportunities, because some aspects of his work agree with the exigency to think 
new circumstances that, owing to the change of the context, interest teaching of mathematics.  

Difficulties 
Until few years ago, teaching was grounded on two ideas: the utility of taught mathematics and the 
necessity to teach mathematisation (Freudenthal, 1968). These ideas have characterized the 
research on teaching mathematics in the last part of twentieth century and, above all, they found, 
as more convinced supporters, those teachers who had at heart the renewing of teaching in class. 
Today, yet, both the utility of taught mathematics and mathematisation must be debated. “The 
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Mathematics that really is useful in the daily life (of everyone) is actually little” (Dedò, 2001). 
Perhaps, the perspective of mathematics as important tool of social promotion for each citizen is 
vanished: didactics of mathematics was unable to find a suitable social role and mathematics itself 
risks to become, in the new society, a marginal instrument as regard to new technologies. 

As well as the utility of taught mathematics, the concept of mathematisation needs a change of 
mind too. “Mathematisation, as all intellectual activities that are set in the borderline of two 
domains, is difficult to organise and to describe…” (Krigoskawa, 1968). So teaching 
mathematisation revealed itself really difficult. Besides, known forms of scientific language that 
enabled physics science to have its spectacular theoretical progress, today appear poor in study of 
Nature and, in particular, of the complex systems; new challenges occur to Mathematics itself. 

The answers are of two types; they have deeply different social falls. The first one turns into an 
excluding specialisation: technology becomes the chief aim of research and mathematics is 
conceived, above all, as an instrument to this direction or as a by-product in this development.  

In this conception, didactics of mathematics divides between a mathematics that has no sense 
and produces apathy in students and a watered down mathematics that doesn’t produce knowledge.  

The second answer has the marks of uncertainty and of the perception of a crisis that are typical 
of moments of breakage. 

Leonardo 
The perception of difficulties of mathematisation and the need of new forms of it, demand to take 
a step backward towards the moment of its origin and to analyse its intrinsic historicity. 

Therefore we have chosen to dwell upon Leonardo da Vinci. 
As a man of the Renaissance, he lives the creative moment of the passing to modern science 

through the conjunction of theoretical knowledge, practical operating and aesthetic dimension that 
characterized workshops in Florence during the fifteenth Century. 

His research covers different fields and his originality cannot be brought back to a unitary 
principle. We believe that the activity of Leonardo, artist and scientist, could be characterized by 
the peculiarities that Sermonti (2003) finds in Dante, poet and scientist: extraordinary autonomy, 
omnivorous eclecticism, anachronism, an artistic language that is “scandalously” available to all 
adventures of knowledge. 

There is a particular aspect of Leonardo upon which we briefly dwell: the constitutive role that 
he gives to mathematics in the new science of nature (Kemp, 1982). Leonardo “acts in a 
mathematical way” when he ingeniously uses the expressive potentialities of traditional geometry, 
when he tries paths that only bring to the critics of traditional learning, when he feels the 
mathematical plot of the laws that are imposed to natural forms. 

His program to investigate nature in its innermost structures that better reveal a vital motion, in 
order to discover their rational and mathematical character, is essentially reduced to a failure 
(Marinoni, 1952). This failure is the cause of the fact that Leonardo can’t be considered a founder 
of modern science. 

But, according to Rossi (1982), just in cause of the fact that Leonardo is not a founder of 
modern science and that its knowing proceeds by aphorisms and gives the impression to be 
incomplete, a wider potentiality is in him; a potentiality in didactics of mathematics and sciences 
that we want to make explicit in three aspects: the extraordinary complexity of his investigation of 
nature, the language of drawing, the restlessness that characterises all his work. 

The Leonardo’s extreme attention to complexity of Nature and his contemporaneous demand to 
find forms that should be able to respect its multiform variety, join with the themes that now are 
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made topical by ecology and globalisation: science can not be reduced to a mere domination of 
nature.  

The language of drawing of Leonardo is available to all adventures of knowledge. It is a 
method to question nature in searching the reconstruction of its innermost processes. Not only it 
translates the visual perception and feeling of the artist, but also it becomes an effective instrument 
of scientific investigation and a form of creative knowledge. It contrasts the unique language that 
formalisation now has imposed to mathematics and that represents the death of mathematics for all 
people and its ghettoisation in a mathematics for few. So Leonardo appears as a paradigm of the 
need of researching new languages: new mathematisation gains perhaps its meaning in a new 
plurality of languages; plurality and wealth of languages that must characterize, first of all, 
teaching mathematics. 

In the last, Leonardo is a source of reflection about the nature of rationality; a reflection that 
finds the roots in restlessness that characterizes all his work. For example, after having 
represented, in the Last Supper, space in a harmonious geometric analysis that synthesizes 
knowledge of its time about the different forms of perspective, Leonardo begins to consider rough 
and surpassed the perspective of painters. Or, if first, in cause of his faith in “supreme certainty of 
mathematics”, he strives to study throughout the Elements of Euclid, under the guidance of 
Pacioli, later on he changes his attitude about geometry: the static geometry of Elements doesn’t 
interest more him and, by the investigation of transmutations, geometry begins to acquire an 
“interior” role that characterizes his drawings of the last period (Pedretti, 1992). This restlessness 
and the inexhaustible “ghiribizzi” (whims) (Vasari) that accompany it, reveal his perception of 
rationality: on the one hand the exigency of rationality expresses itself in the exigency of 
mathematisation; on the other hand his continuous “ghiribizzi” show his going beyond the 
possessed, rational schema. Rationality doesn’t mean only to proceed in accord with definite 
schemas; this form of rationality often reveals itself as shortsighted and presumptuous one; 
rationality means going beyond reason but not against it. 

Didactics of intention 
What type of didactics are we proposing? We believe to find approval by asserting that two 
aspects must characterize a teaching of mathematics: from the one side, it’s not possible to give up 
elements that unify different concepts. On the other side, it is necessary to make didactic proposals 
wealthy of stimuli and suggestions in order to create a proper environment in which curiosity and 
motivation could positively interact; thanks to this interaction it is possible to form those contents 
of knowledge that become reference marks for the “sense” of the constructed concepts. 

Usually the unifying element is recognized in the axiomatic structure.  
The search of stimuli and suggestions enjoys a general approval; however its application in 

practical didactics isn’t as much wide. So, at times, teaching of mathematics is reduced to an 
explanation of too much technical concepts, or is exhibited with an excessive rigour that fixes 
thought on not pertinent things, sometimes is reduced to a mere calculation; often routine 
transforms teaching in trite training. 

Our didactic proposal makes some suggestions that refer to aforesaid aspects of teaching. We 
like characterizing it with the expression “didactics of the intention”. The term “intention” is 
borrowed from Wheathley and has to be understood in its etymological meaning: the Greek word 
“éntasis” (effort, strain) was translated in Latin word “in-tentio”, and took also the figurative sense 
of “strain of understanding”, “to turn the mind to”, “to keep the mind on”. 

On the ground of this outlook, the basic unity is placed in an ethic sphere that gives foundation 
to the axiomatic unity itself. An ethic foundation could constitute the trail to which to come back 
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and on which to ground the new knowledge, to trace its unity and to unveiled new patterns of 
development.  

This ethic sphere has to refer to the historical origin of concepts, where they their deepest 
ground.  

On the other side the wealth of proposed activities aim at engaging students at utmost limit of 
their potentialities. So didactics, by referring to a unitary trail and by proposing a rich pattern of 
activities turn the mind of students to the essential elements. 

The game is the fundamental tool to reach this aim in elementary school (Bonetto e al., to 
appear). As grades become higher, the cultural matter acquires an always more important role. But 
it becomes meaningful only if is enough strong and attractive. 

According to this outlook, “Leonardo” could play a leading role at high degree. The approach 
of his thorough investigation of nature and his omnivorous eclecticism consent to attract the 
attention and to arouse the intelligence of the students and, at the same time, to perform a “fuga” 
towards the founding elements of mathematics. 

4 Conclusions

The tension of this didactics finds its ground in our approaching history. In the present moment, to 
refer to Leonardo implies a step backwards with regard to the moment of birth of our 
mathematisation and its consequent didactics. 

Leonardo with his various suggestions, some of which above said, invites us to leave the 
obviousness of our teaching. He offers us the opportunity to pick up some meanings that modern 
science leaves, perhaps, into the background. The plurality of languages, the deep rational feeling, 
the complexity of nature become our challenges.  

Our adventure isn’t the one of Leonardo. But to think historically our origin implies the 
possibility to look with open eyes at the present moment and to turn the mind (“in-tendere”) to 
more suitable ways of thinking and acting. 

In this way, teaching mathematics acquires a formative function of cultural type: from one side 
student, by practicing this discipline, obtains a more conscious way to inhabit the world and to live 
his own culture. On the other side, “teacher is forced to go beyond his comforting mathematical 
thinking” (Krigoskawa, 1968) and to call in question didactical contents and methodologies. 
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ABSTRACT 

The Jiuzhang Suanshu (also known as the Nine Chapters on the Mathematical Art) is a classic in 
the history of mathematics. This book consists of 246 problems in nine chapters, which describe 
engineering, surveying, trade and taxation problems in ancient China. The purpose of this paper is 
to study the area formulas described in this book, with focus on the principle used by Liu Hui to 
deduce such formulas and its inspirations to mathematics teaching nowadays. 

1 Introduction 

The Jiuzhang Suanshu [JZSS] or the Nine Chapters on the Mathematical Art is a classic in the 
history of mathematics. It was probably written no later than 100 BC and its influence to the 
development of mathematics in China can be comparable to that of Euclid’s Elements in pre-
modern Europe. The whole book consists of 246 problems in nine chapters, which describe 
engineering, surveying, trade and taxation problems in ancient China. Each problem begins with a 
question, followed by an answer and then a brief description of the method of solution. However, 
the latter is quite hard to decipher sometimes. Since Liu Hui wrote his commentary for JZSS in
about 263 AD, the situation became better. Liu was able to explain the calculations more clearly 
and justify the correctness of the formula involved whenever necessary. Table 1 shows a summary 
of the main contents of the JZSS. 

Chapter  Main contents No. of problems 
Land Surveying ( ) Fraction arithmetic; Euclidean algorithm and areas of 

geometric figures. 
38

Millet and Rice ( ) Proportion and percentages 46 

Distribution by Proportion
( )

Direct, inverse and compound proportions 20 

Short Width ( ) Finding the unknown length with given area or volume; 
Extraction of square roots or cube roots. 

24

Civil Engineering ( ) Volumes of solids 28 

Fair Distribution of Goods 
( )

Weighted, compound and continued proportions. 28 

Excess and Deficit ( ) Method of double false position 20 

Rectangular Arrays ( ) Simultaneous linear equations and the basic properties of 
positive and negative numbers. 

18

Right-angled Triangles ( ) Pythagoras Theorem and Quadratic Equations. 24 

Table 1: The main contents of JZSS

The titles of the chapters reflect very well the nature of the practical problems involved, as well as 
the mathematics achievements in ancient China. As what Martzloff (1997) said, “Indeed, at all 
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periods, countless works have been inspired by the classification of mathematics in nine chapters 
or have borrowed their vocabulary and their resolutory methods from the JZSS.” In fact, the JZSS
had been used as a mathematics textbook in ancient China for a very long period of time. 
Therefore, a thorough study of the JZSS not only helps us understand and appreciate the way how 
the ancient Chinese solve mathematics problems, but the commentary by Liu Hui can also provide 
insights to the teachers of mathematics. In this paper, we will describe the area formulas found in 
the JZSS, with focus on the derivations of such formulas using the so-called Out-In 
Complementary Principle ( ), as well as its inspirations to mathematics teaching 
nowadays. 

2 The area formulas found in the JZSS

As shown in Table 1, the problems appeared in the first chapter of the JZSS are mainly concerned 
with field measurements or land surveying. This chapter describes 4 area problems at the 
beginning, then 14 problems on addition, subtraction, multiplication or division of fractions 
(including how to simplify a fraction via the Euclidean algorithm), and then another 20 area 
problems at the end. The shapes of the fields ( ) described include square, rectangle, triangle, 
trapezium, circle, annulus, segment of a circle and segment of a sphere, as illustrated below. For 
reference purpose, we have included the names of the fields in Chinese and their English 
translations in brackets. 

(1) Area of a Square ( ; Square Field) 

2aS

(2) Area of a Rectangle ( ; Wide Field or Straight Field) 

abS

(3) Area of a Triangle ( ; Triangular Field) 

abS
2
1

255



(4) Area of a Trapezium ( ; Slanting Field or Dustpan-shaped Field) 

hbaS )(
2
1

(5) Area of a Circle ( ; Circular Field) 

22
DPS

Note: P, D denotes the perimeter and the diameter of the circle respectively.

(6) Area of a segment of a Circle ( ; Arc Field) 

(7) Area of a segment of a Sphere ( ; Domed Garden Field) 

Note: P, D denotes the perimeter of the circular base and the length of the segment of a great circle 
respectively. 

(8) Area of an Annulus ( ; Ring Field) 

dQPS )(
2
1

Note: d denotes the difference between the radii of the concentric circles and Q, P denotes the 
circumference of the inner and outer circle respectively. 

(
2
1 2VCVS

PDS
4
1
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As pointed out by Liu Hui, most of the area formulas mentioned in the JZSS are correct, except 
those for the segment of a circle or the segment of a sphere. In the next section, we will illustrate 
how Liu Hui justifies the correctness of such formulas, based on a simple and useful principle in 
geometry. 

3 The Out-In Complementary Principle  

Perhaps one major achievement in the development of geometry in ancient China is its high level 
of abstraction in formulating the Out-In Complementary Principle. This principle states that (1) the 
area of a planar figure remains the same when it is rigidly shifted to another position in the same 
plane; and (2) the total area remains the same when a planar figure is subdivided into several parts. 
Based on this principle, Liu Hui was able to derive or justify the area formulas mentioned in the 
JZSS, as shown in the self-explanatory diagrams below. 

(1) Derivation of the area formula of a triangle

(2) Derivation of the area formula of a right-angled trapezium  

(3) Derivation of the area formula of a general trapezium 
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(4) Derivation of the area formula of an annulus

(5) Derivation of the area formula of a circle 

To determine the area of the circle, the main idea is to approximate it by means of the area of an 
inscribed regular polygon. The difference between their areas will approach to zero as the number 
of sides of the regular polygon gradually increases. By applying the Out-In Complementary 
Principle, Liu Hui demonstrated that the regular polygon can be subdivided into small identical 
isosceles triangles and resembled into a rectangle with length and width equal to half of the 
circumference (P/2) and the radius of the circle (D/2), respectively, as illustrated in the above 
diagram. This method is known as the method of circle subdivision ( ) in the literature. 

4 Inspirations to mathematics teaching  

The JZSS served as a textbook not only in China but also in the neighboring countries and regions 
until western science was introduced from the Far East at around 1600 AD (Shen, Crossley, Lun, 
1999). Therefore, its influence has been both pedagogical and practical. In this section, we would 
like to discuss how the area problems in the JZSS and Liu Hui’s commentary could provide 
inspirations to mathematics teaching nowadays. Our discussions are summarized below: 

Origins of the area formulas: Almost all the problems in the JZSS are practical real-life 
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problems. The main theme of chapter one is concerned with field measurements, which 
reflects very well that agriculture was important in ancient China and finding the areas of 
different fields was indeed essential for the peasants and the landlords. As mathematics 
teachers, it would be meaningful to introduce these field measurement problems to their 
students and let them know that many area formulas used nowadays were actually originated 
from land surveying.  
Meaning reflected from the terminology: Each planar figure is called a “field” ( ) in the 
JZSS, It is a pictograph or hieroglyphics in Chinese, which looks like four small squares 
combined together. This word is more intuitive than the Chinese word “ ” commonly used 
in geometry now. From the educational perspectives, the introduction of this ancient 
terminology could help the students recall that finding the area is originated from counting 
the number of unit squares covered by the region concerned. Indeed, it is the method used to 
derive the area formulas for squares or rectangles in modern primary schools. 
Proof without words: The Out-In Complementary Principle was widely used by Liu Hui and 
the latter Chinese mathematicians to derive formulas in geometry. Even in the western 
tradition, one would appreciate very much how to prove the Pythagoras Theorem or 
summation formulas by cutting and resembling pieces of a geometric diagram. This is the so-
called “proof without words” approach. Similarly, asking students to perform paper cutting 
and resembling work to deduce certain area formulas by their own could be a very 
meaningful activity.  
Logical sequence of the proofs: Today, it is quite common to adopt the Out-In 
Complementary Principle to derive the area formulas in schools. The teaching sequence is 
usually like this: square and rectangle  parallelogram  triangle  trapezium  polygon 

 circle. On the other hand, the sequence of derivation of the area formulas by Liu Hui is 
like this: square and rectangle  triangle  trapezium  circle  ring. Although the area 
formula of parallelogram was not mentioned in the JZSS, the sequence adopted by Liu Hui is 
quite systematic and logical. It can serve as a supplement to the teaching sequence described 
in our modern textbooks. 
Inspirations from Liu Hui’s proofs: A thorough study of Liu Hui’s proofs can give us 
alternative ideas to derive the common area formulas. For instance, the area formula of a 
triangle is usually derived from the area formula of a parallelogram (as illustrated below) in 
our modern textbooks. However, Liu Hui’s approach is also very interesting and inspiring. 
Besides, the approach adopted by Liu Hui to derive the area formula of an annulus is quite 
creative and ingenious, which is suitable to introduce to our students. 

h

a
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5 Concluding remarks 

Nowadays, geometry that amounted to land surveying may not be perceived as geometry at all 
because the Euclid’s axiomatic approach is normally conceived. However, as pointed out by Jean-
Claude Martzloff (1997), “the commentaries by Liu Hui and his emulators on the JZSS contain 
highly elaborate reasoning and perfectly convincing proofs, even if they are not of the 
hypothetical-deductive type.” Therefore, it is more fair and justified to say that the JZSS is an 
invaluable mathematics textbook in ancient China, but also an interesting and useful reference for 
the mathematics teachers nowadays. 
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ABSTRACT 
In the article we offer the historical background of the well-known and still actual problem, the Minimum 
Spanning Tree Problem, first. We switch from the original formulation given by the Czech mathematician 
Otakar Bor vka to an up-to-date formulation based on the graph theory terminology and introduce basic 
methods solving this problem.  
This is followed by the illustration of how the Minimum Spanning Tree Problem can influence our approach 
to the explanation of some other famous graph problems taught in the frame of the subject Graph Theory. 
Especially, on the base of the Jarník’s solution of the Minimum Spanning Tree Problem, we describe 
Dijkstra’s method for finding the shortest path and both important searching methods, Depth-First-Search 
and Breadth-First-Search. 

1 Introduction 

The Theory of Graphs creates one field of the subject Discrete Mathematics taught at our faculty. 
Teaching about graphs and graph algorithms enables us to teach our students how to solve a lot of 
interesting practical tasks. Well-prepared students in the area of Graph Theory should be able to 
describe various practical situations with help of graphs, solve the given problem on the graph and 
“translate” the gained solution back to the initial situation.  

The seven bridges of Königsberg problem, solved by one of the leading mathematicians of the 
time, Leonard Euler, in 1736 is consider as the beginning of the Graph Theory. Also the 
problematic concerning labyrinth belongs to the very interesting and useful ancient part of the 
Graph Theory. But otherwise, there is one solution of the well-known problem found much later 
that enables us to give a very lucid approach to the mentioned problems, namely Jarník’s solution 
of the Minimum Spanning Tree Problem.  

Thus in spite of the historical origin we are used to going in a little opposite order when 
teaching the subject Graph Theory; starting with the famous Minimum Spanning Tree Problem
(MST Problem in short) and coming back to the Seven Bridges of Königsberg Problem.  

Remark: We devote our main attention to the MST Problem not only because it is a very 
interesting problem enabling more useful approaches to its solution and that often occurs as a 
subproblem in a solution of another problem, but also due to the fact that two excellent Czech 
mathematicians Otakar Bor vka and Vojt ch Jarník are involved in the genesis of solutions for this 
cornerstone combinatorial optimisation problem. 
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2 Some historical facts 

The MST Problem can be found implicitly in various contexts early in 20th century. However, the 
problem was formulated only in 1926 by Otakar Bor vka1. The problem was communicated to 
him by his friend Jind ich Saxel, an employee of the West_Moravian Powerplants. It was at the 
time of starting electrification of south and west Moravia region (a beautiful part of the Czech 
Republic) and Bor vka was asked for help in solving the problem. The challenge was how and 
through which places to design the connection of several tens of municipalities in the Moravia 
region so that the solution was as short and consequently as low-cost as possible. Bor vka not only 
correctly stated this problem but also solved it (see Bor vka’s papers 1926). There did not exist a 
suitable mathematical terminology in this area of mathematics at that time and thus the formulation 
and the proof of the correctness of the solution given in his article O jistém problému minimálním
(Bor vka 1926, On a certain minimum problem in English) was rather complicated. Otakar 
Bor vka formulated the problem in the following way: 

“Given a matrix of numbers r ( , = 1, 2, …n; n  2), all positive and pairwise different, 
with the exception of r =0, r =r .

From that matrix a set of nonzero and pairwise different numbers should be chosen such that 
1 for any p1, p2 mutually different natural numbers  n, it would be possible to choose a subset 

of the form  rp1c2, rc2c3, rc3c4, …, rcq-2cq-1, rcq-1p2

2 the sum of its elements would be smaller than the sum of elements of any other subset of 
nonzero and pairwise different numbers, satisfying the condition 1 .”

In the theory not based on graph terminology it was really not easy to perform a correct 
formulation and proof of the procedure of the solution using a precise definition of the groups of 
numbers satisfying the above mentioned conditions 1  and 2 . Thus it is no wonder that Otakar 
Bor vka solved and proved the problem in 16 pages (5 pages solution, 11 pages proof). 

However, he was convinced both about the importance of the work and about the essence of the 
algorithm. This is documented by the fact that he published simultaneously with paper O jistém 
problému minimálním a short note P ísp vek k ešení otázky ekonomické stavby elektrovodních sítí
(Bor vka 1926, A contribution to the solution of a problem of economic construction of power-
networks in English), where he introduced a lucid description of the algorithm by means of 
geometric example of 40 cities. His formulation of the problem is written in a nearly contemporary 
style there: 

 “There are n points given on the plane (in the space) whose mutual distances are different. The 
problem is to join them through the net in such a way that 

1. any two points are joined to each other directly or by the means of some other points, 
2. the total length of the net would be the smallest.” 

Vojt ch Jarník2, another Czech mathematician, quickly realized the novelty and importance of 
the problem after reading the Boruvka’s paper. However the solution seemed to him very 

                                                     
1 Otakar Bor vka (10.5.1899 – 22.7.1995) is an outstanding personality in the history of Czech and 

Slovak mathematics. After having finished his studies in Brno, he spent two years (1926 and 1929) in Paris 
and one year in Hamburg. Bor vka’s scientific work reflects the main streams of the developments of the 
20th century mathematics, in particular new methods in differential geometry, algebra, and differential 
equations (Frenet-Bor vka formulae). 

2 Vojt ch Jarník (22.12.1897 – 22.9.1970) was outstanding Czech mathematician. He studied 
mathematics and physics at the Charles University in Prague, then spent the years 1923 – 1925 and 1927 –
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complicated. He started to think about another solution and very soon wrote a letter to Otakar 
Bor vka where he gave much easier elegant method of creating demanded construction. 
Consequently he published it in the article O jistém problému minimálním (Jarník 1929, On a 
certain minimum problem in English) with the subtitle From the letter to Mr. Bor vka.

Both Czech mathematicians preceded their fellow mathematicians by a quarter of a century. 
The enormous interest in this problem, which is considered to be one of the best known 
optimisation problems, broke out with unusual vigour again after 1950 and that time was 
connected with the application of computers. It is important to mention that all three above-
mentioned articles were written in Czech, the Bor vka’s first paper has a six page German 
summary fortunately (see thereinafter).  

At that time Jarník’s method was discovered independently several times more. Let us mention 
at least R.C. Prim (Prim 1957) who, just as the others, wasn’t aware of Jarník’s solution. Prim’s 
solution is the same as Jarník’s solution but he included a more detailed implementation suitable 
for computer processing.  

The third solution of the problem different from the previous ones invented Joseph B. Kruskal
in 1956 in his work On the shortest spanning tree of a graph and the travelling salesman 
problem (Kruskal 1956). Kruskal had opportunity to read the German Bor vka’s summary. Let us 
quote a part from his reminiscence (Kruskal 1997): 

“It happened at Princeton, in old Fine Hall, just outside the tea-room. I don’t remember when, 
but it was probably a few months after June 1954.  

Someone handed me two pages of very flimsy paper stapled together. He told me it was 
floating around the math department. 

Two pages ware typewritten, carbon copy, and in German. They plunged right in to 
mathematics, and described a result about graphs, a subject which appealed to me. I didn’t 
understand it very well at first reading, just got the general idea. I never found out who did the 
typing or why. 

At the end, the document described itself as the German-language abstract of a 1926 paper 
by Otakar Bor vka.”

Both standard early references (Kruskal 1956, Prim 1957) mention Bor vka’s paper. However, 
this reference was later dismissed as the Bor vka algorithm was regarded as “unnecessarily 
complicated”. 

Also Kruskal’s algorithm has been discovered independently several times. The survey of the 
works devoted to the MST Problem until 1985 is given in the article by R. L. Graham a P. Hell: 
On the History of the Minimum Spanning Tree Problem (Graham & Hell 1985) and this historical 
paper is followed up in articles (Nešet il 1997, Nešet il & Milková & Nešet ilová 2001). Moreover 
the article Otakar Bor vka on Minimum Spanning Tree Problem (Nešet il & Milková & 
Nešet ilová 2001) presents the first English translation of both Bor vka’s papers. 

3 Minimum Spaning Tree Problem in present terminology 

In the contemporary terminology the MST Problem can be formulated as follows: 

                                                                                                                               
1929 in Göttingen. His main fields of research were number theory, real analysis and its foundation. In the 
thirties, Jarník became an international mathematician (Jarník’s Minkowski problem is being quoted till 
today). 
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Given a connected undirected graph G = (V, E) with n vertices, m edges and real weights 
assigned to its edges (i.e. w: E R). Find among all spanning trees of G a spanning tree T = (V, E’)
having minimum value w(T) = (w(e); e E’), so-called minimum spanning tree. 

The importance and popularity of the MST Problem steam from several reasons. The problem 
may be efficiently solved for large graphs by several algorithms. It has wide application. Methods 
for its solution have given important ideas of modern combinatorics and have played central role 
in the design of graph algorithms. 

Before we introduce at least the three classical methods together with one solution more and 
underline their mutual different basic ideas, we would like to refer that all so far known methods 
make use of the various combinations of the following two dual properties of trees (Nešet il & 
Milková & Nešet ilová 2001).  

Cut rule: The optimal solution T to MST Problem contains an edge with minimal weight in 
every cut.  

Circle rule: The edge of the circle C whose weight is larger than the weights of the remaining 
edges of C cannot belong to the optimal solution T.

Three classical solutions of the MST Problem 
When we explain the three classical solutions (Bor vka, Jarník, Kruskal) we use their descriptions 
as an edge-colouring process (Tarjan 1983).  

Let us suppose the same problem as above and in the Bor vka’s solution in addition let us 
presume w(e) w(e’) for e e’. (Remark: This condition does not restrict the universality of the 
problem; e.g. we can list all edges and in the case that two edges are equal weights the first on our 
list we consider as the bigger one.)  

Bor vka’s solution  
1. Initially all edges of the graph G are uncoloured and let each vertex be a (trivial) blue tree.  
2. Repeat the following colouring step until there is only one blue tree. 
Colouring step: For each blue tree T, select the minimum-weight uncoloured edge incident to T

(i.e. edge having one vertex in T and the other not). Colour all selected edges blue. 
3. Blue coloured edges form the unique minimum spanning tree. 
Remark: The distinct edge-weights guarantee that the Bor vka’s solution finishes by gaining 

the unique blue minimum spanning tree of G.
Jarník’s solution 
1. Initially all edges of the graph G are uncoloured. Let us choose any single vertex and 

suppose it to be a blue tree. 
2. At each of (n - 1) steps colour blue the minimum-weight uncoloured edge having one vertex 

in the blue tree and the other not. (In case, there are more such edges, choose any of them.) 
3. Blue coloured edges form a minimum spanning tree. 
Kruskal’s solution  
1. Initially all edges of the graph G are uncoloured. Let us order the edges in nondecreasing 

order by weight. Let each vertex be a trivial blue tree. 
2. At each of m steps decide about colouring exactly one edge if it is coloured by blue colour or 

not. The edges are examined in a sequence defined by above-mentioned ordering. Chosen edge is 
coloured blue if and only if it doesn’t form a circle with the other blue edges. 

3. Blue coloured edges form a minimum spanning tree. 
The basic difference between the three solutions can be characterized as follows:

In Bor vka’s solution at each step the union of all the blue trees being the nearest one another 
is performed.  
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Jarník’s solution at each of (n-1) steps spreads the only blue tree that contains the initial vertex 
by the nearest vertex.  

Kruskal’s solution connects the two nearest blue trees in one blue tree at each step in which one 
edge is coloured blue.  

Bor vka’s and Jarník’s solutions are based on the cut rule only. Kruskal’s algorithm combines 
both rules according the initial order of edges points out the blue one. There is the other elegant 
Kruskal’s solution concentrated on the circle rule.  

Kruskal’s dual solution 
1. Initially all edges of the graph G are uncoloured. Let us order the edges in nonincreasing 

order by weight. Let each vertex be a trivial blue tree. 
2. At each of m steps decide about colouring exactly one edge if it is coloured by red colour or 

not. The edges are examined in a sequence defined by above-mentioned ordering. Chosen edge is 
coloured red if and only if it belongs to a circle that does not have red coloured edge.  

3. Uncoloured edges form a minimum spanning tree of G.
Proofs of all above-mentioned solutions are detailed described e.g. in the Czech textbook (Milková 
2001). 

4 From MST Problem to others  

The creation of algorithms forms an inseparable part of the basic skills of our students whose 
specialisation is informatics. For them it is important to be able to think algorithmically, to 
develop logical thinking and to gain wider and deeper insight into the solution of the given 
problem.  

When explaining graph algorithms we put emphasis on mutual relations between individual 
algorithms. On the one hand there are more algorithms which can all be used for solving the same 
task while on the other hand using effective modifications of one algorithm we can obtain methods 
of solving various other tasks.  

When our students make sense of the basic concepts we start to speak about the MST Problem 
as has been shown above. Then on the base of Jarník’s solution we continue our lectures with 
descriptions of other algorithms. First of all we show the close relationship of Jarník’s method to 
Dijkstra’s algorithm for finding the shortest path. Illustrating the known searching algorithm, 
Breadth-First Search and Depth-First Search using Jarník’s method too, follows it.  

From Jarník to Dijkstra 
Let us have a connected undirected graph G = (V, E) with n vertices and real weights assigned 

to its edges (i.e. w: E R) again. Let us consider the weights w(e) as distances. Then Jarník’s 
algorithm solving MST Problem can be also illustrated as follows.  

1. Initially all edges of the graph G are uncoloured. Let us choose any single vertex a and 
suppose it to be a blue tree. By each vertex v is saved the actual information (f(v), u) describing the 
nearest distance f(v) between the vertex v and the blue tree from the vertex u, i.e. initially put 
the value (0, a) by the vertex a, the value (w({a, x}, a) by each neighbour x of the vertex a and the 
value ( , a) by the rest of vertices v.

(Note: In the case that v isn’t connected to the blue tree one can imagine f(v) as the biggest 
value as possible). 

2. At each of (n - 1) steps do the following commands: 
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choose a vertex z with the actual information (f(z), t) such that f(z) = min{f(v); v doesn’t 
belong to the blue tree}, 

colour blue the corresponding edge {t, z},
by each neighbour x of the vertex z change the value (f(x), u) to the value (w({z, x}), z) in 

the case that w({z, x}) < f(x).
3. Blue coloured (n–1) edges form a minimum spanning tree. 

In similar way we can illustrate the known Dijkstra’s algorithm for finding the shortest path from 
the given vertex a to the other vertices in a connected undirected graph with n vertices and non-
negative weights assigned to its edges. The only difference is that at each step of the algorithm we 
save by each vertex v the actual information describing the nearest distance between the vertex v
and the initial vertex a (instead the nearest distance between the vertex v and the blue tree from 
the vertex u as it is done above in Jarník’s approach). 

From Jarník to Breadth-First Search and Depth-First Search 
Let us imagine a connected undirected graph with all edges having the same weight (e.g. 

weight w(e) = 1 for each edge e) and let us trace the Jarník’s method for gaining the minimum 
spanning tree on this graph. One can see that at each step an arbitrary edge, having one vertex in 
the blue tree and the other not, is coloured blue. A consecutive adding of vertices one can 
understand as a consecutive searching of them.

To get either Breadth-First Search or Depth-First Search algorithm for consecutive searching of 
all vertices of the given connected undirected graph we simply modify Jarník’s method in the 
following way.  

Breadth-First Search: At each step we choose from the uncoloured edges, having one vertex 
in the blue tree and the other not, such an edge having the end-vertex being added to the blue tree 
as the first of all in blue tree lied end-vertices belonging to the mentioned uncoloured edges.  

Depth-First Search: At each step we choose from the uncoloured edges, having one vertex in 
the blue tree and the other not, such an edge having the end-vertex being added to the blue tree as 
the last of all in blue tree lied end-vertices belonging to the mentioned uncoloured edges.  

Remark: After introducing Breadth-First-Search and Deapth-First-Search we continue in 
similar way with explanation of methods solving practical problems on the base of these searching 
algorithms, finding the Euler trail as well. In this way we come back to the Seven Bridges of 
Königsberg Problem as was mentioned at the beginning of this paper.  

5 Conclusion 

In a lot of textbooks dealing with Graph Theory various known problems are usually solved 
without discussing any relationship between their solutions. However for students it is much easier 
to understand the problems and to remember the main idea of algorithms when they can see mutual 
relationships among described algorithms. They are able to go deeper into the given problems. 
Therefore we focus properly on teaching Graph Theory in contexts as it was outlined in the article. 
A historical view can help us very much in this approach. 
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ABSTRACT 
Many factors may deter a teacher from making use of history of mathematics in the classroom. Any 
enthusiastic promoter of HPM (History and Pedagogy of Mathematics) will ultimately have to confront 
these frustrating factors. Reflection on them turns out to be a healthy exercise, which helps one to hopefully 
do better or at least to gain a clearer conscience in the endeavour to integrate history of mathematics with 
the learning and teaching of mathematics. In this paper the author discusses some observation and thought 
which result from gathering views of in-service or prospective school teachers of mathematics on a list of 
fifteen factors that may lead a teacher not to make use of history of mathematics in the classroom. 

1 Introduction 

In an invited talk given at the working conference of the 10th ICMI Study (on the role of history 
of mathematics in mathematics education) held at Luminy in April of 1998 I offered a list of 
thirteen reasons why a school teacher hesitates to, or decides not to, make use of history of 
mathematics in classroom teaching. At the time I proposed such a list by playing the devil’s 
advocate. In the ensuing years the list was expanded into fifteen reasons, with an additional 
sixteenth reason suggested by mathematics educators rather than by school teachers. The expanded 
list has been used several times to collect views from in-service or prospective school teachers of 
mathematics. With the passing of time and after many more conversations with teachers in 
different schools I realize more and more that one should not merely stay in a frame of mind of the 
devil’s advocate, who is at heart a passionate convert to HPM (History and Pedagogy of 
Mathematics) and is therefore all ready for a counter-offensive when really challenged. Instead of 
harbouring a pre-conceived view one should join the company of school teachers and listen with 
an open mind to what they have to tell about their classroom experience.  

To phrase those sixteen reasons in a more dramatized manner I will turn each into either an 
exclamation or a question, as if it is uttered by the teacher herself or himself. Any enthusiastic 
promoter of HPM will ultimately have to confront these frustrating exclamations or questions. 
Reflection on them is a healthy exercise, which would help one to see clearer and to do better. At 
the very least, it would help one to gain a clearer conscience in the endeavour to integrate history 
of mathematics with the learning and teaching of mathematics. The foremost Chinese neo-
Confucianist of the 12th century, ZHU Xi (1130-1200), taught us (Zhu 1992, Book 11): “It is a 
common fault in us to be only skeptical of what others say but not of what we ourselves say. If we 
can learn to question ourselves as critically as we question others, then we will understand better 
whether we are right or wrong.” 

2 A list of sixteen unfavourable factors 

Here is the list that I make up. 
(1) “I have no time for it in class!” 
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(2) “This is not mathematics!” 
(3) “How can you set question on it in a test?” 
(4) “It can’t improve the student’s grade!” 
(5) “Students don’t like it!” 
(6) “Students regard it as history and they hate history class!” 
(7) “Students regard it just as boring as the subject mathematics itself!” 
(8) “Students do not have enough general knowledge on culture to appreciate it!” 
(9) “Progress in mathematics is to make difficult problems routine, so why bother to look back?” 
(10) “There is a lack of resource material on it!” 
(11) “There is a lack of teacher training in it!” 
(12) “I am not a professional historian of mathematics. How can I be sure of the accuracy of the 

exposition?”
(13) “What really happened can be rather tortuous. Telling it as it was can confuse rather than to 

enlighten!” 
(14) “Does it really help to read original texts, which is a very difficult task?” 
(15) “Is it liable to breed cultural chauvinism and parochial nationalism?” 
(16) “Is there any empirical evidence that students learn better when history of mathematics is 

made use of in the classroom?” 

3 An investigation on using history of mathematics in the  
    classroom 

Papers on the value and the role of history of mathematics in the learning and teaching of 
mathematics far outnumber those on the evaluation of the effectiveness of this claim. Readers are 
referred to (Fauvel & van Maanen, 2000, Furinghetti & Radford, 2002, Furinghetti, 2004) and the 
bibliographies contained therein for papers of the former category. Of the several such papers (not 
meant to be a comprehensive list of references in this aspect) of the latter category (Fraser & 
Koop, 1978, Gulikers & Blom, 2001, Lit & Siu & Wong, 2001, McBride & Rollins, 1977, 
Philippou & Christou, 1998) I will focus on only one (Lit & Siu & Wong 2001) simply because I 
am more familiar with it. 

The experiment described in (Lit, Siu & Wong, 2001) was carried out in November of 1997 for 
a span of three weeks, with three to four class sessions per week. The experimental group used 
some prepared material with a historical flavour (on the Pythagoras Theorem), while the control 
group went through the usual sequence of instruction without using those prepared material. 
Results reveal that the enthusiasm among students in the control group dropped during the 
instruction, whereas that in the experimental group rose slightly. As for scores in conventional 
tests, that of the experimental group were generally lower than that of the control group. On the 
surface these results lend weight to the disapproving remark that “with history of mathematics 
students feel happier but learn nothing”. More will be said on this point in the last section of this 
paper. For now I like to tell a bit more about the pilot study carried out in October of 1996, 
because it indicates a few points of interest. 

The pilot study was carried out in two parts. In the first part 360 teachers of mathematics from 
41 schools were polled, and 82% responded (45% are ‘novice teachers’ with less than five years of 
teaching experience, and 55% are ‘veteran teachers’ with five or more years of teaching 
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experience). They were asked to give (i) an index A of assessment of the value of history of 
mathematics, ranging from 1 (of no value) to 5 (of very high value), (ii) an index B of utilization 
of history of mathematics in their classrooms, again ranging from 1 (not use any) to 5 (use a lot). 
A break-down of the results is shown in Figures 1, 2, 3. 

Teachers who have taken 
a course on history of mathematics 

(19.2%) 

Teachers who have NOT taken 
a course on history of mathematics 

(80.8%) 
A 3.99 3.78 
B 1.64 1.44 

Figure 1 

Teachers who have read 
on history of mathematics 

(56.9%) 

Teachers who have NOT read 
on history of mathematics 

(43.1%) 
A 3.98 3.61 
B 1.62 1.29 

Figure 2 

Teachers who have read about the use of 
history of mathematics in teaching 

(25.0%) 

 Teachers who have NOT read about the use 
of history of mathematics in teaching 

(75.0%) 
A 4.07 3.73 
B 1.78 1.37 

Figure 3 

The conclusion to be drawn from these data is unmistakable. The value of history of mathematics 
is highly regarded by schoolteachers, but the degree of initiative on actually using history of 
mathematics in the classroom is very low! However, an encouraging note for HPM is that 
‘preaching the gospel’ significantly enhances both the awareness and the initiative to use history 
of mathematics in the classroom. (For those who feel uneasy about the word “use”, please bear 
with me. I will come back to this point at the end of this paper.) 

In the second part of the pilot study two classes (Form 2, equivalent to grade 8), each consisting 
of 42 students (about 13-years-old), were taught with the prepared material on Pythagoras 
Theorem. One ‘strong class’ consists of so-called ‘more able learners’ and the other ‘weak class’ 
consists of so-called ‘lower achievers’. I should caution readers that such a division was wholly 
based on examination results so that it cannot, in my opinion, reflect truly the interest and the 
ability of the students in a broader sense. A breakdown of the results is shown in Figure 4. 
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 ‘strong class’ ‘weak class’ 
Number of students who like the additional 

historical dimension in the teaching 
14 (4) 30 (25) 

Number of students who are indifferent to the 
additional historical dimension in the teaching 

16 (9) 1 (0) 

Number of students who dislike the additional 
historical dimension in the teaching 

12 (9) 11 (7) 

Number in parentheses = number of students who find the subject more interesting and more 
meaningful than before 

Figure 4 

Again, the conclusion to be drawn from these data is unmistakable. The “more able learners” in 
general dismiss history of mathematics as useless and time-wasting, while “lower achievers” in 
general are more drawn to it. This phenomenon speaks of a shortcoming (as I see it) of the current 
curriculum in school mathematics in Hong Kong. School pupils tend to pay their full attention to 
calculation techniques to the point of drilling for examination, thereby brushing aside long-term, 
in-depth comprehension. 

This pilot study prompted me to make up the list of fifteen reasons and to collect through it the 
views of teachers on integrating history of mathematics in classroom teaching. 

4 Views from schoolteachers 

The list had been used on several groups of in-service or prospective mathematics teachers. Item 
(16) is only used for discussion, and it requires no indication on disagreement/agreement. So far 
data have been gathered from 608 respondents. The results (% of teachers indicating disagreement/ 
agreement) are shown in Figure 5. A break-down of the results for groups of varying degree of 
teaching experience, though of interest in its own right, will not be presented here, as the main 
concern in this paper is an overall view. 

There is absolutely no pretence made that the data are collected and treated in a scientific way. 
Despite this disclaimer the data do serve to reflect the views of school teachers - how close or how 
far their views are from what is thought to be. Of the fifteen items, the following findings, gleaned 
from items (1), (8), (10), (11), (12), (14), are of no surprise but merit the most attention from an 
HPM standpoint. The next section will dwell on these findings, which are summarized below.  

 (1) 53% of teachers see the limited class time as a problem - “I know history of mathematics is 
good stuff, but I have no time for it since I already have so much to cover in class.” (2) 50% of 
teachers find it hard to locate resource material, and 78% of teachers find teacher training in the 
use of history of mathematics in learning and teaching lacking. (3) 50% of teachers find it difficult 
to study primary texts and 36% of teachers worry about passing on popular ‘myths’ for ‘real’ 
history - “Do we really know what had actually happened?” (4) 36% of teachers agree that 
students do not have sufficient background knowledge on culture in general to appreciate history 
of mathematics in particular. 
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Very much 
disagreed Disagreed No comment Agreed Very much 

agreed 
(1) 3.95 20.07  9.04 49.51 17.43 

(2) 45.06 42.43 7.57 3.13 1.81 

(3) 9.54 27.80 29.27 29.11 4.28 

(4) 5.60 35.36 29.11 25.00 4.93 

(5) 9.87 46.38 27.80 13.65 2.30 

(6) 8.88 44.24 28.46 17.11 1.31 

(7) 7.57 42.44 24.34 24.01 1.64 

(8) 5.59 28.95 19.24 39.31 6.91 

(9) 18.91 49.51 21.55 8.88 1.15 

(10) 4.61 20.73 10.19 45.56 18.91 

(11) 1.65 6.25 9.21 55.26 27.63 

(12) 4.11 31.25 24.67 33.22 6.75 

(13) 4.44 38.65 28.78 24.51 3.62 

(14) 1.97 17.76 32.08 41.94 6.25 

(15) 10.85 32.56 47.54 7.41 1.64 
Figure 5 

5 Three examples 

It would be useful to explain at the outset some general misinterpretations of the so-called ‘use of 
history of mathematics in the classroom’. It is not the mere mentioning of dates and names, nor the 
mere display of portraits of great mathematicians. It is not a separate discussion on history of 
mathematics per se either. None of the above is expendable, not the least bit useless, and history of 
mathematics is in itself a serious and worthwhile study. It is just that for our purpose we focus on 
another, albeit related, aspect. Realization of this point already helps to resolve most of the doubt 
or worry expressed in the sixteen exclamations or questions, in particular of that in item (1).  

As early as in 1919, a Mathematical Association (United Kingdom) Committee Report offered 
the following advice (Fauvel, 1991, p.3): “Every boy ought to know something of the more human 
and personal side of the subject he studies. … The history of mathematics will give us some help 
in framing our school syllabus. … [Recommendation:] That portraits of the great mathematicians 
should be hung in the mathematics classrooms, and that references to their lives and investigations 
should be frequently be made by the teacher in his lessons, some explanation being given of the 
effect of mathematical discoveries on the progress of civilization.” That much is good, but it is 
only a first step. 

In this connection we should heed the advice from Frederick Raphael Jevons (Jevons, 1969, 
p.165): “It reflects the fact that history of science can be just as dull, stale and unprofitable as any 
other subject. … The course that scampers through from the Greeks to Darwin, giving just the 
main events and dates, is of little more value to a student than learning the dates of the kings of 
England.” (Jevons is referring to the teaching of science, but it is as well that we replace the word 
“science” by “mathematics”.) He also said (Jevons, 1969, p.42): “Any history is not necessarily 
better than none. … Rarely based on first-hand historical study, they sometimes amount merely to 
the dropping of a few illustrious names; or they may take the form of anecdotes chosen  all too 
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often  more for romantic appeal than for accuracy. Such gestures tend to be ignored by 
beginners and to irritate those who know.” 

The second passage by Jevons touched upon the worry expressed in item (12). My initial 
response to this worry can be found in (Siu, 1997/2000, p.4): “When we make use of anecdotes we 
usually brush aside the problem of authenticity. It may be strange to watch mathematicians, who at 
other times pride themselves upon their insistence on preciseness, repeat without hesitation 
apocryphal anecdotes without bothering one bit about their authenticity. However, if we realize 
that these are to be regarded as anecdotes rather than as history, and if we pay more attention to 
their value as a catalyst, then it presents no more problem than when we make use of a heuristic 
argument to explain a theorem. Besides, though many anecdotes have been embroidered over the 
years, many of them are based on some kind of real occurrence. Of course, an ideal situation is an 
authentic as well as amusing or instructive anecdote. Failing that we still find it helpful to have a 
good anecdote which carries a message.” In (Siu, 1997/2000, p.4) I give two of my favourite 
examples on anecdotes that are actually used in the classroom. 

A more serious problem comes up when we are to deal with the development of a mathematical 
idea. This is related to items (9), (12), (13) and (14). In this respect I am greatly further inspired by 
a recent paper by Ivor Grattan-Guinness (Grattan-Guinness, 2004). Let me illustrate my 
interpretation with three examples. 

(1) The first example is on the concept of a function. A ‘trick’ I learnt from John Mason is to 
pose the following questions (in that sequel) to my calculus class: (i) Draw the graph of a function, 
(ii) draw the graph of a continuous function, (iii) draw the graph of a differentiable function. In 
between I would interject after (ii) Question (ii’): Does your example for (i) already answer (ii)? 
After (iii) I would interject Question (iii’): Does your example for (ii) already answer (iii)? With 
very high probability what a student draws for (i) would already be an example for both (ii) and 
(iii)! It serves to remind us that the more subtle properties of a function are in a sense rather 
unnatural. Real comprehension of the more subtle properties of a function is acquired only when 
some difficulties arise and one has to face them.  

History of mathematics provides good guidelines, even though I am not suggesting that 
students are to plough through every step mathematicians in the past several hundred years went 
through. The history of development of the notion of a function can play a role in pedagogy like 
what Gaston Bachelard says (Bachelard, 1938, Chapter 2, Section II): “What distinguishes 
between the trade of the epistemologist and the historian of science is the following: the historian 
of science should take the idea as facts; the epistemologists should take the facts as well as the 
ideas and place them in a full system of thoughts. A fact poorly interpreted during an epoch 
remains a fact for the historian. For the epistemologist, it is an obstacle, a counter-thought.” A 
more detailed discussion on the teaching of function with a historical dimension is carried out in 
(Siu, 1995a). 

(2) The second example is on problem solving. In class I like to borrow the wisdom of 
Leonhard Euler in solving the problem of the seven bridges of Königsberg. We can learn a lot 
from reading the primary text, the memoir Solutio problematis ad geometriam situs pertinentis by 
Euler, presented to the St. Petersburg Academy on August 26, 1735. It is interesting and 
instructive to compare Euler’s original solution with the one now commonly presented in most 
standard textbooks on graph theory. A more detailed discussion on this example is carried out in 
(Siu, 1995b). 
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It would certainly take more time to go through the topic on Eulerian graph in this way, but the 
time is well spent. Besides learning the result on Eulerian graph we see how the notion of degree 
(of a vertex in a graph) arose and evolved into the form we learn today from any standard 
textbook. With hindsight, the proof of the result on Eulerian graph in a modern textbook appears 
much simpler, much neater and is complete. But what the first solution by Euler lacks in 
completeness and polish, it makes up for in clarity and wealth of ideas. Furthermore, in this case it 
is quite a pleasure to read the primary text, an English translation of which can be located in many 
places, for instance (Biggs, Lloyd & Wilson, 1976, pp.1-8). 

(3) The third example is on the area of a circle. Every primary school pupil knows that the 
area of a circle of radius R is R2, where  is the ratio of the circumference of a circle to its 
diameter. An inquisitive child may wish to know why this so  it is quite plausible that the 
circumference is a constant multiple (call it ) of its diameter as a circle gets ‘proportionately 
large’ with ‘increasing width’, but how does this same proportionality constant somehow slip into 
the formula for the area? From history of mathematics we can obtain many heuristic arguments 
(which can be patched up as valid mathematical arguments through the notion of a limit), such as 
the calculations by Archimedes in Measurement of a Circle of the 3rd century B.C. (Calinger, 
1982/1995, Section 35) (see Figure 6), by Liu Hui in Commentary on Jiuzhang Suanshu of the 3rd 
century (Crossley, Lun & Shen, 1999, Chapter 1) (see Figure 7), or by Abraham bar Hiyya ha-
Nasi in Treatise on Mensuration of the 12th century (Grattan-Guinness, 1997, Chapter 3, Section 
9) (see Figure 8).  

Figure 6 

Figure 7 

Figure 8 

They all arrived at the formula (in today’s language) CRA
2
1 , which is equivalent to A = R2.
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The work as recorded in those books is history.  

The formula CRA
2
1  is in one respect better then A = R2, because it reveals a very 

fundamental and important fact, namely, the 2-dimensional attribute of area is closely related to   
the 1-dimensional attribute of circumference. More generally, it relates the area of a closed and 
bounded region to some quantity on its boundary. It reminds us of the beautiful relationship 
known as the Fundamental Theorem of Calculus. Indeed, the generalized version of the 
Fundamental Theorem of Calculus, known as Stokes’ Theorem, becomes Green’s Theorem when 
applied on the plane. It says that under suitable condition the line integral 

C

qdypdx  on a simple 

closed curve C is equal to the double integral dxdy
y
p

x
q

A
 over the region A bounded by C.

Letting C be the circle given by 222 Ryx , and setting ,yp ,xq we obtain the formula 

C CC
CRdRd

R
x

R
yxydxydyxA

2
1

2
,),(

2
1

2
1  (see Figure 9). This kind of 

discussion is heritage. 

Figure 9 

In (Grattan-Guinness, 2004, p. 1) Ivor Grattan-Guinness says that “both history and heritage are 
legitimate ways of handling the mathematics of the past; but muddling the two together, or 
asserting that one is subordinate to the other, is not.” He concludes that (Grattan-Guinness, 2004, 
p. 10) “the history of mathematics differs fundamentally from heritage studies in the use of 
mathematics of the past, and that both are beneficial in mathematics education when informed by 
the mathematics of the past.” 

As far as resource material for use in the classroom is concerned, more and more have become 
available. Besides those suggested in the bibliographies of (Fauvel & Van Maanen, 2000, Siu, 
1997/2000) a most recent item is a CD version of modules on different topics (Katz & 
Michalowicz, 2005). 

6 Conclusion 

It would not do HPM justice if nothing is said about item (16). Unfortunately, evidence on this 
aspect, which some regard as the touchstone of making use of history of mathematics, is sparse 
and not always positive. Of the few investigations that I have read about, most indicate a positive 
result on the affective side rather than on the cognitive side. In classes where history of 
mathematics is made use of, students like the subject more, but they do not necessarily perform 
better in the tests. One can argue that this may be an indication of a gap between what is taught 
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and learnt and what is being assessed. But still, one cannot deny the possibility that students do not 
learn better with the addition of a historical dimension. 

Even if students like the subject more and do better in tests when history of mathematics is 
made use of, it is not clear whether it is history of mathematics, which brings forth the change, or 
whether it is the enthusiasm of the teacher, which brings forth the change. One comforting sign is 
that there seems to be a high correlation between teachers with enthusiasm and teachers who are 
interested in making use of history of mathematics in class. I do not have any scientific data to 
back up this claim on such a correlation, only anecdotal evidence through talking with many 
schoolteachers. However, if education is really a learner-teacher-dependent endeavour, then 
anecdotal accounts can be as useful as, or even more than, large-scale statistical data. 

More basically, does it really matter so much - it surely matters, but does it matters so much? - 
whether students are performing better in an assessment on some specific topics? It is difficult to 
measure the effectiveness of history of mathematics as a tool in teaching mathematics. High score 
in a test is neither a necessary nor sufficient condition for its effectiveness. Certain effects are 
long-term in shaping the growth as a person. It is difficult to assess, and there is no need to assess, 
the growth as a person. 

 “Using history of mathematics in the classroom does not necessarily make students obtain 
higher scores in the subject overnight, but it can make learning mathematics a meaningful and 
lively experience, so that (hopefully) learning will come easier and will go deeper. The awareness 
of this evolutionary aspect of mathematics can make a teacher more patient, less dogmatic, more 
humane, less pedantic. It will urge a teacher to become more reflective, more eager to learn and to 
teach with an intellectual commitment.” (Siu, 1997/2000, p. 8) 

 “As a final remark, we would like to point out that, despite its importance, history of 
mathematics is not to be regarded as a panacea to all pedagogical issues in mathematics education, 
just as mathematics, though important, is not the only subject worth studying. It is the harmony of 
mathematics with other intellectual and cultural pursuits that makes the subject even more worth 
studying. In this wider context, history of mathematics has yet a more important role to play in 
providing a fuller education of a person.” (Siu & Tzanakis, 2004, p.ix) 

Getting back to the question in the title - “No, I don’t use history of mathematics in my class. 
Why?” - I can now answer: “No, I don’t use history of mathematics in my class. I let it permeate
my class.” 
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ABSTRACT 
The TIMSS 1999 Video Study included up to 100 lessons from each of seven countries. In this article we 
look at the connections to history of mathematics in the lessons included in the study. It seems that history 
of mathematics does not constitute an important part of teaching in these seven countries. Few lessons 
include history of mathematics, the history of mathematics is often lectured, and the information included is 
often biographical information of little connection to the mathematics taught. However, we also show 
examples that break this pattern. 

1 Introduction 

The TIMSS 1999 Video Study of 8th grade mathematics classrooms included up to 100 lessons 
from each of seven countries: Australia, Czech Republic, Hong Kong SAR, Japan, Netherlands, 
Switzerland and United States. The first results from this study were published March 2003 in the 
report Teaching Mathematics in Seven Countries by NCES (2003). The study was conducted at 
LessonLab, Santa Monica, California, directed by James Hiebert, Ronald Gallimore and James W. 
Stigler. In this article we look at the connections to the history of mathematics in these lessons1.

The Norwegian context 
In 1997, history of mathematics was included in the national curriculum for 1st to 10th grade in 
Norway. A study of Norwegian textbooks (Smestad, 2002) showed that the treatment of history of 
mathematics was problematic, and that textbook writers struggled to include history of 
mathematics in a meaningful way. A small classroom study (reported in Alseth et al (2003)) 
suggested that history of mathematics does not play an important role in Norwegian classrooms 
either. In this connection, it was interesting to look at the TIMSS Video Study material to see how 
history of mathematics was treated in other countries. 

Method 
All the 638 lessons were transcribed and coded by the team at LessonLab. One of the code items 
used was “historical background”, defined in the Math Coding Manual (page 58) as  

The teacher and/or the students connect mathematical content to its historical background (e.g. 
Pythagoras as the originator of a mathematical theorem). 

We were given the opportunity to watch all the videos where this code item applied, and also 
transcripts of the relevant passages. Our analysis afterwards has been based on these transcripts. 

                                                     
1 Thanks are due to LessonLab,  in particular Angel Chui and Rossella Santagata, for their kind 

assistance during our study of these videos, and James W. Stigler, for comments on a draft of this article. I 
also wish to thank Otto B. Bekken, who made this visit possible, who took part in the viewing and analysis 
of the videos, and who has also commented on drafts of this article. This study was conducted in April 2003 
while we were in residence at UCLA and LessonLab as members of the TIMSS 1999 Video Study of 
Mathematics in Seven Countries. 
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While the Video Study is designed to show differences and similarities between countries, the 
material is too small to say anything about that when it comes to historical background (as it is too 
infrequent to give statistical significance). We will therefore refrain from discussing particular 
countries, and instead we view the material as one sample. 

2 Analysis 
Quantity 

The first question to ask is to what degree history of mathematics was included in the lessons. The 
analysis shows that history of mathematics does not play a major part in these lessons. Only about 
3 % of the lessons (21 of 638 lessons) included some reference to the history of mathematics at all. 
The parts devoted to history of mathematics have a total duration of about 69 minutes.2 If we 
exclude the two longest, the remaining 19 lessons only include a total of about 18 minutes of 
“historical background”. 

There are nine instances where Pythagoras is discussed, three with Thales, two with the 
(ancient Egyptian) method of making right angles with a rope with 13 knots, two mention 
pyramids, and the following subjects are mentioned in one instance each: Euler, Goldbach, Plato, 
Euclid, Descartes, Venn, Henri Perigal, Leonardo, James Garfield, Tower of Hanoi, beautiful 
rectangles, Egyptian multiplication, Canadian multiplication, and .

In the analysis below, we have also included some instances found in the videos from U.S. 
classrooms collected for the TIMSS 1996 Video Study (Old TIMSS). 

On the theorem of Pythagoras 
About half of the examples concern the theorem of Pythagoras. It therefore seems fitting to use 
these examples to show how historical themes are used in the mathematics lessons. 

One example is extreme: it lasts for most of a lesson (43 and a half minute), and thereby 
contributes almost two thirds of all the time devoted to history of mathematics in this material. The 
lesson is a traditional lecture, with the teacher speaking most of the time (and using Power Point), 
giving three historical proofs of Pythagoras’ theorem (attributed to Henri Perigal, Leonardo da 
Vinci and James Garfield). The teacher also adds some more historical information at the end. It is 
impossible to say whether this teacher often included history of mathematics in this way. 
However, the example does show that teachers from time to time give more comprehensive 
accounts than the other examples in this sample suggest.3

On the other extreme there are four examples where only the name of Pythagoras is mentioned, 
for instance: 

Remember what I told you, that the Pythagorean theorem for the first time was created by 
Pythagoras, but that it had been used a long time before that.  

                                                     
2 There is one very lengthy example in this material, where almost the entire lesson was used for the 

history of the theorem of Pythagoras. Since it is impossible to say with any accuracy how frequent such 
lessons are, any estimate for the average time spent on history of mathematics in mathematics lessons in 
general will also be inaccurate (that is, any confidence interval based on this material will be quite large). 

3 The teachers were asked to teach as usual and to carry out the lesson they would have taught had the 
video camera not been present. Most teachers considered their lesson to be typical of their teaching, NCES 
(2003) p. 7 and p. 34. This particular teacher’s answers suggest that this lesson was fairly typical of his 
teaching, but he was not asked whether the amount of history of mathematics included was typical. 
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and 

This relationship comes from a Greek mathematician. (…) We call him Pythagoras. His full 
name we have forgotten. It is called Pythagoras’ Theorem. 

In between these extremes, there are four examples giving some pieces of biographical 
information, and there are two more examples giving some information on the mathematics of 
Pythagoras as well4; his is an example:  

Why is this called Pythagoras’ theorem? Since there was a person whose last name is 
Pythagoras, and he invented this. That person is called Pythagoras, and it was about 540 B. C. 

In the two examples where the mathematics of Pythagoras is also mentioned, the students are told 
that Pythagoras used numbers “to explain why things happen in nature”, “came up with some rules 
that stated that music is related to mathematics”, and that he “worked on magic numbers”. 

The examples not regarding Pythagoras follow a similar pattern: there is one long sequence on 
Euler (about 12 minutes long), one small occurrence where both mathematics and biographical 
information is included, three instances where only the name and some biographical information is 
given, and four examples of only the name of a mathematician being given. 

What we see from this part of the analysis is that with only few exceptions, what is mentioned 
about the history of mathematics is anecdotal: giving only names and some biographical 
information. 

Different kinds of mathematical knowledge 
To analyze the contents of the historical connections, I use a division of knowledge into five 
categories: facts, skills/concepts, strategies, attitudes, and others. For instance, giving information 
on Pythagoras may help students remember the name of the theorem – this name belongs to the 
mathematical facts. It may also influence the students’ attitudes. On the other hand, working on 
alternative algorithms may increase the students’ understanding of their own algorithm, and 
thereby increasing their mathematical skills.5

Facts 
We have already indicated how Pythagoras is treated in the lessons. There are three lessons in 
which Thales is mentioned in much the same way (in connection with the theorem of Thales), 
while Venn and Plato are mentioned in one instance each (in connection with Venn diagrams and 
Platonic solids, respectively). There is also one example where the definition of Cartesian 
coordinates is introduced with a mythical story about Descartes in bed watching a fly on the 
ceiling and thinking about how to describe its movements. In all of these, the historical 
information may help students remember the names of mathematical objects. In addition, the 
anecdote on Descartes may help students remember the definition. 

Giving historical proofs of Pythagoras’ theorem, on the other hand, may help students 
understand the content of the theorem (and not just its name). This is the only example in the 
material where historical proofs are given. 

                                                     
4 Because I have included the U.S. videos from ”Old TIMSS” in this analysis, the number of examples 

does not add up to nine, which is the number of examples related to Pythagoras in TIMSS 1999 Video 
Study. 

5 A subdivision of these five categories is found in Smestad (2003). 
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Skills/concepts 
History of mathematics may show students a multitude of algorithms, and thereby making it 
possible to see their own algorithm in a new light. There is only one example of this in the 
material, where the students are working on what is often called Egyptian multiplication: 
multiplication by successive doubling.  

History of mathematics may also show the students how different concepts have developed 
(and even show the connection between concepts). The anecdote on Descartes and the fly may be 
put under this heading – although the anecdote lacks a factual basis. 

Strategies 
Strategies for solving mathematical problems are not discussed in connection with history of 
mathematics. 

Attitudes 
It seems that history of mathematics is far more frequently used to improve the students’ attitudes 
towards mathematics than to improve their skills.6 The TIMSS material also suggests this. 

One way of influencing students’ attitudes towards mathematics, is to explain the role of 
mathematics in society. This can of course be done by focusing on the situation today, but it can 
also be done with reference to the history of mathematics. There are only two examples of this in 
the material, and they regard magic numbers and art. The role of mathematics in the development 
of technology, for instance, is not touched.7

History of mathematics is also a treasure trove when it comes to showing that difficulties are a 
natural part of any development. Discussing the difficulties of intelligent mathematicians may be a 
good alternative to focusing on the students’ difficulties (and the difficulties are often similar!) In 
this material there is only one example with any connection to this: a statement that the value of 
has been a problem for mathematicians from ancient times. 

Working on history of mathematics will almost automatically make students aware that 
mathematics is the result of the work of generations – except if the history is presented in a way 
that makes students feel that mathematics has not changed at all for the last two thousand years. Be 
it the development of Cartesian coordinates or Euler’s work on polyhedra, students will get a 
glimpse of mathematics in development. Most of the examples in the material work in this regard. 

History of mathematics may also provide glimpses from the lives of mathematicians, and 
thereby making the subject more interesting. If the students get an understanding of the motivation 
behind some work on mathematics, that is even better. There is at least one good example of 
giving a human touch, when one teacher tells about Euler and his blindness. Most of the examples, 
however, seem to be the “standard” pieces of biographical information (place and date of birth, 
date of death and so on), which are probably not very illuminating for the students. Moreover, the 
motivations of the mathematicians are never discussed. 

Others 
Including history of mathematics in the mathematics teaching may also give other benefits. For 
instance, it may provide opportunities for writing essays and using different kinds of source 

                                                     
6 In Smestad (2002), Norwegian textbooks for elementary school are analyzed. The analysis showed that 

a lot of what was written on history of mathematics might influence the pupils’ attitudes, and that history of 
mathematics seldom was used to give insight into the facts, skills, concepts and strategies directly. 

7 NCES (2003) figure 5.1 shows that problems with real-life connections are not uncommon, but further 
analysis is needed to say if the problems given are suited to improve students’ attitude towards mathematics. 
Anyway, they are not connected to the history of mathematics, which is the subject of this paper. 
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materials. There is only one example of this kind alluded to in our material, where the students 
apparently have written a paper on one mathematician each. History of mathematics may also 
provide opportunities for cross-curricular work, but there are no examples of this in the material. It 
may be the case that teachers avoided this because the video taped lessons were supposed to be 
mathematics lessons. It is difficult to draw any conclusion from this. 

History of mathematics may also increase the respect of other cultures (including 
contemporary, foreign cultures). Egypt’s pyramids are mentioned (but only in passing), Egyptian 
multiplication is also worked on. One teacher says about the Pythagorean theorem that 

Now, this was long ago which means that the math that we’re doing today is still as important 
as it was five hundred years before the birth of Christ. So this shows you that this kind of thing 
that we’re doing has been around a long time, and it still remains important. It also shows you a 
bunch of smart people back then too, okay?  

On the other hand, another teacher says, “the Babylonians are accredited with the fact of knowing 
what a right triangle is” - not very impressive. All in all, not much is done which may increase the 
respect of different cultures. 

Preliminary conclusions 
Although I have noted a few exceptions, the pattern here is similar to the pattern found in other 
studies: the history of mathematics which is included, often consists of not too useful pieces of 
biographical information, while information more connected to the mathematics as such often is 
ignored.  

Is the history mentioned only in isolated instances? 
It is interesting to see whether the teachers that mention the history of mathematics do so 
frequently or only in isolated instances. As the material in this study consists of isolated lessons, it 
is difficult to say much about this. However, in a few places we get some hints. 

 If a teacher mentions history of mathematics only in an isolated instance, you would perhaps 
not expect to be able to recognize that from the transcript. However, in one instance a teacher says, 
when talking about Euler, “Which one is the other mathematician we dealt with? Oh, practically 
the only one… Pythagoras.” This suggests that history of mathematics may not be frequent in this 
teacher’s lessons. 

However, there are more examples of the opposite. One teacher mentions the “mathematics 
report” where students were supposed to write about a mathematician. Another mentions having 
talked about Sophie Germain earlier, and talks of “those silly mathematicians I always give you”. 
One teacher says that the class had looked at some historical examples in the last few weeks, and 
another reminds the class what he told them in an earlier lesson. 

In one instance we see that the class will be working on (or at least reading about) history of 
mathematics later: “We have the historical comments in the textbook. You will read them later 
on.”

My impression from this is that there are a few teachers who include history of mathematics as 
part of their teaching, but it seems that most teachers only make historical connections “in 
passing”, if at all. 

Errors 
In Smestad (2002) I pointed out that there were many factual errors in the Norwegian elementary 
school textbooks. I have looked for errors in the TIMSS material as well, and found a few. 
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However, the material is too small to be able to give any indication on what kind of errors are 
“typical”. Therefore I do not comment on those errors in any detail here. 

Teacher words vs. student words 
A result I found interesting in the TIMSS 1999 Video Study was that teachers utter about ten times 
as many words as all the students combined during the “public interaction” part of the lessons. In 
the material related to history of mathematics, I have calculated a ratio of about 15 to 1.8 This 
suggests that the history of mathematics is often lectured, with little discussion with the students. 
This is also the impression we get from reading the transcripts – the part that the students play is 
often only to read aloud from the textbook or to answer simple yes/no-questions (to show that they 
have been listening). 

3 Conclusion 

It seems that the history of mathematics does not constitute an important part of teaching in the 8th

grade in these seven countries. Few lessons include history of mathematics, the history of 
mathematics is often lectured (with the students listening) and the information included is often 
biographical information of little connection to the mathematics taught. The rich ideas presented in 
the recent ICMI study by Fauvel & van Maanen (2000) have not yet reached these classrooms to 
any large extent. 
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8 I had to exclude the lesson with most history of mathematics from this calculation, as I did not have a 

complete transcript of this.  
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ABSTRACT 
The present work explores the possibilities to integrate historical and epistemological aspects of the 
development of Statistics, in its teaching, with emphasis on its relation to physical problems and models. At 
the same time, it reports on the actual classroom implementation of certain of these possibilities, for 
introducing Statistics to prospective primary schoolteachers and comment on some similarities of questions, 
objections and difficulties that appeared historically and aspects of which seems to have reappeared in the 
classroom. 

1 General framework 

1.1 The role of history: Nowadays, History of Mathematics (HM) is considered to be useful and 
enlightening in Mathematics Education (ME). Here, we lean upon the following points (cf. Fauvel 
& van Maanen 2000, section 7.2): 
 (a) History can act as a bridge among Mathematics, Statistics and other disciplines, in particular 
Physics. 
(b) History is a rich resource that provides a variety of problems, questions and approaches 
relevant to the subject under consideration. 
(c) Mathematics is an evolving human endeavour determined by several factors both inherent and 
external to it. In the case of Statistics, external factors have been dominant. 

1.2 Methodological framework: We have adopted a teaching approach to Statistics, which is 
based on the following points (Fauvel & van Maanen, 2000, §7.3.2): 
(a) To study the historical development of the subject, so that it becomes possible,  
(b) To identify key steps in its development (questions, problems, concepts, lines of approach, 
encountered difficulties etc). 
(c) To choose (some of) these steps and take advantage of their use for didactical purposes, not 
necessarily respecting the historical details and temporal order of events, but aiming at 
illuminating modern teaching through the vivid picture provided by the key steps of the historical 
development. This is particularly valuable for the introduction, understanding and elaboration of 
some basic statistical concepts, the learning of which is known to be difficult (Shaughnessy, 1992 
p.477ff; Kahneman et al., 1982; Pollatsek et al., 1981; Mevarech 1981; Konold, 1995). 
(d) To let the students proceed through guided research work. That is, instead of the traditional 
teacher-centred approach, students can be given some questions and problems to start with and 
subsequently they are invited to elaborate on them and formulate, discuss and possibly solve their 
own questions and problems, under the teacher’s supervision and guidance (Kourkoulos & 
Tzanakis, 2003a, 2003b).
(e) To profit from the intimate and multifarious relation between Mathematics and Statistics and 
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the empirical disciplines, especially Physics1. This relation seems to be didactically both important 
and fruitful. Stressing this point is one of the aims of the present paper. 

1.3 The subject of the present study:
We have given a one-semester introductory Statistics course to 3 different groups of prospective 
primary schoolteachers in three successive semesters, along the lines given in 1.2 above. In all 
groups, teaching was based on guided research work, elaborating on specific empirical examples, 
adequate for experimental investigation. However, in the first group, in which students had a poor 
algebraic background, work was done with the aid of graphical representations of data 
(Kourkoulos & Tzanakis, 2003a). The second group proceeded more algebraically and made 
extensive use of Excel (Kourkoulos & Tzanakis, 2003b). Additionally, in the third group physical 
models were used to interpret statistical concepts and relations, and their physical properties were 
used to guess statistical relations and/or simplify their proof.  

Because of space limitations, this paper focuses (i) on the concepts of the average and (mainly) 
the variance of a distribution and (ii) on Chebyshev’s inequality as a means for acquiring a deeper 
understanding of variance and of the general significance of the (weak) law of large numbers 
(LLN).  

Specifically, by taking into account the historical development, in section 2 we present some 
key issues of an epistemological analysis, with emphasis on the role particular physical concepts, 
questions and problems have played on the emergence and development of certain basic statistical 
notions and results, and vice versa. Section 3 gives a brief outline of the physical models that have 
been used in our teaching, report on some selected results, and comment on similarities of 
questions, objections and difficulties that appeared historically and aspects of which seems to have 
reappeared in the classroom. Finally, in section 4 we summarize some didactically interesting 
points that came out of our study and may be further explored.  

2 Key historical elements 

2.1 The two routes to Statistics: The historical development of Statistics as an independent, 
legitimate discipline is complicated and came relatively late (from the 17th-18th century). As a 
mathematical domain, it has emerged (mainly) through the stimulus and study of problems posed 
by other disciplines (Porter 1986, Introduction, particularly pp.7, 8, 11, Kolmogorov & 
Yushkevich 1992, pp.211-212), at the same time, developing some epistemological characteristics 
that are not identical with those of other mathematical domains (Porter 1986, pp.8-10)2. A leit-
motif of this development is that statistics emerged via two complementary routes: 

(i) The desire and need to manage, control and elaborate on data of various kinds, related to 
social and/or physical problems. 

                                                     
1 For Physics, this point has not been much elaborated in the context of ME, though we think it is 

important (Tzanakis, 2000, 2001, Tzanakis & Thomaidis, 2000). 
2 It is perhaps for this reason that Statistics (in its entirety) has not been considered as a mathematical 

domain in the strict sense of a deductively organized formal discipline (Sheynin 1998). In fact, some authors 
have held more extreme views, arguing that Statistics is not a subfield of Mathematics, but a separate 
discipline (Shaughnessy et al. 1996, §7.1 and references therein). It seems that historically, there has not 
been a coherent view on the nature of Statistics, including its relation to the theory of probability (see e.g. 
Porter, 1986, Introduction, ch.1 especially pp. 4, 11,; Hacking, 1965, p. 9; von Mises 1981, p. 135; 
Dieudonné 1978, pp. 284-285; Polya, 1968, pp. 55, 64). 

285



(ii) The study of chance problems, in an effort to grasp the meaning of randomness and 
consequently, to conceive basic probabilistic notions.3

The relation between the attitudes adopted along these two routes was occasionally acting as a 
motivation for further developments, or as an impediment that decelerated, or even prevented such 
developments (Stigler 1986 - Introduction particularly p.4, ch.5 particularly pp.194-198 -, Stigler 
1999, ch.11 particularly p.238). 

2.2 The difficulties to accept the concept of variance: There was a serious difficulty to accept 
the variance (i.e. the sum of the squares of deviations from the average) as a good measure for the 
dispersion of a distribution. In fact there was a relatively long period, in which the mean absolute 
deviation was considered a better, or, equally important parameter (e.g. by Laplace; see 
Kolmogorov & Yushkevich, 1992, pp. 222-226). Gauss (and indirectly Legendre, through his 
preference to the method of least squares – Stigler 1986 ch.1; see §2.3(i) below) preferred variance 
and justified his preference arguing that it is more convenient in calculations, although it seems 
that he did not express his opinion very strongly (Gauss, 1996/1821, p.12; Kolmogorov & 
Yushkevich, 1992, p. 228). The significance of variance was understood a posteriori (see §2.3).

2.3 Independent factors that influenced the legitimacy of variance: The importance of the 
sum of the squares of deviations from the average, or from the real value of a quantity, as a 
measure of dispersion, was appreciated gradually through several independent results that were 
important for their own sake: 

(i) The method of least squares as the leitmotiv of 19th century mathematical Statistics (Stigler 
1986, p.11). More precisely, its use and efficiency to solve problems coming outside Mathematics 
itself, starting with its publication for the first time by Legendre in 1805, and continuing with 
Gauss and others (Stigler, 1986, ch.1).4 Moreover, it implies as a special case, that the sum of the 
squares of deviations from any value is minimized when this value is the average, a most welcome 
result, since it fits well with the general feeling that the average of different measurements of a 
quantity gives the most reliable estimate of its real value (the “principle of the arithmetic mean”; 
Maistrov, 1974 pp. 84-86, p. 106). 

(ii) The “universality” of the normal distribution was realized through Laplace’s proof of the 
central limit theorem and Gauss’ proof of his law of errors (Stigler, 1986, chs3, 4, Maistrov, 1974, 
§§III.9, III.10; Kolmogorov & Yushkevich, 1992, ch.4). The generality of these two results and 
that the normal distribution is completely determined by its first two moments (cf. (iii,3) below), 
was a clear indication of the importance of variance as a measure of dispersion. Of course, Gauss’ 
result (published in 1809) was valid provided one accepts the “principle of the arithmetic mean”, 
namely, that the average of the observed values is the most probable value (Gauss, 1996/1821, 
p.68, Maistrov 1974, p.154; see (i) above). This was a crucial assumption criticized by Laplace as 
not being easily justified, but who, using other assumptions, had failed to arrive at the normal 
distribution as the appropriate law of errors (Stigler 1986, chs3, 4). Nevertheless, since the average 

                                                     
3Cf. Hacking’s emphasis on the important role in the history of Statistics and Probability Theory played 

by the dual character of the probability concept, as “statistical, concerning itself with stochastic laws of 
chance processes… [and] epistemological, dedicated to assessing reasonable degrees of belief in 
propositions quite devoid of statistical background” (Hacking, 1975, p. 12;cf Shaughnessy, 1992, p. 468). 

4 The priority dispute between Gauss and Legendre on the method of least squares is well known. In 
fact, there is a controversy on this issue even among historians. It has been argued that in 1801, Gauss 
applied the method to predict from a limited number of observations, the position of the newly discovered
Ceres, the first asteroid ever found, (Berry, 1961, p. 359; Boyer, 1968, p. 553). Others argue that, even if 
Gauss was the first to use it, Legendre published it first, realized its importance and made it accessible to the 
scientific community (Stigler, 1985, pp.145-146; Stigler, 1999, ch. 17). 
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and the most probable value coincide for the normal distribution, he clearly realized that Gauss’ 
result based on this assumption followed asymptotically from his limit theorem, if the (random) 
quantities there, were taken to be the relative errors of measurements considered by Gauss (Stigler, 
1986, pp. 143-144). Considering the errors of observations as random quantities subjected to 
probability laws (i.e. random variables, in modern terminology) was a crucial idea of Gauss that 
made possible to link probability theory to the method of least squares (Stigler, 1986, p. 140). 

(iii) Parallel developments in Physics, which showed that the variance of a distribution might 
have a clear and deep physical significance. Probably, this had at least an indirect influence on 
appreciating its significance as an appropriate measure of dispersion. Interestingly enough, it is 
through such developments (that continued in the 20th century) that today we appreciate and 
understand more deeply, how much more important is the variance, than it was originally thought 
in the 19th century (cf. (iii,3) below). Some of these developments are: 

(1) By the molecular hypothesis and taking into account the ideal gas law, it was found in the 
mid 19th century that the temperature of a body is proportional to the mean kinetic energy of the 
molecules, which is quadratic in their velocities. This was the first fundamental idea connecting 
macroscopic properties of a physical system, to its microscopic structure (Brush 1983, §§1.5, 1.7). 

(2) Maxwell derived the normal distribution as the distribution of velocities in a gas, in analogy 
to Gauss’ derivation of the law of errors and influenced by the ideas of Quetelet as presented by J. 
Herschel (Porter, 1986, ch.5 particularly pp. 118-119; Brush 1983, p.59; Sklar,1993, §2.II.2). This 
made clear that the mean kinetic energy is the variance of the microscopic velocity distribution and 
has a direct macroscopic physical interpretation; it is proportional to the temperature of the gas, by 
(1) above (see also footnote 10). In fact, it was exactly because of the physical meaning of 
velocity, that Maxwell’s derivation makes no use of Gauss’ assumption that the mean and the most 
probable values of the sought distribution coincide (Jeans, 1954/1904, §60). 

(3) In 1905, Einstein (Einstein 1956) conceived Brownian motion as a random walk, showed 
that the variance of position is proportional to the diffusion constant of the Brownian particles and 
thus gave for the first time the most direct experimental verification of the molecular structure of 
matter (Pais 1982, ch.5, particularly §5d). Of course, by that time, the basic statistical notions were 
already established. However, Einstein’s simple model initiated the systematic use of stochastic 
processes in Physics and implicitly stressed the generic character of its consequences for the 
description of many physical situations5, in particular, the generic character of the normal 
distribution, which in turn is determined solely by its average and variance. In fact, it gradually 
became clear that Einstein’s model, a prototype of what is known as a Markov stochastic process, 
was generic in the sense that any such process is determined by its first two moments, provided it 
satisfies a well defined continuity condition, the so-called Lindenberg condition (Feller, 1968, 
§X.4; Gardiner, 1983, §3.4; Nelson, 1967, §5). 

2.4 A deeper understanding of the average; the weak law of large numbers and the central 
limit theorem: A deeper understanding of the significance of the average of a distribution, and in 
particular, of the “principle of the arithmetic mean” (§2.3(i) above; Maistrov, 1974, pp. 106-108, 
84, 154, 178) came when the (weak) LLN6 was proved (Maistrov, 1974 p.85, cf. Porter, 1986, 
p.120). We remark that this law was shown first to hold for given distributions (by Bernoulli and 

                                                     
5 See e.g. the collection of classical papers in (Wax, 1956; also Nelson, 1967 §4: Gardiner, 1983, §1.2).
6 The strong law came much later (by Borel in 1909 and Cantelli in 1917; Dieudonné 1978, p.299). This 

is not accidental: The strong law presupposed a new conceptual framework, in particular, the concept of 
measure, the associated mode of “convergence almost everywhere”, and techniques of set theory. We do not 
touch upon this subject here. 
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later by Poisson) and its general demonstration came afterwards (Stigler, 1986, pp. 66, 183; cf. 
§2.5). The same comments holds for the central limit theorem as well. It was de Moivre first, who, 
in his effort to obtain a computationally convenient approximation to the binomial distribution was 
led to the normal distribution. Subsequently, Laplace proved that this was a good approximation to 
a large class of distributions as well and gave a non-rigorous proof that it is true generally for 
mutually independent variables (Stigler, 1986, ch.2 and pp. 131-133, 136-138). 

2.5 Chebyshev’s inequality: There was a distinction between two kinds of dispersion 
parameters (see e.g. Stigler, 1986 ch.1; Porter,1986, p. 144): 

(i) Those measuring an average “distance” from a given centre (i.e. moments relative to a 
given value), like the absolute mean deviation, or the variance. 

(ii) Those giving the range of values for a given range of relative frequencies, like the range of 
a distribution, the quartile, or interquartile range etc). 

Chebyshev was always interested in estimating how close a probability relation was to an 
eventual limiting value, as, for instance, in the case of Bernoulli’s version of the LLN for 
independent trials (Kolmogorov & Yushkevich, 1992, p. 256). It is this characteristic of his work 
that led him to the inequality now bearing his name, which in turn implied that the variance could 
be seen as a parameter of type (ii) as well. As a by-product, this inequality implied the LLN as a 
limiting relation. Of course, this law follows from the much more powerful central limit theorem 
that Laplace had proved earlier. However, Chebyshev’s inequality provided a far simpler, almost 
trivial proof, compared to Laplace’s approach that was rather non-rigorous and much more 
involved (Kolmogorov & Yushkevich, 1992, p. 224). Additionally, Chebyshev’s proof of this law 
requires no knowledge of the distribution and of course no calculations with any of its particular 
characteristics, but only the existence of the variance (implying that of the average, as well) and 
the mutual independence of the random variables (see also Seneta, 1998)7. Epistemologically, this 
is important because, Chebyshev’s inequality and some earlier examples (Gauss’ law of errors, 
Laplace’s central limit theorem) are the first of this kind; that is, to obtain probabilistic 
propositions without having to know the distribution exactly, and in particular, to give the general 
conditions that imply the stability of average values, hence the regularity of randomness 
(Kolmogorov & Yushkevich, 1992, p. 259). This was a key point for the emergence of statistical 
inference as a mathematical theory pertaining to the experimental sciences. This is an example of 
the way the LLN makes clear a posteriori, how the two routes to statistics mentioned in §2.1
converged and why they are complementary. Together with the central limit theorem and the 
normal distribution as the appropriate law of errors, it is historically among the first such crucial 
results (cf. Stigler 1986 ch. 4, particularly pp.157-158). 

Finally, we notice that Markov’s generalization of the LLN (Feller, 1968, p. 244) for any 
absolute moment of order >1 gave a further convincing argument for the greater importance of the 
variance compared with that of the mean absolute deviation.  

3 Didactical implications 

3.1 The main general points: Didactically, the following are some key issues that can be drawn 
from the previous sections: 

                                                     
7 The law holds, even without assuming the existence of variance (which is essential for the central limit 

theorem), for identically distributed variables, a result proved much later (1929) by Khinchin (Feller, 1968 
ch. X). 
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(a) Statistics has emerged through the two complementary routes, mentioned in §2.1, deeply 
influenced by ideas and problems coming outside Mathematics itself. Therefore, it is in principle 
interesting to base teaching on both these routes: (i) To collect, manage and elaborate on empirical 
data, and (ii) to discuss and work theoretically on probabilistic problems and concepts and 
compare the results with experiment.  

(b) Statistics (and Probability Theory) and Physics have been continuously and deeply 
interwoven (Porter, 1986 Introduction, ch. 7; Stigler, 1986 ch. 1, p.4; Kolmogorov & Yushkevich, 
1992, ch. 4; Dieudonné, 1978, ch. XII). This interrelation should not be ignored in teaching. 
Instead, it may be helpful and fruitful both ways; physical models (some of which were very 
important historically, as well) may be used to introduce, make plausible, or interpret statistical 
notions and relations. Conversely, new insights can be given to (possibly known) pieces of 
Physics, by formulating such notions and relations in the context of Statistics. This point gives a 
nice example of the “two-ways” interconnection between Mathematics and Physics described in 
(Tzanakis, 2001, §3). 

(c) Research in Mathematics (and therefore the emergence and development of mathematical 
knowledge) is based both on solving problems and on posing new problems (often coming outside 
Mathematics). In particular, the role of empirical investigations (e.g. the detailed study of special 
cases) is central for asking the right questions and formulating convenient concepts and methods to 
tackle them. In this connection, Statistics is a nice example. However, the conventional teacher-
centred approach does not help students to pose their own questions and learn by elaborating on 
them8. On the other hand, guided research work (§1.2(d)) better approximates the research activity 
of mathematicians, than does traditional teaching. It allows for extensive empirical investigations, 
in Statistics via which students conceive, understand and interpret new knowledge. Therefore, it 
may provide a better framework for profiting from the use of history in teaching. Furthermore, one 
expects to observe more clearly possible analogies between students’ conceptions and learning, 
and those of mathematicians in history. 

 Therefore, our teaching took the historical development under consideration, was based 
partially on physical ideas and models and was done through guided research work conducted by 
the students, who worked in small groups of 3 to 5 members each. 

Below we give a brief outline of physical models that are suitable for interpreting and 
elaborating on the concepts of the average and the variance, report on the implementation of some 
of them in our teaching and comment on some similarities between the historical development and 
students’ guided research. 

3.2 Some physical models
For simplicity, all models are considered in one dimension. However, by employing vector 

notation, the extension to 3 dimensions is formally straightforward and provides a nice feedback 
from elementary Statistics to basic Physics. 

(A) A system of point masses at static equilibrium: The statistical variable is the position x of
the masses; xi being the position of the mass mi, which plays the role of the corresponding 
frequency, and mixi denoting the moment of mi about the origin. The average position is the 

                                                     
8 Traditional approaches have a limited success, since there is poor understanding and misinterpretations 

of statistical ideas and concepts, not only among students, but also among teachers (Beyth-Marom & Dekel, 
1983; Rubin & Rosebery 1990), as well as, among researchers in the social sciences (Tversky & Kahnemn 
1971; Kahneman et al., 1982 Parts I & V).
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position xB of the centre of mass (CM)9, its variance is proportional to the moment of inertia 
around the CM, IB = i mi(xi – xB)2, hence through the defining relation IB = M R2, the standard 
deviation equals the gyroscopic radius R of the system, M = i mi being the total mass. 

(B) A static system of springs attached to the same point: The springs have only one common 
point, that of attachment, a distance a from the origin, and obey Hooke’s law; i.e. the force on each 
spring is proportional to its stretching xi-a, namely ki(xi-a), ki being the spring constant. The 
statistical variable is the position x of the springs’ endpoints, ki playing the role of frequency of xi

(for simplicity, in our teaching, initially all ki were put equal to 1). If O is the point at x = xo

(henceforth, a bar denotes an average), then the variance Vo of x, is proportional to the potential 
energy of the system when attached to O, ½ i kiVo = ½ i ki(xi – xo)2.

(C) A system of point particles moving with constant velocities: The statistical variable is the 
velocity v of the particles, vi being the velocity of the i-th particle of mass mi, which plays the role 
of the corresponding frequency. If the average velocity is assumed zero, then its variance is twice 
system’s mean kinetic energy per unit mass, E, imi E = ½ imivi

2. As it happened historically 
(§2.3(iii,1)), we may think of this as a model of a macroscopic system, which does not move, the 
particles being its microscopic constituents. Then, E is proportional to the macroscopic 
temperature of the system and therefore, the variance acquires a deep physical meaning.  

(D) The one-dimensional random walk model: A particle randomly making steps of equal 
length to the left, or to the right, with probability ½. It gives a direct geometrical and physical 
interpretation of variance; it is proportional to the square of the length of each step  and the total 
number of steps N. This is a very rich simple model that brings together, the geometrical 
interpretation of variance, the binomial distribution and how it is approximated by the normal 
distribution in the continuous limit of 0 and N , the normal distribution as the fundamental 
solution of the diffusion equation, and a vast range of physical situations approximated by this 
model, a historically important prototype being Einstein’s conception of Brownian motion 
(§2.3(iii, 3)).  

Models (B), (C) are very elementary, involving only energy concepts, with which our students 
were very familiar. The same holds for (A), except for the concept of the moment of inertia. Model 
(D) has not been used in our teaching, because it goes with some additional pieces of probability 
theory and Physics, not familiar to our students. Therefore, we mainly used (B), (C) and part of 
(A). In fact, the interpretation of the variance as energy in (B), (C) was crucial for students’ 
understanding of this notion10. Using basic Physics (e.g. conservation of momentum and/or 

                                                     
9I t is interesting to notice, that Legendre used this analogy to interpret and make plausible the solution 

provided by the method of least squares (Stigler ,1986, p. 14-15). 
10 Model (B) acquires an interesting and deep physical meaning (generalizing both (B) and (C)), if one 

thinks of the springs as oscillators and considers the total energy of the system (kinetic plus potential), 
which is quadratic in each variable (component of velocity, or, position). In this case, when the system is at 
equilibrium and is described by practically infinitely many variables, that is, has a practically infinite 
number of degrees of freedom (i.e. it is a macroscopic system, the oscillators corresponding to its 
microscopic constituents), then, for each degree of freedom, the variance from the mean value of each 
variable is proportional to the (macroscopic) temperature of the total system. This is the so-called (classical) 
energy equipartition theorem, first obtained by Maxwell in 1859 for the kinetic energy and then generalized 
by Boltzmann and Gibbs to include any system for which the total energy is quadratic in the (generalized) 
velocities and positions (Boltzmann 1964/1896 ch.II.III §34, Gibbs 1926/1902 ch.V, Jeans 1954/1904 §119, 
Brush 1983 pp.65-67). It is an unavoidable consequence of applying statistical methods to systems 
described by classical mechanics. Realizing its limited applicability, as it was suggested by experiment in 
the late 19th century, played a central role in the emergence of Quantum Theory, after Planck’s introduction 
of the quantum hypothesis in 1900. More generally, in the context of Statistical Mechanics, such quadratic 
models have always played (and still play) a crucial role for understanding the properties of macroscopic 
systems, at least as first approximations, since they usually lead to solvable models (e.g. Planck’s studies on 
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energy), several elementary properties of the average and the variance were interpreted, guessed or 
proved easily with these models, sometimes by the students themselves. Here are some selected 
examples: 

(1) In (B), i ki(xi-a) is the total force of the springs on the point of attachment. Therefore, static 
equilibrium results when the total force on the springs to the left of the point of attachment 
balances that to the right. Hence, the statistical relation i ki(xi – xo) = 0 gives a clear interpretation 
of the average xo as the position of equilibrium; namely, all springs stretched and attached to xo

without having to exert any force to keep them in equilibrium. This picture made a strong 
impression to the students, greatly enhanced their interest on physical models and motivated them 
to further implement these models in other situations. The same interpretation of the average holds 
for (A). i mixi = M x gives the total moment of the system around the origin. On the other hand, 
static equilibrium implies that the right-handed moments about the CM cancel the left-handed 
ones, hence, i mi(xi – xB) = 0 is an equilibrium condition that interprets the average of a 
distribution as its “equilibrium” value. 

(2) By (B) the 2nd moment of a distribution around any point a became a meaningful concept- 
the potential energy relative to that point - and looking for the point of minimum potential energy 
came out naturally. Let all springs be attached to a and the end of the i-th spring be fixed at xi, for 
all i. If they are released from a, their common point will oscillate. Because of friction, it will relax 
at a point in which the total force exerted by the springs vanishes. By (B) above, this is precisely 
xo. Obviously, potential energy has been converted into heat; hence, we conclude that at xo

potential energy is minimized. Consequently, the interpretation of variance in this model yields 
( - ) > ( - )2 2x a x x  in general. An elementary calculation of the difference of these quantities gives 

( - ) =  ( - ) + ( - )2 2 2x a x x x a . This relation clearly expresses the physical result that in this case 
the equilibrium point is also a point of minimum potential energy. For a=0 the familiar relation 
x x x x2 2 = 2( - )  results. Model (A) could have also been used (though, not in our teaching). 

(3) With the aid of (C), the students were able to answer easily nontrivial problems, like the 
determination of variations of a distribution that leave the average and the variance unaltered! The 
details will be given elsewhere. 

(4) The straightforward relation ( )N N X N X N XI II I I II II for the average X of a variable X

for the union of two samples of size NI, NII, in terms of its average for each sample, X XI II, ,
follows with no calculations from any of the above models, as well. The same question for the 
variance is algebraically more involved, but it comes out without any calculations, from energy 
considerations in (C): Think of a mass M, moving with velocity v (state A), which, for some 
internal reason (e.g. an explosion) splits into two masses MI, MII with velocities vI , vII , MI + MII =
M (state B). Again for some internal reason, each of them splits into smaller masses with 
velocities ( , ) , . . . . , ( , )m v m vi i j j ,…, and ( , ) ,...., ( , )' ' ' 'm v m vi i j j …. respectively (state C). Since 

the splittings result from internal processes, momentum conservation holds, implying that 
Mv M v M vI I II II  and similarly the average of the vi ’s and the vi

' ’s is vI  and vII  respectively. 

Then, the basic relation x x x x2 2 = 2( - )  expresses that M/2 times the variance of the velocity is 
the kinetic energy difference between two states of the system, that is, the energy needed to 
disperse particles’ velocities around their average (i.e. the energy of the explosion, in students’ 

                                                                                                                               
radiation that led to his quantum hypothesis in 1900, Einstein’s and Debye’s studies of the specific heats of 
solids in the first decade of the 20th century, to name only a few classical cases; Mehra & Rechenberg, 1982, 
§§I.6, I.7). 
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concise, but simplified expression). Evidently, the total change of kinetic energy, E is the sum of 
the corresponding changes in the two splittings, i.e. E = EC - EA = (EC – EB) + (EB - EA). Using 
momentum conservation to express average velocities as above, this trivial energy relation 
becomes  

1
2

2 2 1
2

2( )' 'm v m v M vi i i i
i

= 1
2

2 2 1
2

2 1
2

2M v v M v v m v v m v vI I II II i i I
i

i i II
i

( ) ( ) ( ) ( )' '

Therefore, using the above interpretation of variance as the change in kinetic energy, the 
variance s2 of a variable X for the union of two samples of size NI, NII, in terms of its average and 
variance for each sample, X XI II,  and sI

2, sII
2 becomes: 

( ) ( ) ( )N N s N s N s N X X N X XI II I I II II I I II II
2 2 2 2 2

(or, the mnemonically easy to remember equivalent formulation, “the average of the variances plus 
the variance of the averages”, readily generalized, in the same physical context, to any number of 
samples).

3.3 Some similarities between the historical development and students’ guided research:
(i) The students were unwilling to accept the variance as a “natural” measure of dispersion and 

there was much discussion whether the more natural mean absolute deviation should be preferred, 
in much the same way that this happened historically (cf. §2.2 above). In particular, they felt 
uncomfortably with the fact that the meaning of variance was not clear, or, in some cases, 
meaningless (even dimensionally) and that there seems to be no causal relation between a variable 
and the squares of the “distances” from its average. They tried to express it in terms of average 
absolute deviations that were clearer to them, thus discovering interesting statistical identities 
(Kourkoulos & Tzanakis 2003a). In this context, models (B) and (C) have been helpful. 

(ii) The students clearly distinguished between the two types of dispersion parameters of §2.5.
In particular, they originally thought that parameters of type (ii) were more natural, since it seems 
that they provide clearer (viz. more causal) and more interesting information about the 
distribution; that is, they give the boundaries of the range of values of a variable for a specified 
probability. Combining this boundaries with that of parameters of central tendency, like the 
average, or the median, in particular cases, allowed the students to know the probability 
corresponding to a specified range of values. Proof of Chebyshev’s inequality changed the scene 
(see below). 

(iii) Guided research work led the students to ask whether parameters of type 2.5(i) above, 
could give information like that of parameters of type 2.5(ii), which students’ considered to be 
more important. Asking this question was the crucial point for arriving at the proof of Chebyshev’s 
inequality. In fact, given the students’ preference described in (ii) above, the teacher asked first 
whether it is possible to conceive moments as giving information similar to that of parameters of 
type 2.5(ii). Through specific examples, they realized that it was not possible to have a too big part 
of the population too far away from the average (i.e. a large multiple of a given value for the mean 
absolute deviation) and tried to obtain estimates of the relative frequencies to get values far away 
from it, much in analogy with Chebyshev’s interest to arrive at such estimates (cf. §2.5 above). In 
this way, they were able to conceive a Chebyshev-like inequality for the first absolute moment 
(mean absolute deviation). It was a simple matter to guess and extend the proof to the second 
moment (variance), i.e. to formulate and prove Chebyshev’s inequality. It is interesting that some 
students, proceeding by themselves, went further and succeeded to generalize this inequality for 
the 3rd and 4th (absolute) moment. Thus we see that Chebyshev’s inequality was important for 
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emphasizing the connection between the two kinds of dispersion parameters mentioned in §2.5 and 
for obtaining the LLN. This provides an insight into the importance of the concept of the average, 
and an additional reason why the variance is important; namely, that its existence leads to the 
LLN, whereas, the mean absolute value does not (see (i) above). 

(iv) Students began to grasp the meaning of various concepts, once they have been sufficiently 
involved in research and have developed a network of relevant questions. It seems that 
understanding the meaning of concepts like the variance, or the median, did not come as a result of 
a single formula, or definition, but through establishing such a network of questions and problems. 
This suggests a rough similarity with what has happened historically (but more empirical work 
remains to be done in this direction). However, it is worth mentioning, that the existence of this 
network helped the students to realize that a strong, though somewhat operationalistic, argument in 
favour of variance as the most appropriate measure of dispersion, was that it is computationally 
easier to handle. That was historically a strong argument as well, e.g. for Gauss (see §2.2; Gauss 
1996/1821, p.12). In addition, it is the existence of this network, which is responsible for making 
the students to ask the appropriate questions that paved the way to Chebyshev’s inequality and 
oriented them to its proof (it should be remarked, that the crucial point is to ask whether the 
variance can give information similar to that of parameters of type 2.5(ii); then, the proof of the 
inequality is almost trivial). 

4 Concluding remarks 

We conclude with a summary of some didactically interesting points coming out of our study that 
may be further explored. 

(a) Statistics has a long and winding historical development with multiple interconnections with 
other disciplines. This is a central epistemological characteristic that somehow should be taken 
into account in teaching Statistics. In our case, this has been realized, by (i) teaching through 
guided research work that is more similar to mathematicians’ research activity, than traditional 
teaching approaches, and (ii) basing our teaching on physical models and empirical investigations.  

(b) Guided research work was essential for the students to formulate their own questions and 
problems, elaborate on them and develop a network of problems, concepts and methods which 
greatly improved their understanding of statistical notions and relations (Kourkoulos & Tzanakis, 
2003a,b). 

(c) Often, it is helpful, fruitful, or, in some cases, appears even necessary, to teach (aspects) of 
Statistics, leaning upon its intimate and multifarious relation to Physics. In this context simple 
physical models proved to be invaluable. For example, the interpretation of variance as (mean, 
kinetic or potential) energy improved students’ intuitive understanding, by linking variance to a 
physical concept, quite familiar to them11, and helped them to guess and/or deduce important 
statistical relations. Otherwise some algebra is needed and, what is more important, the student 
does not have the feeling of having grasped safely these relations. 

                                                     
11 Although students’ (and more generally, non-specialists’) intuitive background in Statistics and 

Probability is often poor and unreliable, it is important for learning these disciplines to improve students’ 
intuitive background (Fischbein, 1990; Kahneman et al., 1982). This can be done by exploiting their 
background on other subjects, in particular Physics, which in some cases, may be richer, better founded, 
hence more reliable.  
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(d) Being more similar to mathematicians’ research activity, students’ guided research work 
probably made possible to observe rough similarities between the historical development and 
students’ learning and difficulties. This provides some new input on the old, but still unsettled, 
issue of the parallelism between historical and ontogenetic development of mathematical 
knowledge (Fauvel & van Maanen 2000; section 5.1, Furinghetti & Radford, 2002). It may also 
give hints towards appreciating and understanding existing difficulties faced by the students, as it 
has been noticed in other areas of ME (see e.g. Herscowics, 1989; Artigue, 1992; Sfard, 1994). 
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ABSTRACT 
In a certain way, this work can be considered the second part of “Si les mathématiques m’étaient contées…” 
(“Once upon a time mathematics, …”) presented at the third European Summer University University on 
History and Epistemology in Mathematical Education. 

I propose the use of dramatization as a didactical strategy to make the access to the “epistemological 
thresholds”, see (GEM, 1985), easier to young pupils aged from 11 to 14 using the constant in the calculus 
of circumferences’ lengths, circles’ areas and cylinders’ volumes. 

1 Introduction 

During the Third European Summer University on History and Epistemology in Mathematical 
Education held in Belgium in July 1999, I gave a talk titled “Si les mathématiques m’étaient 
contées…” (in English: “Once upon a time mathematics, …”), see (Vicentini, 1999). In that 
occasion I proposed a play titled “Hotel Aleph” based on the well known Hilbert’s metaphor about 
the hotel having an infinite number of rooms, written by a class of the Istituto d’Arte “Max 
Fabiani” in Gorizia under my supervision. Unfortunately this play was not performed because of 
the difficulties in finding colleagues available to help us in the staging. 

One year later, I started working in a Scuola Media, This means my students was no longer 
aged from 14 to 19, but from 11 to 14. I temporarily gave up the idea of “Hotel Aleph” because I 
found this theme too difficult for younger pupils. 

Eventually, after two years, I changed my mind. The national program I had to follow in my 
teaching included the calculus of circumferences’ lengths, circles’ areas and cylinders’ volumes.  

The formulas involved give rise to the irrational number . The didactical question is: what can 
be  in the mind of students of this age? After the definition of  as the constant ratio C/d in which 
C is the circumference and d is the diameter, the Italian textbooks present essentially two ways of 
using  in exercises. According to the old textbooks is always 3.14. According to the new ones, 
isn’t approximated at all. It remains a letter in the solution: if the radius is 3 centimeters, the 
circumference is 6  centimeters. At first I opted for this second point of view. Then, I started to 
realize that  was something strange in my students’ understanding. The majority of them thought 
at the length of the above circumference as 6 centimeters.  remained an empty symbol in their 
brains. They were “pseudostructured” in the sense of Sfard quoted in (Arzarello, Bazzini, 
Chiappini, 1994), that is, they tended to underrate the semantic aspect and stay at the syntactical 
level. I was (unintentionally) contributing to their viewing mathematics essentially as a set of more 
or less meaningless symbols, which they should have been able to manipulate in order to succeed 
at school and in their life, see (Rouche, 1986; Vicentini, 1994). So I started to wonder how could I 
overcome this difficulty. I decided to ask them to write the exact solution followed by an 
approximation. If the data were given using centimetres, the approximation had to end at the first 
decimal position for lengths, second decimal position for areas and third decimal position for 
volumes. In this way we were coherent: we had the precision of the millimeter for lengths, the 
square millimeter for areas, the cubic millimeter for volumes. The value of  used in calculating 
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was the one given by their scientific calculator used. Understanding this approximating process 
forced pupils to conceive an actual infinite set of natural numbers: the decimal ciphers of . It was 
not easy at all. To perform “Hotel Aleph” could have helped us, giving a mental image of this kind 
of sets.

By chance, when I proposed to the Consiglio di classe1 to stage the play, I found five 
colleagues ready to work at this didactical project: the Italian teacher2, the Art teacher3, the Music 
teacher4, the Physical Education teacher5 and the assistant teacher6 helping us with disabled pupils. 

In the following sections can be found the text of what I said to introduce this unusual theme to 
the audience when the show took place in June 2003 the new version of the play entirely translated 
in English7; a short dialogue from “Discorsi e Dimostrazioni matematiche sopra due nuove 
scienze” written by Galileo Galilei in 1638, that we read in the classroom during the preparation; a 
comment about students’ mathematical elaboration of both texts; the tale of a strange coincidence 
involving John D. Barrow and Luca Ronconi8, and my personal remarks about all that. 

During the talk the DVD9 of my pupils’ performance, with English subtitles, was shown. 

2 Preface to the show 

With this performance we are trying to challenge the common idea that mathematical concepts 
always have to be communicated through rules, and can never be seen from an enjoyable point of 
view. 

The subject chosen appears simple: 1, 2, 3, 4, etc., are the numbers we use for counting. But 
when the collection of objects to count has no end, counting assumes some bizarre aspects. This is 
something that already Galileo Galilei had noticed, see (Galilei, 1638, 1954). 

Since then, a long time has passed and mathematical theories about the infinity have been 
developed. , the constant of the circle, and 2  cannot be written in Arabic ciphers, but have 
been recognised as numbers. The digits that you can now see projected on the screen are some of 
the first thousands of decimal numbers of , that is therefore not only 3.14 as we have been taught 
at primary school. The music which accompanies the video shown during the talko has been 
created by combining freely together notes to these ciphers. The images that will soon appear, 
other than , contain also the symbols of the infinitive: aleph, first letter of the Hebrew alphabet, 
that is used by mathematicians to indicate transfinite cardinals introduced by Cantor and the 
symbol of infinity, that on the painting by Brauner “The Surrealist” refers to the capacity of the 
individual to practice its own personality with intelligence, talent and creativity. The plot, drawn 
by a novel invented by the mathematician David Hilbert, illustrates the strange things that could 
happen in a hotel with infinite rooms. In the following I report the text of the play. 

                                                     
1 The meeting of all teachers of a certain class. It was 3B of Scuola Media “Del Torre” located in 

Romàns d’Isonzo (Gorizia) Italy, school year 2002-2003. 
2 prof. Laura Delpin 
3 prof. Wilma Canton 
4 prof. Laura De Simone 
5 prof. Laura Valli 
6 prof. Bruno Raicovi 
7 Translation by Giulia Bertolini 
8 That I kindly thank for his availability 
9 Produced by Danilo Gaiotto 
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3 “Hotel aleph” 

First scene: The scene takes place in a non specified city. Four friends are about to meet. 

Enters MARISA : What a lovely day…. What street is this? 

LUCIA: Hi how are you? What have you been up to lately? 
MARISA: Usual stuff, school, sport, boyfriend….but you should know that in winter time I 

become nervous and it always ends up like that because I am tired, also a bit because I am lazy and 
a bit because I am cold, then my mind stops working and my brain, in a way, starts to hibernate. 

ROBERTO: I spend all my free time in front of the telly. 
MATTIA: Me too, but luckily now it’s springtime we’ll be able to start playing football on the 

pitch opposite my place again. 
MARISA: Fancy going for a walk in town? 
LUCIA: Yeah good idea, what are you guys doing? 
MATTIA: We’ll go and find out if we can watch the football match in a bar. 
ROBERTO: Great, I can’t stand the idea of going shopping. 
LUCIA: Perfect, we are going separate ways then, we are heading towards the town centre 

while you guys are going to be paralysed in front of the telly, like every Sunday. 

The four friends go their own ways. The girls exit chatting. 

MARISA: What was your result in that maths test on infinite numbers? 
LUCIA: Infinite numbers? Don’t talk to me about them, I didn’t understand a thing…. 

The two friends after having given a look at the shops find themselves in front of a hotel. 

MARISA: Sorry to interrupt you, but what’s that new building? How strange…. 
LUCIA: It looks like a really chic place. Let’s go and have a look! It’s called hotel Aleph and 

its famous, not only for its great vanilla ice creams, but also for the technical innovations adopted 
by the architect who designed it. He is one of the most famous architects in the world …. His name 
is… I think its…Gery… 

MARISA: well well well, Look whose here, our two friends… 
ROBERTO: What are you guys doing here? 
LUCIA: We heard that they do lush ice creams here, could you get us one? 
MATTIA: Im sorry, but we’ve got no money, why don’t you get us one? 
MARISA: Alright then, but you’ll owe us! 
LUCIA: Look! Ha ha! They’ve made a mistake. Under the name of the hotel there’s two signs, 

one says “VACANCIES” and on the other one says “NO VACANCIES” ha ha ha! 
ROBERTO: I know! Let’s go in and tell the porter. 
MATTIA: Surely, when he hung the second sign up, he forgot to take the first one down. 
SALES PERSON: Hey sweetheart, would you like to buy something? I’ve got tissues, socks, 

lighters, …look what lovely jewels I’ve got, only 10 euros, everything is very cheap, very cheap. 
MARISA: No, no, thank you. They’re too expensive and I haven’t got money to spend. Bye! 
PORTER: Hello! How can I help you?  
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MARISA: Sorry to bother you sir, but we just wanted to let you know that you have forgotten 
to take down the sign “VACANCIES” when you put up the one saying “NO VACANCIES”  

PORTER: It isn’t a mistake, this is the main feature of this hotel. It is designed so that even 
when it is full there are always other rooms available. We never have to say to our customers 
“sorry, no vacancies”. We rather say “it is full, but if you have a minute of patience we’ll try to 
accommodate you”. 

MATTIA: Are you taking the mickey? 
PORTER: No! With the Infinite Hotels, the society that runs them, had to pay a real fortune for 

the project. They’ve called one of the best architects in the world, if not the best. 
ROBERTO: I can’t understand, can you be a bit more clearer? 
PORTER: The secret is that they managed to build a hotel with infinite rooms. 
LUCIA: Infinite rooms?!? How is that possible? 
PORTER: Don’t ask me. I don’t have a clue. And, as you can imagine, I haven’t seen them all. 

Seems like some of them are very luxurious. 
MARISA: I am really sorry sir, but I’m trying to imagine a hotel with infinite rooms, and I still 

can’t understand you… 
PORTER: How can you not understand? Have you not done the infinite numbers at school? 
MARISA: Yes, but…. 
PORTER: Sorry, I have to leave you, two customers are arriving. Take a seat at the bar, I’ll get 

back to you in a minute. 

The four friends sit at a table not too far from the desk of the concierge. Meanwhile the first 
customers arrive. 

SILVIA (first tourist): Excuse me, we’ve read outside that there are vacancies. 
MARTA (second tourist): Well….to be honest we’ve also read that there are no vacancies and 
being a bit confused we’ve decided to come in and ask. 

SILVIA: is it possible to stay here tonight? and maybe a few more. 

While the customers talk to the concierge, the waiter arrives to take an order from the table of 
the four friends. 

WAITER: What would you like? 
LUCIA: The concierge told us you make delicious ice creams. 
WAITER: Yes, they are my speciality. 
MARISA: Bring us four scoops with a variety of flavours. 

The Waiter walks away. While the four friends are making their order the porter is replying to 
the customers. 

PORTER: As a matter of fact we are full. But there’s no problem. I can give you a room for 
tonight. Here are the keys. It is the number 1. First floor. It isn’t ready yet. It will be in a couple of 
hours. 

SILVIA: Thank you very much, we are not in a hurry. 
MARTA: Can we leave our luggage here? while we go for a walk in town? 
PORTER: Of course no problem at all! 
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MATTIA: I really want to see what that bloke is going to do now! 

The waiter arrives with the four ice creams. 

LUCIA: mmm its good this ice cream, don’t you think? 
ROBERTO: Yeah man! Innit! Its one of the best ice creams I’ve ever tasted. But…let’s pay 

attention! I think the porter is talking on the phone to someone. Let’s see if we can understand 
something about what’s going on in here. 

PORTER (on the phone): Hello, Franco? 
FRANCO: Yes boss? 
PORTER: Two new customers have arrived and I’ve put them in room number 1. Please could 

you tell all the other customers to move into the next room so that room number 1 will be free? 
FRANCO: Of course boss! I’ll do the job as fast as possible… (mumbles covering the receiver 

with a hand) this boss is so annoying! He always wants rooms freed up!! 
PORTER: Thank you very much, you are always so efficient. 

End phone conversation. 

ROBERTO : Have you heard that? I can’t understand a thing. How could he have possibly 
freed room number 1 without evicting anybody? It’s impossible man!! 

MATTIA: Um…wait a minute, my brain’s just starting to work after the long winters break. I 
think I am starting to understand! Yeah baby! 

LUCIA: I think I know what’s going on too! 
MARISA: Tell us. We do not know what’s going on, I’ m curious. Everything still seems so 

absurd to us. 
MATTIA: It isn’t absurd. Maybe paradoxical but I wouldn’t say absurd. Listen to me carefully. 

What would happen if the hotel had 10 rooms that were full? 
ROBERTO: There wouldn’t be any space left to accommodate new customers, like all hotels 

that have no vacancies. 
LUCIA: You couldn’t possibly free room number 1, like in this case. As a matter of fact if you 

told all customers to move up to the next room, the one occupying room number 1 would move 
into room number 2, the one in number 2 into number 3 and so on….  

MATTIA: But where could go the poor customer who was in room number 10 go? since there 
isn’t an 11th room? 

LUCIA: In this hotel instead, according to the porter, there are infinite rooms, don’t you get it 
yet? One for all natural numbers. Every room therefore has a room next to it. 

MATTIA: Precisely. In other words there is no last room. There is room number 1, 2, 3, 4 and 
so on, endlessly.

ROBERTO: I think I am starting to get it. 
MARISA: Me too….but not quite. 

A group of basketball players arrives. Their coach starts talking to the porter while the young 
players start practising with the ball hitting some ornaments. 
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COACH: Hello, I’ve read the sign out of the door, but frankly I haven’t understood whether 
you’ve got some vacancies or not. We would like to stay here a couple of nights, we would need 
seven rooms, if that’s possible… 

PORTER: Yes, Yes no problem at all, just give me some time to prepare them for you, a couple 
of hours not more than that. 

COACH: Thanks. See you later. Later! 
PORTER: Goodbye! 
MARISA: What will he do now? He has already given room number 1 to the previous 

customers and they haven’t even come back yet! 
MATTIA: That’s easy! he only needs to tell all the customers who occupy the rooms from 

number 2 onwards to move up 7 rooms: the customers in room number 2 will move up to room 
number 9, and the people in room number 3 will move to room number 10 and so on. 

LUCIA: So basically we could say that customers occupying room number tot will find himself 
in room number tot + 7. 

While the friends continue their discussion the porter talks on the phone. 

PORTER: Franco, sorry but a group has arrived. You need to free up 7 other rooms. Please 
make all customers from room number 2 move 7 rooms ahead. 

FRANCO: Ok, ok no problem; the system is always the same (to the audience). To be honest I 
don’t really understand much about it! 

PORTER: Thank you…what would I do without you! Well, I have to leave you now, the 
customers of room number 1 are coming in, is their room ready? 

FRANCO: It will be in a couple of seconds. 
PORTER: Good, Cheers mate. Bye! 
SILVIA: Hey we’re back! We are a bit early. Is our room ready? 
PORTER: Of course. Here is your key. (Talking to 2 new customers) Hello, how can I help? 
PAUL: Yeah hi, we would like to spend 2 nights here. In our village in southern Carinzia, 

Treffen we heard about some Roman stuff in the area and we would like to visit it. Have you got 
vacancies? 

PORTER: yeah sure! No problem at all. 
FRANZ: Nice! We’ll be back in an hour! 

The porter rings Franco and asks him to move the customers another 2 rooms ahead. 

PORTER: Listen Franco, I’ve got a new commission for you. You must move the customers 
another 2 rooms ahead. 

MARISA: There is one more thing I can’t understand….The porter said he never has to send 
away anybody. I would really like to know what would happen if he had to deal with an infinite 
number of customers… 

LUCIA: Hey…look what funny clothes these girls are wearing,…they are cabaret girls. 
DANCER: Hello! 10 (according to how many girls there are who dance) dancers from New 

York! We’d like to spend 3 nights here and we would like to know if there are any vacancies. 
PORTER: Of course!! Just give me the time to prepare them. 
DANCER: Thank you very much. In the meantime we’ll do some rehearsals. 
PORTER: Hello? Franco? It’s me; I need another 10 rooms. 
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FRANCO: Ok they’ll be ready in an hour! 
PORTER: Thank you. 
MATTIA: Going back to what we were saying…We could ask the porter since he is so sure he 

will never be forced to reject any customer. He must have already thought of the eventuality of 
having infinite customers. A hotel that has infinite rooms must be able to accommodate infinite 
customers right? 

MARISA: Excuse me; now that you seem to have some spare time on your hands, could we 
just finish off what we were saying before? 

PORTER: sure! What’s up guys? 
ROBERTO: We’ve understood what happens when customers arrive, but what we don’t 

understand is what you would do if you had to accommodate an infinite number of customers? 
PORTER: You mean what would happen if I had to receive an infinite number of customers? 
LUCIA: Yes, I can’t imagine a way of accommodating all of them, cause even receiving them 

in groups of a 100 or a 1000 at the time the job would last forever. It seems tricky! 
PORTER: It isn’t tricky at all! It’s just you not using your mind imaginatively! Its easily done: 

I would call Franco and tell him to move all customers in the room double the number of the one 
they had previously been accommodated in. For example the customer of room number one would 
be asked to move to room number 42 and the same would happen to all the other customers. You 
understand now? 

MARISA: Of course! Why didn’t I get it before? It seems a miracle, but it is instead perfectly 
logical! No odd number is double another number. And since odd numbers are infinitive…we 
would immediately have infinite free rooms! 

FRANCO (To the audience, whispering): They’ve been talking for so long and they say that 
they’ve understood everything. I instead, have to work like a dog and I haven’t understood a 
thing!!! 

THE END 

4 The class’ activity before staging the show 

In my opinion this work fits in the conference’ theme “integrating the history of mathematics into 
the teaching of mathematics”. Not only because it was inspired by the Hilbert’s metaphor but also 
because during the preparation we have read in the classroom a short dialogue from “Discorsi e 
dimostrazioni matematiche sopra due nuove scienze” written by Galileo Galilei (1638, 1954). 
More exactly, we have examined the following part concerning the bijection between natural 
numbers and their squares, included in the “Giornata Prima”10:

FROM “GIORNATA PRIMA”, see (Galilei, 1954) 
[78] 
[…] 
SALVIATI: … I take for granted that you know which of the numbers are squares and which 
are not. 

                                                     
10 The “First Day”. “Discorsi e dimostrazioni matematiche sopra due nuove scienze” is written in the 

form of a dialogue between three characters: Simplicio, Sagredo e Salviati taking place on different days. 
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SIMPLICIO: I am quite aware that a squared number is one which results from the 
multiplication of another number by itself; thus 4, 9, etc., are squared numbers which come 
from multiplying 2, 3, etc., by themselves. 
SALV. Very well; and you also know that just as the products are called squares so the factors 
are called sides or roots; while on the other hand those numbers which do not consist of two 
equal factors are non-squares. Therefore I assert that all numbers, including both squares and 
non- squares, are more than the squares alone, I shall speak the truth, shall I not? 
SIMP. Most certainly. 
SALV. If I should ask further how many squares there are one might replay truly that there are 
as many as the corresponding number of roots, since every square has its own root and every 
root its own square, while no square has more than one root and no root more than one square. 
SIMP. Precisely so. 
SALV. But if I enquire how many roots there are, it cannot be denied that there are as many as 
there are numbers because every number is a root of some square. This being granted we must 
say that there are as many squares as there are numbers because they are just as numerous as 
their roots. Yet at the outset we said there are many more numbers than squares, since the larger 
portion of them are not squares. Not only so, but the proportionate number of squares 
diminishes as we pass to larger numbers. Thus up to 100 we have 10 squares, that is, the 
squares constitute 1/10 part of the all numbers; up to 10000, we find only 1/100  
[79] 
part to be squares; and up to a million only 1/1000 part; on the other hand in an infinite 
number, if one could conceive of such a thing, he would be forced to admit that there are as 
many squares as there are numbers all taken together. 
SAGREDO: what then must one conclude under this circumstances? 
SALV. So far as I see we can only infer that the totality of all numbers in infinite, that the 
number of squares is infinite, and that the number of their roots is infinite; neither is the 
numeber of squares less than the totality of all numbers, nor the latter greater than the former; 
and finally the attributes “equal”, “greater”, and “less”, are not applicable to infinite, but only 
to finite quantities. 
[…] 
After having red both, the dialogue and the plot, we came to the translation of the two 
situations described in using functional representations in the cartesian plane.  
“Hotel Aleph” shows the bijection between natural and odd numbers: nnh 2)( , this can be 
seen as a line11 drawing a graph in the Cartesian plane; Galileo example about natural numbers 
and their squares in the modern mathematical form gives rise to: 2)( nng , that is half of a 
parabola. 
Since I was working with young pupils I didn’t go over in mathematical elaboration. I didn’t 
gave them the definition of an infinite set, as I had done with the older students involved in “Si 
les mathématiques m’étaient contées…”. So we concluded with the same kind of perplexity 
Galilei expressed just a few lines before the fragment above: 
[77] 
[…] 
SALV. This is one of the difficulties which arise when we attempt, with our finite minds, to 
discuss the infinite, assigning to it those properties which we give to the finite and limited; but 

                                                     
11 Even if full of holes! 
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[78] 
[…] 
this I think is wrong, for we cannot speak of infinite quantities as being the one grater or less 
than or equal to another. 
[…] 

5 Final remarks and … a strange coincidence 

Those kind of activities are really interesting for different reasons: 
1. Working together with colleagues teaching different subjects is really difficult and 

useful at the same time. They have to understand the mathematical concept and for this reason 
I had to be very clear. In this case, we had a lot of discussions which were often philosophical. 
All these meetings forced me to rewrite the text completely so this version is quite different 
from that in (Vicentini, 1999). 

2. As I said above, we concluded the work with a perplexity. At the end of the play I let 
Marisa say: “It seems a miracle, but it is also perfectly logical!”. I think that, considering the 
age of my students, what we did was enough. As a matter of fact, I still reaffirm that a “good 
perplexity” is a better source of learning than a “pseudostructured assurance”.

3. The students were happy to do mathematics and found this work amusing! 
4. The parents were surprised to notice that “simple mathematics” can hide unsuspected 

difficulties so we did also a little divulgation work.  
As a conclusion I tell you about a strange coincidence. One evening, during the preparation of 

this show, I received two phone calls: one was from my colleague Laura Delpin, the Italian teacher 
working with me at the project, and the other was from Angiola Maria Restaino, my actual 
headmistress who was also my headmistress at the time I was trying unsuccessfully to stage the 
play. Both told me they had read on a newspaper that Luca Ronconi, a very famous Italian 
director, was representing in Milan for the Piccolo Teatro, a show written by John D. Barrow 
(2003) very similar to “Hotel Aleph”12. I was really excited, so I wrote an e-mail message to 
Ronconi telling him about the story of Hotel Aleph. He was very kind and gave me the possibility 
to go to Milan to see his show Infinities, see (Barrow, 2003), even if all the tickets were already 
sold.
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ABSTRACT 
This paper reports on attempt to integrate history of mathematics in discovery-based learning. Theoretical 
grounding of the idea is discussed. An exploratory environment on geometry of a triangle is described. It is 
designed to support and motivate students’ activities in learning through inquiry. Conjectures about 
properties of Lemoine point and Simson line are generated and proved by students using tutorial guidance of 
e-learning textbook. 

1 Introduction 

History of mathematics has always been that branch of mathematics, which actually all those 
concerned with the process of learning or teaching mathematics displayed their interest to, from 
primary students to outstanding mathematicians, naturally, according to their levels of 
understanding occurring events. The same situation remains nowadays. Moments of lectures and 
seminar works in which mathematical discoveries, even local and insignificant, could be traced 
with analysis of historical information about them, provide for students greater advance in 
understanding different ideas and theories, motivation for further learning, show brilliant richness 
of human activities in mathematics. Unfortunately, in our time we cannot speak of full integration 
of history of mathematics in learning mathematics, it is yet prematurely now, though indisputable 
advantages of that step at any stage of learning mathematics are out of doubt. At the same time, in 
discovery-based learning history of mathematics is most naturally integrated in mathematics 
education. Learning through inquiry a certain property of mathematical object, every student can 
trace at once how it happened for the first time in mathematics, which directions in research were 
more preferable in certain times, what questions had been left out of consideration due to some 
reasons. In the paper we will attempt to show a great potential of such integration for mathematics 
education. What tools can we provide to help students learn and teachers teach through inquiry? In 
what way can the history of mathematics be integrated in discovery-based learning? Is inquiry, 
supported with materials from the history of mathematics, really an effective way to learn and 
teach new mathematical content? Our paper addresses these questions. 

2 Theoretical grounding of the idea 

In the twentieth century calls for an increased emphasis on discovery and inquiry in learning 
moved into the educational research limelight at least three times (Cuban, 1986, 1988; Cohen, 
1988). Intense, although periodic, interest in discovery learning was based on a belief that this 
kind of learning has several advantages not shared by learning through instruction (Dewey, 1916). 
Bruner (1961) and Suchman (1961) stressed the importance of learning through discovery and 
offered some empirical evidence of its efficacy.  
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In mathematics education initial ideas of discovery-based learning had arisen long before Polya 
(1962), but he was the first, who had made the theoretical foundation for this method of teaching 
and attracted the interest of broad mathematical community to it. More recently, there was a 
consensus that students should learn through inquiry and through the construction of their own 
mathematics (Davis, 1991; Harel & Papert, 1990; NCTM, 1989). 

In the way of forming and developing mathematics resembles other branches of human 
knowledge: we ought to reveal properties before proving them, we are not only to prove, but also 
to predict, therefore process of teaching mathematics (as well as teaching individual topics of 
various mathematical subjects) should, to a certain extent, initiate the process of mathematical 
discovery. Stolyar (1981) pointed out that it is easier for a student, under appropriate arrangement 
of teaching, to act as a mathematician, in other words, to reveal the truth, than to learn a “ready-
made” system of statements and proofs without understanding their origin, meaning and 
interrelations. 

At the same time, every new problem is an unsolved one for a student, therefore the same 
student gets additional motivation to make a “small” discovery for himself, solving this problem 
(Yevdokimov, 2003). Undoubtedly, students’ mathematical activity will become much narrower, 
when they have to find solution of the property, which is already formulated in the final form. But 
we have the opposite situation in discovery-based learning, where students have to reveal this 
property. 

When discovery is carried out at the process of teaching, in other words, a student reveals for 
himself/herself properties, which were discovered in mathematics long before, he/she reasons of 
them as a pioneer. It’s one of the key points in this method of teaching. However, in any teaching 
process students need in textbooks. Of course, these textbooks will depend on the methods of 
teaching, which are applied to, but we should like to point out that any book on mathematics 
designed for a student having an inquiring mind, is usually oriented towards lengthy usage. It is 
presupposed that a student studies the contents of such books, various properties and theorems 
with pencil and paper, as they used to write in prefaces to many textbooks on mathematics as early 
as twenty and more years ago. The same is true for the problems suggested for students’ work on 
their own. However, it is necessary to note that the contents of the overwhelming majority of 
textbooks are composed in such a way that the student obtains “ready-made” statements of various 
properties in the form of already proved theorems or problems for independent solving. By all 
means, in mathematics education it remains a very difficult task to compile a good textbook so that 
a student may independently come to a discovery of a certain property, i.e. that the statement of a 
property would, if not conclude students’ inquiry, be necessarily present in a clear form at the 
beginning of it. However, in teachers’ practice the use of teaching methods aimed at the 
stimulating students’ research activities in learning mathematics (in particular, geometry) is not 
such a rare case. This is greatly facilitated by the use of ICT and dynamic geometry softwares 
(Elsom-Cook, 1990; Mariotti et al., 1997; Arzarello et al., 1998; Furinghetti, Olivero & Paola, 
2001). Santos et al. (2003, p.120) note that 

‘Geometric and dynamic approaches to the problem might provide a means for students to 
visualize and examine relationships that are part of the depth structure of the task’. 

As a didactical support for the conception of discovery-based learning with using and analysing 
materials from the history of mathematics we would like to describe (and present on the 
conference) two fragments of the e-learning textbook of problems in history of mathematics on 
geometry of a triangle. Following Lewis, Bishay, McArthur & Chou (1993) our aim is to show 
that students can learn effectively through appropriately designed inquiry environment with using 
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materials from the history of mathematics. We chose geometry of a triangle as a topic for such 
environment for the following reasons: 

first of all, there is rich historical material, which is necessarily to be used in learning for 
achieving students’ advanced understanding of the carried out research in the topic (in the 
USA triangle geometry was known as advanced geometry or college geometry, Davis, 
1995);
most of the properties in geometry of a triangle are the pearls of the elementary geometry 
(see, for example, Coxeter & Greitzer, 1967). At the same time, even students with high 
mathematical abilities often have experienced significant difficulties in solving some of 
the problems despite simple conditions for the ones, when they took a usual course of 
elementary geometry; 
all properties can be successfully investigated and posed by students using geometry 
software; 
research work of students can be easily structured in the scope of every discovered 
property; 
all properties have plenty of links to each other (Altshiller Court, 1969). 

Summing up the reasons above we would like to quote the well-known Crelle’s words: 

It is indeed wonderful that so simple a figure as the triangle is so inexhaustible in its properties. 
How many as yet unknown properties of other figures may there not be? (1821, p.176). 

3 Description of the e-learning textbook 

Concerning the principles of construction for the e-learning textbook we hold the following order. 
The e-learning textbook consists of separate small units, which, on the one hand, have numerous 
connections to each other. On the other hand, the units can be studied and used by students 
according to their preference. It is supposed that students took a usual course in elementary 
geometry before studying the units. Within each small unit tasks are structured according to the 
following order: 

1. The construction of a model general for the unit, on the basis of an initial problem with 
necessary mathematical understanding of a concrete historical situation described in the 
model (i.e. the sequence of discoveries performed, the use of certain mathematical 
apparatus, etc.). 

2. Guess, search for a way of constructing a small mathematical theory corresponding to the 
given model. 

3. The application of this theory for discovering further properties of mathematical objects 
of this model. 

Following Brown (1976), Lakatos (1976), Polya (1962) and Steen (1988), we suggest that students 
will be involved in the following discovery learning activities, while studying e-textbook on 
history of mathematics: generating conjectures or hypotheses, gathering observations that bear on 
conjecture or hypothesis, confirming or disconfirming hypotheses, refining hypotheses, explaining 
or proving a hypothesis. 

We would like to emphasize that the proposed e-textbook whose fragments will be shortly 
described in the paper, should by no means be considered as testing material where one can choose 
various variants of answers, find correct one(s) among them and go forward discovering and 
rediscovering various properties of different geometrical objects. This e-textbook is, first of all, a 
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didactical tool, computer-based environment allowing one to successfully integrate history of 
mathematics into learning mathematics. It is designed, like the above mentioned usual textbooks, 
for lengthy usage. 

However, in the teaching process we intentionally presuppose students’ combined work both 
with the e-textbook and with pencil and paper because 

There is a fundamental difference in the construction of the geometrical figure between doing it 
with paper-and-pencil and doing it in a dynamic geometry environment: whereas in the first 
one it is the construction of a particular case, in the latter one it is actually the construction of a 
“general case”. (Sanchez & Sacristan, 2003, p. 116) 

It is important for teaching that students should perceive and understand this difference. 
Also, we would like to stress that every next step from one link to the following one should be 

performed by the student, if he/she is fully aware of the character of the process carried out. 
Like other exploratory environments (McArthur & Lewis, 1991) our e-textbook on history of 

mathematics permits mixed initiative and control. On the one hand, students are encouraged for 
self-controlled investigations. On the other hand, designed passive constraints and dynamic 
geometry software provide appropriate tutorial guidance for students. 

Even before developing the e-textbook, we observed, working with students, that while using 
history of mathematics and teaching methods through inquiry in learning geometry, students’ 
actions can be described by the scheme below. 

Geometrical situation is given 
for consideration by students

Analysis of properties, which 
had already been known for 
students before

Search of unknown properties 
for students

Way of conjecture

Posed problem

Possible solution

Way of research

Investigating properties of some 
mathematical objects

Posed property

Diagram 1 
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In the left chain of the scheme visual thinking of students was employed to a larger extent, in the 
right one – analytic thinking of students. While compiling materials and structures of tasks in the 
e-textbook, following Sierpinska (2003), we tried to achieve a certain balance between visual and 
analytic thinking of students in their study of the e-textbook. We took into account that in some 
tasks of the units priorities should be given to activating visual thinking of students, while in other 
tasks – to activating analytic thinking. 

Now, turn to the short description and analysis of the presented fragments from the e-learning 
textbook.* Here, we would like to consider two units: “Lemoine point” and “Simson line”. At first, 
we give common comments to both units and after that we characterize peculiarities for each of 
them.

As we mentioned above at the beginning of the unit an initial problem, in other words, a 
specific problem, which defines the specific focus of inquiry, is given with historical references. 
Using mathematical terminology we could say that we propose to consider a specific problem with 
its neighborhood in historical-mathematical sense: when a certain problem was posed for the first 
time, who was the author, whether that author proved/solved a problem on his/her own, who of 
other mathematicians was interested in it, for what reasons, how long a problem was an unsolved 
one, etc.  

Using computer-based environment students can choose one of two ways: they can solve a 
problem on their own and compare solution with the given one by clicking on the link Solution,
however, if they have difficulties in solving on their own, the link Learning is more preferable. 

The most important thing for students, while solving a specific problem through the Learning
link, is to perceive ideas and activities of discovery-based learning for their own inquiry in the 
unit, though a certain property is already posed in the form of a specific problem at the beginning 
of students’ investigations. After that the following questions arise for students in each unit, when 
the solving/proving of a specific problem is over: 

What are the other properties of certain geometrical object(s) from a specific problem? 
How could you use properties of geometrical object(s) from a specific problem for 
discovering other properties for the same or other geometrical object(s)? 

Like Brown and Walter (1990) we propose "situation", an issue, which is a localized area of 
inquiry with features that can be taken as given or challenged and modified. We would like to note 
that there are no ready-posed problems for students starting from this stage in each unit. The rest 
of the properties for any mathematical object (from a specific problem) were to be discovered by 
students with the help of information communication technologies, i.e. using computer-based 
environment and dynamic geometry software. And again, the questions above are to be considered 
with their neighborhoods in historical-mathematical sense. 

Now, using computer-based environment students can choose one of two ways for further 
investigations: they can become acquainted with a certain property of geometrical object(s) 
including its proof, which was proposed by Euler (for example) by clicking on the link Euler’s 
property. However, students can take part in discovery of this property. They accept this way by 
clicking on the link Discover Euler’s property. Using the latter link students receive a step-by-step 
system of links, which consists of local discoveries (links Discover 1, Discover 2 and so on) for 
finding the final result – discovery of Euler’s property. In the similar way students have been 
asked to rediscover other results with the help of computer-based environment. 

                                                     
* By this moment we used five units of the e-textbook in the work with students, but some of units need 

to be improved in the sense of optimal using methods and ideas of learning by discovery. 
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On the one hand students take an active research participation in computer simulation of 
rediscovering process in geometry of a triangle. On the other hand, on the every stage computer-
based environment gives students help in choosing directions for inquiry. For example, after 
clicking the link Discover Aussart’s property students get short analysis of conditions with a hint 
‘You have to build up additional objects for further investigation. Please give your propositions’
(with multiple choice answers). After choosing the correct answer students take the next step and 
so on. 

Turning to the units, in the case of “Lemoine point” we would like to show and analyse 
students’ work while they discovered Aussart’s property. When students had successfully gone 
through the specific problem of the unit, they had the following geometrical situation: 

There is a triangle ABC and a point K such that the sum of the squares of the distances from 
that point to the sides of the triangle is the least (see Figure 1). 

A

B

C

K

Figure 1 

It might be, of course, the supposition that all the three points lie on the same line (the similar idea 
is in the unit “Simson line”, it is true there, but for the other three points!). Or is it possible that the 
point K has the same property with respect to the vertices of the triangle, i.e. the sum of the 
squares of the distances from K to the vertices of the triangle is the least? There might be quite a 
lot of such questions, and it is their study that constitutes the search for the properties of the point 
K. Certainly, the depth and broadness of the questions appearing in students for possible study and 
supposed conjectures depend, to a great extent, on the degree of students’ mathematical training, 
on their advanced understanding of mathematics. 

Nevertheless, one of the most natural actions in such a geometrical situation was to draw lines 
going through the point K and, respectively, through one of the vertices A, B and C of the triangle, 
and to investigate the properties of line segments AD, BE and CF respectively (which was 
performed by Aussart in 1848, see Figure 2 below) and to which students came on their own. 

A

B

C

K

D

E

F

Figure 2 

Students were well aware of the properties of bisectors of a triangle, therefore some of the first 
suggestions of students were as follows: 

Peter: “If the line segment BE were a bisector, then we would be able to assert that 
AE/EC=AB/BC. Perhaps, in this case there is some relationship too”. 

Ann: “It is necessary to consider if there is relationship between the parts into which every side 
is divided by corresponding line segments and the sides of the triangle”. 
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Thus, from the statements proposed we could see that the students had actually come closely to 
the discovery of Aussart’s property. 

Concerning the other unit we would like to characterize some problems, which are connected 
with the line that is usually called the Simson line (though it was probably revealed by another 
mathematician Walles in 1798). The Simson line of a given triangle ABC corresponding to the 
point D of the circle described around it, is called the line going through the base of perpendiculars 
M, N and L respectively, drawn from D to the sides of the triangle (see Figure 3). 

A B

C D

N

L

M

Figure 3 

Out of numerous interesting properties of this line, let us point out that the angle between Simson 
lines, corresponding to the points M and N of the described circle, is measured by the half of the 
arc MN of this circle. Students were able to discover this property while they investigated a mutual 
location of two Simson lines with help of computer-based environment. After that students 
concluded at once that Simson lines of diametrically opposite points of a described circle, are 
mutually perpendicular (very interesting and useful property for further students’ investigations). 
Let us add that the point of intersection of mutually perpendicular Simson lines lie on the circle of 
Feuerbach (circle of nine points). Therefore, it allows one, and students did it successfully, to give 
another definition of the circle of Feuerbach as a geometrical place of points of intersection of 
mutually perpendicular Simson lines. 

4 Conclusions 

We would like to note that using any dynamic geometry software in addition to computer-based 
environment essentially enriches discovery learning on the base of this e-learning textbook. We 
used Cinderella (Richter-Gebert & Kortenkamp, 1999) for support of the e-textbook in the work 
with students. 

Using e-learning textbook of problems in history of mathematics by students gives them 
possibility for modelling a mathematical problem in its historical context, to carry out analysis of 
the learning materials and reveal mathematical properties new for themselves with ways of their 
solving. Presented e-learning textbook is designed, first of all, for discovery-based learning, 
though it can successfully be used with other methods of teaching too. 

Of course, only the verbal description of the computer-based environment does not look so 
attractive and effective as it is in tutorial work using computer, but in the presentation, even for 
short time this e-learning textbook seems very impressive and helpful. 
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In my work I endeavoured to join three things important, in my opinion, in teaching 
mathematics: history of mathematics, discovery-based learning and using information 
communication technologies. By this moment the work on compiling this e-learning textbook is 
not over, but the author hopes that the paper and presented fragments give possibility for interested 
teachers and educators to appreciate the author’s ideas. 
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ABSTRACT 

“ ‘Where can I find some good problems to use in my classroom?’ is a question I am often asked 
by mathematics teachers. My answer is simple: ‘The history of mathematics’ ” (Swetz, 2000, 
p.59). This judicious and learned advice seems to apply at any level of mathematics, and can be 
applied to different didactical and mathematical purposes. For example, one may want to illustrate 
unsolvable problems, problems, which are unsolved yet, problems that motivate the development 
of a domain, recreational problems, clever/alternative/exemplary solutions and more (Tzanakis & 
Arcavi, 2000).  

An inspiring source of learning is to provide students with a problem taken from history, to 
request them to solve it, and then provide the solution to such a problem as solved in the past. If 
appropriate problems are chosen, the contrast between our solution (our concepts and notations) 
with those from the past can be a bountiful source for learning. Students may have to decipher 
alien notations, retrace thought processes, and make sense of an alternative solution approach. 
Thus another person’s solution becomes a problem in itself. In the talk examples were presented 
and discussed. 
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ABSTRACT 
The aim of the workshop is to read and discuss a few problems from al-Khwarizmi’s and Abu Kamil’s 
treatises. We hope you will enjoy reading these texts and will be persuaded that your pupils might enjoy it 
too. We find it worth proving that the ancient way of setting and solving problems can throw light on a 
timeless subject and improve motivation. And for further ambition, Al-Khwarizmi’s and Abu Kamil’s 
treatises provide material to reflect 

• on the way complex calculations are carried out without symbols and on limits of natural language, 
• on what a proof could be for an algebraic problem before Algebra was founded with axioms. 

In the workshop we read and discussed a few problems from both treatises, The Algebra of
Muhammed Ibn Musa Al-Khwarizmi and The Algebra of Abu Kamil Shuja Ibn Aslam Ibn 
Muhammad. 

Al-Khwarizmi (native of Central Asia, 780-850) is still considered as the original inventor of 
Algebra because he was the first mathematician who had ever written on what Algebra is, on what 
the objects of Algebra are, and what the rules for Algebra are. He particularly explains the rules to 
solve the three canonical quadratic equations, using simple prose, and he establishes their accuracy 
by the way of geometrical proofs. Both rules in simple prose and geometrical proofs can easily be 
submitted to pupils either at the beginning of the lesson or at the end of it, according to each 
teacher’s pedagogic preferences. After explaining the rules, al-Khwarizmi uses them and solves 
forty problems. Four of them are presented further on. They are good examples of the practical 
questions that used to be solved, such as inheritance, partition, measuring of lands. Two of them 
lead to quadratic equations, while the two others lead to simple equations. 

Abu Kamil (probably native of Egypt, 850-930) takes over many of Al-Khwarizmi’s problems 
in his own treatise, (he has sixty-nine problems instead of forty) but often adds further solutions to 
those found in Al-Khwarizmi’s treatise. Concerning the three quadratic equations, Abu Kamil 
gives the same rules as Al-Khwarizmi does to calculate the value of the root, but he also gives 
three others to get the value of the unknown square directly, without calculating the value of its 
root first. He explains these extra rules in simple prose too and also establishes their accuracy by 
the way of geometrical proofs, the peculiarity of which is to represent a square as a segment. 

For the four following problems, our purpose is to emphasize either the algebraic method or the 
geometrical proof, either in al-Khwarizmi’s treatise or in Abu Kamil’s one, according to what is 
more specific in each case. French translations for al-Khwarizmi’s extracts are available in [3]. 

A problem about properties 

I have multiplied one-third of a root by one-fourth of a root, and the product is equal to the root 
and twenty-four dirhems. 
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Computation: Call the root thing; then one-third of thing is multiplied by one-fourth of thing; 
this is the moiety of one-sixth of the square, and is equal to thing and twenty-four dirhems. 
Multiply this moiety of one-sixth of the square by twelve, in order to make your square a whole 
one, and multiply also the thing by twelve, which yields twelve things; and also four-and-
twenty by twelve: the product of the whole will be two hundred and eighty-eight dirhems and 
twelve roots, which are equal to one square. The moiety of the roots is six. Multiply this by 
itself, and add it to two hundred and eighty-eight, it will be three hundred and twenty-four. 
Extract the root from this, it is eighteen; add this to the moiety of the roots, which was six; the 
sum is twenty-four, and this is the square sought for1. This question refers you to one of the six 
cases, namely, “roots and numbers equal to squares” (Rosen, p. 40-41). 

If using modern algebraic notation for better understanding and assuming that the unknown 
quantity is 1x , we may write: 

1
3

x 1
4

x 1x 24 1
2

1
6

x2 1x 24 1x2 12x 288

The solution for this quadratic equation comes from the rule of the case, bx c 1x2, (b and c

being positive numbers), which is the sixth one in Al-Khwarizmi’s classification. 

The sixth rule in Al-Khwarizmi’s classification and its geometrical proof: 

Roots and Numbers are equal to Squares; 
for instance, “three roots and four of 
simple numbers are equal to a square.” 
Solution: Halve the roots; the moiety is 
one and a half. Multiply this by itself; the 
product is two and a quarter. Add this to 
the four; the sum is six and a quarter. 
Extract its root; it is two and a half. Add 
this to the moiety of the roots, which was 
one and a half; the sum is four. This is the 
root of the square, and the square is 
sixteen. (Rosen, pp. 12-13) 

3 x 4 1 x2

1 1
2

2 1
4

2 1
4

4

6 1
4

2 1
2

1 1
2

2 1
2

4
16

Now we can watch the different steps of the geometrical proof on figure 1 and pay attention to the 
fact that geometrical steps and numerical steps correspond very well: 

Demonstration of the Case: “three Roots and four of Simple Numbers are equal to a Square” 

Let the square be represented by a quadrangle, the sides of which are unknown to us, though 
they are equal among themselves, as also the angles. This is the quadrate AD, which comprises 
the three roots and the four of numbers mentioned in this instance. In every quadrate one of its 
sides, multiplied by a unit, is its root. We now cut off the quadrangle HD from the quadrate 
AD, and take one of its side HC for three, which is the number of the roots. The same is equal 
to RD. It follows, then, that the quadrangle HB represents the four of numbers, which are added 
to the roots. Now we halve the side CH, which is equal to three roots, at the point G; from this 
division we construct the square HT, which is the product of half the roots (or one and a half) 

                                                     
1 According to the beginning of the question, that should be: “and this is the root sought for”.

319



multiplied by themselves, that is to say, two and a quarter. We add then to the line GT a piece 
equal to the line AH, namely, the piece TL; accordingly the line GL becomes equal to AG, and 
the line KN equal to TL. Thus a new quadrangle, with equal sides and angles, arises, namely, 
the quadrangle GM; and we find that the line AG is equal to ML, and the same line AG is equal 
to GL. By these means the line CG remains equal to NR, and the line MN equal to TL, and from 
the quadrangle HB a piece equal to the quadrangle KL is cut off. 
But we know that the quadrangle AR represents the four of numbers, which are added to the 
three roots. The quadrangle AN and the quadrangle KL are together equal to the quadrangle AR,
which represents the four of numbers. 
We have seen, also, that the quadrangle GM comprises the product of the moiety of the roots, 
or of one and a half, multiplied by itself; that is to say two and a quarter, together with the four 
of numbers, which are represented by the quadrangles AN and KL. There remains now from the 
side of the great original quadrate AD, which represents the whole square, only the moiety of 
the roots, that is to say, one and a half, namely, the line GC. If we add this to the line AG,
which is the root of the quadrate GM, being equal to two and a half; then this, together with 
CG, or the moiety of the three roots, namely, one and a half, makes four, which is the line AC,
or the root to a square, which is represented by the quadrate AD. Here follows the figure. This 
is what we were desirous to explain. (Rosen, pp. 19-20) 

N

T

R

A

D C

H

G

B

L

K

M

1x

1x

4

4

3

2 1
2

2 1
2

1 1
2

Figure 1 

A problem about men 

Instance 

You divide one dirhem amongst a certain number of men, which number is thing. Now you add 
one man more to them, and divide again one dirhem amongst them; the quota of each is then 
one-sixth of a dirhem less than at the first time. 
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Computation 

You multiply the first number of men, which is thing, by the difference of the share for each of 
the other number. Then multiply the product by the first and second number of men, and divide 
the product by the difference of these two numbers. Thus you obtain the sum which shall be 
divided. Multiply, therefore, the first number of men, which is thing, by the one-sixth, which is 
the difference of the shares; this gives one-sixth of root. Then multiply this by the original 
number of men, and that of the additional one, that is to say, by thing plus one. The product is 
one-sixth of square and one sixth of root divided by one dirhem, and this is equal to one 
dirhem. Complete the square which you have through multiplying it by six. Then you have a 
square and a root equal to six dirhems. Halve the root and multiply the moiety by itself, it is 
one-fourth. Add this to the six; take the root of the sum and subtract from it the moiety of the 
root, which you have multiplied by itself, namely a half. The remainder is the first number of 
men; which in this instance is two.” (Rosen, pp. 63-64) 

For better understanding of which problem is 
concerned, it is useful to generalize the 
question. 

Let us suppose the amount a is firstly 
divided among x men and secondly divided 
among x + b( ) men, each one getting then c 

less than at the first time. 
The method is described opposite within 

four steps. 

a
x

− a
x + b

= c

a − ax
x + b

= cx

a x + b( )− ax = cx x + b( )

a = 1
b

cx x + b( )[ ]

 

According to Al-Khwarizmi’s values, we get the equality 
1
x

− 1
x +1

= 1
6

, which leads to this one: 1 = 1
1

× 1
6

x x +1( ) and then to the quadratic equation: 

1x2 +1x = 6, to be solved with the fourth rule in al-Khwarizmi’s classification. The canonical 
example for the fourth rule is: 1x2 +10x = 39. 

Abu Kamil’s rule to get the square directly and its geometrical proof: 
For the solution which reveals the square, 
one multiplies the 10 by itself; it is 100. 
Multiply by the 39; it is 3900. Take 1

2  the 

100 and it is 50. Multiply it by itself; it is 
2500. You add it to 3900. It is 6400. Take 
its root and it is 80. Subtract it from [the 
sum of] 50 which is 1

2  of 100 and 39, the 

equal of the square2. It comes to 89. There 
remains 9, the square. [5, p. 32] 
What we can write today: 

x 2 = 1
2

b2 + c −
b2

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

2

+ b2c  

 

1 x 2 + 10 x = 39
M 100
M 100 × 39
M 3900
M 50
M 2500
M 2500 + 3900
M 6400
M 80
M 50 + 39
M 89 − 80
9

 

 
Here is Abu Kamil’s proof for the rule of the square: 

                                                      
2 It might rather be “the equal of square and roots”. 
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The rule of the solution which yields the square is that one construct the square as the line AB: 

Add 10 of its roots or line BG; or, line AG is 39. If one wishes to know how much AB is, 
construct a plane square quadrilateral on line BG. It is surface DHBG. It is 100 times line AB 
multiplied by one of its units because line BG is 10 roots of line AB. Ten roots of the thing 
(square) multiplied by itself is equal to the thing itself 100 times. We construct the line AM 
equal to 100 and accordingly AG is 39. Construct surface AN; it is 3900 since line AG is 39 and 
line AM has a length of 100. Draw line BE parallel to the 100 line to give surface AE equal to 
the square BH for it is also 100 times as large as line AB multiplied by its unit. This is since the 
length of the line AM is 100. Because of this the surface DN also is 3900; it is the product of 
line GH by line HN for HG is equal to HD. Line GN is 100 for it is equal to AM. Divide it in 
half by point L. Already one has added to line NH. In view of this, the surface is the product of 
NH by line HG plus the square quadrilateral on the line GL equal to the square quadrilateral on 
line LH just as Euclid said in the second chapter of his book. But the surface NE by HG is 3900 
and the square quadrilateral on line GL is 2500. We add them to obtain 6400. It is the product 
of line LH, or 80 by itself; line GH is equal to BG or equal to lines LG, BG, or 80. And when 
you subtract BG and BL whose sum is 80 from lines AG and GL which are 89, there remains 
line AB which equals the square, 9. This is what it was desired to know. (Levey, 1966, p. 36). 

AB 1x2 
BG 10x = 10 AB  
AB+BG 1x2 +10x  
AG 39 
[BH]=DHGB=BG2 100.AB 
AM 100 
[AE]=AM.AB 100.AB 
[AE]=[BH]  
AM.AG 100×39 
[AN] 3900 
AM=BE=GN 100 
[AE]+[BN] 3900 
[BH]+[BN] 3900 
[DN] 3900 
HD.HN=HG.HN  
GL=LN 50 
HG.HN+GL2 3900+2500 
(II, 6) LH2 6400 
LH 80 
LG+GH 80 
LG+GB 80 
LG+GA 50+39 
LG+GA 89 
GA – GB 89–80 
AB 9 

Figure 2 

 

Let us notice again that the geometrical steps agree with the numerical ones, but the main thing to 
be paid attention to here is that the unknown square is constructed as line AB, which is a way to 

1x2

L

E NM

HD

A B G

39

10x

50

80

100 3900

3900

100x2
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get a visualization of the calculations on a plane figure. Abu Kamil refers to Euclid’s Elements, 
proposition 6 in Book II. (Figure 2) 

A problem about land measuring 

If some one says: “There is a triangular piece of land, two of its sides having ten yards each, 
and the basis twelve; what must be the length of one side of a quadrate situated within such a 
triangle?” The solution is this. At first you ascertain the height of the triangle, by multiplying 
the moiety of the basis (which is six) by itself, and subtracting the product, which is thirty-six, 
from one of the two short sides multiplied by itself, which is one hundred; the remainder is 
sixty-four: take the root from this; it is eight. This is the height of the triangle. Its area is, 
therefore, forty-eight yards: such being the product of the height multiplied by the moiety of 
the basis, which is six. Now we assume that one side of the quadrate inquired for is thing. We 
multiply it by itself; thus it becomes a square, which we keep in mind. We know that there must 
remain two triangles on the two sides of the quadrate, and one above it. The two triangles on 
both sides of it are equal two each other: both having the same height and being rectangular. 
You find their area by multiplying thing by six less half a thing, which gives six things less half 
a square. This is the area of both the triangles on the two sides of the quadrate together. The 
area of the upper triangle will be found by multiplying eight less thing, which is the height, by 
half one thing. The product is four things less half a square. This altogether is equal to the area 
of the quadrate plus that of the three triangles: or, ten things are equal to forty-eight, which is 
the area of the great triangle. One thing from this is four yards and four-fifths of a yard; and 
this is the length of any side of the quadrate. Here is the figure, see (Rosen, p. 84-85): 

 

12

1010

 
Figure 3 

 
The height of the large triangle is given by: 

h2 = 102 − 12
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

= 100 − 36 = 64 = 82,  i.e. h = 8. Its area is: AL = 1
2

×12
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ × 8 = 48 

Let the length of any side of the quadrate be: 1x , its area is: 1x2 

The area of the two triangles on the sides is: AS = 2 × 1
2

6 − 1
2

x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ × x = 6x − 1

2
x2 

The area of the upper triangle is: AU = 1
2

× x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ × 8 −1x( )= 4x − 1

2
x2  

 
 
 



From the equality: 48 1x2 6x 1
2

x2 4x 1
2

x2 , i.e. from the simple equation: 48 10x ,

we learn that x 4 4
5

.

To discover different ways of using this text with pupils according to their mathematic ability, 
and to make them experience when it becomes necessary to use symbols, you can refer to (Brin, 
Bühler, Hallez, 1999). 

A problem about inheritance 

“A man dies, and leaves four sons, and bequeaths to some person as much as the share of one 
of its sons; and to another, one-fourth of what remains after the deduction of the above share 
from one-third.” You perceive that this legacy belongs to the class of those, which are taken 
from one-third of the capital. 

Computation: Take one-third of the capital, and subtract from it the share of a son. The 
remainder is one-third of the capital less the share. Then subtract from it one-fourth of what 
remains of the one-third, namely, one-fourth of one-third less one-fourth of the share. The 
remainder is one-fourth of the capital less three-fourths of the share. Add hereto two-thirds of 
the capital: then you have eleven-twelfths of the capital less three-fourths of a share, equal to 
four shares. Reduce this by removing the three-fourths of the share from the capital, and adding 
them to the four shares. Then you have eleven-twelfths of the capital, equal to four shares and 
three-fourths. Complete your capital, by adding to the four shares and three-fourths one-fourth 
of the same. Then you have five shares and two-elevenths, equal to the capital. Suppose, now, 
every share to be eleven; then the whole square will be fifty-seven; one-third of this is nineteen; 
from this one share, namely, eleven, must be subtracted; there remain eight. The legatee, to 
whom one-fourth of this remainder was bequeathed, receives two. The remaining six are 
returned to the other two-thirds, which are thirty-eight. Their sum is forty-four, which is to be 
divided amongst the four sons; so that each son receives eleven. (Rosen, pp. 104-105) 

In spite of the difficulties coming from the religious rule the legacy leads to, this solution involves 
fractions in a very interesting way. 

Let C be the capital, S be the share of each son and consequently the legacy left to the first 
person too. 

What is bequeathed to the two persons besides the sons cannot exceed 1
3

C .

What remains of this part after the legacy to the first person is: 1
3

C S .

The legacy left to the second person is: 1
4

1
3

C S 1
4

1
3

C 1
4

S

and what remains of this part after both legacies is: 1
3

C S 1
4

1
3

C 1
4

S 1
4

C 3
4

S , which 

returned to 2
3

C , gives: 2
3

C 1
4

C 3
4

S 11
12

C 3
4

S  for the four shares of the sons. 

11
12

C 3
4

S 4S 11
12

C 4S 3
4

S

11
12

C 1
11

11
12

C 4S 3
4

S 1
11

4S 3
4

S 1C 5S 2
11

S
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If 1S 11,  then 1C 57 , and 1
3

57 19. The first legacy is 11 and the first remainder is 

19 11 8, the fourth-part of which is 2, i.e. the second legacy; the remainder after both legacies 
is 6, which in addition to 2 19 gives 44, that is to say 4 11 for the 4 sons. 

For this kind of problem, Abu Ali al-Hassan Al-Hububi, who was a judge and a mathematician 
in the last tenth century, gives five different methods, among which the geometrical one is 
especially worth reading and may be very efficient for young pupils. The diagram (Figure 4) could 
be adapted to any other numerical values. 

Al-Hububi method with surfaces 

A man bequeaths to some person as much as the share of one of its sons and to another one-
third of what remains from one-third after the deduction of the above share. Then he dies and 
leaves three sons. 

Let quadrangle AB be the capital, one third of which is quadrangle AG. The legacy left to the 
first person, which is equal to the share of each son, is quadrangle AH, subtracted from AG.
What remains of the third, after the first legacy, is quadrangle EG. The legacy left to the second 
person is one third of quadrangle EG, namely, quadrangle EZ. There are eight other small 
parcels equal to EZ. The three shares of the sons are the two shares DH and DM, and the eight 
parcels for one share, equal to the others. The capital is therefore four shares and one parcel, 
that is to say, thirty-three parcels. (Djebbar, 1996, p. 20, our transcription from French to 
English) 

M

HZ

E

D

G

B

A

Figure 4 
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This report is written in fond memory of Karen Michalowicz, who died on 17 July, 2006 after a 
two-year battle with a rare form of blood cancer. 

The Historical Modules project grew out of the Institute in the History of Mathematics and Its Use 
in Teaching (IHMT), a five-year project funded by the United States National Science Foundation 
(NSF) and administered by the Mathematical Association of America (MAA). The goal of the 
IHMT was to increase the presence of history in the undergraduate curriculum in the United 
States. The IHMT, led by V. Frederick Rickey (U.S. Military Academy) and Victor Katz, brought 
approximately 120 college faculty members to Washington for two three-week summer sessions in 
which they studied the history of mathematics with expert lecturers, read original sources in 
history, gained insight into methods of teaching history of mathematics courses, learned how to 
use the history of mathematics in the teaching of mathematics courses, and started work on small 
research problems in the history of mathematics. During the academic year between the two 
summer sessions, the faculty members continued their research projects and also continued their 
own study of the history of mathematics.  

Although the IHMT was a great success for the faculty members involved, the project itself did 
not produce materials that could be shared with others. Thus, Professor Katz, along with Karen 
Dee Michalowicz, began the Historical Modules project, which was designed to produce historical 
materials that could be used in the mathematics classroom. For this project, again funded by the 
NSF and administered by the MAA, the leaders brought together six teams of four participants. 
Each team consisted of one college faculty member, chosen from among the IHMT alumni, and 
three high school teachers, chosen through a national search. During parts of four summers, the 
teachers studied aspects of the history of mathematics and, along with the college faculty 
members, began the writing of “modules” showing how to use the history of mathematics in the 
teaching of mathematics in the secondary classroom. This work continued during the intervening 
academic years. After the initial writing, other teachers came to Washington to study the materials 
and, later, to test them in their classrooms. 

Ultimately, the writing teams produced eleven modules, each of which was class-tested by the 
writers and by numerous other teachers around the United States. The topics of the modules range 
from material that could be used in middle schools (ages 12-14) through advanced material for the 
final year of high school (age 18). Each module consists of numerous lesson plans, ranging from 
15-minute excursions to two-week long treatments of an entire topic. Some of the lesson plans are 

                                                     
† Deceased. 
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designed to introduce a new mathematical topic, while others are written to provide enrichment to 
students who have already learned the mathematical ideas. Each lesson plan has both teacher notes 
and lesson materials for the students. The teacher notes describe the goals of the lesson, give an 
approximate time frame, provide rationales and extra historical material for the teacher, contain 
answers to exercises, and have references for further reading for both teacher and students. The 
actual lesson materials are designed to be duplicated and distributed to the students. Many of the 
lessons are written in discovery format, so can be used either for individual work or in small 
groups. Other lessons are designed like textbook sections, to be discussed by the teacher. Often 
there are exercises for the students as well as suggestions for additional projects. 

The eleven modules are: 
2. Negative Numbers: How these quantities are used and why, with examples from 

various cultures. Material is included from China, India, the Islamic world, Renaissance 
Italy, and Leonhard Euler, among many other sources. 

3. Lengths, Areas, and Volumes: There are activities from around the world, in numerous 
historical periods, showing how measurements were accomplished. Thus, there are 
lessons dealing with problems from Egyptian papyri and ancient Mesopotamian tablets, 
from the Aztecs of Mexico to Queen Dido of Carthage, from Indian altars to 
Archimedes’ estimate of pi. 

4. Geometric Proof: An historical study of proof, which includes excerpts from Plato’s 
Meno and the American Declaration of Independence. The module also includes 
examples of proofs by contradiction as well as a study of Heron’s Formula and the 
Euler Line. 

5. Statistics: This includes material on the basic principles of statistical reasoning, 
including the normal distribution and the method of least squares, as well as examples 
of many early forms of graphs.  

6. Combinatorics: Derivations of the basic laws of permutations and combinations, from 
Islamic sources, as well as a study of the binomial theorem and its application to the 
problem of points. 

7. Archimedes: A special module dealing with the work of Archimedes, including the 
calculation of pi, the quadrature of the parabola, the law of the lever, and elementary 
hydrostatics. 

8. Functions: A general study of the notion of functions, with special cases ranging from 
linear zigzag functions in ancient Mesopotamia to a study of the Fibonacci sequence 
from medieval Europe to some physical experiments with Fourier series from 
nineteenth century France. 

9. Linear Equations: Examples of proportional reasoning as well as the solution of single 
linear equations and systems of linear equations. Included are material from Egyptian 
and Chinese sources as well as more modern methods of setting up problems resulting 
in linear equations. 

10. Exponentials and Logarithms: A study of the historical development of both of these 
important functions. Examples range from Euler’s calculations of population growth to 
the construction of a slide rule. 

11. Polynomials: Historical methods for solving quadratic and cubic equations as well as 
Newton’s method and an elementary discussion of maxima and minima. 
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12. Trigonometry: Historical ideas include the development of a trigonometric table by 
Ptolemy, methods of measuring the heavens, trigonometric identities, and the uses of 
spherical trigonometry. 

In the Uppsala workshop, the leaders led the participants through some of the numerous lesson 
activities, showing how to use them as written as well as how to extend them using other materials. 
The preliminary versions of the CD containing the modules were also distributed to the 
participants so they could try these with their own classes. 

The modules have now been published as a CD by the Mathematical Association of America. 
The CD is entitled Historical Modules for the Teaching and Learning of Mathematics (© 2005) 
and may be ordered directly from the MAA. Go to www.maa.org and follow the links to the 
Bookstore, and then to Classroom Resource Materials. 
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ABSTRACT 
Is there a relation between phylogenesis and ontogenesis, i.e. here: between the historical development of 
mathematics and the individual's learning process, which can be productively used for teaching 
mathematics? Ever since Ernst Haeckel formulated his law of recapitulation for biological evolution, there 
have been serious hopes, even firm convictions, by mathematics educators and by mathematicians that it is 
possible to apply that "law" to cognitive development, and that history provides hints or even guidelines for 
organizing the curriculum. A first intense phase of such proposals was the period around 1900, culminating 
in Benchara Branford's book A Study of Mathematical Education (1908). 

While the following decades showed no particular emphasis for the biogenetical law and for parallelism, 
they entered again the discourse in mathematics education in the wake of the reception of Piaget's theories 
on genetic epistemology. The approaches following the conception of “epistemological obstacles” and in 
general several approaches featuring the use of mathematics history in teaching mathematics have drawn on 
some sort of adaptation of parallelism. 

In the workshop, classical and recent texts on the relation of phylogenesis and ontogenesis are presented 
and discussed, with special emphasis on categories relevant for cognitive development. 

1 Introduction 

The recapitulation hypothesis originated from a transfer of biologist to cognitive development. It 
was in particular Haeckel’s famous law for biological development of the species, which was 
grafted to psychology. A recent critical reassessment of his research procedures, however, has 
revealed several serious falsifications in his alleged empirical data for biological development.  

The graft from biology on psychology and education was effected, among others, by the 
philosopher Herbert Spencer 

the education of the child must accord, both in mode and arrangement, with the education of 
mankind, considered historically. In other words, the genesis of knowledge in the individual 
must follow the same course as the genesis of knowledge in the race. (quoted from Branford 
1908, p. 326). 

This grafted biogenetical principle, or principle of parallelism, had become a largely shared topic 
in education by the end of the 19th and the early 20th centuries and, remarkably enough, in 
particular in mathematics education. In fact, it would seem that mathematics was, and still is, the 
only school discipline where this principle has become so prominent. I cannot remember anybody 
to have claimed its being applicable, say, to physics or to chemistry. 

                                                     
1 In line with the workshop’s mode of work which consisted in presenting historical sources, and in 

analyzing and interpreting these - this paper, too, will provide extensive quotes to facilitate readers’ access 
to sources.  
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2 A Forerunner to research in mathematics education 

Now Branford has always been claimed to have been the classical advocate and propagator of that 
parallelism for purposes of mathematics education, on the basis of his book of 1908: 

A Study of Mathematical Education  
including  

The Teaching of Arithmetic 
Actually, his book contains a famous diagram which seems to support this claim; it has recently 
been reproduced mainly by John Fauvel as evidence for the parallelism approach (Fauvel 1999, 
29). 

Branford’s famous diagram 
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Actually, however, Branford was neither a staunch supporter of parallelism nor a theoretician of 
mathematics education, but rather expressed himself quite cautiously with regard to the so-called 
“law”:2

As regards the form in which this doctrine is stated, no great acumen is needed to see that, in 
the use of the word ‘must’, there appears to be a confusion between the possibility or 
advisability of the parallelism and its necessity. The doctrine, as thus enunciated, clearly cannot 
rank as a principle. Its role is rather suggestive. How far the education of the child necessarily 
follows that parallelism, it is advisable to modify, or even to counteract, such a tendency, these 
are questions suggested, but not answered, by the formula. So far as I am aware, few serious 
attempts have been made to indicate, with any precision, the germs of truth concealed in the 
doctrine when liberally interpreted and applied to mathematics. 
My aim is to exhibit a parallelism between the actual mode of evolution of geometrical 
knowledge in the race, from the earliest times of which we have authentic historical 
information, and that by which the school youth can most readily and efficiently assimilate this 
experience. It is to be specially remarked that I make no attempt to prove the existence of a 
necessary parallelism between the racial and the individual development of geometrical 
knowledge. Nor am I here concerned with the very interesting question of the almost automatic 
genesis of space-perceptions in the first years of infancy. What I hope to do is something quite 
different, viz. to show that, for educational purposes, the most effective presentation of 
geometry to youth, both as regards matter and spirit, is that which, in main outlines, follows the 
order of the historical evolution of the science. (Branford 1908, pp. 326-327). 

My intention in giving the above quotes is to emphasize: 
- the contrast between “mankind” in Spencer, and “race” in Branford, viz. instead of Spencer’s 
universal claim Branford’s much more restricted proposition where “race” might stand for a 
particular culture 
- furthermore, the principle is just an incentive for Branford, a guideline for empirical research. 

Branford’s book is really interesting and innovative in that he launches a programme of empirical 
research in mathematics education. We must consider that there was almost no empirical research 
yet by the early 20th century, and that he was perhaps the first not only to proclaim its necessity, 
but also to conduct a large amount of empirical research – admittedly of rather small-scale studies 
of qualitative type rather than methodologically and statistically controlled research. 

In fact, his book is not a systematic presentation of the above parallelism, but just a collection 
of personal experiences and reports. 

A selection from the table of contents shows the eclectic, non-systematic arrangement of topics: 

CHAP. I. MEASUREMENT AND SIMPLE SURVEYING. PART I. AN EXPERIMENT IN THE 

TEACHING OF ELEMENTARY GEOMETRY……………………………………………………. 1
CHAP. II. MEASUREMENT AND SIMPLE SURVEYING

PART II. FIRST LESSON – CONTINUED…………………………………………………….. 13 
[...]

CHAP. V. SOME POINTS IN THE HISTORY OF ARITHMETIC AND THEIR APPLICATION TO 

                                                     
2 Unfortunately, almost nothing is known about his biography, except his own indications on the title 

page: “Divisional Inspector to the London County Council; Formerly Lecturer in the Victoria University”. 
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THE TEACHING OF CHILDREN………………………………………………………………….. 47 
CHAP. VI. THE NATURE OF THE PROCESS BY WHICH NUMBER IS DEVELOPED IN THE 

RACE AND IN THE CHILD……………………………………………………………………….. 61

CHAP. VII. HOW A FAMOUS ENGINEER TAUGHT HIMSELF ARITHMETIC………………….. 74 

CHAP. VIII. ILLUSTRATION OF TYPES OF PROOF OF EVIDENCE SUITABLE FOR 

BEGINNERS IN GEOMETRY, AND THE APPROPRIATE ORDER OF THEIR DEVELOPMENT….. 93

CHAP. IX. SOME EXPERIMENTS IN TEACHING GEOMETRY TO BLIND CHILDREN…………. 104 

CHAP. X. SUB-CONSCIOUS EXPERIENCE……………………………………………………… 117 

[...]

CHAP XIV. BRIEF NOTES OF LESSONS………………………………………………………… 203 

CHAP. XV. ORIGIN AND DEVELOPMENT OF MATHEMATICS………………………………... 221 

CHAP. XVI. DIAGRAMMATIC SKETCH OF THE DEVELOPMENT OF MATHEMATICAL 

EXPERIENCE…………………………………………………………………………………….. 227

CHAP. XVII. EDUCATIONAL PRINCIPLES: THE EVOLUTION OF MATHEMATICAL 

KNOWLEDGE IN THE INDIVIDUAL…………………………………………………………….. 243

CHAP. XVIII. FURTHER EDUCATIONAL APPLICATION……………………………………… 263 

CHAP. XIX. CULTURE AND OCCUPATION……………………………………………………. 275 

CHAP. XX. ON THE NATURE OF GEOMETRICAL KNOWLEDGE, AND OF ITS PROCESS OF 

DEVELOPMENT IN THE INDIVIDUAL 277

CHAP. XXI. PHYSIOLOGICAL CONSIDERATIONS 294 

CHAP. XXII. THE EVOLUTION OF AXIOMS IN RACE AND INDIVIDUAL 305 

In view of the absence of empirically confirmed propositions concerning the process of learning in 
mathematics, Branford’s approach may be understood as using history of mathematics as a 
guideline for formulating research questions, which then have to be investigated empirically: 

In conclusion, if any teacher distrusts the stability of the structure I have erected on our central 
principle of parallel between race and individual, I would at all events earnestly urge him to a 
practical trial and test of the principle in a modified form. Let him make a list of those points in 
mathematical education where special difficulty is ever found by his pupils (e. g. perhaps zero 
and place-value; long division; fractions; negative, fractional and imaginary units; indices; 
decimals; logical deduction; generalizations; infinitesimals, limits, functions; & c.). Let him 
now consult a friend who is really familiar with the spirit and development of mathematical 
history, and ask him to jot down a list of the discoveries which were the most difficult to make 
and to popularize when made. Compare the two lists: a very striking resemblance will 
assuredly be found. Let him now employ with his pupils the spirit of the devices that overcame 
the difficulties in the historical development. Thereafter, I venture to think, he will be a staunch 
upholder of the value of the principle (Branford, 1908, p. 274). 

It is clear from his writings that Branford was well informed about the history of mathematics 
accessible from the historiography of his time. It is just as clear from his view, that he had a 
continuist understanding of mathematics history. What is a problematical point and a flaw in his 
conception of historical development is that, although speaking profusely of culture, he is not 
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aware of the qualitative cognitive development of mankind. He actually postulated an unchanged 
stability of the cognitive level across recent millennia: 

I have summarily reviewed the impulses, external and internal, that have ever been urging 
humanity to develop mathematical knowledge. I have now to consider the nature of this 
knowledge, the kind of mental processes by which its development has been successfully 
brought about, and, finally, the bearing of these facts upon education. For there is every reason 
to believe, looking to the practically unchanged constitution of the human mind for at least 
several thousands of years back, that those factors which have been throughout essential to the 
growth of mathematical knowledge in the minds of our ancestors must be closely similar to, if 
not actually identical in kind with, the main factors that underlie efficient mathematical 
education in kindergarten, school, and college (Branford, 1908, p. 225). 

Besides this major conceptual flaw, the book is highly interesting in that it attempts to consciously 
present history of mathematics as a continuous interplay between external and internal factors, 
emphasizing even the aesthetical dimension. 

It is highly revealing how explicitly Branford emphasizes the “external impulses”. For instance, 
his chapter XV, “Origin and Development of Mathematics” discusses in particular the issues: 

- The intimate dependence of life-experience on mathematical thought; 
- Mathematical Experience: its origin and development; 
- The practical impulse and factor; and thereafter: 
- The scientific impulse or factor; 
- The aesthetic impulse or factor (ibid., p. 221 – 226). 

Further evidence of his emphasis on the practical, external side of knowledge production is his 
chapter XIX, where he discusses the impact of “occupation”: 

I have repeatedly pointed out the fertilizing effect of the activities of the various occupations on 
the growth of mathematics throughout all its branches, from the elements of counting to the 
higher analysis (ibid., p. 275). 

It is also fascinating how explicitly he attempts – long time before any research on the psychology 
of learning mathematics proper, i.e., before PME – to study mental processes, and to unravel their 
characteristics, specifically the role of sensory perception. Branford even discusses different 
aspects of sensory perception like “motor-sense” and “the sense of touch” and their impact on the 
formation of geometrical knowledge (ibid., 277ff.). 

A chapter particularly recommended for careful reading is his chapter XVII where he explains 
how he perceived the application of parallelism to education (ibid., pp. 243-262). 

The merit of Branford’s book thus lies in his reflections and differentiations concerning the 
notion of the biogenetic law. He was the first to call for specifically didactical research in order to 
concretize that principle. And he also seems to have been the first to practice a broad notion of 
didactical research: it was to contain research into the history of mathematics, into the philosophy 
of mathematics, and in particular, into psychology. For Branford, the evaluation of teachers’ 
experience was crucial for didactical research. It thus becomes evident that Branford is the pioneer 
of modern research into mathematics education, a research, based on empirical study, and one no 
longer confined to deriving recipes from normative prescriptions. 

The other pivotal point is that he did not apply the biogenetic law as an automatic device for 
constructing a curriculum. Rather, he saw the so-called law as a means for research into a 
developmental conception of mathematics instruction. He applied it for three different purposes: 

333



- as basis for understanding the process of abstraction with the intention of conceiving the 
concept of development by activity; 
- as basis for his understanding of scientific development; 
- and in particular as a means for constructing curricula. 

In contrast to other proponents of the genetic principle, Branford understood neither the activity of 
scientists nor the activity of learners as one continuously developing: rather, he conceived them as 
of occurring by steps, by leaps and bounds, thus trying to identify qualitative stages in this 
development. 

He characterized each such stage, both in scientific evolution and in ontogenesis, by a definite 
relation between concrete and abstract elements, between ‘sense-perception’ and ‘conception’. He 
thus opposed one-sided positions in pedagogy which focussed only on sensory perception. 

What is even more revealing and innovative is that he sees a logic in the sequence of the 
different developmental stages: it is the tendency of transition from the empirical to the 
conceptual. His diagrams are intended to illustrate this historical process of incremental growth 
concerning the non-empirical, conceptual elements of knowledge. 

In fact, Branford insists on the non-empirical character of concepts: 

The mathematically defined ‘point’ has no dimensions; the ‘line’ of mathematics has no 
breadth; the continuity of surface and line, for mathematics, involves the concept of infinite 
divisibility. They could, therefore, none of them be presented to the senses; they exist, in fact, 
only for the thought, in the form of self-consistent definitions (ibid., p. 301). 

Incrementally growing abstraction in mathematics, for Branford, does not contrast with 
pedagogical exigencies. For him, abstract notions enhance the applicability of scientific tools. 

Based on his conception of mathematical epistemology, his emphasis on scientific concepts, his 
insistence of successive stages, he was the first to formulate ideas which came to be elaborated 
later as “ruptures” and as learning against experience by G. Bachelard.  

Actually, the biogenetic law and the notion of development took several decades to be 
reintroduced into the educational debate. 

3 A modernized approach 

The most prominent approach in psychology to conceptualize the child’s cognitive development 
evidently was that of Piaget, an approach which has become influential in pedagogy since the 
1960s. It is well known that Piaget’s approach to experiments and their interpretation always 
related to isolated children, and that he has been criticized for having neglected the social and 
cultural dimensions of cognitive development. 

Only in 1983, i.e. at a relatively point, Piaget published a work where he applied his own 
psychogenetic approach to studying the relation between history of science and psychogenesis. 
Evidently, it was interesting to see how he would tackle the social and cultural dimensions of 
science. To resume it beforehand: while these issues were in fact mentioned in the study, they 
were given only lip-service, and not genuinely taken into account. The historical studies in this 
work had not been undertaken by Piaget himself, but rather by his collaborator Rolando Garcia. 
And Garcia did not engage in historical research proper, but rather relied on existing 
historiographical publications with the intention of reassessing them from the Piagetian position of 
genetic epistemology. This position does not consider history as a “memory of science”, as Kuhn 
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does, but rather as an “epistemological laboratory” (Piaget & Garcia 1989, p. 259). The authors’ 
very approach already suggests a certain parallelism between ontogeny and psychogenesis, now in 
a slightly modified manner: 

We now come to the central problem, which will be discussed and rediscussed in the present 
volume. It is the formation of cognitive tools such that it can shed light on their epistemological 
significance? Or do the two belong to entirely different domains - the former to psychology and 
history, the latter to a realm that calls for methods that are radically independent from the 
former? (Piaget & Garcia, p. 4) 

Actually, they claim the existence of an “isomorphism” between the subject's and the science's 
development, at least for low level structures: 

[...] the fact of fundamental importance for epistemology is that the subject, beginning with 
very low level prelogical structures, comes to develop rational norms that are isomorphic with 
those of the early days of science (ibid., p. 5). 

Characteristic is the two authors’ insistence on the preeminence of epistemology; for they 
continue: 

To understand the mechanism of this development of prescientific norms up to their fusion with 
those of nascent sciences, scientific thought is undeniably an epistemological problem (ibid.) 

- that is to say, neither a historical one nor a sociological problem. 
In fact, the preeminence of epistemology becomes the key issue of this Piagetian volume: the 

authors endow the history of science with an epistemic significance. In Bachelard’s sense, they see 
scientific change as a development revealing that a truth formerly considered to be general merely 
constitutes a special case of a larger truth; thus proving that the former, now obsolete truth 
presents a “partial error”. They understand scientific change as reorganization of the knowledge 
inherited from preceding stages. Hence, they claim  

that a piece of knowledge cannot be dissociated from its historical context and that, 
consequently, the history of a concept gives some indication as to its epistemic significance 
(ibid., p.7). 

Due to this epistemological bias, they are less interested in continuities or discontinuities, but 
rather claim the central problem to be "that of the existence of the stages themselves, and 
particularly that of explaining their sequence" (ibid.). 

In a reflection on research into the history of the construction of knowledge, and into the 
history of psychogenesis, they affirm that “the relationship between the two kinds of research is 
close” (ibid., 8). 

Their conception of a basically epistemic nature of the process of change leads them to their 
main hypothesis according to which the two types of analysis, or of research, will necessarily 
converge. New in this parallelist conception is its sophistication; there is no more claim to 
identifiability by specific elements of knowledge – a claim raised customarily, and again by 
Brousseau (Brousseau 1997, 85), but instead reliance – in line with Piaget’s general theory of 
genetic epistemology - on mechanisms and instruments of cognitive procedures: 

The main reason why there is a kinship between historico-critical and genetic epistemology is 
that the two kinds of analyses, irrespective of the important differences between them in the 
data used, will always, and at all levels, converge toward similar problems as to mechanisms 
and instruments (ibid.). 
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Piaget and Garcia continue by emphasizing that the convergence not only holds for elementary 
stages, but for all stages: 

These mechanisms operate not only in the elementary interactions between subjects and 
objects, but particularly in the way that a lower level influences the formation of the following 
one. This inevitably leads to a situation where, as will be seen, the same general problems, 
common to all epistemic development, are posed (ibid.). 

Regarding these mechanisms, a certain leading role of psychogenesis in the authors' conception 
can be observed. In fact, they affirm that “psychogenetic analyses may [illustrate] historical 
processes” (ibid., p. 12). 

To develop their approach, Piaget and Garcia outline three comparisons between history of 
science and psychogenesis. The first concerns "the relative contributions of experience and the 
subject's operational structures in the elaboration of knowledge" (ibid., p. 9), the second whether 
"cognition [is] common to the historico-critical and genetic epistemology, [i.e.] the relations 
between the subject and the object and objects of her knowledge” (ibid., p. 10). The most relevant 
of the three for our purposes is their “third important problem” for the comparison between the 
history of science and psychogenesis: “whether new knowledge is pre-formed” or self-constructed 
by the subject. While most mathematicians are essentially Platonists, they conclude by claiming 
that concepts necessarily “ow[e] their [the objects’] existence only to their own acts” (ibid. p. 15). 

Evidently, such a claim affords to discuss the impact of social and cultural contexts on 
cognitive development. Actually, they address this issue since they would otherwise, without 
making allowance for differences, be led back to “the hypothesis of predetermination of 
knowledge. And their heading of “Different Paths and Different Results” for their respective 
section seems to indicate their awareness of the possibility that different concepts will emerge in 
various cultures and societies. They perceive the influences of culture and society to proceed by 
“different paths”, denying, however, “a heterogeneous diversity of possible paths and results”, 
postulating instead that convergence will somehow occur at the end: 

The different results obtained by these different paths will sooner or later be subject to 
coordination by means of transformations of some degree of complexity relating x to x'. [...] 
This implies that even though mental constructions travel far beyond the limits of the 
phenomena [...], they may still be in concord with the latter so that if different paths of research 
have led to apparently incompatible results, there is some hope that the coordination will be 
possible, given the invention of new cognitive tools (ibid., pp. 16-17). 

Their solution, the assumption that a unified status will be the final result, brought about by some 
coordination that will happen sooner or later, amounts to a reduction and denial of social and 
cultural influences. Culture is conceived of as having but a marginal function: for transmission 
(ibid., p. 25). 

The books’ intention is to make plausible the convergence the authors postulate. In fact, the 
authors claim to have established - without, however, really giving details for that “historical 
analysis” - a “very direct correspondence between the four historical periods of physics from 
Aristotle until just before Newton [...] and the four stages in psychological development”: 

In this case, the parallelism in the evolution of concepts in history and in psychological 
development concerns the contents of the successive forms of the concept (ibid., p. 26). 
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In general, however, what they present is not a convergence of contents, but one of cognitive 
mechanisms, and the book’s purpose is to discuss and to present these mechanisms - which are all 
concerned with the nature of reasoning. 

[...] this goal is not to set up correspondences between historical and psychogenetic sequences 
in terms of content, but rather to show that the mechanisms mediating transitions from one 
historical period to the next are analogous to those mediating the transitions from one 
psychogenetic stage to the next. 
Now, the “transitional mechanisms”, the main topic of the present volume, exhibit at least two 
common characteristics between the history of science and psychological development: one of 
these we have already treated elsewhere, but the second seems to us to be new. The first of 
these mechanisms consists in a very general process characterizing all cognitive progress; this 
is the fact that in each progression what gets surpassed is always integrated with the new 
(transcending) structure (which - even in biology - is far from being the case in domains other 
than cognitive development). The second transitional mechanism is one we have never studied 
before, but it will become central in the present volume. It seems to us likewise of a very 
general nature: it is a mechanism that leads from intra-object (object analysis) to inter-object 
(analyzing relations or transformations) to trans-object (building of structures) levels of 
analysis (ibid., p. 28). 

In view of the pre-eminence of their “epistemological” approach, and of their failure to properly 
investigate cultural and social contexts of cognitive development, it is no wonder to observe with 
what disdain and depreciation they present the respective approaches of historiography and of 
sociology. In spite of adopting the notion of ‘scientific revolution’, they claim this revolution to 
have been just “a change in epistemological framework”. It is only their own ‘epistemic 
paradigm’, they claim, which permits pertinent access to knowledge and scientific change. Thomas 
Kuhn and sociology as a whole are relegated to marginality. “Exogenous” developments do not 
follow, they say, a rational mode, and external requirements are thus discarded from their 
epistemic analysis (ibid., pp. 248-250). The “social” is hence subordinate to the “epistemic”. 

Likewise, they are also critical of Bachelard’s notion of “epistemological rupture” and 
“epistemological obstacle”, maintaining that there is no complete break between prescientific and 
scientific conceptions (ibid., pp. 254-255). 

Summing up, the authors emphasize “that there is continuity in the development of the 
cognitive system, from the child to the average adult [...] to the scientist”, claiming not to have 
considered this continuity as a postulate, but to have demonstrated its existence from ex post facto 
research (ibid., p. 263). They see this continuity realized, in particular, where mathematics is 
concerned, underlining “the continuity of knowledge, perfected in pure mathematics” (ibid., 275). 
They even reinforce: continuity is “complete in pure mathematics” (ibid., p. 304). 

Likewise, Piaget and Garcia resume that there is no essential influence of culture and society: 
“Society can modify the latter [the subject], but not the former [the object]” (ibid., p. 266-267). 

4 Returns to recapitulation 

A paper by Anna Sfard of 1995 is often quoted as an application of Piaget/Garcia’s work to 
mathematics education. Strangely enough, it is not so much an application of Piaget and Garcia, 
since it only marginally uses the “mechanisms” –analysis, but rather takes up Branford’s early 
claims about recapitulation of knowledge. 
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Actually, one finds the parallelism-claim in her paper in the form which now almost always 
recurs where the use of history in teaching mathematics is addressed. She claims that 

similar recurrent phenomena can be traced throughout its [i.e. knowledge] historical 
development and its individual reconstruction. 

And that 

difficulties experienced by an individual learner at different stages of knowledge formation 
may be quite close to those that once challenged generations of mathematicians (Sfard,1995, 
pp. 15-16). 

There is again a claim of continuity: 

The formation of mathematical knowledge is [...] a process in which the transition from one 
level to another follow some constant course (ibid., p. 16). 

The transition, exemplified in the paper by the development of algebra, and understood as 
proceeding from empirical to abstract notions, was formulated in another form of Branford’s view 
of the development of science as proceeding from “operational” to “reified, abstract” objects. 
Sfard is convinced that obstacles effective in history must appear in the classroom as well 

A natural resistance to upheavals in tacit epistemological and ontological assumptions, which 
so often obstructed the historical growth of mathematics, can hardly be prevented from 
appearing in the classroom (ibid., p.17). 

She understands the history of mathematics as a ready-made, unquestionable product suited to 
confirm her claims: 

history will be used here only to the extent which is necessary to substantiate the claims about 
historical and psychological parallels (ibid. p. 17). 

Her entire approach shows a strong continuism; she confirms her intention to find “developmental 
invariants” as “observed in the historical development of mathematics as well as in the process of 
individual learning” (ibid., p. 22). 

Even more radically emphasizing a direct use of history for teaching, she voices her assent to a 
study by Harper of 1987, quoting it as “one of the few studies that makes explicit use of history to 
predict students’ behaviour” (p. 26, my italics).3

It is revealing that Sfard’s propagation of a direct parallelism seems to imply a marginal role of 
the mathematics teacher, since she depicts the learning of algebra by students as “students have to 
recreate these objects for themselves” (ibid., p. 34). There is no awareness of the fact that new 
conceptual approaches in mathematics and by better teaching methods may facilitate teaching and 
learning, rather, she postulates that what was difficult for mathematicians “invariably proved to be 
quite difficult for the learner” (ibid.). 

                                                     
3 A participant of the workshop who had read that paper by Harper remarked not to have found such 

claims of predictability in it. In fact, Harper consciously addresses parallelism as a “conjecture”. Assessing 
his research, he says that there “appears to [be] a parallel” (Harper 1987, p. 85). There is no mention of a 
predictability. 
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5 Alternative approaches  

An instructive and concise introduction to the entire problematic is the excellent paper of 2002 by 
Luis Radford and Fulvia Furinghetti. They elaborate not only Piaget's and Garcia's deficits in 
conceiving of cultural and social impacts on cognitive formation, but they also present L. 
Vygotski’s alternative approach as that of one of the few psychologists to have profoundly 
investigated sociocultural influences on cognitive processes. As they put it, "the merging of the 
natural and the sociocultural lines of development in the intellectual development of the child 
definitely precludes any recapitulation" (Radford & Furinghetti, 2002, pp. 634-642; here: p. 637). 

The major flaw in all the approaches based on parallelism is that they presuppose history of 
mathematics as a definitely established corpus of knowledge which is beyond controversy. This is, 
however, far from being true. The historiography of mathematics has hitherto concentrated on the 
“peaks”, on the “heroes” of mathematics, and it has practiced a resultatist view, searching for 
forerunners of present mathematics, and thus ever and again reproducing the continuist view of 
development we always find in how didacticians assess the history of mathematics. 

For uses in education, another type of historiography and of research has to be attained, 
however, a view which unravels the contributions of entire scientific communities, identifying and 
assessing conceptual ruptures, and in this way documenting conceptual developments in various 
contexts (cf. Schubring, 2002). 

This will make it possible to better establish the social and cultural contexts and their impact on 
scientific development - an approach hitherto only postulated, but never really elaborated. 
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ABSTRACT 

This paper is intended to show the contents of training sessions we offer to high school teachers of 
mathematics and physics, on the basis of original texts. The use of such texts allows us to debate about 
personal representations of sciences and possible common visions. We take the example of one session 
about military matters from 1500 to 1800, including four general subjects such as chemistry (the making of 
gunpowder) ballistics (the path of cannonballs) arithmetics and geometry (fortifications); finally we try to 
draw conclusions concerning the usefulness of the session and the impact of those common activities.  

 
 

1 Introduction 
 
In France, people teaching different disciplines have but few opportunities of getting together to 
exchange ideas and classroom experiments, and training sessions about history of maths and 
physics are an essential means of doing this. Is it the same in other countries? As our work in the 
field seems to be more and more difficult every year, we notice that our colleagues need time to 
meet and share experiences, and sessions about history play this part. 

Every year we try to find themes that can be interesting for both mathematics and physics 
teachers, the most recent one being based on the learning of young military officers of the past. In 
fact, military questions are deeply concerned with mathematics and physics, intimately close to 
each other’s, at least old military questions when gunners wondered what could be the curve a 
cannonball would follow, when architects tried to build fortresses for people to be safe inside, 
when chemists experimented with all kinds of mixtures for the gunpowder to be more effective. 
Maybe modern war deals with such questions? We are not interested in modern wars, because we 
need some distance in time to be able to discuss the effectiveness of artillery for instance without 
feeling ill at ease about the damage caused. But we must not forget what is written in the preface 
of almost every book on fortification, as for instance the one by Antoine de Ville: A Prince must 
never take arms, but for some great reason, and never exchange the treasure of peace with the 
ordeal of war. Peace must be desired by everyone, because where there is Peace, there is the rise 
of the State.  

Nevertheless, the subject matter of officer’s sciences allows a common lecture of the original 
texts and workshop sessions on a most simple basis: trying to understand the underlying sciences 
and to make common sense of it, building activities for the classroom. For this training session we 
chose four principal topics, as a means to exchange viewpoints: chemistry of powder, movement 
of projectiles (and the underlying huge problem of gravity), stacking up of cannonballs (for series 
lovers), drawing fortifications (for geometry lovers)  
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2 Manufacturing gunpowder 

You have to remember that French teachers of physics also teach chemistry. One of the effective 
inventions for modern war was gunpowder; but the formula had to be kept secret. Moreover, the 
origin of this harmful creation certainly had to be sought in hell, as one can see on the picture of 
Figure 1... 

According to legend, an ancient chemist, trying to make new medicine with sulphur and sparks, 
accidentally created gunpowder. Joseph Boillot mentions a German monk named Schwartz (black, 
as his mind? It seems that the evil took him from behind, see Figure 1) improving and perfecting 
the formula making use of coal and saltpetre. Nowadays, everyone knows gunpowder is a Chinese 
invention. 

Centuries before Schwartz, another famous monk, Roger Bacon, had published De secretis 
operibus artis et naturae (“On secret works of art and nature”, 1248) which contained the recipe of 
gunpowder, hidden behind an anagram in order to keep it relatively secret. One can read this 
sentence: Sed tamen salis petrae LVRV VOPO VIR CAN VTRI ET sulphuris et sic facies 
tonitruum et coruscationem si scieas artificium”. Just change the place of capital letters, you’ll 
obtain: Sed tamen salis petrae R(ecipe) VII PART(es), V NOV(ellae) CORUL(i), ET V sulphuris 
et sic facies tonitruum et coruscationem si scieas artificium, that is (approximately) But take seven 
parts of saltpetre, five of young hazelwood (charcoal), and five of sulphur, and so you will produce 
thunder and a flash if you know the trick. Tricky, isn’t it? 

3 Cannonballs: the paths and the stacks 

The question of cannonball paths could bring us back to Aristotle, for his theories about movement 
were at the basis of modelling trajectories of projectiles. It is likely that parabolas didn’t really 
belong to 17th century views of nature. For instance, this picture of an English book (Figure 2) 
shows the use of different types of curves, and we can see, even almost one century after Galileo, 
that the shape of the curve seems to depend on the firing range. Two straight lines (violent and 
natural movements) and an arc of a circle are to be seen clearly on the figure up to 550 yards; but 
even in the case of the longest range, the beginning of the movement looks very straight.  

If we mention the resistance of the air, it is necessary to jump to the end of 17th century, with 
Huygens and Newton (Principia mathematica…book II, sec. 1 to 3.) and Benjamin Robins’s 
Principles of artillery of 1742, translated into German by Leonhard Euler himself, then into 
French by a Burgundian professor of artillery (one of his famous pupils was Napoleon), Jean-
Louis Lombard.  

The text we chose as a possible support to discussion comes from a math course given at the 
University of Montpellier some years before the French Revolution by l’Abbé (the abbot) Sauri, 
entitled “On some uses of conic sections.” This is an application of theorems about parabola (one
can use with success parabola in throwing bombs), based upon three principles inspired by 
Newton (but without taking air resistance into consideration): 1°) If a body obeys the cause of 
gravity without obstacle, it will cover spaces that are between them like the times they spend to 
cover them, 2°) The speed a body has acquired at the end of its fall in a certain time (for instance 
one minute) is enough to make it cover in the same time, a distance which is the double of the first 
one, 3°) the speeds received by the bodies under the action of gravity are between them the same 
as the times. Those principles being accepted, Sauri describes what will necessarily be the motion 
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of a body A thrown in a certain direction Ac with initial speed corresponding to lA (i.e. the speed it 
would have when falling from this height, see Figure 4) According to the former principles he 
shows that the square of the ordinate sq (or Ac) equals the product of the abscissa cq by a constant 
line. 

Tired of ballistics, needing arithmetic? Well, 17th century officers learning can still be for you! 
Stacking cannonballs up leads us to summing series up. The deep search for appropriate formulas 
came later (the cannonball was a quite recent invention) and was for sure an occupation for retired 
soldiers’ spare time! Firstly, you must know there were but few possibilities for the shape of these 
stacks: pyramids with a triangle basis, pyramids with a square basis or oblong pyramids (see 
Figure 4) It seems that even poet soldiers without any notions of geometry never tried to build 
pentagonal or hexagonal stacks… Secondly, you must remember that the Pythagoras school 
already developed pyramid numbers: were those stacks a good illustration for figurate numbers? 

There are two types of questions: 
1°) A certain shape being given with measures, what is the number of cannonballs in it? The 

answers are often given in words instead of formulas, and this is a good opportunity for “making 
common sense” of notions. For instance: “for oblong pyramids, you multiply one of the little sides 
of the basis -plus one-, divided by two, by itself; then multiply the product by the number of 
cannonballs contained in each one of the long sides of the basis, plus the quantity of cannonballs 
of the upper edge; and finally dividing this result by three will give the number of cannonballs 
lying in the oblong stack” (Durtubie, 1791.) 

2°) Given a certain number of cannonballs, how to fit them into a stack? If we look for a 
common understanding, the use of formula must not be neglected. An answer is given here this 
way: “Let n be the side of the triangular basis and m be the upper edge of the oblong pyramid, the 

total number of cannonballs is 
6

23 23 nnn
 for the triangular one, 

6

32 23 nnn
 for the square 

one, and 
3

223

2

1 nmn
n  for the oblong one. Then if a is the number of cannonballs you want 

to fit into the pyramid, the number 3 6an  will be too large; you reduce it one by one and try 
these numbers [...] The oblong needs more trial and error” (Durtubie, 1791.) A good debate topic 
for favouring a battle between teachers in training is the following: are the two formulas for the 
oblong pyramid consistent? 

4 About fortification 

No doubt that military architecture is a matter of geometry. The writers never explain their 
particular choices, but they always begin with fortification maxims: the conditions on distances or 
angles for the fortress to have the fewest weak points possible. Most of the time the first ones are: 
the defence line (AF or EG on figure 5) which must be less than the range of the musket, i.e. 120 
toises; and the flanked angle (NAI or HBL) more than 60° and less than 90°. These are maxims for 
fortification à la française, which are not exactly the same as the ones used in Holland or in Italy. 

Thus we can find geometrical drawing with conditions. According to us, the lack of 
justifications for constructions shows that it is essentially a matter of figure: the authors knew the 
shape of outer walls, and they tried to adapt their personal way of drawing them. But this wouldn’t 
be real geometry, would it? Most of the authors knew Euclid’s Elements very well, and Jean 
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Errard (architect of French king Henry IV, ca 1600) was the first to use Euclid’s propositions to 
prove his construction fulfilled the conditions of the maxims. Moreover, his treatise title is 
“Fortification reduced into art and demonstrated”. 

The figure by Jean Errard (see Figure 5) is described in the text as follows: “Let it be proposed 
to fortify an hexagon, as far as the hexagon can be divided into six equilateral triangles. Let it be 
described on AB the equilateral triangle ABC, and then let the angle CAD measuring 45 degrees 
be made. Let the line AE be drawn equal to the line BD, and then let BE be drawn. Let the angle 
EAD be divided into two equal parts by the line AG, & let the line DF be chosen, equal to EG. Let 
the curtain wall GF be drawn, as well as FH, perpendicular to the line BE. Let AI be chosen, equal 
to BH, and let GH be drawn perpendicularly as FH. So are described the two half-bastions AIG & 
FHB.” Two pages later, Errard gives demonstrations using Euclid’s propositions. 

Another interesting author is Blaise-François Pagan, about 50 years later (see Figure 6): “Draw 
the two-hundred-toises base AB (one toise equals six feet) and divide it into two equal parts at the 
point D. Then draw from the point D a perpendicular line DC thirty toises long, and then, the two 
defence lines, one starting from the point A, going through C to N, and the other from the point B, 
going through C to M, both of them with reasonable length. 

This being done, mark on the aforesaid defence lines, the two faces of the bastions AE and BF 
for sixty toises each. Then the rest of the two defence lines CM and CN, one and the other for 
thirty seven toises, and next draw the two lines of the flanks from E to M, and from F to N, and the 
line of the curtain from M to N. Thus you will draw very easily and with as much diligence as 
precision, all the faces of the big fortification [...]” 

The differences between Errard’s and Pagan’s approaches are remarkable. When Errard deals 
exclusively with angles and undertakes the construction of 20 different polygons, Pagan focuses 
on distances and shows a unique figure, useful for all kinds of angles. 

When a mathematics teacher presents this text to his class and ask them to find the curtain wall 
MN, the pupils can choose between several ways. The first possibility, the most simple one, 
consists in constructing and measuring: based on one hundred toises for DB (one centimeter for 
one toise), we find about 71 toises for MN.  

In the second method, a pupil can use properties of similar triangles and he will write: 

MN
AB

CM
CB

, so 
4.104

20037
CB

ABCMMN , and finally MN = 70.88 toises = 70 toises 5 feet.  

The third method is based on trigonometry in a right-angle triangle: we draw the altitude CH in the 
triangle CMN, and: HN = 37 × sin (HCN) = 37 × sin (73.3°) = 35.439 toises, while MN = 2 HN =
70.88 toises = 70 toises 5 feet. 

In the fourth method, we apply the formula of a non-right-angled triangle, that is:  
MN² = CM² + CN² – 2×CM×CN×cos(MCN) = 37² + 37² – 2×37×37×cos(146.6°) = 70 toises 5 

feet. 

5 Common understanding? 

Let’s be honest: training sessions provide moments of pleasure. But not only pleasure! Time for 
preparations can be quite long: we have to find consensual texts, and try to understand them first… 
But when sessions begin, intellectual communion is not our exclusive aim.  
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Whatever our aim is, the texts we present are meant to reduce a difficulty: when teachers of 
mathematics meet teachers of physical science, they usually refer to their specific teaching subject. 
Studying military science gives an opportunity to forget these subject boundaries, at least partly. 
The fact is that the first reactions are not “where is the math?” or “where is the physics in this?”, 
but rather to understand the text: studying original historical texts makes us humble… But there is 
a difference in the status of each subject as a model: it appears that physics teachers agree that 
what they teach is only the present state of their science, and that it will probably change someday. 
On the other hand, math teachers tell the Truth, and the Pythagoras theorem will always be 
interesting for pupils to understand, it is part of the construction of the rationality of their thinking. 
So, what happens when you mix these two kinds of teachers? Well, it’s a mutual enrichment. 

Let’s now move on the last point: how can history be used in the classroom? The math 
curriculum doesn’t mention any historical topics, it just encourages teachers to shed historical light 
on their courses. On the contrary, teachers of physics have to read excerpts from original texts and 
talk about old theories or conceptions. Whatever our curriculum might be, what we teach doesn’t 
come from yesterday, but from centuries ago: Greek geometry, gravitation theories, and so on. It 
seems to us that the problems come from the difficulty of reading original texts, especially when 
you are a teenager more inclined to watch TV and discover life than working on intellectual 
absurdities of the past… How do other countries see this?  
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ABSTRACT 
The world’s memory may have retained such Portuguese names as Vasco da Gama and Pedro Álvares 
Cabral. It may even have remembered the historical episodes linked to such names: the Maritime discovery 
of India and the Discovery of Brazil. 

Such maritime discoveries had a profound effect on many areas of society throughout the world: 
geography, economics, technology, religion, administration and culture are obvious examples. But those 
journeys were only feasible because there existed preparatory work with a strong mathematical component. 
It is true that for more than two centuries the unique link between Europe and East was the so called 
“carreira da Índia”, in a regular and annual trip; the ships left Lisbon not arbitrarily but conditioned by both 
winds and sea conditions using a previously organised route. 

Nevertheless the merits of Portuguese authorship of very important and innovating methods of nautical 
sciences were, worldwide, frequently lost. Moreover the Portuguese people themselves often ignore the 
(mathematical) work underlying such historical events. 

What we are now presenting is an example of a piece of research conducted, within a course in History
of Mathematics at a Portuguese University, by final year undergraduate mathematics students preparing to 
become mathematics teachers. The results of such a project have been particularly fruitful when the lecturers 
meet again these students, one year after the course was presented to them, as mathematics teachers working
in Portuguese secondary schools: the success of using history of mathematics as an integral part of the 
subject was evaluated and we finally found using history of mathematics effective when teaching 
mathematics to Portuguese pupils.

1 The project 

For the past decades many authors, in different parts of the world, have been writing on the 
importance of the History of Mathematics in Teaching Mathematics. Many good reasons have 
been presented for establishing a fruitful link between history and teaching within mathematics, 
see (Fauvel, 1991), but, in particular in Portuguese secondary schools, implementing history of 
mathematics as an integral part of the subject does not seem to be an easy task to accomplish. For 
most of these teachers, relying on the historical episodes that others had prepared for them, 
referring to history of mathematics became a curriculum obligation (a task that they have to 
accomplish) rather than as a conscious strategy (a challenge which they are willing to take) for 
dealing, for example, with learning of mathematics concepts. 

The project was designed to bring future mathematics teachers close to the History of 
Mathematics by means of involving them, during their final year as mathematics students wanting
to become teachers, in their own History of Mathematics research, namely the Portuguese history 
of mathematics and particularly pushing them into having direct access to historical sources. The 
lecturer closely supervised every research program within the course.  

The following is an example of one of these research programs. The project was initially 
specified as “The life and work of José Vizinho” and Abraão Zacuto’s text (1986) was the given 
clue to develop the project; the student had never heard of José Vizinho and had never worked on 
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mathematics applied to nautics/astronomy. We are now presenting a summary of the whole 
project, rewriting the student’s initial monograph on the theme in a teaching of mathematics 
context.

2 The research 

Historical background 
Portugal is a relatively small country (91951 km2 of continental land area) located in South-
western Europe, bordering the North Atlantic Ocean, west of Spain. Having a maritime temperate 
climate but only 20% of arable land, the connection between Portuguese people and Navigation 
seems inevitable.  

By 1290 Portugal was founding its first University (in Lisbon and later transferred to Coimbra), 
by 1297 the Portuguese borders were definitely settled (the Alcanizes Treaty); Portugal had 
reached the stage where it could look to the Atlantic Ocean as a means of expansion, business and 
culture.  

According to Gomes Teixeira (1934) the history of mathematics in Portugal is directly related 
to the history of mathematics in Spain and it is possible to identify two sources for the Sciences to 
have entered the Iberian Peninsula (Christian Priests and Arabs): 

A história das Matemáticas em Portugal está estreitamente ligada à história das Matemáticas na 
Espanha e ambas estão intimamente ligadas à história destas ciências entre os Gregos, Indianos 
e Árabes... 
As ciências entraram na Península Hispânica por duas vias: primeiro, sob forma rudimentar, 
trazidas do Oriente principalmente por sacerdotes cristãos; depois pelo sul, sob forma levantada 
trazidas pelos Árabes que invadiram as Espanhas. 

There are no known Portuguese mathematical documents prior to the 15th century: attention was 
first paid to the formation of a kingdom (1143) and then to its organisation. Again, Gomes 
Teixeira 9ibid.) says that: 

A cultura das Matemáticas começou em Portugal mais tarde do que na Espanha e, como neste 
país, foi a Astronomia, com as doutrinas da Aritmética e da Geometria que no seu estudo 
outrora se aplicavam, o ramo daquelas ciências que primeiro foi regularmente cultivado... 
Não conhecemos, com efeito, documento algum que se refira à cultura de tais ciências no nosso 
país antes do século XV. 

While Alfonso X of Spain had introduced Astronomy into the initial curriculum at the University 
(of Salamanca), Dinis of Portugal (his grandson) did not endow the Portuguese University with 
any Chair related to the mathematical sciences. The king D. Dinis (1279-1325) did, however, 
organize a naval force for defending the Portuguese maritime borders. Portuguese people were, 
therefore, definitely linked to the practise of Nautical Arts. Later on, this practise was attached to 
science and the basis for the glory of Portuguese discoveries was set up. 

King João I (1385-1433) equipped the army for the conquest of Ceuta and his son Infante D. 
Henrique, was sure about the possibility of the discovery of a maritime route to India. By 1419 D. 
Henrique moved to the village of Sagres (in the south of Portugal) and created a Nautical 
Academy/Observatory: Escola de Sagres. Dedicated to the preparation of expeditions to explore 
the secrets of the Oceans, Portuguese mathematicians had an immediate and practical objective: 
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the handling of principles and indispensables rules by those dedicated to astronomy and 
navigation. The masters, during the 15th century, were well known foreign cosmographers such as 
Jerome de Maiorca or Abraão Zacuto, who had been expelled from Spain by the Inquisition and 
stayed in Portugal for some years.  

Throughout that century, the Portuguese Discoveries are pioneers in time and unique in space 
(Barreto, 1988): “Os Descobrimentos Portugueses são temporalmente pioneiros e espacialmente 
únicos.” 

Under the leadership of Infante D. Henrique, the sailors made great strides through the Atlantic 
Ocean and the East African Coast and south from the Cape Bojador; in the reign of João II (1481-
1495), it is he himself who organizes the Maritime Discoveries when they go to the conquest of 
the South Atlantic and the Atlantic-Indic connection, consulting his Junta dos Cosmógrafos. This 
group also introduced nautical projects to the king and had among its most remarkable members 
Diogo Ortiz, Mestre Rodrigo, Mestre Moisés, and Mestre José. In 1484 Columbus’s plan for a 
western route to India was submitted to the Junta dos Cosmógrafos, who finally decided against 
his proposal. 

As the Portuguese wanted to sail further south from the Equator, orientation using the Polar 
Star was no longer viable and the need for alternative sailing procedures was of central 
importance. 

Mestre José from the Junta dos Cosmógrafos was our José Vizinho, doctor, astrologer and 
mathematician of the King. José Vizinho was then regarded as an eminent authority on 
mathematics and cosmography, having met the subjects as one of Abraão Zacuto’s pupils. 

The problem of finding alternative sailing procedures had its resolution linked to the 
observation of the Sun’s height at noon, in its passage across the meridian of the place; to 
determine the Sun’s declination on the day of observation. Given those two values, the latitude 
was obtained employing a method explained in Afonso V’s Libros del Saber de Astronomia.

The proposed problem consisted, therefore, in adapting on board the already known latitude 
determination methods used on land. This task held fundamental challenges for the entire nautical 
world, among which it is possible to enumerate the following, see (Da Mota, 1960):  

To give the sailors an elementary initiation in astronomy, in lessons possibly based on 
Sacrobosco’s Tratactus de Sphaera.
To simplify the astrolabe and other observation instruments. 
To establish simplified rules, easy to observe and involving calculations that were simple 
enough for sailors.  
To develop solar declination tables easy to employ, to spare sailors the very difficult
process of daily calculations using the arithmetical rules of the Regimento or even using 
graphics. 

According to Armando Cortesão (1971): 
The determination of a ship’s latitude was obtained, already in the 15th century, by observation 
of the meridian altitude of the Sun. For this purpose, navigators used the rules of the so-called 
Regiment of the declination of the Sun, which Pedro Nunes later called, more correctly, the 
Regiment of the altitude of the Pole at noon…  
It is clear that, when the occasion demanded, Portuguese astrologers did not lack sources of 
information regarding the manner of obtaining the altitude of the Pole at noon… 
Knowing the important part played by José Vizinho (he was the translator of Zacuto’s 
Almanach Perpetuum), it is not surprising that the King should entrust him with such a task 
[discovery of the manner of navigating by the altitude of the Sun]. 
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The first two known versions of the Regimento were found in the Nautical Guide of Munich, with 
anonymous author. However, Armando Cortesão (1971) and Luís de Albuquerque (1994a), 
amongst others, attribute the authorship of the first version of the Regimento to José Vizinho. This 
conjecture is essentially based in the knowledge of a pioneer trip that Vizinho did to Guinea in 
1485 by King João II order that, despite being experimental, showed systematisation only possible 
with a clear and profound knowledge of the rules. Columbus, in one of his private notes (1485), 
explains that the information given by José Vizinho furnished very interesting results which he 
himself confirmed, see (Cortesão, 1971). The arguments are coherent, but the doubts about 
authorship will remain.  

However, there is no doubt that José Vizinho was the translator into Latin and Castilian of a 
book that much influenced nautical science in Portugal at the end of the 15th century and during 
the 16th century, the Almanach perpetuum celestium motuum (Radex 1473) (Leiria, 1496) first 
written in Hebrew by Abraão Zacuto, see (Zacuto, 1986).  

Mathematical component 
In order to show how José Vizinho played a fundamental role in the pursuit of discoveries and in 
the scientific culture that is directly connected to it, we now present the method (Regimento) for 
Determination of Latitude by the Sun in High Sea. It has already been said that the latitude was 
determined using two values: the Sun’s declination for that date and the Sun’s altitude at noon, 
measured in its passage across the meridian of the place. 

Figure 1 Tables for the Sun’s declination (left side) and for the multiples of 1° 46’ (right side), as 
included in Almanach Perpetuum

- Declination of the Sun for a given date 
On the solar declinations table in Zacuto’s Almanach Perpetuum (Figure 1, left side) we can 

read the declination as a function of the variable lugar do Sol, which is the angular distance of the 
Sun from the nearest Zodiac sign. So it was required to know previously that value for the given 
date.  
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The procedure is explained in Chapter 2 of the book, named Para Saber el Lugar del Sol (to 
know the position of the Sun), see (Zacuto, 1986). 

The canons call for another tables that set the positions of the Sun in the Zodiac in a four-year 
cycle, beginning in the root year of 1473.  

Being d the difference between the wanted year and 1472, make the modular division of d by 4. 
We know today that there are integers q and r, with r 0 1 2 3, , , so that d q r4  and that 
those integers are unique. The remainder r of the modular division of d by 4 indicates in which 
table we must consult the value of the position of the Sun for the month and day in question. To 
know the number of the table in which we must enter, is therefore to find the least integer r
agreeing with d module 4.  

The quotient q is the value we must multiply by 1 46’ (106’) to obtain the correction to the 
value read in the table. The correction was necessary due to the errors existing in the calendar 
(Julian). The process, absolutely original from what is known, gave a “perpetual character” to its 
quadrennial tables, not being necessary to construct new ones. The value read with the correction 
is the position of the sun we were looking for.  

The “Tabula equationis Solis” of the Almanach Perpetuum (Figure 1, right side) is a simple 
arithmetical table with the multiples of 1 46’, made with the purpose, explicitly registered in the 
canons, of eliminating the mentioned calculation.  

However, there is a particular case missing. When d is a multiple of four, that is when r 0 ,
as there isn’t the tabula zero, the proceeding would naturally be another. In those cases, we would 
enter the fourth table and the additive correction would be q 1 1 46’. We strongly believe 

that, rather than a possible lacuna in the text, this omission was voluntary because the explanation 
leaves it somehow implicit.  

Known this coordinate, the lugar do Sol, the next step would be to determine the sun’s 
declination, for instance, by the consultation of the mentioned declinations table (the same which 
would after originate several of those that the pilots carried in the vessels in the 16th century). We 
would enter the column of the sign (0 for Aries, 1 for Taurus, 2 for Geminis, and so on) and the 
line of the angle previously found. For example, the declination for 12  of Scorpio (sign number 7) 
is 31, as 7 is in the top we look for 12 in the left; by opposition the declination for 18  of Aquarius 
(sign number 10) is also 31, as 10 is in the bottom we for 18 in the right. As this table gives the 
declination only in function of the integer degrees of the places, the method involved the use of 
interpolations, which were besides current practise, as graphically as arithmetically, for the 
cosmographers. 

But how was the solar declination table of the Almanach Perpetuum constructed? The formula 
underlying the declination’s values for each of the degrees is, see (Albuquerque, 1994a): 

sin  = sin ·sin
where  is the declination reached by the Sun,  designates the obliquity of the ecliptic and  is the 
celestial longitude of the Sun. 

As to celestial longitude of the Sun , it is easily computed using the lugar do Sol .
n 30 ,

where n is the number of signs already surpassed by the Sun beginning by Aries. This clarifies the 
correspondence between the signs Aries, Taurus, Geminis, Cancer, Leo, Virgo, Libra, Scorpius, 
Sagitarius, Capricornius, Aquarius e Pisces and the numbers 0, 1, 2, 3,.., 11, respectively. 
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As to the ecliptic’s obliquity, with a small variation through the years, Abraão Zacuto 
established its value in  = 23 33’, it was a quite good approximation and considering it constant 
made easier the computations. 

Equator

Ecliptic 

Figure 2. Representation of the celestial sphere 

Q

P

R

S

1 TAURUS

3 CANCER

6 LIBRA

11 PISCES

2 GEMINIS

5 VIRGO

4 LEO

7 SCORPIUS

8 SAGITARIUS

9 CAPRICORNIUS

10 AQUARIUS

0 ARIES

Figure 3. The Ecliptic and the Zodiac Signs – P (Aries) and R (Libra) correspond to the equinoxes, 
while Q (Cancer) and S (Capricornius) correspond to the solstices 

About the method how this formula would be applied we can only, once again conjecture, because 
most of the sources for the study of the navigation art in the 15th century disappeared. We still 
have few indications and regiments about this subject, printed during the 16th century, when 
already surpassed for more evolved ones. 

We might take one rather credible answer from the Arte de Navegar, of 1596, by Padre 
Francisco da Costa, which presents two alternatives to determine declination, see (Albuquerque, 
1994b).

One of the methods is graphical, a version of another one introduced by Pedro Nunes, which, 
on the other hand, is the improvement of many other 16th century models, see (Albuquerque, 
1994a). Although it is much later than Vizinho’s and Zacuto’s and, as so, having they used in 
maximum a graphic more imperfect and complicated, it will be presented P.e Francisco da Costa’s 
model, who classifies it as the easier way and not less correct of them all (Albuquerque, 1994b), to 
illustrate the basic principles underlying all those proposals, see (Albuquerque, 1994b). 

The other method, involves computation and it is introduced with the following explanation: 
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Multiplique-se o seno da máxima declinação do Sol, que nas tábuas dos senos se achará no 
ângulo comum, tomando na parte superior o ângulo e no lado esquerdo os minutos, pelo seno 
do arco da (eclíptica até o equinócio) mais chegado aquele ponto cuja declinação se busca; e 
repartindo o que de tal operação sair pelo seno total, ter-se-á o seno do arco da declinação do 
sobredito ponto, o qual buscado nas sobreditas tábuas, mostrará os graus que importa a 
sobredita declinação. 

After presenting it, Francisco da Costa used an example to clarify it: The Sun being in 8  of Virgo, 
he wants to know its declination. He observes that there is a lack of 22  to the next equinoxes (that 
is when the Sun enters Libra). According to the sinus tables, 22sin  is 37460 parts, and 

2
123sin  is 39874; he multiplies them obtaining 1493680040, what he divides by 100000 parts 

(the total sinus), which gives 14936. Back to the tables he finds that the correspondent arc is 8 35’, 
and that is the declination. 

Therefore, in practical terms, the declination  would be calculated through the following 
expression: 

 = arcsin(sin ·sin
using tables of sinus amply spread since the golden age of the Islamic mathematics. This 
calculation would also generally need interpolations.  

Another question is related to the way the rounding was made. The last transcription confirms 
that at the date the rounding was to the least, truncating the disposables decimals. So, while 
14936.80040 would nowadays probably be rounded to 14937, to minimize the error, in Arte de 
Navegar it is taken as 14936. 

The mathematical interest of the declinations table of the Almanach doesn’t end here. It is 
resumed to a matrix 30 3, so the calculations of the declinations were reduced to the positions of 
a single quadrant. This structure shows the knowledge of some important mathematical proprieties 
of, once again, sinus, such as sin180sin o , sin180sin  and sinsin .
The last one explains why the signs were crossed from beginning to end in the even quadrants 
pares and backwards in the odd quadrants. 

This technique using solar tables, certainly used in sailing and even recommended later in 
Pedro Nunes’s Tratado da Esfera, didn’t found many followers, possibly because the pilots felt 
difficulties with calculations. They considered more practical to organize tables where they could 
directly read solar declinations for each day. But studies about these other tables show that for 
their construction, the cosmographers consulted the “so hard” Zacuto’s tables.  

- Altitude of the Sun at noon 
To determine latitude it was indispensable to measure the Sun’s altitude in the meridian and the 
elected instrument was the astrolabe. This measure had its own problems: it was strictly necessary 
that the reading occurred exactly at noon, holding the astrolabe at the level of the chest, instead of 
the eye (to avoid blindness), and to register the read value when the Sun light was correctly 
aligned, time when would appear the shadow. 

- Latitude of the place
Back to the Regimento do Sol of the Guia Náutico de Munique, it presents 5 rules; the following 
are four of them, see (Cortesão, 1971): 
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Table 1: Rules from the Regimento do Sol for the latitude  of a place given the Sun’s altitude h at 
noon and the Sun’s declination  in that day. 

It has obviously tried to describe all the possible realities. Note that the indication of the shadow’s 
direction is only to confirm the relative position between the observer and the Sun. Later it would 
be simplified to: reading the same in columns 1 and 3, use 900 h ; if not apply 
h ho90 90 1800 0 .

Historical and literary remnants 
The merits of the Portuguese authorship of these innovating methods were getting lost, with the 
irremediable disappearing of some manuscripts and the forgetting of others. Nevertheless it will 
remain recorded in the world’s memory Vasco da Gama’s Discovery of the Maritime Way to 
India. In that journey they were carrying, without any doubt, the work of José Vizinho, of Abraão 
Zacuto and of the Junta dos Cosmógrafos. João de Barros, in Décadas da Ásia, (1778), describes 
how Vasco da Gama went assure with an wooden made astrolabe to measure in land the Sun’s 
altitude and confirm the measures made at sea, as this art began so rustically. 

For the entire world to read, with translations in many different languages, is Luís de Camões’ 
epic Os Lusíadas (1974), were the poet mentions the new instrument, the astrolabe, wise invention 
that enables far-away places to become known, as when Vasco da Gama found his location stood 
by the seaside taking the Sun’s altitude and marking it in the map with a compass. The episode is 
therefore perpetuated just like this: 

E, pera que mais certas se conheçam 
As partes tão remotas onde estamos, 
Pelo novo instrumento do astrolábio, 
Invenção de sutil juízo e sábio: 

Desembarcamos logo na espaçosa 
Parte, por onde a gente se espalhou, 
De ver cousas estranhas desejosa, 
Da terra que outro povo não pisou. 
Porém eu, cos pilotos, na arenosa 
Praia, por vermos em que parte estou, 
Me detenho em tomar do Sol a altura 
E compassar a universal pintura.  

Sun in Hemisphere Position of the observer 
relatively to the Sun 

Shadow’s direction  Formula

South South  South 900 h
South North North h 900

North North North 900 h
North South South h 900
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3 The outcome 

One year after conducting this research program, the former 4th year student and now mathematics 
teacher was using many of her own findings on the Portuguese history of Mathematics in many of 
her own classes with many of her own pupils and in many levels of mathematics teaching: 
when teaching geometry (both analytical and Euclidean and also Trigonometry), by means of 
underlining basic mathematical concepts; 
when dealing with new technologies strategies, by means of exploiting approximation errors; 
when aiming at context, by means of broadening the mathematical contents; 
when reaching group strategies, by uniting pupils’ interests. 
Above all the University project brought authenticity to the historical episodes related by these 
young mathematics teachers to their own pupils and, last but not least, it also increased Portuguese 
students and pupils’ self-esteem. 
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ABSTRACT 
There has been a growing interest in adopting the historical approach in mathematics teaching since the 
1970s. How can history play an effective role in improving the teaching and learning of mathematics? 
Teachers who are concerned about HPM would have regarded this as a primary goal. If we extend the 
pedagogical concern to initiating more mathematics teachers in applying the history of mathematics into 
their teaching, we believe that this would be beneficial not only to students but to teachers themselves as 
well. Teachers’ education is very important. So we must know well what the impact of the history of 
mathematics is on the development of mathematics teachers. In order to deal with the above questions, we 
undertook one school-based research during a two-year period, from August of 2002 to July of 2004. A 
community of teaching practices in terms of HPM was developed in one of the Taipei municipal senior high 
school. By way of collaborative action research, we observed participating teachers’ process of 
transformation in which they adjusted and melt the history of mathematics and mathematics knowledge by 
means of interpretation and teaching. Therefore, in this thesis, I attempt to answer the following two 
questions: 

-1.What are the strategies for teacher’s professional development on HPM approach on the school-
centered base?  

-2.And what are the changes of these participating mathematics teachers under this HPM approach?  
The research was conducted in a partnership among three teachers, T1, T2, T3 and the researcher herself 

(hereafter abbreviated participants). In the light of the HPM, the participants went through three phases of 
professional development. They learned to search for primary sources, to read related articles and to engage 
in critical discussions, which includes practices from both Western and Eastern methods of teaching in order 
to design and create HPM worksheets. They were encouraged to write down their reflections to make public 
their private ideas. Apparently their reflective narration could fortify knowledge, make their innovative 
works accessible to others, and go on to enhance their professional knowledge. We believe that, through this 
kind of professional practice, the participants can increase their personal and professional knowledge, which 
in turn contribute to their teaching.  

 The strategies the participants adopted are: reading a lot of articles about mathematics teaching, 
designing HPM worksheets including the logical aspect of mathematical knowledge, the historical aspect of 
mathematical knowledge and the aspect of student’s cognition. Finally, the researcher suggests a Teacher’s 
Model for Professional Development in terms of HPM, which can explain the practices of these teachers 
through the process. In this model, teachers enter the hermeneutic circle, say C1, to look into the ideas of the 
editors of textbooks, the mathematics knowledge and the contents of textbooks. Then they enter another 
hermeneutic circle, say C2, to learn the ancient mathematicians’ ideas, mathematical objects, and 
mathematical theories. After the teachers interpret the essence of C1 and C2 by themselves they then start to 
teach. In practice, we can characterize in six different manners, the teachers’ use of the history of 
mathematics in the classroom: isolation, addition, introduction, execution, integration, and decision-making. 
In the end, the researcher suggests that “optimization” to be the goal for future development of the teachers.  

By the end of the two-year project, it is obviously that the participants have enhanced their professional 
expertise in terms of the HPM in following ways, namely, 1) they can begin to write popular mathematics 
articles; 2) they are more reflective into their teaching than ever; 3) they are able to integrate their 
mathematics knowledge into a broad picture; and 4) they start to care about the students’ thinking. As a 
conclusion, this thesis suggests that an HPM approach can do to help mathematics teacher’s professional 
development in an efficient way.  

1 Introduction 

There has been growing interest in adopting historical approach in mathematics teaching since 
1970s. How can history play an effective role in improving the teaching and learning of 
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mathematics? From the research project of “Using Ancient Mathematical Texts in Classroom” 
(Horng, 2001) undertaken in Taiwan, it has shown that using mathematical texts in classroom can 
enhance mathematical teaching. If we extend the pedagogical concern to initiate more and more 
mathematics teachers in applying history of mathematics to mathematics teaching, we believe that 
greater number of students can be beneficial. But, above all, the teacher education is very 
important. So we must know well about the impact of history of mathematics on the development 
of mathematics teachers. Can we improve the teachers’ development through the studying history 
of mathematics and through creating some suitable teaching materials? How can we discern the 
dimensions of professional development? So, the purposes of the study are:  

-1.What are the strategies for teacher’s professional development on HPM approach on the 
school-centered base?  

-2.And what are the changes of these participating mathematics teachers under this HPM 
approach?  

Since the August of 2002, the author has joined a research project undertaken by Professor 
Wann-Sheng Horng in order to deal with the above questions. The theme of the article is to 
explore some aspects shown in the findings of the research project, in which the author is 
responsible for an action research of school-based profession development. In particular, one 
member of the team, Teacher T1 will be examined in details in order to investigate how the HPM 
can enhance teachers’ professional development. 

2 The context of the study  

The research is conducted in partnership between three teachers T1, T2, T3 and the author herself 
(also as the researcher) over the last two years in the same senior high school in Taipei City. T1 has
been teaching for eighteen years. T2 holds a Ph.D. in pure mathematics, and has been teaching for 
fifteen years. T3 is a novice teacher, and has been teaching for just two years. As for the author 
herself, in addition to serving as teacher for nine years, she holds a Ph.D. of the NTNU, majoring 
in the HPM.  

Every Tuesday afternoon these teachers meet at their school mathematics office from 2:00 to 
5:00 pm. They learn to search for primary sources, read related articles and give critical 
discussions, including both from the West and the East in order to design worksheet. The 
colleagues are encouraged to write down their own reflections, which will be published in the 
HPM Tongxun (a Taiwan version of the HPM newsletter published by Prof. Wann-Sheng Horng) 
to make their private ideas public. Apparently their reflective narration can fortify knowledge, 
make their innovative works accessible to others, and go on to enhance teachers’ professional 
knowledge. We believe that, through this kind of professional practice, the colleagues can increase 
teacher’s personal knowledge and his/her professional knowledge, which in turn positively 
influences his/her teaching. 

For the research project, multiple sources of data were collected in order to support data 
analysis. Assessment was portfolio-based. Portfolios included, for example, worksheets designed 
by teachers, reflection article written by teachers, input on developing curriculum documents and 
classroom videos, the interviews, and the audiotape accounts of study group meetings. This study 
drew on a range of qualitative methods with our roots in action research. In the research, the 
author adopted the dual role of both researcher and participant. 
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In the light of the HPM related with the project, the colleagues have got through three phases of 
professional development. In Phase One, they made it clear that the purpose of HPM is to teach 
mathematics rather than teach the history of mathematics. Nevertheless, they came to realize what 
the history of mathematics is about. When entering the second phase, they understood that the 
logical aspect of mathematical knowledge, the historical aspect of mathematical knowledge and 
the aspect of student’s cognition can be interconnected. Due to a lot of critical discussion, they 
develop a HPM model for designing teaching materials (cf. Diagram 1). They went on to create 
many more comprehensive teaching materials, which are constructed in module form. The purpose 
is to make each of the worksheets look a bit more difficult each time than the previous one, which 
can be used more easily for other teachers. In the phase, they also read a lot of articles about 
mathematics teaching in Mathmedia (a popular magazine published by Institute of Mathematics, 
Academia Sinica) to get familiar with the related reform issues in the community. In the last phase, 
the colleagues find that they all have enhanced their professional expertise in terms of the HPM. 
For example, the author understands that incorporating the history of mathematics, she must 
remind herself of what benefit students should match their need in the classroom. So when 
designing the worksheet, the author becomes alert to fit the learning object in mathematics 
textbook. Other colleagues, on the other hand, come to realize that the history of mathematics can 
help them look at mathematics from a broadened view. Even so, the colleagues all agree that 
students must be the subjects in the classroom and teachers are responsible for encouraging them 
to investigate mathematics more efficiently. By adopting the approach of HPM, now the 
colleagues can use the history sources to help students’ mathematics learning both in cognitive and 
cultural aspects. The students’ positive feedback assures the colleagues that it is beneficial to 
applying history of mathematics in mathematics teaching. In the study process, the most important 
of all is that they create a HPM model for designing teaching materials.     

When the model was created through critical discussion and practice, all the participating 
teachers enter the third phase. The author summarizes this framework with the following diagram 
(cf. Diagram 1). The strategies the participants adopted are: reading a lot of articles about 
mathematics teaching, designing HPM worksheets including the logical aspect of mathematical 
knowledge, the historical aspect of mathematical knowledge and the aspect of student’s cognition. 
Finally, the researcher suggests a Teacher’s Model for Professional Development in terms of 
HPM, which can explain the practices of these teachers through the process. In this model, 
teachers enter the hermeneutic circle (Jahnke 1994), say C1, to look into the ideas of the editors of 
textbooks, the mathematics knowledge and the contents of textbooks. Then they enter another 
hermeneutic circle, say C2, to learn the ancient mathematicians’ ideas, mathematical objects, and 
mathematical theories. After the teachers interpret the essence of C1 and C2 by themselves they 
then start to teach. In practice, we can characterize in six different manners, the teachers’ use of the 
history of mathematics in the classroom: isolation, addition, introduction, execution, integration, 
and decision-making. In the end, the researcher suggests that “optimization” to be the goal for 
future development of the teachers.  

Of course, this is not to say that all the stories would be the same and, indeed, the data revealed 
many differences in the speed and nature of change among teachers in these areas.  

The T1’s story exemplifies the nature and complexity of the participating teachers’ learning. 
That is why we take his case here as an example to illustrate out study of the subject. 
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3 A story of T1
T1 taught mathematics at junior high school for three years, and teaches mathematics at senior high 
school for another fifteen years. He was graduated from National Taiwan Normal University. The 
reason for T1 to participate this study is he has some problem in teaching. He said: 

In a mathematic class, we would try our best to directly teach our students some principles and 
methods. Certainly if your students are good enough or if they are very interested, then these 
students would learn much, and this is the wonderful part. On the other hand, some students 
might not like math that much. If so, even if we teach very hard, I can feel that these students 
would not be able to get what we expect them to get in the class. (2002/09/13) 

So, T1 wonders if history of mathematics can do something for that: 

Then I found that the something about the history of math would enable me to let my students 
come into contact with math in another way. And I feel that it can be part of our teaching and 
make my students feel that learning math is no longer like a one-way mode of activity as we 
did in the past. In short, we can see math in a more interesting way or from another angle. For 
students, such different approach might be more interesting, and, I feel, it would be more 
effective than the result of what we used to do in the past. (2002/09/13) 

T1 expects to change the form of math teaching through adding the history of math to it and to try 
to arouse the public interest of students. When asked about the expected objective, T1 said 

With history of math added to math teaching, we certainly would expect it will get substantially 
deep down inside math teaching. Therefore, that is where I make my effort for the objective; to 
make me has a same viewpoint and a same mode of learning with my students. 

With such an attitude for the research, T1, after his survey of the reports in Using Ancient 
Mathematical Texts in Classroom (a technical report of Prof. Horng’s research project funded by 
NSC, Taiwan), and after a meeting, in the first month of his return to NTNU, with professor Horng 
and the other six teachers who have learned HPM teaching, felt an insufficient knowledge of 
history of math, and a discrepancy of the ideas as to how deep history of math should be involved 
in math teaching. Then some rumor had it that he was leaving. Since the reason why he was said to 
leave has been interpreted as some doubt of those teachers who had joined in-service projects. 
Therefore, the researcher quoted the excerpt as follows: 

In the very beginning, I have never come into contact with the history of mathematics. As I did, 
I came into contact with some members who had, more or less, come into contact with history 
of mathematics. When it comes to the role of history of mathematics in math teaching, I did not 
really think that history of mathematics was the main part, because math has its own 
framework. Based on this framework, it is the main body, and I had expected that history of 
mathematics would work as decoration, being able to complementing the framework and 
making the framework richer. This is the original idea I had had before I joined the program. 
After I joined the program, I wondered whether there is some difference in the ideas between 
the members and me, because I felt that most members seemed to have thought that history of 
mathematics had become the most important part, and I don’t think I can accept that any more. 
That is why I am out. (2002/10/6) 

After realizing what T1 has thought, the researcher explained that the idea of HPM would still 
work to help students to learn math, and that each member teacher would handle the addition of 
history of mathematics in his (her) own way. Also, due to encouragement and persuasion of T2 and 
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T3, T1 was then to stay in the research team again. At this point, T1 did not realize the value of the 
project itself. What supported him was obviously the companionship, the co-learning partnership. 

Continuing his research, and after eight months, T1 recalled as follows: 

Later as Miss Su told me that it was her idea that it was just very natural that each member 
would think differently. Then I was the one who joined the group when I might have felt quite 
differently from others. As I looked back, I found that I wanted to come here to learn 
something, no matter what it is about. If the objective is to learn, even if there might be some 
difference, still I won’t feel any conflict with my learning. So I still remain to stay in the group. 
(2003/05/16) 

Judging from the above, we can see T1 is quite experienced in teaching. As a senior teacher, he has 
turned himself into a learner first, and then into a researcher. To T1, there has been a process of 
adjustment. Through this experience, we can easily see that the sincere communication and the 
feeling of sticking to one another can be a main power to keep the group moving on. 

As mentioned above, with the support and encouragement of the fellows of the same schools, 
T1 has come to realize that colleagues’ reports can serve as a kind of reference. As for the works of 
each teacher, anyone can decide freely how to apply, so that the teacher who applies the works of 
others can still keep his own style in his teaching. After realizing the idea that it would be a benefit 
to combine various kinds of viewpoints to form a multi-face in teaching, T1 then decided to stay 
and from then on entered phase Two. 

We know that T1 had been like any other teacher before his joining the group research. And 
what he had done in a teaching activity had been for the presentation (explanation and illustration) 
of the teaching units of the math textbook, based on the teaching schedule of the time. If we use a 
model, following Hans Niels Jhanke’s hermeneutic twofold circle (Jahnke 1994), like what 
Diagram 2 shows, then we can see that he was merely interpreting the contents of the teaching 
material under the circle C1 consisting of textbook editor, curriculum standards, and the contents 
of textbook. During the first phase, due to the need for research, C2 had to be taken care of. 
However, there seemed to be some conflict in T1’s recognition as to the way of application, the 
percentage, and the properness. Though he has gone through the process of acceptance – rejection 
– reacceptance, an interaction happened only among T, I, C1, during the first phase, while C2 was 
still an added item (or unit), still unable to interact with the circulation of interpretation. As for the 
role of C2 in T1 teaching, it began with the start of the stage Two. 

4 Phase two 

In the second phase, meaning after entering the field of HPM, the teachers came widely into 
contact with different aspects of math education. As is mentioned above, all of the teachers read 
the book, Why Learn Math (in Chinese, by Siu Man Keung 1992) together. Concerning this book, 
T1 said, “I had never read any books on history of mathematics. And in this book the author 
introduces history of math in a very simple way, which I think would be easy for any beginner as a 
tool of enlightenment, and very helpful to me.” Therefore T1 wrote down what he had got: 

In a world where the way of exams decide the way of teaching, most teachers have been forced 
to teach the skills of math and have neglected the traditional historical statements such as the 
cultural aspect, and background of time, and the introduction of characters, as well as the 
development and settlement of questions. These parts have been so lively and interesting. If 
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they were taken away, math would look like an empty body without essence or soul. Though 
concrete, it would still lack something vital. And no wonder math teaching would look stiff and 
lifeless, not to mention attraction. 

T1 continued, 

The author has applied a very relaxing touch for his writing, to re-define math by bringing in 
the history of mathematics. For instance, Chapter Three mentions the recognition of the 
development of the history of mathematics, in which the recognition of origin of math is further 
developed into theory. From emotional recognition to reasoning recognition, from concrete to 
abstract, from generalization to transformation, there has been a connection of introduction. 
The given samples have been able to serve its function of showing the evidence. In “the 
application of actual questions”, it is possible to combine math with reality, thereby enriching 
the meaning of math, enabling math to be friendlier (for example, the use of angle ruler, the 
turn of vehicle, the question of seven bridges, the use of solar dial to wisely measure the size of 
the earth). If a teacher can wisely make use of these tools, the math teaching will not be limited 
to the training of thoughts and the teaching of knowledge but also it can improve the cultural 
training. And perhaps, in judging math teaching, students would be given another atmosphere 
and better comment. 

Reading the book has an influence on the design of worksheet by T1. For instance, concerning the 
editing of the teaching material of “matrix”, T1 wrote 

In his book Why Learn Math, Mr. Siu mentioned, the development of math was from concrete 
to abstract, from generalization to transformation. Therefore, the write will enter from the basic 
recognition of pre-learning, then would bring forth new question to create conflict or 
insufficiency in the recognition, thereby forming the complete sense of the matrix operation, 
and in expanding the range of the matrix application so that students may further understand 
the function and the capability of matrix. 

So, T1 designed the worksheets about the “matrix” with questions given to further acquaint 
students with the matrix calculation. From what is said above, from the reading of history of 
mathematics, T1 has not only developed his recognition of math but also has been able to apply 
some of the concepts for the design of worksheet. For the editing of worksheet, he chose Chapter 
Three “Matrix” as a subject to work on. When handling worksheet, T1 has considered the time 
span needed to meet the school schedule as well as the use by the students for specific exam. 
Therefore he has come to realize that there should not be a too flexible span of time. He then 
worked out three worksheets, respectively the introduction of matrix, the raw operation and the 
multiple operation of matrix. In his idea of design, he also emphasized the principle of simplicity, 
and insisted that it should be a media to accelerate the learning instead of being the main part of 
mathematics. 

In a dialogue after teaching, concerning the difference with normal teaching, students made a 
very positive comment, “I feel that our teacher, when teaching this chapter, has been more devoted 
than ever, worked harder than ever, there was no halting in class for even one minute. Besides, it 
was the first time for him to apply worksheets, jumping out of the cliché of textbook, and we can 
see how hard he has worked on it.” Concerning the situation before and after the research, and the 
way of preparation before class, T1 recalled that, before research, he would read through the 
textbook, locate the points, analyze them, try to understand the examples, and practices, estimate 
the hours and schedule, and then decide what to teach as an addition. However, after the research, 
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in addition to the understanding of the contents of the textbook, T1 would try to say something 
about the related historical background, the causes, as can be found in some document. 
Furthermore, he would try to explore the questions from various viewpoints. (2003/12/15) As we 
see, the addition of HPM has enabled T1 to enrich his teaching material and his teaching activity. 

After the using history of mathematics to the math teaching by T1, most students have been 
found to support the idea very positively, with the supporting percentage 65% 82% 68%. This is a 
very encouraging situation for T1, who has given his first try. In addition to confirming that the 
using history of mathematics is like lubricant which makes the material more active and attractive 
to students, history of mathematics also provides more literal and social aspects of the knowledge, 
thereby shortening the distance between students and math. Math is not always boring any more. 
T1 also keep emphasizing that there is something we must notice when it comes to the technique. 
That is, we should never treat history of mathematics as a formal serious class so that we may not 
get astray from the objective of learning math. Also, the material should be easy and interesting. 
Do not forget we are here to gather students around, instead of scaring them away. Anything that 
would add burden to students should be avoided. 

In the first phase, T1 judged by instinct that history of mathematics is supposed to help the 
teaching of math but he had no idea how much help there can be. However, after the design of 
worksheets and the practice, T1 realized that the more we know about history of mathematics, the 
more we would find it helpful to the math teaching since it includes the knowledge of math, 
history, culture, literal background, the passing down of knowledge and influence, etc., depending 
on what aspect to take. Under the proposition of multi-objective teaching, it surely enriches our 
choice, indeed. (2003/12/15) 

Compared with what T1 thought previously that we could bring in some historical material for 
our teaching at a proper moment so that students may understand why and how this formula was 
born, under what background this formula was generated, where this formula was applied to when 
it was figured out. To the students, a formula would no longer a stranger without background. So, 
we now see how much HPM T1 has got hold of.  

From what is said above, we found that during this period from his intention of leaving the 
group till his final decision to join the group again, T1 has actually enjoyed the joy of learning 
much from some related reading. Also, the confirmed support by the students has made him more 
determined in taking part in the research. 

In addition, T1 has also look at the textbook with a critical mind. In the past, T1 has admitted 
that he usually takes any textbook and its authority for granted. But after over one year of research 
activity, T1 has confirmed that the research not only has brought him more knowledge but also a 
change in some concepts. And now he has found that textbooks can be subject to criticism, the 
teaching material can be subject to revision and modification. The contents of teaching material 
can be multi-objective. The flexibility for students to think about the learning can be unlimited. 
So, as we now see, T1 is now able to make a judgment for his own, as seen from the teaching plan 
he has written. For instance, about the arrangement of matrix unit for the third grader textbook, he 
has his own viewpoint as follows: 

In the textbook for third graders, there is no statement about the origin of matrix except telling 
students directly what matrix is by giving some examples and the meaning of multiplication. 
Perhaps students could understand the meaning of that example. However, students might not 
be able to understand why multiplication is impossible in case of different number of row. 
Obviously there is a lack of general idea, with little proper connection. At this point, the history 
of mathematics can be used, though it may not replace the textbook and become the main 
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material; its using would more or less make up for some insufficiency. And this is where we 
should make our efforts in this case. 

In the teaching material of matrix unit, T1 also added the idea of the education of heart. This is the 
most impressive experience in his research. He said, 

t that time these students were all third graders with the anxiety of having to face the Joint 
College Entrance Exam. One of the students who were good in all subjects except math came to 
me for a better solution to his problem. At that time the writer took Cayley and his good friend 
Sylvester as an example, telling this student how these two people worked together and helped 
each other in the research career, which made them a leading team. I then encouraged this 
student to find some partners to form a learning team. And this student listened to the advice. 
Later, the student came with a smiling face, and felt satisfied with the break-though of the 
difficulty. Besides, his partners have improved too. In the “White Book” by the Bureau of 
Education in promoting the so-called “education from heart” movement, there is a natural 
realization, which means the education of heart lies in the reformation of mind. After the 
increasing the ability of students in self-observance, there are many situations in which there 
can be the natural realization. And knowledge learned through realization would become a 
habit; then it would become an inner capability. I could not at first understand how to add the 
education of heart to math teaching. However, through the previous example, I then had 
realized history of mathematics really does have a place in it. (2003/12/15) 

One year later, one of the three members under the encouragement of co-learning partners was 
successful in getting admitted to the material engineering department of a national based 
university. He recalled that he was often fighting alone when he was still a third grader. Later he 
discussed his schoolwork with two classmates together two or three days each week, especially in 
math lesson. Three of them solve the problems together. In doing so, their math performance 
improved. 

At the end of the project which lasted for 20 months, the participant teachers received a visit 
from a weekly magazine (Issue 368) talking about how to using history of mathematics to math 
teaching, broadening the view of students, helping them learn math better. At this point, teachers 
shared their ideas with the editor. T1 talked about how the HPM helped the students. In his practice 
of teaching, through the successful story of the two great mathematicians A. Cayley and J. J. 
Sylvester who encouraged and helped each other, more teams of partners were formed for panel 
discussion and thereby improve the math performance. This is the most pleasant experience that T1

would like to talk about. 
From what is said above, we know that during the second period, T1 has been able to judge the 

properness of the teaching material instead of accepting all arrangement in the past. Besides, he 
has been able to use history of mathematics properly. Through the design of teaching material, the 
feedback of the students, and a review, T1 has changed his idea and believe that no textbook is 
perfect enough to be free from criticism. With this idea, he has come to design teaching material 
which fits the students. And the activity has greatly turned to focus more on students than on the 
teacher. 

Before the research, T1 had treated the contents of the textbook as the main part of his teaching. 
At that time, teachers were the main part of the lecture. Therefore, the knowledge went one way, 
from the teacher to the students. After the research, due to the need for the design of worksheet, T1

has to re-explore the contents of the textbook and that with critical attitude. He also needs to find 
the entrance for history of mathematics and in the mean time think about how students might feel, 
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to work out a good worksheet to guide the learning of the students. At this point, what students 
think would become part of T1’s attention. Also, through the discussion and feed back of students 
to the worksheet, T1 has paid more attention to the arrangement of environment for students to 
learn math better. 

Besides, the companionship of partner learning and reading has also provided T1 a chance of 
review of his own teaching. In a meeting, teachers talked about how to make students understand 

19.0 . And they all shared their own viewpoint. At this moment, T1 wondered whether students 
did not present any doubt just because of fear of authority. So he tends to review the idea that the 
interaction between students and their teacher should be considered good if students often express 
their own viewpoints to the teacher. As a result, more reflection should be carried out, when 
teaching this unit next time, to see whether authority is misused. 

Also the practice of worksheet has changed the interaction between students and the teacher. 
Since the questions of worksheet are based on a discussion, which increases the students’ chance 
of expressing viewpoints. Concerning this point, T1 indicated that the discussion often lasted after 
the class was over, and there have been students who expect teachers to recommend a list of books 
for them to read after class. After the end of matrix teaching plan, T1 thinks that 

During this period of time, I can feel that more books have been read, teaching skills have 
improved, the interaction between students and me has become more intensive, with colleagues 
trusting each other more than ever. Moreover, after the worksheet teaching, the evaluation is 
positive, which I consider the most worthwhile. This semester has been one with rich harvest, 
and I expect to have a perfect one for next semester, with better even outcome. (2003/03/06) 

With previous experience, T1 has realized that under the heavy burden of entrance exam, some 
students really feel worried about such non-tradition way of teaching. Therefore, under the greater 
pressure of second semester, there should be more consideration for the choice of material for the 
learning worksheet. Now, we use the model (Diagram 2) again in explaining his change in 
teaching. At this point, T1 must notice the connection of C1 with C2, in addition to C2, teachers are 
supposed to consider how C1 and C2 interactive. To make teaching perfect is T1’s major concern. 
Therefore, T1 chose the “application of limit” for the unit of material. His idea of design is as 
follows: 

1. The material will be by no means difficult or it would never be able to gain the support by 
the students. 

2. The worksheet design should be based on the schedule with flexibility.  
3. Addition of what students have learned to the worksheet would enable teaching to maintain 

certain connection via review of math.  
4. Different methods are used to provide students with all aspects of thoughts. 
5. Using history of mathematics, the passing down of math culture could be introduced to 

students for their enlightenment. 
6. By discussion of questions, students would be able to express their viewpoint about 

worksheet. 
From the design of worksheet, we can see that T1 has found that some students were still 

worried about the pressure of the Entrance Exam during his last practice of learning worksheet for 
matrix and still hold negative viewpoint towards such approach. Therefore, in the unit of Limit, T1

has considered the combination of history of mathematics with the recognition (or learning) of 
students by making the questions look more like the questions of the Entrance Exam, to remove 
the doubt of the worried students. With the idea of limit which students have learned, and the idea 
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of tangent line and analytic geometry, T1 wisely encouraged the students explain the questions, 
with the idea of ancient mathematicians, solving the questions in another way. A questionnaire 
after the practice of worksheet has proved the support of students, which in turn has encouraged T1

for the progress in teaching. 

The accumulation of knowledge, extensive reading, and repeated review would strengthen our 
confidence; put ourselves to a very favorable position. In the teaching of matrix worksheet, the 
response of students has offered a very satisfying outcome. However, some disapproval has 
also provided a direction for improvement. Therefore, during the second practice of worksheet 
for the application of Limit, some adjustment has been made, and there we see more approval 
of the students. This case has greatly increased the faith in teaching. (2003/12/15) 

Through the review of T1’s story, we can easily find that the cooperation between companion and 
the criticism among one another, T1 has revised his own way of teaching and gained more 
confidence through his own practice. Certainly, T1 has gradually changed by seeing things from 
the viewpoints of students, and become more convinced that students are the main part of learning 
or teaching. He believes that material designed from the viewpoint of students can be more 
suitable for students. As we have seen from the above, T1 has realized that students themselves are 
the producers of knowledge, not only just a consumer of knowledge given by teachers. 

As for how T1 feels about HPM, he has the following idea during the routine meeting on 
Tuesday:

Since contact with history of mathematics, ideas have changed. At first it was thought that the 
passing of math is not replaceable, and that the using history of mathematics would be helpful 
to the teaching but the effect would be limited. However, with the gradual contact with the 
research, there comes different evaluation about history of mathematics. The use of history of 
mathematics for worksheet has gained great approval of students. This has offered teachers 
more choices when choosing material for teaching. And it is beneficial for setting up the multi-
learning environment. The more we understand history of mathematics, the more valuable it 
becomes. (2003/10/28) 

Therefore, the role of history of mathematics plays, to T1, has gradually changed from the idea of 
making students interested to the connection with the recognition of students. By reference to the 
model (Diagram 2), the teaching of T1 at this stage has gone from C1, through I, to C2, and then 
interpreting. 

What has enabled T1 to enter the Phase Three is the completion of HPM model (Diagram 1) for 
designing teaching material. The completion of this mode is the result of analysis, criticism and 
discussion among teachers after several times of practicing the teaching based on worksheet. The 
birth of such mode represents the entrance of the research group into another stage. From now on, 
all teachers have to do is choose a teaching unit, the teaching plan will be completed based on the 
collection of material, and editing worksheet, following this mode. Referring to the mode, T1 has 
gone into Phase Three. 

5 Phase three 

Lerman (2001) thought the successful mathematics teacher education is in terms of the teachers 
having developed their identities as teachers. The goals of the course or project have become their 
goals, either through their own desire to progress in their career, feel better about their teaching or 
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improve the learning experiences of their students, or because they have taken on the values of the 
project and the researchers or tutors running the project. Concerning this, T1 indicated as follows: 

During the whole process of my involvement, due to my direct devotion, much of the work 
became part of my sense of responsibility. And so I did certainly my best to seek information 
until it came up in front of me. In the past, since I had been so familiar with the teaching 
material, I had not tried to find some other information for complement. Now I have joined the 
group, there is something really new to me. And the more I find new things, the less learned I 
feel. And I am happy to have become part of the group and happy to bring to my students some 
new ideas. And I feel this is what I would not have got if I had not joined the research. 
(2003/05/16) 

In the past teaching activity, T1 had had very little doubt about textbooks, and followed what the 
book said to teach students. From this research, he has learned to pay more attention to some 
questions such as  

What do students know?  
What do they need?  
What to give them?  
What not to give them?  
How to give them?  
What is the point?  
Will they take it?  
What is it like from the viewpoint of a student?  

These are the questions that will receive more of his attention in future teaching. When pondering 
upon the teaching, T1 has turned away from the past teacher-oriented activity gradually to student-
oriented. As he looks back to what happened before and after the research, T1 thinks: 

Before joining the research, I usually read through the contents of the textbook, located the 
points, analyzed them, tried to understand the given examples and the practices, and then 
estimate the required hours as well as the schedule. Next I decided whether I should 
complement the textbook by showing them a variety of questions. 

As for the situation after joining the research, T1 recalled 

In addition to the understanding of the contents of the curriculum, I would try to illustrate the 
historical background and position with the information available, and I would also try to 
explore questions from more aspects. 

T1 also give examples for illustration: 

For instance, when introducing matrix, I teach not only the contents of the given material but 
also give a briefing about the historical background and introduce the story of the founder 
Cayley and how Cayley figured out the calculation of matrix through the relation of linear 
transformation, with the hope that, through the softness of the teaching material, the contents 
would not look so stiff and cold, which would be more natural to the construction of 
knowledge. (2003/12/15) 

Thus we know that, at this point, besides arousing the interest of students in history of 
mathematics, T1 has felt that, in the past teaching of matrix, he directly told them only the matrix 
of nm  and the matrix of ln  can be multiplied by each other to form the matrix of lm
without telling them why there was such a rule. Therefore, T1 told students how Cayley obtained 
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the rules of matrix multiplication through the relation of linear transformation, with the hope that 
there would be a connection between history of mathematics and the learning recognition of the 
students. 

Concerning the adjustment of teaching activity, T1 recalled that, before the research, he 
introduced the contents of the class one by one, guided the student practice based on the given 
examples and practices, and answer the questions raised by the students. After his research, he 
changed his way. First he evaluated the contents, then collected the information and added it to the 
design of his worksheet at a proper moment. Also he would try to complement the contents and let 
the students express their own viewpoints through discussion. In the last phase, T1, due to teaching 
probability, also used the worksheet, of the distribution of points, produced by T3, and got the idea 
of convenience, popularity, and fullness. At this point, T1 has felt that history of mathematics can 
be used to create a cognitive conflict in students and would be good for math learning. By 
reference to the model (Diagram 2), we can see that T1 developed beyond the original T C1 I,
considering the aspects of C2, and pays attention to the connection between C1 and C2. During the 
period from Phase Two to Phase Three, the type of growth of T1 can be presented as 
T C1 I C2 I C1 I…. In other words, after having found the historical material, he was 
able to return to C1, considering the properness of historical data for teaching material, then 
interpret it, and apply it to teaching.  

Near the end of the research, the teaching career of T1 will enter the 20th year. Before his 
joining the research, teaching was only a job for him to make a living. After the research, through 
discussion, T1 feels that he has learned a lot from it. No matter whether it is a question in teaching 
or any interesting case, he has found it would be an interesting issue to discuss. Teaching is no 
longer a routine passing of knowledge. Through the exchange of the ideas among colleagues, it is 
very changeable. The teaching material on the textbook will no longer be the only form. The 
monthly gathering in NTNU would allow us to share what other teachers have got in their research 
or in their teaching. With the complementary information on history of mathematics provided by 
Dr. Horng and his guidance, the experience seems so new and valuable. Through the involvement 
of HPM research, T1 has got new strength for his teaching career, bringing in the incentive for 
future growth. 

By the end of the two-year project, it is obviously that the participants, in particular, T1, have 
enhanced their professional expertise in terms of the HPM in following ways, namely, 1) they can 
begin to write popular mathematics articles; 2) they are more reflective into their teaching than 
ever; 3) they are able to integrate their mathematics knowledge into a broad picture; and 4) they 
start to care about the students’ thinking. As a conclusion, the outcome of the project indicates that 
HPM approach can help the participants’ professional development in an efficient way and can be 
another way for the in-service training. 
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Diagram 2. Teacher’s Model for Professional Development in terms of HPM 
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ABSTRACT 
In the framework of a teaching methods course for pre-service secondary school mathematics teachers a 
special task was assigned. The students had to look for the definitions of five geometric concepts defined by 
Euclid in the Elements. Then they had to compare them with different ‘modern’ definitions of the same 
concepts. The teacher did not provide the categories for comparison but they had to be established explicitly 
by the student.  

This learning activity enabled the students elaborate their own criteria for evaluating mathematical 
definitions. The students’ presentation of their criteria fostered a fruitful and formative discussion of what a 
definition is, and what are or should be its characteristics.  

The use of definitions taken from the Elements was indispensable in order to develop an historical 
perspective of the problematic involved in the process of defining mathematically. 

1 Introduction  

In the framework of a Mathematics Teaching Methods course for secondary school pre-service 
mathematics, my students and I were discussing different ideas concerning geometrical concepts. 
The analysis of meta-mathematical ideas such as definition, axiom, theorem, lemma and corollary 
was fostered during the entire course. 

In order to have the students become aware of different issues connected with the idea of 
definition and the process of defining mathematically a special activity was designed. The students 
were asked to collect from different sources definitions of the following concepts: sphere, cone, 
cylinder, prism and pyramid. These concepts were chosen because the students were familiar with 
them but they had not studied them formally in any previous course. This lack of formal 
introduction to the concepts was an important feature in the design of the activity because they 
were supposed to experience genuinely the problematic of defining a concept.  

The students were asked to use a broad collection of sources: school textbooks, university 
geometry books, encyclopedias, Internet, etc. After they had a collection of definitions for the 
same concept, they were asked to compare them and to reflect on that comparison. 

Before they started their work, a special meeting was dedicated to the reading and analysis of 
the definitions of these concepts as they appear in Euclid’s Elements (Book XI – Solid Geometry). 
I decided to do so because I strongly believe that: 

One can invent mathematics without learning much of its history. 
One can use mathematics without knowing much - if any - of its history. 
But one cannot have a mature appreciation of mathematics  
without a substantial knowledge of its history. Abe Shenitzer

A similar activity is described by Furinghetti (2000). That activity is different from ours in two 
aspects: Her students used ancient treatises in Italian or French available from the department 
library and the main concepts discussed were line, and a classification of the quadrilaterals. In this 
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case, students used an electronic English version of the Elements1 and concentrated on the 
definitions of different types of solids. A teaching experiment fostering also students’ exploration 
of the nature of mathematical definitions is presented by Borasi (1993) who believes that “this 
kind of situation can help us appreciate how definitions are really created by us.” (ibid, p. 127). 

Since my students were not required to take a course on the History of Mathematics, not all of 
them were exposed to Greek Geometry or to the development of mathematical ideas. I presented a 
short introduction to the evolution of geometry. The name of each one of the thirteen books that 
constitute the Elements was introduced and the definitions from in Book I were presented. After 
that, the definitions of the five concepts to be discussed were read and understood. 

During the following lesson, the students presented the definitions they found and the 
dilemmas they faced concerning these definitions were uncovered. Their considerations lead to a 
fruitful discussion about the nature and role of mathematical definitions. 

2 The results  

The activity stimulated students to ask interesting meta-mathematical questions concerning 
definitions as a product and defining as one of the mathematical processes. I present some of the 
questions as the students originally formulated them and a short comment added to rephrase them. 

Why are there so many alternative definitions to a simple concept like sphere?
“For example, I found at least the following definitions:  

Sphere 1: When a semicircle with fixed diameter is carried around and restored again to the 
same position from which it began to be moved, the figure so comprehended is a sphere
(Book XI, Def. 14). 
Sphere II: A sphere is the set of all points in three-dimensional space lying the same distance 
(the radius) from a given point (the centre), or the result of rotating a circle about one of its 
diameters.2

Sphere III: A sphere is the set of points in space equidistant from a certain point.3

Sphere IV: A sphere with centre (x0, y0, z0) and radius r is the set of all points (x,y,z) such that 
(x - x0)2 + (y - y0)2 + (z - z0)2 = r2.4

I see that three of the definitions use the word ‘set’, but they look extremely different. For 
example definition II looks as a combination of definition Sphere I and Sphere III. I see that 
definition II and definition III explicitly use the idea of distance, definition IV implicitly uses 
the Euclidean distance and definition I does not use it at all. I thought every concept should 
have exactly one definition!”  

How is it possible that a certain solid is a cone under one definition and not a cone under 
another definition? Is it a cone or not? 

“Consider the solids represented in Figure 1,2,3,4 and the following definitions: 

                                                     
1 http://aleph0.clarku.edu/~djoyce/java/elements/toc.html 
2 http://www.britannica.com/ebc/article?eu=404601 
3 http://library.thinkquest.org/2647/geometry/c 
4 http://en.wikipedia.org/wiki/Sphere 
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Figure 1 
Figure 2 

Figure 3 Figure 4 

Cone I: When a right triangle with one side of those about the right angle remains fixed is 
carried round and restored again to the same position from which it began to be moved, the 
figure so comprehended is a cone5 (Book XI, Def 18). 

Cone II: A cone is the quadric surface generated when a line is rotated around a fixed point 
(called the apex), at a fixed angle from another line (called the axis), both lines passing 
through that fixed point. It also can be described as the locus of all the points belonging to all 
the lines that pass through a given point, and that intersect at that point at a fixed angle to the 
axis line.6

Cone III: A conic solid is the set of points between a point (the vertex) and a non-coplanar 
region (the base), including the point and the region.7

Cone IV: Given a curve C in a plane P and a point O not in P, the cone with vertex O and 
directrix C is the surface obtained as the union of all lines that join O with points of C.8

If you have to decide whether each one of the solid is a cone, you may build the Table 1. So, 
these ‘definitions’ don’t define the same concept. We have a problem: we are using the word 
‘cone’ for different things.” 

Solid 
Cone

I
Cone 

II 
Cone 

III 
Cone 

IV 
1 Yes No Yes No 
2 No Yes No Yes 
3 No No Yes No 
4 No No No Yes 

Table 1 
                                                     
5 http://aleph0.clarku.edu/~djoyce/java/elements/bookXI/bookXI.html#defs 
6 http://en.wikipedia.org/w/wiki.phtml?title=Cone&printable=yes 
7 http://library.thinkquest.org/2647/geometry/glossary.htm#c 
8 http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node58.html 
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What is the difference between a mathematical definition and a dictionary definition?
 “For example, in certain mathematical papers you can find a definition of a cylinder as the 
locus of the point in space equidistant from a line (Cylinder I) but in a dictionary a cylindrical 
solid is the set of points between a region and its translation in space, including the region 
and its image9 (Cylinder II), a cylinder is a figure with a curved surface joining the edges of 
two congruent circles or ellipses.10 (Cylinder III) or a cylinder is a surface of revolution that is 
traced by a straight line (the generatrix) that always moves parallel to itself or some fixed line 
or direction (the axis). The path, to be definite, is directed along a curve (the directrix), along 
which the line always glides. In a right circular cylinder, the directrix is a circle. The axis of 
this cylinder is a line through the centre of the circle, the line being perpendicular to the plane 
of the circle. 11 (Cylinder IV).

I believe both definitions need to explain the meaning of the concept defined, but while you 
may accept that a dictionary definition is circular or ambiguous, you cannot accept that from a 
mathematical definition. That is why in mathematics you have hierarchy of definitions: 
Cylinder IV defines a circular cylinder as a special type of cylinder or as Euclid did, special 
types of cones are defined after defining the cone in general: When a right triangle with one 
side of those about the right angle remains fixed is carried round and restored again to the 
same position from which it began to be moved, the figure so comprehended is a cone. And, if 
the straight line which remains fixed equals the remaining side about the right angle which is 
carried round, the cone will be right-angled; if less, obtuse-angled; and if greater, acute-
angled. (Def 18, Book XI)” 

Why do we need definitions? What are their purposes?
This question is connected to the former one: do mathematical definitions and dictionary 

definitions have the same purpose? If not, what are the specific purposes of mathematical 
definitions? Can you do mathematics without definitions?  

Do definitions need to be concise? Do they have to be minimal?
“For example, Definition 22 in Book I states that a square is a [quadrilateral] which is 

both equilateral and right-angled. In class we proved that it is enough for an equilateral 
quadrilateral with just one right angle in order to be a square. So, why does Euclid define 
something that he can prove?” 

What is the connection between a definition and a theorem?
“In Definition 13 in Book XI, Euclid defines a prism as a solid figure contained by planes 

two of which, namely those which are opposite, are equal, similar, and parallel, while the rest 
are parallelograms. Definition 25 defines a cube as a solid figure contained by six equal 
squares. Since the cube is not presented as a prism, all the theorems proved for a prism don’t 
hold for a cube until you prove them specifically for the cube or until you prove that a cube is 
a prism. In other definitions, the cube is defined as a special prism. So sometimes you define 
and sometimes you prove. The definitions you choose have a crucial influence on the theorems 
you have to prove.”  

What is the connection between defining a concept and the existence of an instance of that 
object?

                                                     
9 http://library.thinkquest.org/2647/geometry/glossary.htm#c 
10 http://www.mccanntech.org/teachers/jeuchler/lighthouse/geodefns.html 
11 http://www.britannica.com/eb/article?eu=722 
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“For example, Definition 25 in Book XI of the Elements, defines a cube as a solid figure  
contained by six equal squares. I agree that this solid is indeed a cube, but what will be  
the situation if someone defines a new solid as a solid figure contained by five equal  
squares. In that case, I think there is no solid like this. Is there any existence requirement  
for a definition to be legal?”  

Can you define anything?
“I saw that Euclid’s Elements started with Definitions, Postulates, Common Notions. Is it 
possible to avoid having undefined terms?”  

Is always a definition the beginning of a mathematical theory?
“Every book in advanced mathematics starts with primitive concepts, axioms and theorems and 
definitions. Maybe the development of a mathematical theory is not so well organized as its 
final presentation in a book? Maybe the definitions arise while doing the research, just when 
they are needed?”    

Are there any personal reasons involved in the selection of a definition?
“I’m not sure I have the right to say that, but personally, I really like Euclid’s definitions of 
sphere, cone and cylinder. They may be not as general as the other definitions but they tell you 
how to construct them. This type of definitions, in my opinion, is better than those that use 
algebraic representations, like the definition Sphere IV presented before. On the other side, 
I’m not sure you can define every concept in a constructive way.  

Another aspect of personal preference may be present when you choose among alternative 
definitions, the one you will use for your own work. 

Who is responsible for selecting the definitions?
“This question has two aspects: a) who defines? Mathematicians? Textbooks authors? 
Teachers? Anybody? and, b) When you see a statement in the Internet, for example, presented 
as ‘Definition:…’ should you trust it is indeed a definition?” For example, I found that 
someone wrote ‘a cone is a pyramid with a circular cross section12 and I think it is a mistake, 
because a solid of revolution cannot be a polyhedron.  

3 Concluding remark 

I believe teacher educators may learn a lot from the students’ questions about their conceptions 
and misconceptions about definitions and the use of historical material is a suitable trigger to raise 
these questions. For their students’ appreciation of mathematics it is important to develop their 
awareness that “Standards of rigor have changed in mathematics” (Kleiner, 1991, p. 291) and that 
the notion of acceptable definition - like the notion of proof - is not absolute. “Mathematicians’ 
views of what constitutes an acceptable proof have evolved” (ibid) and the same seems to be true 
for definitions. The use of original sources may lead to a more genuine conception of definitions 
as products of the process of defining, a mathematical process which evolves in itself.  

                                                     
12 http://mathworld.wolfram.com/Cone.html
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QUELQUES JALONS SUR MUSIQUE ET MATHEMATIQUES DANS 
L’HISTOIRE 

(ABOUT MUSIC AND MATHEMATICS IN THE HISTORY) 

Anne BOYÉ 
IREM des Pays de la Loire – France 

cenub@club-internet.fr 

ABSTRACT 
From the reading of some historical texts, we shall try, in the workshop, to understand how music and 
mathematics have been linked, from Pythagoras untill now. It will be more about western music, even if the 
Arab mathematicians probably influenced european theoricians, as Zarlino, in the XVIth century. 

We note that you can find most of the great european mathematicians in the history of the music’s 
theory: Euclides, Galileo, Mersenne, Descartes, Leibniz, Huygens, Euler, … 

In the workshop, we shall study how you can construct scales, what problems that means, from the 
mathematical point of view, based, of course, on the experiences (physics), and the effect on the sensitivity, 
(Art). All this will be linked to pedagogical preoccupations, for it’s a way to interest students in 
mathematics. 

It’s not necessary to be an experienced musicologist to take part to this workshop and to try to start with 
students, afterwards. Anyway, the historical approach makes it easier, and all that you have to know will be 
explained, if necessary. 

1 Introduction 

L’idée de cet atelier est née de la perplexité de collègues français à qui l’on demande depuis 
quelques années de mener avec leurs élèves des travaux interdisciplinaires. Ce souci n’est sans 
doute pas réservé à la France, et, dans tous les cas, il est toujours passionnant d’éclairer sa matière, 
particulièrement les mathématiques, par des incursions dans d’autres domaines. Les enseignants 
ont des difficultés à imaginer des sujets dans lesquels les mathématiques seraient un bon support. 
L’histoire des mathématiques se présente dans ces cas naturellement à l’esprit. Je propose alors la 
musique et les mathématiques dans l’histoire. Ceci étonne souvent: musique et physique, certes, 
mais les mathématiques ?  

Il suffit souvent de proposer quelques textes simples et évocateurs, pour qu’une réflexion 
démarre. C’est l’objet de cet atelier. Il ne s’agit pas ici de faire une histoire complète des théories 
de la musique, ni d’entrer dans le détail du phénomène musical, mais de donner quelques éléments 
qui permettront d’aller plus loin, avec ses élèves, par exemple. Plusieurs de vue seront abordés: le 
point de vue des mathématiques modèle “axiomatique” de la musique, le point de vue des 
mathématiques support du phénomène physique et expérimental de la musique, enfin, le point de 
vue des mathématiques et de la musique en tant qu’art. 

Ce programme est presque parfaitement résumé dans le chapitre I du Tentamen novae theoriae 
musicae de L. Euler, “Du son et de l’ouïe”: 

Notre dessein étant de traiter la musique comme on traite les sciences exactes, où il n’est 
permis de rien avancer dont la vérité ne puisse être démontrée par ce qui précède, nous devons 
avant tout exposer la doctrine du son et de l’ouïe: la première fournit la matière de la musique, 
et la seconde en embrasse le but et la fin qui est de charmer l’oreille; car la musique enseigne 
comment il faut produire et combiner les sons pour qu’il en résulte une harmonie qui affecte 
agréablement le sens de l’ouïe. La nature des sons, leur formation et leurs variétés, voilà donc 
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ce qu’il faut que nous examinions; et c’est dans la physique et dans les mathématiques que nous 
puiserons les moyens d’en acquérir une connaissance suffisante. Si à cette connaissance nous 
ajoutons ensuite celle des principaux organes de l’ouïe, nous comprendrons comment se fait la 
perception des sons. On sentira facilement quel avantage on tirera de ces notions pour établir 
avec solidité les bases de la musique, si l’on réfléchit que l’agrément qu’on trouve dans les 
sons, dépend de la manière dont on les perçoit, et que par conséquent c’est là qu’il faut en 
chercher l’explication. 
Ce texte de L. Euler sera le fil directeur de notre travail. Voici quelques pistes sur les trois 

points de vue annoncés. 

2 Les mathématiques “axiomatisant” la musique 

Pourrait-on dire que la musique, du moins occidentale, n’aurait pas existé sans les 
mathématiques ? Rappelons qu’au moyen âge, les quatre “arts mathématiques”, désignés par le 
quadrivium, comportaient l’arithmétique, la musique, la géométrie et l’astronomie. 

Un peu plus tard, sans que cette tradition ait vraiment perduré, les mathématiques 
transparaissent de façon persistante dans la musique, au moins pour tout ce qui concerne la théorie.  

Quelques textes d’un des plus grands musiciens et théoriciens français, Jean-Philippe Rameau, 
pourront illustrer cette place importante des mathématiques. Pensons que Voltaire, admirateur de 
Rameau, l’avait surnommé Euclide Orphée. (Les premières thèses sur les théories de Rameau ont 
été publiées en 1727 et 1728 à l’Université d’Uppsala). 

Ce sentiment n’est pas, pour autant, partagé totalement par d’autres. Dans les faits, si les 
mathématiques sont le fondement de la théorie musicale, déjà chez les grecs anciens, certains 
comme par exemple Aristoxène, s’élevaient contre le “tout mathématique” dans la musique, contre 
le dogme du nombre des Pythagoriciens. 

Comme en toute chose, il est souvent bon de trouver un juste équilibre. En musique, en 
particulier, il y a la théorie et l’usage que l’on peut en faire pour construire une œuvre d’art. Nous 
trouverons des illustrations de ce domaine de réflexion dans plusieurs textes du XVIII° et XIX° 
siècle, dont par exemple D’Alembert.  

Quoi qu’il en soit, nous retrouvons en théorie de la musique la plupart des grands noms des 
mathématiques: Galilée, Descartes, Mersenne, Leibniz, Huygens, Euler, déjà cité, D’Alembert, … 

Examinons les choses d’un peu plus près. La musique occidentale repose sur la notion de 
gammes, qui définissent les sons que l’on peut employer dans son écriture, puis sur les 
agencements de ces sons pour construire un assemblage agréable. Il semble logique de penser que 
tout a commencé par des expériences. Traditionnellement l’instrument expérimental pour la 
musique est ce que l’on nomme le monocorde, une corde tendue sur une caisse de résonance, dont 
on peut faire varier la longueur et la tension: 

Dans un premier temps, on observera que si on place le chevalet au milieu de la corde, les deux 
parties de la corde donnent le même son que la corde entière, plus aigu; si on place le chevalet au 
tiers à partir d’une des extrémités, la partie la plus longue donne un nouveau son (la quinte 
supérieure du son initial), etc. 

Boèce raconte ainsi comment Pythagore et les pythagoriciens auraient rapidement modélisé 
leurs observations, c’est-à-dire mathématisé, voire axiomatisé la définition de sons qui joués 
ensemble résonneront agréablement. Deux sons qui pris ensemble donne une des impressions les 
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plus agréables sont ceux qui diffèrent d’une quinte. A partir de là, on construit la gamme 
pythagoricienne, basée sur le “cycle des quintes”, que nous expliquerons, lors de l’atelier. 

L’inconvénient de ce système, c’est qu’il n’est pas fermé, c’est-à-dire que l’on peut arriver à 
une infinité de notes, donc la transposition est impossible; autrement dit, si vous changez de note 
de départ, il sera impossible de retrouver à une autre hauteur les mêmes intervalles. 

La difficulté de la mise en place de gammes apparaît rapidement; il s’agit en effet de trouver un 
compromis boiteux entre plusieurs exigences: une exigence de jouabilité, une exigence de justesse, 
une exigence de variété, donc de changement possible de tonalité. 

Ce sont ces exigences plus ou moins faciles à respecter qui font une partie de l’histoire de la 
théorie de la musique. 

Avant d’aller plus loin, nous examinerons d’un peu plus près la gamme pythagoricienne pour 
comprendre le jeu des proportions. Tout repose sur cette notion.  

En instituant un modèle mathématique pour la musique, les Pythagoriciens ont pris en fait 
comme principe que deux sons sont consonants (c’est-à-dire résonnent ensemble agréablement à 
l’oreille), lorsqu’il y a entre eux un rapport ou un intervalle qui puisse s’énoncer simplement, qui 
sera donc par essence rationnel. Ce rapport sera, d’une certaine façon, celui des longueurs des 
cordes. Ne nous y trompons pas, le son ne dépend pas seulement de la longueur de la corde; mais 
de bien d’autres éléments comme sa tension, son épaisseur, …On peut cependant imaginer un 
modèle où seules les longueurs interviendraient. Nos élèves peuvent reproduire cette expérience.; 
ils prendront conscience de la difficulté de cette sorte d’étalonnage, et peut-être de la nécessité 
d’un modèle dont la réalité physique ne peut que s’approcher. Nous sommes déjà un peu dans la 
physique, mais il est difficile bien évidemment de faire autrement. Les rapports que l’on considère 
actuellement en musique, pour désigner les intervalles, sont des rapports de fréquences. Nous 
verrons pourquoi. 

Ceci étant nous pourrons lire le texte d’Euclide “La division du canon”, ou le chapitre 
“Musique” dans l’ouvrage de Théon de Smyrne “Les mathématiques utiles pour la connaissance 
de Platon”, et constater qu’il s’agit de pure arithmétique. Etudier la construction des gammes 
apparaît vite comme une façon de faire de l’arithmétique autrement.  

C’est aussi étudier les logarithmes autrement. En effet, très rapidement, dès l’invention des 
logarithmes, la musique s’en est emparée. 

Les notes et les intervalles de notes sont des rapports de nombres. Or un logarithme est un 
instrument de mesure exceptionnel pour un rapport. 

Nicolas Mercator (1620-1687) est un des premiers à avoir constaté que les logarithmes étaient 
l’instrument privilégié pour la mesure des intervalles. Il n’est pas inintéressant de donner cette 
autre vision des logarithmes, comme instrument de mesure des rapports. 

Le logarithme est presque devenu partie intégrante de la musique. Par exemple le cent est 
l’unité logarithmique de hauteur des sons. 1200 cents correspondent à 1 octave. 

Il n’entre pas dans mon propos, comme je l’ai souligné en introduction, de pénétrer le détail de 
la construction de la théorie musicale; il s’agit juste de donner quelques pistes de travaux possibles 
dans sa classe. De nombreux textes, sur ce sujet, sont abordables par quiconque n’a pas une 
formation musicale particulièrement poussée. 

Nous évoquerons la gamme de Zarlino, pour apercevoir à quel problème musical elle voulait 
répondre. Bien sûr il faudra évoquer aussi le problème des gammes tempérées, excellente réponse 
à la demande de simplicité de transposition ou de jouabilité, au moment où des instruments comme 
le clavecin, sur lesquels il est difficile de faire varier la longueur de cordes par exemple, 
apparaissent, au détriment de la justesse des sons. Il sera nécessaire pour cela d’abandonner le 
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dogme de la rationalité des rapports. La gamme tempérée qui correspond par exemple aux notes du 
piano s’obtient en divisant l’octave en 12 demi-tons égaux. Chacun correspond donc à un 
intervalle qui s’exprime par un nombre t dont la puissance douzième est 2. 

t12 2   donc  t = 212

Peut-on encore parler de sons consonants, de sons qui joués ensemble produisent un effet agréable 
à l’oreille ? La discussion dans ce cas va devenir plus physique, physiologique et artistique. 

La lecture du texte d’Euler se présente alors comme un petit joyau pour aller plus avant dans ce 
questionnement.  

Nous y retrouvons le traité d’arithmétique, avec des tableaux impressionnants de diviseurs, de 
PGCD, de PPCM, et une reconstruction de toutes les gammes à partir de principes clairement 
établis, plus d’autres, absolument époustouflantes, injouables à son époque sur les instruments 
existants. Signalons seulement que, par exemple Kirnberger, un élève de J.S. Bach, a mis en 
pratique les théories d’Euler, et fait construire des orgues permettant de jouer les sons de ses 
gammes.  

Le propos d’Euler est en quelque sorte de mettre tout à plat et de reconstruire scientifiquement. 

3 Mathématiques, physique, musique 

Euler, sur ce plan, avance des arguments assez performants. Pour comprendre en quoi consiste le 
son, il prend, de façon classique, le modèle d’une corde tendue, qui, frappée, rend un son. Le choc 
sur la corde lui confère un mouvement vibratoire, qui est transmis aux molécules de l’air, ces 
vibrations s’affaiblissant au fur et à mesure qu’on s’éloigne de la source. La perception du son 
n’est autre que la perception des vibrations sur le tympan. 

La propagation n’est pas instantanée, et cette assertion donne l’occasion d’évoquer la mesure 
de la vitesse du son.  

Tout son est de nature vibratoire, mais il y a des sons qui sont des “bruits”, et d’autres qui sont 
agréables, comme la musique. Parmi ces sons agréables, il y a ceux qui sont produits par les cordes 
d’instruments comme les clavecins ou les violons. On peut se demander pourquoi elles produisent 
des sons de hauteurs différentes par exemple. Un des premiers à se préoccuper de ce problème, à 
partir de constatation expérimentales est Galilée, dans son Discours sur deux sciences nouvelles. 
Son père, Vincenzo Galilei, musicien, est un des premiers à comprendre l’importance de la 
recherche d’une explication physique de la musique.  

Il s’agit de déterminer les fréquences de vibrations. Voici la loi qui est indiquée par Mersenne 
en 1636 et presque simultanément par Galilée. Elle a été démontrée théoriquement par Taylor et 
publiée en 1713, dans “Methodus incrementorum”.  

Le nombre d’oscillations en une seconde est de: 
355
113

3166n
a

 où n est le rapport entre la 

tension de la corde et son poids, a est la longueur de la corde en scrupules et 3166 la longueur de la 
corde, en scrupules, du pendule qui bat la seconde.  

355
113

 est la valeur, due à Metius (1527-1607), du nombre .

Le scrupule est le millième du pied Rhénan. Un pied Rhénan vaut environ 0,320 m. 
Que d’histoire, que de recherches possibles dans une seule formule ! 
Nous trouverons dans le texte d’Euler bien d’autres éléments, comme la théorie des nœuds, 

observée tant dans les cordes vibrantes que dans les colonnes d’air des instruments à vent. 
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L’on pourra aussi s’intéresser aux phénomènes des harmoniques, des battements, consultant à 
ce sujet les théories de Rameau et de Sauveur, avant de se plonger éventuellement dans les séries 
de Fourier. Lorsqu’une corde vibre, par exemple, elle va faire vibrer toutes les cordes qui 
correspondent à des multiples de sa fréquence. C’est ce que l’on nomme les harmoniques. Sauveur 
un des fondateurs de l’acoustique, ajoute aux phénomènes des harmoniques, celui de battements, 
qui se présentent lorsqu’on entend deux sons de fréquences voisines, et qui sont très importants 
pour l’accordage des instruments.  

Ces textes des XVII° et XVIII° siècles sont suffisamment lisibles et abordables pour permettre 
de se mettre en appétit sur ces phénomènes au demeurant complexes. 

4 Mathématiques, musique, et art 

Il y a en fait deux problèmes: d’une part pourquoi certaine musique nous plaît plus qu’une autre, 
pourquoi certains sons sont agréables et d’autres non. D’autre part, la musique se résume-t-elle à 
des techniques, quelle est la part de l’invention, du génie? 

Euler, ayant établi que le son se transmettait par des chocs sur le tympan, avait émis 
l’hypothèse que ce qui était agréable était ce qui comportait un ordre reconnaissable. Il avait alors 
établi une théorie sur les degrés d’agrément: deux sons sont d’autant plus consonants que les coups 
qu’ils portent sur le tympan (liés évidemment à leur fréquence) s’organisent suivant un ordre 
simple. Les fréquences doivent donc être multiples ou diviseurs. Pour visualiser cette harmonie, il 
utilise une autre expérience. Une disposition de points agréable à la vue peut symboliser une 
ordonnance de petits chocs sur le tympan, agréable à l’oreille, utilisant un schéma, devenu célèbre, 
dans ses “ lettres à une princesse d’Allemagne ”. 

Euler signalera aussi que la “réalité physique” en quelque sorte n’est jamais en adéquation 
parfaite avec le modèle. En pratique un son n’est jamais réellement pur, mais l’oreille sait rétablir 
le son parfait, si la différence reste dans certaines limites, que l’on peut calculer. 

Nous évoquerons dans l’atelier l’aspect contemporain de la musique, l’écriture musicale, 
l’évolution de la manière d’apprécier la musique, qui est en grande partie culturelle, mais peut-être 
pas seulement. 

Le sujet est inépuisable et des facettes nouvelles se présentent à chaque détour: le problème des 
instruments de musique, qui sont eux-mêmes liés au développement de la théorie musicale; tout ce 
qui est lié à l’astronomie, et la musique des sphères; enfin, à une époque où l’on encourage les 
femmes à faire des mathématiques, il peut être judicieux d’évoquer ce qu’il en est des femmes 
dans la musique. 

Il n’est pas obligatoire d’être un musicologue averti pour se lancer. Le biais de l’histoire permet 
justement au néophyte de se former peu à peu, et d’y associer ses élèves. 
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ABSTRACT 

Participants in this set of two one-hour workshops study art that informed the progress of 
mathematics and mathematics that informed the progress of art. The painting, print, or sculpture 
are presented along with the historical background of the work of art and the artist and the history 
of the mathematics related to the art. Activities at the workshop include constructing works 
directly from copies of the artists’ publications or their models. Mathematicians include Albrecht 
Dürer, Helaman Ferguson, and Piero Della Francesca. Artists include, Max Bill, Salvador Dali and 
Naum Gabo. 
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ABSTRACT 

How can we represent what we see? Painters, architects, mathematicians, and all those who want to make 
drawings, to make their researches, to explain them gave answers to that universal question. These answers 
differ between persons at the same moment in different places and differ from one period to another. With 
students we looked at the different answers in the Italian Quattrocento with Brunelleschi, Alberti, Dürer and 
Piero della Francesca and in modern times with David Hockney. 

Through reading original texts written by Leo Battista Alberti and Piero della Francesca, the students 
learn in the same time how to do real maths and to read paintings. Two moments are particularly 
fascinating: the first one when they “prove” Brunelleschi’s experience, the second one when they realise 
that they’re able to produce the same figure by three different ways: an empiric one, a geometric 
construction, and a numerical proportion. 

By reading a text written by David Hockney, they share reflexions about representation and modern 
times. 

1 Introduction 

Mathematics and painting are interrelated in many ways. Some painters were also mathematicians. 
Both are involved in attempting to make sense of the world. Their two ways of visualising aspects 
of the concrete and abstract reality in which we are imbedded are closely related. During the 
period of the elaboration of the central perspective in the Quattrocentro, mathematics play an 
important role in the passage of painting from an activity of technicians to one of the main art. 
After that, mathematics and painting will often meet and this story is entrancing and has an 
unforeseen future. Those meetings can be shared with our students in the same time end movement 
they learn the official program of their classes. 

Every year I propose to students a spiral travel in which mathematics and painting meet 
together. 

Questions for students at the beginning of the year: What forms do you meet daily? what forms 
come when you want to draw pictures? How to represent them on a sheet of paper? The
productions, at that time, are uncriticized and are shown to the group, and become shared 
environment.  

These questions make them look at the world with new eyes and notice mathematical structures 
around them. The square, the circle, the line, the point, the cube, the infinite, the mirror, numbers 
are pointed by students as belonging to everyday life. 

They will encounter how Paul Klee, Vladimir Kandinsky, Plato, Archimedes, Alberti, 
Leonardo da Vinci, Piero della Francesca, Albrecht Dürer, Raphael, Hogarth, Holbein, Escher, 
Picasso, Magritte, Robert Delaunay, Fernand Léger, Oscar Schlemmer, Paul Cézanne, Malevitch, 
Mondrian,… play with these forms. 

                                                     
1 Institute of research for the teaching of mathematics. 
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This way of questioning the students is structured with an IREM’s tool, say research tales; the 
philosophical idea is that everyone knows things and find pleasure in teaching and learning; 
students have to become aware of that, to learn how to use their knowledge, to enhance it, and to 
change their representations in front of some experiences. 

2 From Brunelleschi to Hockney

a-David Hockney (1937-) 
We often studied the Quattrocento with our students 12 or 16-years old2.The idea in this particular 
experience was to begin with the vision of the video “David Hockney in perspective” and the 
reading of a text written by the painter. Hockney, in his very activity as a painter, has worked a lot 
on perspectivce. In the video, he tells the story of his making the canyons of Colorado, with fifty 
different perspectives3 and make a comparative analysis of a chinese painting and one by 
Canaletto. Besides that, he went to Florence to prove the veracity of Brunelleschi’s experience so 
much related since Quattrocento.  

Looking at the video, reading the text are incitative towards researches on pespective, on 
Chinese painting, on Arnolfini, Masaccio, Van Eyck, Campin, Alberti, on the relations between 
painting and science (triangulation,…). Further researches may lead to Hockney’s more elaborate 
theory and contemporaries’ critics of it, for example by Susan Sontag. 

The students may see the interests of linear perspective, the interest and the limits of any way 
of representation, of any point of view. 

Today, it is the window through which the world is seen, with television, film and still cameras. The 
Chinese did not have a system like it. Indeed, it is said they rejected the idea of the vanishing point in 
the eleventh century, because it meant the viewer was not there, indeed, had no movement, therefore 
was not alive. Their own system, though, was highly sophisticated by the fifteenth century, Scrolls 
were made where one journeyed through a landscape. if a vanishing point occurred, it would have 
meant the viewer had ceased moving. 

Did the mirror-lens originate in Bruges and then was send to Italy by one of the Medici agents? 
Arnolfini was an agent of the Medici bank. Did Brunelleschi show the mirror-lens to Masaccio? Is 
that why his heads are so individualistic? There was certainly no precedent for that “look” in 
Florence before Masaccio. It occurs at almost the same time as Campin and van Eyck in Bruges. Did 
Brunelleschi devise the rules of perspective to make the picture bigger than those the mirror-lens 
could produce?  

All of this has interest beyond art history or the history of pictorial space, because the system of 
perspective led to the system of triangulation that meant you could fire cannons more accurately. 
Military technology had a jump from it, and it is clear by the late eighteenth century the West’s 
technology was superior to that in China, hence the decline of China in relation to the West. 

The vanishing point leads to the missiles of today, which can take us out of this world. It could be 
that the West’s greatest mistakes were the “invention” of the external vanishing point and the internal 
combustion engine. Think of all the pollution from the television and traffic.4

b-Brunelleschi (1377-1446)
We read another text written by Hockney: 

Alberti’s story of Brunelleschi and the “discovery” or “invention” of perspective is well known. 
Published in 1435, it was really contemporary with van Eyck and Robert Campin in Flanders. 

                                                     
2 Documents may be asked to IREM ParisVII. 
3 A link with the hundred views of Fuji by Hokusaï. 
4 David Hockney, The secret of knowledge.
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Brunelleschi demonstrated perspective by painting a small panel (half a braccia square). To paint 
this, he stationed himself just inside (some three braccias inside) the central portal of Santa Maria del 
Fiori, in short, in a dark room looking out to the light. 

The mirror-lens produces a perspective picture. The viewing point is a mathematical point in the 
centre of the mirror. Perspective is a law of optics. So was it “invented”? It happened in Florence in 
1420-30.5

Hockney went to Firenze to prove how Brunelleschi, the first architect to employ mathematical 
perspective in front of the Florentine intelligentsia of the times, demonstrated his invention with a 
mirror for the perspective picture of the Baptistery, so did my pupils.  

To give a more vivid demonstration of the accuracy of his drawing, he bored a small hole in the 
panel with the baptistery at the vanishing point. A spectator was asked to look through the hole 
from behind the panel at a mirror which reflected the panel. In this way Brunelleschi controlled 
precisely the position of the spectator so that the geometry was guaranteed to be correct.6

My students, like Hockney, positioned themselves two meters inside the doorway of the Santa 
Maria del Fiori, in the same place where Brunelleschi painted the picture, and made a perspective 
picture with a mirror. 

Using the mirror could only produce a small picture, but by extending the lines Brunelleschi 
could create a bigger space and a bigger picture! Hockney as my students, had been taught that the 
30 centimetre square painting was based on abstract geometry - but how was it conceived? Did 
Brunelleschi see something first? 

c- The tiled floor or the three ways to produce the same drawing 
Every year a great moment arrives when 12-years old students teach their relatives and some time 
students of the academy of arts the coincidence of the three representations of one of the most 
famous examples used by Alberti in his text, that is a floor covered with square tiles. They do 
precisely what each of the three painters Dürer, Alberti, Piero della Francesca prescribe in their 
own particular writings. Each text leads to discussions on the language, on what is explicit and 
explicit at different periods and on what is called demonstration according to the point of view; 
and then they prove mathematically why they obtain the same picture (according to their age, 

                                                     
5 Hockney op.cit. 
6 These perspective paintings by Brunelleschi have since been lost but a “Trinity” fresco by Masaccio 

from this same period still exists which uses mathematical principles. 
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partly for the 12-year old, completely from 15). Doing so, they play with the mathematical notions 
of parallels, perpendiculars, diagonals, our Thalès theorem, proportions,…). 

c.1-Dürer (1471-1528) The empirical construction: 
Dürer’s table

Now note that between the eye and the visible object a transparent panel is placed which will cut all 
the lines that come from the eye7

We built the equivalent of Dürer’s tables: a glass panel on a wooden rail to maintain the panel vertical. 
Behind the glass placed on a table, we put a tiles square the side of which is for example the fourth part of 
the distance between the eye and the panel, you have to sit in front of the glass, closing an eye, stretching 
your arm, and so, you draw on the glass what your only eye see. 

c.2-Alberti (1404-1472) 
The geometrical construction: students read Alberti’s text 

                                                     
7 A. Dürer, Underweysung der Messung mit dem Zirckel und Richtscheyt, Nuremberg, 1525, translated 

from Jean-Pierre Legoff publications IREM Caen. 
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I will tell what I do when I paint. First of all about where I draw, I inscribe a quadrangle of 
right angles, as large as I wish, which is considered to be an open window through which I see 
what I want to paint…Then, within this quadrangle, where it seems best to me, I make a point 
which occupies that place where the central ray strikes. For this it is called the centric point8.
The centric point being located as I said, I draw straight lines from it to each division placed on 
the base line of the quadrangle. These drawn lines, [extended] as if to infinity, demonstrate to 
me how each transverse quantity is altered visually […] 

I find this way to be best. In all things proceed as I have said, placing the centric point, 
drawing the lines from it to the divisions of the base line of the quadrangle. In transverse 
quantities where one recedes behind the other I proceed in this fashion. I take a small space9 in 
which I draw a straight line and this I divide into parts similar to those in which I divided the 
base line of the quadrangle. Then, placing a point at a height equal to the height of the centric 
point from the base line, I draw lines from this point to each division scribed on the first line. 
Then I establish, as I wish, the distance from the eye to the picture. Here I draw, as the 
mathematicians say, a perpendicular cutting whatever lines it finds. A perpendicular line is a 
straight line which, cutting another straight line, makes equal right angles all about it. The 
intersection of this perpendicular line with the others gives me the succession of the transverse 
quantities. In this fashion I find described all the parallels, that is, the square [d] braccia of the 
pavement in the painting. If one straight line contains the diagonal of several quadrangles 
described in the picture, it is an indication to me whether they are drawn correctly or not. 
Mathematicians call the diagonal of a quadrangle a straight line [drawn] from one angle to 
another. [This line] divides the quadrangle into two parts in such a manner that only two 
triangles can be made from one quadrangle.10

In our diagram the centric point is V. The square tiles are assumed to have one edge parallel to the 
bottom of the picture. The other edges which in reality are perpendicular to these edges, will 
appear in the picture to converge to the centric point V. The diagonals of the squares will all 
converge to a point Z on a line through the centric point parallel to the bottom of the picture. The 
length of VZ determines the correct viewing distance, that is the distance the observer has to be 
from the picture to obtain the correct perspective effect. 

c.3-Piero della Francesca (1411?-1492) 

The computing construction: once again, the students followed a text, here that of Piero della 
Francesca11:

It is necessary to demonstrate the proportion for when I speak proportionality, we have to know 
which proportion I mean for proportions are innumerable […]. Given four parallel lines each 
distant one braccia from the other, each one braccia long; more, they lay between two parallel 
lines; from the first one which is the main one, to the eye there is four braccia; I say that from 
the second to the first there is a sesquilater ratio (1 ¼), from the third to the second there is a 
sesquiquint one (1 1/5), from the fourth to the third a sesquisixt one (1 1/6). To be clearer, the 

                                                     
8 For simplicity we take the centric point, as Alberti calls it (today it is called the vanishing point), in the 

centre of the square picture.  
9 On a separate sheet of paper. 
10 Alberti, L.B., 1436, Della Pittura, English translation http://www.noteaccess.com/Texts/Alberti  
11 One year the title of the pluridisciplinary work was “Piero della Francesca” 
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proportion between these four lines is that between the four following numbers 105-84-70-60; 
bur if we modify the distance from the eye to the first line, then the proportion changes, i.e. if 
you go backward of two braccia, so that there will be six from the eye to the first line, these 
four lines will change in proportion, and will be like those four numbers 84-72-63-5. 

d- Some historical notes and questions studied with the pupils: 
By the 13th Century Giotto painted scenes in which he was able to create the impression of depth 
by using certain rules which he followed. He inclined lines above eye-level downwards as they 
moved away from the observer, lines below eye-level were inclined upwards as they moved away 
from the observer, and similarly lines to the left or right would be inclined towards the centre. 
Although not a precise mathematical formulation, Giotto clearly worked hard on how to represent 
depth in space and examining his pictures chronologically shows how his ideas developed. Some 
of his last works suggest that he may have come close to the correct understanding of linear 
perspective near the end of his life. It is exciting for the spirit for adults and students to make an 
analogy between this historical reconstruction and that of the invention of the theory of relativity; 
Poincaré had all the mathematical background but it is Einstein, the inventor, and Einstein was 
willing to call relativity as a theory of points of views.

The person who is credited with the first correct formulation of linear perspective is 
Brunelleschi. He appears to have made the discovery in about 1413. He understood that there 
should be a single vanishing point to which all parallel lines in a plane, other than the plane of the 
canvas, converge. Also important was his understanding of scale, and he correctly computed the 
relation between the actual length of an object and its length in the picture depending on its 
distance behind the plane of the canvas. Using these mathematical principles, he drew two 
demonstration pictures of Florence on wooden panels with correct perspective. One was of the 
octagonal baptistery of St John, the other of the Palazzo de Signori. It is reasonable to think about 
how Brunelleschi came to understand the geometry which underlies perspective. Certainly he was 
trained in the principles of geometry and surveying methods and, since he had a fascination with 
instruments, it is reasonable to suppose that he may have used instruments to help him survey 
buildings He had made drawing of the ancient buildings of Rome where he came with a friend 
after his deception about the doors of the baptistery, a concourse won by another great Florentine 
artist Lorenzo Ghiberti, before he came to understand perspective and this must have played an 
important role. Although it is clear that Brunelleschi understood the mathematical rules involving 
the vanishing point that we have described above, he did not write an explanation of how the rules 
of perspective work 

The first person to write a treatise was Alberti. De pictura is in three parts, the first of which 
gives the mathematical description of perspective which Alberti considers necessary to a proper 
understanding: “[...] completely mathematical, concerning the roots in nature from which arise this 
graceful and noble art”12. To answer the question “What is a painting?” Alberti considers the 
notion of perspective: “the intersection of a visual pyramid at a given distance, with a fixed centre 
and a defined position of light, represented by art with lines and colours on a given surface.”13

Alberti gives background on the principles of geometry, and on the science of optics. He then sets 
up a system of triangles between the eye and the object viewed which define the visual pyramid 
referred to above. He gives a precise concept of proportionality which determines the apparent size 
of an object in the picture relative to its actual size and distance from the observer.  

                                                     
12 p. 70 Alberti De Pictura in the Latin-French version. 
13 p. 103 op. cit. 
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The most mathematical of all the works on perspective written by the Italian Renaissance artists 
in the middle of the 15th century was by Piero. In some sense this is not surprising since as well as 
being one of the leading artists of the period, he was also the leading mathematician writing some 
fine mathematical texts. Piero wrote his book on perspective thirty-nine years after Alberti’s 
Treatise on Painting of 1435. It is considered as an extension of Alberti’s, but is more theoretical. 
Piero was evidently familiar with Euclid’s Optics, as well as the Elements, whose principles he 
refers to often. Theory is fine, but did Piero practice what he preached? 
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“By this art you may contemplate the variation of the twenty three letters” 
Robert Burton, The Anatomy of Melancholy,

1632

1 Introduction 

Everybody reads a text in the light of one’s own culture – that’s evident. Mathematical features 
that we mathematicians find in a work of literature, will pass unnoticed by the uninitiated reader. 
On the other hand, everyone will be influenced by the image of mathematics and mathematicians 
and perhaps by the allusive power of mathematical terms in their reading. 

Hence, our work could serve to point out hidden treasures to the cultured but non-mathematical 
public, in the same way, for example, that we can point to the use of the golden ratio in the 
construction of a painting or to the sophisticated structure of a Bach fugue. It could also help us 
reflect on the emotional aspects connected with mathematics as well as on the ambiguity between 
mathematical and usual language. More generally, we want to challenge the division that exists 
within scholarly education – and alas, among the so-called elite – between mathematical and 
literary cultures, by showing that aesthetics, the rigour accompanying a sophisticated structure or a 
coherent line of argument and the pleasure which arises from these, are not the sole prerogative of 
one or the other. 

It is difficult, if not impossible, to exhibit and classify all the roles which mathematics can 
assume in literature. The classification attempted here has a two-fold objective: on the one hand to 
set out the ideas, to sift out the most favoured themes, and on the other to give the reader, curious 
to discover the role of mathematics in creativity, some paths for analysis and working tools, 
together with some reflections on teaching. Different points are supported by examples. It is 
certainly not a question of being exhaustive – for example, mathematics in science fiction is only 
lightly touched on - and it must also be emphasised that many works can be analysed using 
different approaches. 

2 First approach: Mathematics more or less hidden in the  
   structure 

In some way, every structure admits a mathematical model. As Milan Kundera explains, this 
model may perhaps be very simple and almost unconscious. “For my part, it is neither 
superstitious flirtation with magic numbers, nor rational calculation, but a profound, unconscious, 
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incomprehensible imperative, the archetype of the form from which I cannot escape. My novels 
are variants on the same architecture, based on the number 7.”1 Models can, on the contrary, be 
very conscious and sophisticated, and all intermediate states are possible. We will examine the 
most striking cases here. 

Structural models are the principal research focus of OuLiPo (Workshop of Potential 
Literature). This allows Georges Perec to say that mathematics is the “author” of the work. 

Consider, for instance, the collection of poems by Raymond Queneau entitled Cent mille 
milliards de poèmes2 [One Hundred Thousand Billion Poems]. This collection of poems presents 
10 sonnets which are composed using the same rhymes and according to the same grammatical 
structure. Each line can be replaced, according to the reader’s taste, by any one of the nine others 
which occupy the same position, giving 1014 or one hundred thousand billion different sonnets. 
Constraints on rhyme and grammatical structure preserve an internal coherence in each new 
sonnet. No reader can read the resulting collection in its entirety, not even the author. Queneau 
wished “to see the contribution of combinatorics to poetic activity and to the poetic sensibility of 
the reader”. We will return to the novels of this mathematical enthusiast later.  

Georges Perec, La vie, mode d’emploi3 [Life, A Users Manual]
This work is constructed on the principle of a bi-latin square of order 10 (10 rows corresponding to 
the 10 levels of the apartment block, and 10 columns corresponding to the 10 rooms on each 
floor). In such a square, each element contains a pair (say a letter and a number), so that no pair 
appears twice and no symbol appears more than once in the same row or column. The basic idea of 
the novel is to place a personality type (characterised by a letter), capable of a type of action 
(characterised by a number), within each element. Furthermore, the succession of chapters, which 
is superimposed on the passages in the apartments, is dictated by a solution to “The Knight 
Problem” or “The Travelling Salesman Problem”. This last consists of running through the 
elements once and only once so that the distance covered is a minimum.  

Perec also published numerous poems, based on permutations, with constraints of varying 
degrees of sophistication. Ulcérations4, for example, presents 400 permutations of the eleven 
letters of this word (such a sequence is called a heterogram and the resulting poems 
heterogrammatical). Here is the start of the poem: 

Ulcérations: 
Cœur à l’inst inct saoûl, 
re clus à trône i nutile, 
corsaire coulant s ecourant l’is olé,
tu crains  la course int ruse... 

We also mention Jacques Roubaud5 who published a collection with the rather enigmatic title: 
“ ” (this is the symbol of set membership but it is read epsilon). In the introduction, we read: 
“This book is composed, on the principle of 361 texts which are the 180 white pieces and the 181 
black pieces of a game of Go.” Then: “The text or pieces belong to the following varieties: 
sonnets, short sonnets, interrupted sonnets, quotations, illustrations, grids, whites, blacks, poems, 
prose poems…” As the Encyclopedia Universalis explains6:

                                                     
1 Milan Kundera, L’art du roman, Gallimard 
2 Raymond Queneau, Cent mille milliards de poèmes, Gallimard, 1961. 
3 Georges Perec, La vie, mode d’emploi, Hachette, 1978. 
4 Georges Perec, in La clôture et autres poèmes, Hachette, 1980. 
5 Jacques Roubaud, , Gallimard, 1967. 
6 Encyclopedia Universalis, Thesaurus, article: Roubaud Jacques. 
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Four modes of reading are possible for these generally brief texts (or pieces), which are always 
preceded by numbers, signs or symbols and which reflect the diverse systems of succession, of 
regroupings, of correspondences and of separation, focussing on the way symbols group or on 
their continued development, following the movement of a game of Go or taking each element 
in its singularity. 

Hortense7, a trilogy of novels by the same author, is based on more or less explicit, essentially 
combinatorial rules. All the works of Jacques Roubaud are interlaced with Mathematics. 
Mathématique: (récit)8 occupies a special position: we find in it diverse mathematical recollections 
and reflections of the author and an attempt at modelling memory through neighbourhood 
topology.  

In a very different genre, an American author, Don Delillo, also concentrates a great deal on 
structure. Here is what he says, when interviewed about Ratner’s Star9:

It seems to me that “Ratner’s Star” is a book which is almost all structure. The structure of the 
book is the book. The personalities are intentionally flattened and cartoonlike. I was trying to 
build a novel which was not only about mathematics to some extent but which itself would 
become a piece of mathematics. It would be a book which embodied pattern and order and 
harmony, which is one of the traditional goals of pure mathematics. 
There’s a structural model, the Alice books of Lewis Carroll. The headings of the two parts – 
“Adventures” and “Reflections” – refer to “Alice’s Adventures in Wonderland” and “Through 
the Looking Glass”… There is also a kind of guiding spirit. This is Pythagoras, the 
mathematician-mystic. The whole book is shaped by this link or opposition, however you see 
it, and the characterskeep bouncing between science and superstition10.

3 Second approach: Explicit Mathematics 

Mathematics operates simultaneously in the structure and in the themes of the novel Ratner’s Star.
 The hero is Billy, a genius, fourteen years old mathematician, who is invited to an 

experimental centre in order to decipher a message beamed from the distant Ratner’s Star. In this 
sophisticated labyrinth, he encounters a series of “cartoonlike characters” – mad scientists whose 
work oscillates between the futile and the irrational and with whom he exchanges disjointed 
dialogues, while scraps of his background, interior cogitation – some underlying mathematical 
research work, his childhood, his vision of the world impregnated with Mathematics, fragments of 
the History of Mathematics – crop up. He then discovers his mentor, Softly, who directs a parallel, 
secret project in the caves situated under the centre. This project groups the cream of the scientists 
together to develop “Logicon”, a language for universal communication which will allow 
communication with the extraterrestrials. The second part (“Reflections”), unfolds in this cavern. 
Billy does not feel well and refuses to co-operate in this project whose essentially logical aspect is 
of little interest to him. Meanwhile, his mathematical work on the transmissions (“zorgs”) leads to 

                                                     
7 La belle Hortense, Ramsay, 1985; L’enlèvement d’Hortense, Ramsay, 1987; L’exil d’Hortense,

Seghers, 1990. 
8 Jacques Roubaud, Mathématique: (récit), Seuil, 1997. 
9 Don Delillo, Ratner’s Star, Vintage, 1976. 
10 Interviews DeCurtis and LeClair, found on the website http://perival.com/delillo/ratners.html 
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the discovery of a new type of relativity, Mohole relativity. At the instant the message and its 
origins are decoded, nobody is interested any more; the entire centre passes into the hands of a 
shady financier. The novel ends with the world in total disorder. 

Here is a sample: 

[…] Beyond Soma Tobias’s presence, however; beyond her voice; beyond the objects in the 
room, the room itself; beyond all these was a picture of a pale blue line, the locus of a point 
having one degree of freedom. Blue on white. Figures and movements. Pulses humming 
through the anaesthesia of coordinate four-space. Was he meant to seek an equation and stretch 
its variable frame across an interstellar graph? Might be worth exploring. Axiomatic method. 
One fleeting motion true of another. The coordinate system had made calculus imaginable and 
this study of fluid nature’s non-sequential sum had fuelled the growth of modern mathematics. 
He saw it crowding its boundaries. Coordinates numbering n. Nature’s space and his. To 
increase in size by the addition of material through assimilation. To become extended or 
intensified. What did mathematics grow against? Not nature but imagination. Yet when it 
poured through the borders, did it return to the physical world? Fundamental laws. Pebbles 
racing in vain down the slopes of an inverted cycloid. All minds meet in equal time at the 
bottom of the geometric hole. 

But without such sophistication, certain authors dedicate a great part of their work to carefully 
describing mathematical notions. Are readers who are not mathematicians content with skimming 
over this? Thus critics unanimously praise the play Arcadia11 by Tom Stoppard, it seems that 
certain journalists felt they came away more intelligent from their reading, just as others have 
found the mathematical passages long and consequently boring. 

The literary role of Mathematics in such works is manifold. We will attempt to analyse some 
aspects of it. 

1. Contextual role 
The hero is a mathematician; the author tries to explain his areas of interest more or less exactly. 
Certain works describe mathematics elements, but with errors (for example, Henri Vincenot in
Les étoiles de Compostelle [The Stars of Compostella], gives as exact an approximate construction 
of a regular pentagon); others, like Michel Houellebecq in Les particules élémentaires12 [The
Elementary Particles] introduce an invented Mathematics.  

On the opposite, the principal character of the semi-autobiographical novel Odile13 is, like its 
author Raymond Queneau, a keen mathematician. Café conversations sometimes turn towards 
mathematics as well for its philosophical sides as for its great problems. 

But mathematical concepts often play a far more profound role. 
2. Mathématics as a metaphor or model of reality 

Brazzaville Beach14, a novel by William Boyd, contains numerous passages dealing with 
mathematics, which are indicated by italics. The heroine, an ethicist, has retained a fascination 
with mathematics from the years she lived with a mathematician who committed suicide. After her 
husband’s suicide, Hope Clearwater retraces her memory, questioning herself about John’s 
suicidal passion and about life in general; she is not content simply to describe the daily life of a 

                                                     
11 Tom Stoppard, Arcadia, Faber and Faber, 1993. 
12 Michel Houellebecq, Les particules élémentaires, Flammarion, 1998. 
13 Raymond Queneau, Odile, 1937. Réed. Gallimard, 1964. 
14 William Boyd, Brazzaville Beach, Sinclair Stevenson, 1990.  
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researcher. Metaphors drawn from mathematics frequently arise to clarify her questions. For 
example, when John began his researches into the phenomenon of turbulence:

It was at this time that his talk was full of concepts he referred to as Divergence Syndromes. He 
explained them to me as forms of erratic behaviour. And in a subject like turbulence, naturally, 
there will almost always be a divergence syndrome somewhere. Something you expect to be 
positive will turn out to be negative. Something you assume will be constant, becomes finite. 
Something you take confidently as granted, suddenly vanishes. These are divergence 
syndromes. 
This sort of erratic behaviour terrifies mathematicians, John said, especially those of the old 
school. But people were learning, now, that the key response to a divergence syndrome was not 
to be startled, or confounded, but to attempt to explain it through a new method of thought. 
Then, often, what seemed at first shocking, or bizarre, can become quite acceptable. 
As I stroll the length of this beach I consider all the divergence syndromes in my life and 
wonder where and when I should have initiated new methods of thought; The process works 
admirably with benefit of hindsight, but I suspect it wouldn’t be quite so easy to apply at a 
moment of crisis. 

This metaphorical aspect is found in differing degrees in numerous works. The most frequent 
themes are probability and infinity.  

3. Mathematical subjects as the principal theme of a work 
Some mathematical objects have also inspired poets. Wislawa Szymborska, winner of the Nobel 
prize for literature in 1996, wrote a poem to the glory of Pi, which runs through its first decimal 
places15.

Guillevic wrote forty-three short poems in Euclidiennes16. Each bears a geometrical term as its 
title, all are preceded by the corresponding diagram in its classical form. The poems are narrated 
by the geometrical object which expresses its feelings and sensations in them. For example, the 
hyperbola: 

Hyperbole 

Être pourtant ce creux, 
Mais ces deux longs tracés 

Qui n’en finissent plus 
De n’être pas encore 
Des droites qui soient droites. 

Savoir que ça ne peut 

                                                     
15 Wislawa Szymborska, Je ne sais quelles gens, Fayard, 1997. 
16 Guillevic, Du domaine, Euclidiennes, Gallimard, 1967. 
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Venir qu’à l’infini, 

Qui doit être une fable, 
Une région perdue. 

- Faut-il être asymptote 
À l’infini lui-même? 

Less evidently, we can consider certain short stories of Jorge Luis Borges. These have infinity or 
mathematical infinities as their essential theme – combinatorial infinity in the Library of Babel,
actual (as opposed to potential) infinity in The Aleph, where the narrator, who is the author 
himself, tries to describe an experience of the vision of infinity in the here and now. 

the central problem is unsolvable: the enumeration, even if only partial, of an infinite complex. 
[…] What my eyes saw was simultaneous: what I shall transcribe is successive, because all 
language is successive. Nevertheless I shall cull something of it all. 
In the lower part of the step, toward the right, I saw a small iridescent sphere, of almost 
intolerable brilliance. At first I thought it rotary; then I understood that this movement was an 
illusion produced by the vertiginous sights it enclosed. The Aleph’s diameter must have been 
about two or three centimetres, but Cosmic Space was in it without diminution of size. Each 
object (the mirror’s glass, for instance) was infinite objects, for I clearly saw it from all point in 
the Universe17.

4. A Comic Effect 
Comedy often arises from logical paradox, or rather from the application of logic to familiar 
situations, as in the case of The Rhinoceros by Eugene Ionesco (one of the characters being “The 
Logician”) or, of course, in the works of Lewis Carroll.

It can also arise from playing with the multiple meanings of terms, from the meeting of 
mathematical usage and an expression in ordinary language. This is a speciality of numerous 
humorists, such as Raymond Devos.

Raymond Devos, Parler pour ne rien dire18

[…] Mais, me direz-vous, si on parle pour ne rien dire, de quoi allons-nous parler?  
Eh bien, de rien! De rien! 
Car rien… ce n’est pas rien! 
La preuve, c’est qu’on peut le soustraire. 
Exemple:  
Rien moins rien = moins que rien! 
Si l’on peut trouver moins que rien, c’est que rien vaut déjà quelque chose! 
On peut acheter quelque chose avec rien! 
En le multipliant! 
Une fois rien… c’est rien! 
Deux fois rien… ce n’est pas beaucoup! 

                                                     
17 Jorge Luis Borges, A Personal Antholoyg,ed. and with a Foreword by Anthony Kerrigan, Grove Press 

Inc., New York 1967. 
18 in Matière à rire, éd Olivier Orban et Sens dessus dessous, Livre de Poche,1976. 
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Mais trois fois rien!…Pour trois fois rien, on peut déjà acheter quelque chose… et pour pas 
cher!
Maintenant, si vous multipliez trois fois rien par trois fois rien:  
Rien multiplié par rien = rien. 
Trois multiplié par trois = neuf. 
Cela fait: rien de neuf!  
Oui… Ce n’est pas la peine d’en parler!   

5. A Poetic Effect 
Here is a reflection of Paul Valery taken from his Cahiers [Notebooks] in which he uses a 
mathematical concept as a metaphor to clarify the play of language in poetry for us. 

il y a un langage libre dans lequel les mots ne sont plus les mots de l’usage pratique et libre. Ils 
ne s’associent plus selon les mêmes attractions; ils sont chargés de deux valeurs... leur son et 
leur effet psychique instantané. Ils font songer alors à ces nombres complexes des géomètres, et 
l’accouplement de la variable phonétique avec la variable sémantique engendre des problèmes 
de prolongement et de convergence que les poètes résolvent les yeux bandés... de temps à 
autre.19

Through its own language, cryptic to the non-initiated, mathematics contributes to reinforce the 
mystery or the magic and participates in the psychic effect that Valery speaks of. One can cite 
poets as different as Rainer Maria Rilke or Benjamin Péret, whose a poem is intitled “x = 

” (but its content is not mathematical, so we give here another one). 

Fifth Duino Elegy (Rilke)
[...]Und plötzlich in diesem mühsamen Nirgends, plötzlich 
die unsägliche Stelle, wo sich das reine Zuwenig  
unbegreiflich verwandet -, umspringt 
in jenes leere Zuviel. 
Wo die vielstellige Rechnung 
Zahlenlos aufgeht20[...] 

Le travail anormal (IV) (Péret)
Quatre espaces blancs nous regardent 
Quatre espaces plus blancs que des cheveux 
Mais riches 
Quatre espaces qui sont quatre infinis 
L’infini du serpent qui est horizontal 
Et ceux qui tournent 
Ou sautent comme des carpes 

                                                     
19 “There is a free language in which words are no longer the words of unrestrained and practical usage. 

They no longer combine according to the same rules of attraction; they are charged with two values [….] 
their sound and their instantaneous psychical effect. They then make us think of the complex numbers of the 
geometers, and the coupling of phonetic variables with semantic variables creates problems of continuation 
and convergence that the poets resolve blindfolded… now and then.” Cahier 1.

20 “And suddenly in this tedious Nowhere, suddenly / the ineffable place where pure dearth / is 
inconceivably transmuted - changes / into this empty surfeit. / Where the reckoning of many columns / totals 
to zero.” Rilke, Duino Elegies with English translations by C.F. MacIntyre, University of California Press, 
1961 (written between 1912 and 1922).
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Ou plongent 
Comme une pierre dans un arbre21.

4 Third approach: The perception of mathematics and of 
those who do it 
In the Discours de la méthode [Discourse On Method], Descartes contrasts the disappointment he 
felt on learning the humanities with his great pleasure in studying mathematics “because of its 
certainty and the clarity of its reasoning”. The literati are, on the whole, of the contrary opinion. 
As for the man in the street, mathematics often repels, for it frightens. This is also the case for 
some celebrated writers. Victor Hugo describes at great length the tortures to which he was 
subjected by the study of mathematics: 

Après l’abbé Tuet, je maudissais Bezout; 
car, outre les pensums où l’esprit se dissout, 
j’étais alors en proie à la mathématique. 
On me tordait, depuis les ailes jusqu’au bec, 
sur l’affreux chevalet des X et des Y;  
hélas, on me fourrait sous les os maxillaires 
le théorème orné de tous ses corollaires22.
Géométrie! Algèbre! Arithmétique! Zone 
où l’invisible plan coupe le vague cône, 
Où lasymptote cherche, où l’hyperbole fuit! 
Cristallisation des prismes de la nuit; 
Mer dont le polyèdre est l’affreux madrépore; 
Où l’univers en calculs s’évapore, 
Où le fluide vaste et sombre épars dans tout 
N’est plus qu’une hypothèse, et tremble, et se dissout. 

On the other hand, Isidore Ducasse (alias Comte de Lautréamont) sings of his ecstasy: 
Les chants de Maldoror [The songs of Maldoror]

Ô mathématiques sévères, je ne vous ai pas oubliées, depuis que vos savantes leçons, plus 
douces que le miel, filtrèrent dans mon cœur, comme une onde rafraîchissante […] Il y avait du 
vague dans mon esprit, un je ne sais quoi épais comme de la fumée; mais, je sus franchir 
religieusement les degrés qui mènent à votre autel, et vous avez chassé ce voile obscur, comme 
le vent chasse le damier. […] 

 Arithmétique! Algèbre! Géométrie! Trinité grandiose! Triangle lumineux! Celui qui ne 
vous a pas connues est un insensé! Il mériterait l’épreuve des plus grands supplices; car il y a 
du mépris aveugle dans son insouciance ignorante; mais, celui qui vous connaît et vous 
apprécie ne veut plus rien des biens de la terre; se contente de vos jouissances magiques; et, 
porté sur vos ailes sombres, ne désire plus que de s’élever, d’un vol léger, en construisant une 
hélice ascendante, vers la voûte sphérique des cieux. La terre ne lui montre que des illusions et 
des fantasmagories morales; mais vous, ô mathématiques concises, par l’enchaînement 

                                                     
21 Benjamin Péret, Le grand Jeu, Gallimard, 1928. 
22 Victor Hugo, “À propos d’Horace”, Les Contemplations (mai 1831). 
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rigoureux de vos propositions tenaces et la constance de vos lois de fer, vous faites luire, aux 
yeux éblouis, un reflet puissant de cette vérité suprême dont on remarque l’empreinte dans 
l’ordre de l’univers. […]23

In recent novels such as La princesse japonaise [The Japanese Princess] by Béatrice Hammer,
the (female) lycée student who discovers mathematics sees it “comme un monde à part, très calme, 
sans conflit, sans souffle derrière le dos, sans personne dont les yeux deviennent trop grands ou 
qui tout d’un coup ne veut plus t’aimer24”.

From a different perspective, D503, an engineer entrusted with a specific mission in We Others,
the science fiction novel by Eugène Zamiatine, has the illusion of an ideal life dominated by the 
rigour and security that mathematics brings “happiness, mathematical and exact”. He finds this 
again, notably in music,... before his certainty dissolves with the irruption of the mysterious I330 
into his life: “This woman acted as disagreeably upon me as an irrational, irreducible quantity in 
an equation”. In this utopia, as in the twentieth century Paris of Jules Verne, feelings no longer 
have any place and science, in particular mathematics, brings about a reign of icy terror. 

The image people have of mathematics does not necessarily accord with the image 
mathematicians create of themselves. Edgar Poe gives an example of this in The Purloined Letter.

The great error lies in supposing that even the truths of what is called pure algebra are abstract 
or general truths, and this error is so egregious that I am confounded at the universality with 
which it has been received. Mathematical axioms are not axioms of general truth. What is true 
of relation - of form and quantity - is often grossly false in regard to morals, for example. In 
this latter science it is very usually untrue that the aggregated parts are equal to the whole. In 
chemistry also the axiom fails. In the consideration of motive it fails; for two motives, each of a 
given value, have not, necessarily, a value when united, equal to the sum of their values apart. 
There are numerous other mathematical truths which are only truths within the limits of 
relation. But the mathematician argues from his finite truths, through habit, as if they were of 
an absolutely general applicability -- as the world indeed imagines them to be...25

Some years before, Litchtenberg said in his Aphorisms:

Mathematics truly is a magnificent science, but mathematicians are often not worth a damn. 
They go on about mathematics almost as if it is theology. As those who dedicate themselves to 
this one sometimes obtain public office and lay claim to a special reputation for sanctity, as 
well as a most intimate relationship with God, even if many of them are veritable good-for-
nothings, in a similar way, supposed mathematicians very frequently lay claim to be considered 
deep thinkers. And yet, among them are the most confused minds that there can be, incapable 
of accomplishing the least thing demanding thought, unless they are immediately able to reduce 
it to a simple combination of symbols, more the fruit of routine than of thinking.26

Mathematicians are perceived in a multiplicity of ways – mad or suicidal scientists, unbearable 
geniuses, ridiculous and narrow minded professors, like those of the student Törless, in Robert 
Musil27 and in Stendhal, alias Henri Brûlard28, like the mad murderess in the detective novel Out

                                                     
23 Lautréamont, Les chants de Maldoror, Chant deuxième, 1869. 
24 Béatrice Hammer, La Princesse japonaise, Criterion, 1995. “as a world apart, very calm, without 

conflict, without whistling behind one’s back, without anybody whose eyes become too large or who 
suddenly no longer wants to love you.”  

25 E. A. Poe, Tales, 1845 
26 Aphorism K 185, written between 1793 and 1796 
27 Robert Musil, Die Verwirrungen des Zöglings Törless, 1906 (The confusions of young Törless).
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of the sun by Robert Goddard29. The image shown is sometimes stereotyped, sometimes depicted 
with a concern for the truth. In Oncle Petros et la conjecture de Goldbach [Uncle Petros and 
Goldbach’s Conjecture], Apostolos Doxiadis describes a lifetime obsession, that of a man 
immured in his quest for a proof of the famous Goldbach conjecture. Numerous cases of madness 
and suicide are represented in the mathematicians’ milieu! 

Happily, we can also find a positive image of both male and female mathematicians. We meet 
with several children or young girls who find their personality affirmed by their mathematical 
apprenticeship (it goes without saying that their teachers are also very sympathetic). Examples are 
Thomasina, in Arcadia by Tom Stoppard or Anna, the heroine of Anna And The Black Knight30

by Fynn, who asserts herself in front of her old teacher, appropriating what he has taught her by 
creating a very personal language. 

The admirable Karen Selby, in Charles Morgan’s play, The Flashing Stream31, is older. This 
mathematician possesses, according to her creator, “a unified spirit”: that is to say that her 
behaviour – absolute sincerity, rigour in her work, respect for others – reflects her love of 
mathematics, identified with the love of truth. This is not at all rigid, however, as a heroic lie 
permits her to save both the man she loves and their common mathematical work. Similarly, the 
female mathematician of The Proof by David Auburn32 carries the rigorous demands of her 
mathematical research across into her emotional life. 

We have mentioned here only a few works between hundreds, and our culture has evidently a 
strong French orientation; I hope this workshop will give us the opportunity to share and to enrich 
our reading and our cultures, and to discuss how these works could be useful for improving the 
taste for mathematics. 

Many thanks to Pam and Stuart Laird for their help in translating.

                                                                                                                               
28 Stendhal, Vie de Henri Brûlard, written in 1835-1836.
29 Robert Goddard, Out of the sun, Corgi, 1996. 
30 Fynn, Anna and the Black Knight, William Collins, 1990. 
31 Charles Morgan, The flashing stream, Macmillan, 1938. 
32 David Auburn, The Proof, Faber and Faber, 2001. 
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Planche n°31 de l’«Architectura Navalis Mercatoria» de F. Af Chapman Stockholm 1768 

RÉSUMÉ 
Si la construction des navires à la fin du XVIIIème siècle reposait d’abord sur le savoir-faire expérimental 
des ouvriers des chantiers, l’introduction d’un outil mathématique aussi puissant que le calcul différentiel et 
intégral a permis de théoriser la conception du navire avant d’influer au XIXème sur sa construction elle-
même. 

La lecture de certains ouvrages réalisés à la demande du ministre Colbert, tel l’Architecture navale de 
Dassié (1695) donne une idée des pratiques en cours dans les chantiers de l’époque; l’expérience, les 
habitudes sont reines au détriment de tout calcul, si ce n’est celui de la proportionnalité. Au contraire, le 
travail de Bouguer (Traité du navire, 1746) introduit les outils mathématiques, y compris le calcul intégral, 
dans l’étude de la structure des vaisseaux. Enfin, le suédois Chapman dans son Traité de la construction 
des vaisseaux (1775) reprend les idées du précédent pour réaliser une compilation des connaissances en 
construction navale dans l’Europe de la fin de ce siècle. 
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ABSTRACT 
The shipbuilding skills at the end of the seventeenth century were mainly based on the experimental know-
how of the workers and only the introduction of a mathematical concept as powerful as the integral 
calculations permitted to develop a theory regarding ship conception. But is was only during the nineteenth 
century when this theory started to influence the ship construction. 

The study of some of the publications (realized further to the demand of the French ministry Colbert) 
such as the “Vessel Architecture” from Dassié (1695) gives an idea about construction methods used in 
shipyards at this time. Experience and habits had the priority, before calculation, expected the 
proportionality. Completely different was the “Vessel treaty” introduced 1746 by the French Pierre 
Bouguer. This mathematical concept included the integral calculations for the ship structure. It was in 1775 
when the Swedish Fredrik af Chapman used the ideas of Bouguer in the “Treaty of vessel construction” to 
make a compilation of the European knowledge in shipbuilding at the end of that century. 

La mise en place du calcul différentiel et intégral à la fin du XVIIème siècle et au début du suivant 
a certes permis aux mathématiques de faire un grand bon en avant. Il est difficile d’imaginer que le 
domaine des mathématiques appliquées soit longtemps resté sans utiliser ce nouveau concept. En 
effet le XVIIIème siècle a été celui d’un grand développement des sciences cognitives, et les 
nouveaux procédés mathématiques ont été mis en œuvre pour l’analyse de nombreux phénomènes 
naturels comme pour étudier scientifiquement certaines réalisations techniques. Léonard EULER 
en est l’exemple même, allant jusqu’à théoriser des domaines inconnus pour lui, comme la 
construction navale. Celle-ci passe ainsi, à cette époque, d’une connaissance empirique basée sur 
l’expérience, à une véritable «Science du Navire». 

Avant d’aborder les changements qu’introduit alors le calcul différentiel et intégral, un 
intéressant état des lieux est dressé en France par le ministre COLBERT, dans le cadre de la 
centralisation étatique voulue par le souverain Louis XIV. A l’instigation du ministre, et en 
relation avec la toute nouvelle «Académie Royale des Sciences», de nombreux ouvrages et 
rapports sont rédigés, dressant un tableau des méthodes et des réalisations des arsenaux royaux. 

«L’Architecture Navale» du «Sieur» DASSIE (1677) est l’un de ces ouvrages, et son exposé 
montre le caractère traditionnel et artisanal de la construction des navires à l’époque. Les 
mathématiques (si on peut dire) employées relèvent du proportionnel, et sont d’ailleurs en ce sens 
très «euclidiennes»: le chapitre VI du livre donne ainsi les proportions, suivant la longueur de la 
quille, de son épaisseur et de la hauteur de l’étrave (Texte I).  

Il faut remarquer, de plus, que les matériaux -le bois- engendrent de nombreuses contraintes; de 
plus les initiatives originales se traduisent souvent par des catastrophes, telle celle du «WASA» en 
1628.

Les ouvrages de ce type se multiplient à la fin du siècle, en France, en particulier à la suite des 
conférences de 1681, réunies, comme il a été dit, sous l’égide de COLBERT. Ils montrent un 
premier essai de mathématiser les formes des navires, comme la tentative du Chevalier RENOU, 
pour lequel les courbures des coques doivent être des coniques, le catalogue des courbes 
mathématisées étant alors assez restreint. Cependant les travaux de l’«Académie Royale des 
Sciences» poussent plus loin, le Marquis de L’HOPITAL appelant même à son secours la fonction 
logarithme, comme intégrale de la fonction inverse, dans un mémoire de 1699 pour déterminer la 
forme idéale d’un «solide rond, qui étant mû dans un fluide au repos parallèlement à son axe 
rencontre moins de résistance que tout autre solide…»  

Le support mathématique change alors, et l’étude de la structure des navires abandonne la 
description d’un savoir-faire pour prendre un aspect plus scientifique. De plus, les progrès, au 
début du XVIIIème siècle dans le domaine de la mécanique (centre de gravité, moments…) 
incitent à théoriser plus sérieusement le domaine de la construction navale. Deux personnages 
peuvent servir à illustrer ce changement de style. Si le premier, EULER, déjà cité, est l’un des 
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mathématiciens les plus illustres de ce siècle, le second Pierre BOUGUER, moins connu, n’en est 
pas très éloigné, puisque partageant avec le premier les prix de l’Académie relatifs à la navigation 
de 1727 à 1731. Les deux hommes correspondront d’ailleurs par la suite, mais le caractère de 
BOUGUER et sa mission en Amérique du Sud pour déterminer la longueur du méridien et, par là, 
la forme et la dimension de la Terre, ne lui permettront pas d’acquérir l’aura du premier. 

Cependant Pierre BOUGUER est un spécialiste de la navigation; très jeune (en 1714, à l’âge de 15 
ans !), il devient professeur d’hydrographie (de navigation) au Croisic, ville de Sud-Bretagne et 
port important pour le trafic du sel. Il rejoint l’Académie Royale des Sciences à Paris en 1731, sa 
valeur et ses compétences ayant été reconnues par ses différents écrits et mémoires. C’est pendant 
sa mission en Amérique du sud qu’il rédige son «Traité du Navire», publié après son retour en 
1746. Cet ouvrage est fondamental en théorie de la construction navale, introduisant, entre autres, 
la notion de «métacentre» position maximum du centre de gravité d’un navire, pour sauvegarder sa 
stabilité. 

La détermination des positions respectives du centre de gravité d’un bateau, de celui de la 
partie immergée d’une carène (centre de la poussée d’Archimède) et du métacentre font largement 
appel, non seulement au calcul intégral, mais surtout à son aspect technique venant du découpage 
en d’infiniment petites tranches de la structure, en l’occurrence de la carène. Le profil des coupes 
perpendiculaires à l’axe du navire est supposé mathématisé, et il faut déterminer certaines 
caractéristiques: volume (jaugeage) et centre de gravité; c’est l’objet de second livre de l’ouvrage 
de BOUGUER, première section. Reconnaissant qu’ «il faut renoncer aux méthodes purement 
géométriques qui ne sont applicables qu’aux corps d’une forme toujours déterminée et non pas à la 
carène des navires qui est le plus souvent comme formée par hazard» (p. 201), il découpe 
latéralement le navire en trapèzes infiniment petits et remarque (p. 212) «Nous pouvons même, en 
élevant nos vues […] ajouter que ce moyen pourra servir dans plusieurs rencontres, pour approcher 
sur le champ et avec une extrême facilité la valeur de toutes les intégrales qui ne contiennent 
qu’une variable». 

Il ne s’agit pas là que d’une méthode de calcul technique sans référence théorique, mais bien du 
calcul approché d’une intégrale. Pour preuve, quelques pages plus loin, dans la seconde section du 
même livre (chapitre I) lorsqu’il s’agit de calculer la «solidité» (volume) de la carène, considérant 
les surfaces des coupes verticales (S est le symbole de l’intégration, notation de Leibniz) «on n’a 
qu’a considérer l’intégrale générale Sdz.Z dans laquelle Z est une fonction quelconque de comme 
représentant l’aire d’une surface plane, dont z exprime les parties de l’axe ou de la longueur, 
pendant que la grandeur Z […] exprime les largeurs ou les ordonnées.» (p. 203). Le calcul se fera 
par la méthode ci-dessus. Cependant, le meilleur exemple est fourni par le troisième chapitre de 
cette section, où il est question de déterminer la position du métacentre. Il devient alors nécessaire 
de considérer le navire en position de gîte, pour évaluer d’abord les positions respectives des 
centres de gravité des parties de la carène habituellement hors d’eau et immergées par cette gîte. 
Le calcul (Texte 2) conduit à envisager l’intégrale Sy3dx. «Nous ne comptons pas comme une 
difficulté dans l’usage qu’on peut faire de cette formule la nécessité où l’on est de trouver la valeur 
de l’intégrale Sy3dx. […] on trouvera aisément par la Méthode expliquée dans le second chapitre 
de la section précédente, l’intégrale Sy3dx.» (p. 262) 

EULER est de 8 ans le cadet de BOUGUER; une fois ce dernier à l’Académie, il devint l’un des 
plus déterminés partisans des travaux du savant suisse, lequel continuait de participer aux concours 
proposés par l’Académie. La correspondance fut entretenue jusqu’à la mort de BOUGUER, mais il 
n’est pas certain qu’EULER eut en main le «Traité du Navire» avant d’écrire sa «Scientia Navalis» 
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parue en 1749 à Saint Petersbourg. Cependant son apport est plus celui du savant que du 
technicien, son intérêt plus pour le phénomène et sa mise en formule que pour ses conséquences 
quant à la construction du navire.  

L’étude concerne également la stabilité, peut-être aussi sous l’influence de l’inquiétude d’un 
terrien devant les mouvements altérant la stabilité de l’embarcation. Une première originalité vient 
de ce qu’EULER traite le roulis et le tangage dans la même problématique, alors que BOUGUER, 
en personne ayant la pratique de la navigation laisse les phénomènes longitudinaux de coté. Peut-
être faut-il voir là une réminiscence des travaux d’EULER sur la voilure et les conséquence d’un 
point vélique, centre de poussée, trop élevé. De plus la conception d’angles de gîte infinitésimaux 
(cependant, ce n’est pas à leur sujet qu’intervient le calcul intégral) est bien loin de la réalité, 
même si l’analyse du phénomène est remarquable de pertinence. 

Cette analyse concerne les forces mises en jeu pour rétablir le navire dans ses lignes d’eau 
après qu’il ait pris une inclinaison latérale ou longitudinale. Le chapitre VI, paragraphe 38, indique 
qu’il suffit de considérer la «partie submergée d’un vaisseau comme une masse d’eau dont toutes 
les parties seraient poussées verticalement en haut avec autant de force que leur gravité les pousse 
vers la bas». C’est cette masse d’eau qui est alors divisée en parties infinitésimales dont on 
formule le moment par rapport au centre de gravité de la carène immergée. La «somme de toutes 
ces formules jointes en sembles donnera le moment de force qui résulte de la portion d’eau 
contenue dans l’espace angulaire AIa, ces moments pouvant être représentés, selon l’usage reçu 
dans l’analyse, de cette façon T.IP+ T.Ig» (ch VI, paragraphe 44). T représente le poids de la 
colonne d’eau et IP comme Ig la décomposition des distances de cette colonne au centre de gravité 
de la carène immergée. 

Le dernier personnage illustrant la perspective scientifique que prend la construction navale est 
d’un tout autre gabarit. Autant les précédents sont des savants généralistes du siècle des lumières 
plus (BOUGUER) ou moins (EULER) versés dans les choses de la navigation, autant Frédérik Af 
CHAPMAN est un spécialiste du domaine. Plus encore, il représente une somme des 
connaissances et des pratiques de son époque, connaissances et pratiques qu’il a accumulées et 
observées lors de longs séjours dans les différends pays européens où se trouvent des arsenaux: né 
en 1721, il est en 1741 en Angleterre, puis retourne à Stockholm pour étudier les mathématiques, 
au début des années 1750, il est en Hollande, en France en 1755, à nouveau à Londres en 1756 
pour devenir chef constructeur de la marine suédoise en 1764. Sa célèbre «Architecturia Navalis 
Mercatoria» de 1768 est un magnifique recueil de croquis, plans et dessins récoltés par l’auteur 
durant ses années d’observations. Cet ouvrage sera suivi en 1775 par le «Tractat om 
Skeppsbyggeriet», «Traité de la construction des Vaisseaux» où ses connaissances mathématiques 
sont confrontées à son expérience de la construction navale. 

CHAPMAN y écrit en responsable, se désolant de ce que «on a dû construire des vaisseaux de 
la meilleure ou de la pire qualité plutôt par hazard qu’en prévoyant les moyens sûrs et prévus; et 
qu’il s’ensuit de là que tant qu’il ne sera pas possible de se fonder mieux dans les connaissances 
nécessaires pour bâtir des vaisseaux que d’après de simples tâtonnements plutôt qu’en appelant à 
l’expérience, on pourra dire qu’en général les vaisseaux ne sauraient acquérir la perfection qui leur 
convient par les moyens ordinaires dont on s’est servi jusqu’ici» (préface page IV). En bref, les 
travaux de BOUGUER et d’EULER sont restés lettre morte. 

La notion de métacentre est bien sûr reprise et on retrouve l’intégrale proposée par BOUGUER 
pour déterminer la hauteur métacentrique; mais, plus encore, et à plusieurs reprises, la culture 
mathématique de CHAPMAN transparaît, comme dans ce passage du début du premier chapitre 
(page 2 corollaire): «On trouvera l’aire de tout espace terminé par des lignes courbes, savoir, si par 
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de semblables différences et ordonnées à angle droit, […] vous partagez l’axe en un même nombre 
de parties, le nombre d’ordonnées étant impair. Alors vous prendrez pour coefficients de la 
première et dernière ordonnée toujours 1, et pour coefficients des termes les plus proches de la 
première et de la dernière ordonnée toujours 4; et quant aux autres, l’un dans l’autre 2 et 4; alors 
on multipliera la somme de tous ces produits par 2/3 de la distance entre les ordonnées». On 
reconnaît là la formule de SIMPSON (sous-entendu qu’il faut multiplier par le nombre 
d’intervalles), auteur auquel CHAPMAN fait plusieurs fois référence et dont il aurait suivi les 
cours pendant son séjour à Londres. Comme pour l’exposé de BOUGUER, il ne s’agit pas d’une 
formule toute faite issue d’une habitude technique, mais bien d’une méthode résultant d’une 
pensée mathématique, en l’occurrence le calcul intégral, dont la formule donne une approximation 
commode, mais là aussi venant d’une approche théorique. 

SIMPSON est en effet mentionné un peu plus loin, lorsqu’il s’agit d’étudier le problème de 
moindre résistance dans l’eau (Texte III). Si CHAPMAN fait état de «plusieurs auteurs qui en ont 
traité», sans mentionner l’un d’entre eux, son renvoi au mathématicien est lui explicite: «voir le 
traité des fluxions de SIMPSON» quant à l’obtention de l’équation différentielle qui permettrait de 
résoudre le problème posé, problème dont le traitement s’est nettement amélioré et précisé depuis 
les tentatives du Marquis de L’HOPITAL en particulier.  

Il n’est pas nécessaire d’être un spécialiste de l’histoire maritime pour observer sur les 
représentations (tableaux, gravures…) que les navires de la fin du XVIIIème siècle ne sont pas 
différents de ceux du siècle précédent. De là, on pourrait conclure que les travaux des BOUGUER, 
EULER, CHAPMAN et autres n’ont pas été suivis d’effet et que la construction navale n’a pas 
progressé comme les connaissances scientifiques l’auraient permis. Mais d’autres facteurs entrent 
en jeu: le passage de la conception à la réalisation doit tenir compte des moyens et des matériaux, 
sans parler d’une certaine inertie freinant toute introduction de techniques nouvelles. Il faudra 
attendre le siècle suivant et quelques péripéties économico-militaires pour voir apparaître des 
bateaux aux formes nouvelles, en attendant la révolution de l’utilisation de la vapeur comme force 
motrice… 
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ABSTRACT

This paper considers the remarkable history of the Arabic recension of Euclid’s Elements by
Nas.̄ır al-Dı̄n al-T. ūs̄ı. In order to assess this treatise correctly, the second section distinguishes
it from another recension that has incorrectly been ascribed to al-T. ūs̄ı. In the third section, I
consider the recension of al-T. ūs̄ı in relation to one of its major sources and in relation to one of
its most influential commentaries, the commentary on book I by Muh.ammad Barakāt. Then,
in the fourth section, I outline some features of education in traditional Islamic madrasas
(“colleges”) and the impact historical changes in their curriculum had on the production of
commentaries such as Barakāt’s. By way of conclusion, I suggest that the “decline” in the
level of innovation, although not the level of production, in mathematical discourse during
the late medieval period probably reflects the effect of successful assimilation, rather than an
exclusion, of mathematics from the educational landscape.

1 Introduction

Nas.̄ır al-Dı̄n al-T. ūs̄ı (1201-1274) was one of the most influential scientists of his century.
A typical polymath, he wrote on many topics, from philosophy and ethics to mathe-
matics and mathematical astronomy. He is best known among historians of science as
the founder and director of the observatory at Marāgha, where he gathered some of the
best scientific minds of the day and established an important tradition of instruction
in mathematics and natural philosophy.

Al-T. ūs̄ı wrote voluminously on mathematics. Among his outstanding achieve-
ments, he produced a series of recensions (tah. r̄ır) of important Greek mathematical
texts by such luminaries as Theodosius, Hypsicles, Autolycus, Aristarchus, Archimedes,
Menelaus. These works, known collectively to the Arabs as the mutawassit.āt or inter-
mediate works,1 were intended to lead students from a foundation in Euclid’s Elements
to a facility with the complexities of mathematical cosmography epitomized in al-T. ūs̄ı’s
redaction of Ptolemy’s Almagest. These treatises formed the core of education in higher
mathematics and mathematical astronomy at Marāgha.

1A facsimile edition of these Arabic recensions, using Tabriz, Kitābkhāne-i Mill̄ı, MS 3484 makes
these recensions available in one place Aghayan̄ı-Chavosh̄ı.

Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006
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T. ūs̄ı’s Tah. r̄ır of the Elements was only of several examples of that genre to be pro-
duced during the thirteenth century,2 but it rapidly outstripped the others in influence,
as judged from the numbers of surviving manuscript copies (many heavily annotated
by users) and number of commentaries on the text.3 Initially, one might be tempted
by the hypothesis that, as an introduction to a mathematical curriculum created by a
single author, and thus presumably united by a similar style and mathematical vocab-
ulary, its great popularity was to be expected.4 But none of al-dTūs̄ı’s recensions, with
the possible exception of his Tah. r̄ır of the Almagest, enjoyed anything like the same
popularity. I suggest that we must look more deeply into the history of education in
the Islamic world in order to understand these historical facts.

2 Correcting an historical error

Despite the apparent importance of al-dTūs̄ı’s Tah. r̄ır, it remains almost completely un-
known to historians of mathematics and mathematics education. The text has not been
edited (the huge number of surviving manuscripts makes editing a daunting enterprize)
or translated into European languages, nor has it received attention as a mathematics
textbook, although specific problems, such as al-T. ūs̄ı’s proposed demonstration of Eu-
clid’s fifth postulate, have been discussed (Sabra 1959, 133-170; Jaouiche, 1984, 99-106
and 201-226; Rosenfeld, 1988, 74-80). This ignorance results not so much from lack
of historical resources or from a lack of interest on the part of historians, but from an
historical accident. In 1594, the Medici Press, as part of its Arabic publication pro-
gram (Jones, 1996), printed the text of a Tah. r̄ır of the Elements which the title-page
attributed to al-T. ūs̄ı (Cassanet, 1989.5 This ascription was incorrect, since the trea-
tise in question was completed nearly a quarter century after al-T. us̄ı’s death (Sabra
1969, 18). The identity of its author remains unknown. He is often designated as
“Pseudo-T. ūs̄ı”, a pattern I follow as well. This erroneous title page has led generations
of historians astray. Nearly every discussion of the Tah. r̄ır of al-T. ūs̄ı has been based
upon this misidentified treatise by the “Pseudo-T. ūs̄ı”.

The two Tah. r̄ır differ markedly from one another, although they also share some
technical vocabulary and so appear genetically related (DeYoung, 2003). The T. ūs̄ı
Tah. r̄ır contains the thirteen genuine books of the Elements, with the addition of two
extensions ascribed to Hypsicles and usually termed books XIV and XV. The Pseudo-
T. ūs̄ı Tah. r̄ır, however, has only the thirteen genuine Euclidean books. In his treatise, al-
T. ūs̄ı has typically shortened demonstrations by omitting some of Euclid’s intermediate
steps. He often seems more interested in geometrical results than in logical details
of demonstrations. This Tah. r̄ır seems not so much an end in itself as the entry into
higher levels of mathematics, leading ultimately to mathematical astronomy. This is

2Ath̄ır al-Dı̄n al-Abhar̄ı (d. 663 / 1265), Is.lāh. Us.ūl Uql̄ıdis, Dublin, Chester Beatty Library, ms.
3424; Muh.yi al-Dı̄n al-Maghrib̄ı (d. late 7th / 13th century), Tah. r̄ır Us.ūl Uql̄ıdis, Oxford, Bodleian
Library, ms. Or. 448.

3See Sezgin 1974, 111-114, where at least nine commentaries are noted. The text was translated
into Persian at least twice (Storey 1957, II, pt.1, 1-2). These translations served as the basis for the
Persian transmission (Brentjes,1998). The treatise was also into Sanskrit in the seventeenth century
(Pingree 1976, ser. A, III, 56-58).

4This hypothesis awaits serious scholarly attention.
5The text has been reprinted in Pseudo-Tusi, 1997.
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in sharp contrast to the Pseudo-T. ūs̄ı treatise, in which, although intermediate steps
may sometimes be suppressed, we find extensive citation of previous results. Thus, the
emphasis seems more on internal logical structure for its own sake, not on mastering
results so as to move ahead to higher studies.

Interspersed throughout the T. ūs̄ı Tah. r̄ır are more than two hundred commentary
notes, typically introduced by the phrase “I say” (aqūlu). These notes are not dis-
tributed uniformly through the text. In book II, for example, only one of fourteen
propositions has no comment attached. By contrast, in book X, whose 109 proposi-
tions make up nearly a quarter of the 465 propositions in the Elements, there are only
fifteen comments, and twelve occur prior to proposition X, 26.6

The largest group of commentary notes (more than ninety) concern alternative
demonstrations. Each is introduced by the stereotypical phrase “and by another method”
(wa-bi-wajh ākhar). Two thirds of these occur in books I-VI, but only five are found in
book V. The arithmetical books (VII-IX, where Euclid investigates properties of dis-
continuous magnitudes or numbers) contain only ten alternate demonstrations. This
distribution re-enforces the impression that al-T. ūs̄ı is primarily interested in geomet-
rical results. Many of these alternate demonstrations derive from the treatise of Ibn
al-Haytham (965-1040?),7 Resolution of Doubts in Euclid’s Elements and Interpreta-
tion of its Special Meanings (Schramm, 1985), although al-T. ūs̄ı does not explicitly cite
his sources.8 Another group of commentary notes describe added cases, which occur
in some twenty propositions. These notes, with three exceptions found in book XI
(solid figures) occur in the first four books of the treatise. Thus, they also emphasize
geometrical results.

The Pseudo-T. ūs̄ı Tah. r̄ır, by contrast, lacks almost all these alternative demonstra-
tions, although many of the added cases found in al-T. ūs̄ı are also present here. This
Tah. r̄ır also contains a variety of notes concerning the structural differences between
the translation tradition deriving from “al-H. ajjāj” and that deriving from “Thābit”
(Brentjes 2001, 39-51). Similar notes occur in the T. ūs̄ı Tah. r̄ır, but they are usually
more laconic. On the other hand, the Pseudo-T. ūs̄ı Tah. r̄ır contains a greater number
of corollaries and lemmas. This, again, underscores the impression that the composer /
compiler is interested in the internal logic of mathematics or, perhaps, in mathematics
for its own sake.

3 Al-T. ūs̄ı’s Tah. r̄ır in historical context

Let us briefly try to situate al-T. ūs̄ı’s Tah. r̄ır chronologically within the intellectual
landscape of the Arabic Euclidean tradition. As already noted, many of its comments
are descended from the Kitāb f̄ı H. all Shukūk Kitāb Uql̄ıdis f̄ı al-Us.ūl wa-Sharh. ma ↪̄an̄ıhi

6Clearly al-T. ūs̄ı did not find the complicated discussions of irrational line families that begins
immediately after this proposition interesting. Demonstrations that require pages in the Elements are
frequently reduced by al-T. ūs̄ı to a matter of a few lines of text.

7The most recent attempt to unravel the obscure and sometimes contradictory details of Ibn al-
Haytham’s scientific biography is (Sabra 1998, 2002). In this study, Sabra is responding to the the-
sis advanced in (Rashed 1993, 1-19) that there were, historically, two scholars by the name of Ibn
al-Haytham and that their lives and scientific contributions have been conflated in the later bio-
bibliographical literature.

8G. De Young, “Nas.̄ır al-Dı̄n al-T. ūs̄ı’s Tah. r̄ır of Euclid’s Elements and its Sources.”, in preparation.
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of Ibn al-Haytham. Ibn al-Haytham, in his treatise, does not comment on the entire
Euclidean text, but only on selected propositions. In each case, he begins by quoting
the enunciation of the proposition, as though to remind his readers of the context of his
discussion. The commentary itself focuses on (1) “doubts” or logical problems inherent
in the Euclidean text9 and (2) alternative demonstrations. The latter are much more
frequent. Some of these alternative demonstrations are said to be “better” than the
original Euclidean version, others replace indirect demonstrations with direct proofs.
Occasionally, he includes brief notes about why a particular proposition is needed within
the Euclidean corpus. Most curious, however, is the inclusion of propositions which
have no commentary attached, while other propositions are simply omitted altogether.
Within his demonstrations, Ibn al-Haytham does not refer to previous propositions.
Thus, the actual Euclidean content of the treatise is limited almost entirely to the
enunciations of propositions. The entire treatise seems to assume a deep intimacy with
the Euclidean corpus on the part of the reader.

The Tah. r̄ır of al-T. ūs̄ı, composed nearly three centuries later, does not quote from the
primary Arabic Euclidean transmission. Instead, he paraphrases and summarizes both
enunciation and demonstration of each proposition found in the Group A formulation
of the Thābit edition of the Arabic primary transmission.10. On the division of Arabic
manuscripts of the Thābit edition into two Groups, A and B, see (De Young 2004, 314-
317). In this process, he does not add information – there are no references within the
text to previous propositions, for example11 – apart from his notes, which are placed at
the end of individual propositions. The alternative demonstrations, which are borrowed
from Ibn al-Haytham, among other sources, are also paraphrased. The impression given
by this treatise is that the intended readership was fairly mature intellectually, but not
intimately familiar with the Euclidean tradition or its contents.

The commentary on al-T. ūs̄ı’s Tah. r̄ır, composed by Muh.ammad Barakāt (fl. late
18th century) some four centuries after al-T. ūs̄ı penned the Tah. r̄ır, is of considerable
interest because it was assigned for use within the madrasa educational system of India.
The commentary, although it covers only book I, is approximately as lengthy as the
original Tah. r̄ır. The author repeatedly cites various earlier texts and authors: (1) the
Ashkāl al-Ta↩s̄ıs of Samarqand̄ı (De Young 2001), (2) unnamed commentators on the
Ashkāl al-Ta↩s̄ıs12 and (3) an unnamed commentator on al-Tadhkira,13 are among the
most prominent.

There is no indication that the commentary of Barakāt was originally intended for
pedagogical use, but it was one of four mathematical treatises prescribed in the cur-
riculum reforms of Mawlanā Niz.ām al-Dı̄n at the end of the eighteenth century. The

9On nuances of the term “doubt” (Arabic “shakk”), see (Sabra1995-1996, 47-48).
10The complexities of the medieval transmissions of the Elements are succinctly described in (Bren-

tjes 2001, 33-47).
11Although there are no references to earlier propositions within the text itself, many copies have

such references in the margins or interlinearly. In some cases, these appear to be in the same hand as
the text itself, although this is difficult to state with certainty. Whatever their origin, they certainly
appear to be an addition to the original text, not something intrinsic to it.

12It is not yet possible to determine which commentators are being consulted, although the most
popular, Qād. ı̄zāde al-Rūmı̄ (765/1364 - 840/1436) seems a likely candidate. The Arabic text of his
commentary has been published in (Souissi 1984). For a listing of other known commentaries, see De
Young 2001, 58, note 4.

13Ragep 1993 and Sulaimān 1993 have published editions of this important treatise by al-T. ūs̄ı. For
a review of the two editions, see (Saliba 1996).
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commentary, like many late commentaries, exhibits several characteristics of what may
be called “deuteronomic” texts. A taxonomy of the interlocking features underlying
this classification has been described in a recent study of the late Greco-Roman mathe-
matical tradition (Netz 1998, 263-279). One key feature of “deuteronomic” texts is the
tendency of the commentator to explain too much, to provide explicit argument and
justification for statements that are generally quite obvious in themselves. Such “dig-
ging too deep” is evident in Barakāt’s commentary. A very brief example must suffice.
Following proposition 45, we find the following statement:14 “I say: this proposition,
that is, <proposition> forty five, is not in the text of al-H. ajjāj, but it is present in the
text of Thābit.” Immediately following is the statement: “46 45 (the latter numeral in
red) I mean that this proposition, with respect to the text of al-H. ajjāj, is <proposition>
forty five because the previous proposition is not in the text <of al-H. ajjāj>, as has been
stated. For this <reason> I wrote the first numeral in black and the second in red,
just as was stated at the beginning of the treatise, and I follow this principle in what
follows.”15 Similarly, the author has inserted into every proposition numerous steps
that al-T. ūs̄ı apparently felt should be easily understood without requiring full articu-
lation. It is largely these statements inserted within the demonstrations that produce
the bulk of the commentary. Such explications may have been intended to demonstrate
the author’s erudition, or they may have been intended to assist beginning students
who could not be expected to have a familiarity with the Euclidean corpus, its style of
demonstration, and its literature of comment.

4 The islamic Madrasa in history

As we contemplate the historical changes in this intellectual landscape, we seem to see
a continuing degradation of the mathematics, a persistent simplification and watering-
down of the tradition. In order for any mathematical tradition to continue, there must
exist mechanisms by which the content of the tradition is passed from person to person.
The modern West locates this process primarily in the academic institution. Thus, it
might be tempting to blame the decline of mathematics on the failure of the academic
tradition. I turn, therefore, to a brief consideration of traditional Islamic education. The
educational landscape in the medieval Islamic world displays far less centralization in
educational institutions such as the madrasa. Much has been written about the origins
and early history of the madrasa , although scholars are still divided in how to interpret
the evidence. The influential interpretation in (Makdisi 1961, 1981) has claimed that
the “rational” sciences, including much of mathematics, were never fully integrated into
the madrasa curriculum. On the other hand, (Tibawi 1962), followed more recently by
(Berkey 1992) and (Chamberlain 1995), has argued that the madrasa did not possess,
at least in the early stages of its development, a monopoly on higher education, nor
was it constituted as such a rigidly ordered and anti-“rational” institution as Makdisi
has implied.

Less has been said concerning the later medieval developments of the institution
(Leiser 1983). For example, the system of madrasa education in Ottoman Turkey did

14The translation is mine. The words added by the commentator to the original statement of al-T. ūs̄ı
are indicated by italic type. Statements enclosed in parentheses are my explanatory notes; statements
within brackets are my additions for creating a coherent translation.

15Aligarh University Library, Aboul Hai Collection, ms. no. 680/57, fol. 51b.
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not become centralized and bureaucratic until the time of Sulayman I (1520-1566). Then
it was organized into twelve stages, each with a specific curriculum (Gibb & Bowen 1957,
146).16 This formalized curriculum focused heavily on religious sciences and religious
law, as had been the case since the inception of the waqf (endowed) madrasa some
four centuries earlier. Despite an increasingly rigid and conservative stance, though, it
appears that from time to time individual scholars could and did provide instruction
in the ”rational” disciplines, including mathematics and even mathematical astronomy
(Gibb & Bowen 1957, 148-151).

A not dissimilar situation seems to hold in late medieval India. Islam had become
a political and cultural force in India about the twelfth century, and was significantly
strengthened by the influx of refugees fleeing the Mongol invasions of Central Asia and
the Levant in the thirteenth century. With Islam came instructional institutions to
pass on sacred and communal learning. But it was only in the late fourteenth and
fifteenth centuries that anything like formal curricula began to be introduced in large
geographical areas for the purpose of training court functionaries (Desai 1978, 9-17).
As elsewhere, there often seemed little intellectual space for or encouragement of the
“rational” sciences. This trend was reversed, somewhat, by the reforms instituted by
Mulla Nizām al-Dı̄n (1673? - 1748). These reforms, among other things, introduced
more of the “rational” sciences into the curriculum (Mujeeb 1967/1985, 407-408). How
effectively these reforms were actually implemented is not easy to say. The reform effort
was too little and too late, however. In 1837, the British administration abolished use
of Persian in the administration and so pushed forward policies that tended to favor
the Hindu majority at the expense of the Muslim minority. When traditional education
no longer provided an entry into public administration, the madrasa quickly became a
cultural backwater in which the focus returned to the “religious” sciences.

5 Toward a conclusion

To account for the decline, Makdisi has argued that medieval madrasa education fo-
cussed on the study of law and related religious topics, usually following a fairly rigidly
specified curriculum. Some “rational” subjects, such as medicine and arithmetic were
accorded grudging acceptance as useful in daily life, but the natural and mathematical
sciences were, in large part, deliberately excluded from the formal educational process.
This exclusion is used to explain the decline of the sciences in medieval Islam.

More recently, (Brentjes 2002) has shown that the “rational” sciences17 were regu-
larly taught in madrasas throughout the Mamluk period. This leads to the fascinating
counter-thesis that the sciences declined within the Islamic world, not because they
were marginalized but because they were so completely assimilated into the intellectual
and educational landscape.18 To quote (Brentjes 2002, 65):

Their inclusion in the religiously-dominated scenery and their partnership
with the religious sciences granted them stable spaces for their existence. .
. . It also subjected them to the same rules of behaviour as the religious

16Much of the literature on the madrasa (in Turkish, medrese) in Turkish history remains only in
Turkish. For a brief introduction, see (Yazıcı 2001).

17The term is not precisely equivalent to “foreign” or “ancient” sciences (Brentjes 2002, 50-60).
18A similar view has been advanced in (Sabra 1987, 1996).
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sciences in order to be accepted. . . . Consequently, the same modes of
writing epitomes, paraphrases, commentaries and supercommentaries ap-
plied to all the sciences. . . . [S]cholarly texts, whether by ancient Greek
or medieval Muslim authorities, were increasingly supplemented and tenta-
tively replaced by new texts derived from earlier ones, but written by the
student’s teacher or the teacher of his teacher.

This description dove-tails with characteristics of “deuteronomic” texts described ear-
lier (Netz 1998) and is compatible also with the re-interpretation of Netz proposed in
(Bernard 2003), emphasizing paideia or pedagogy as a motivation for creating “deutero-
nomic” treatises.

Building on these historiographical studies, I interpret the continuing popularity of
the T. ūs̄ı Tah. r̄ır to result from its historical position at the culmination of this assim-
ilation movement. As such, it becomes the focus or origin of another “deuteronomic”
phase, in which it replaces, in large measure, the text of the Elements on which it
was based and becomes itself a focus for commentaries, glosses, epitomes and similar
works. The process seems to reach a natural conclusion in the reform of the madrasa
curriculum in central India in the last third of the seventeenth century (al-Nadvi 1985).
Although that curriculum specified that the students must read the commentary of
Muh.ammad Barakat (De Young 1995, 141), there is little evidence to indicate that this
was done with any regularity.19 Instead, it appears that there was a swing back toward
the original text of al-T. ūs̄ı, which was printed by lithograph at least three times in the
nineteenth century (Istanbul, 1801; Calcutta, 1824; Fez, 1293 H.) (Sezgin 1974, 113).
The details of this history remain to be discovered as historians of mathematics begin
to give mathematical commentaries the respect they deserve.
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le monde iranien à l’époque islamique” Z. Vesel, H. Belkbaghban, B. Thierry de Crussol de
Epesse (eds), Louvain: Peeters, pp.73-94.
-Brentjes S., 2001, “Observations on Hermann of Carinthia’s Version of the Elements and its
Relation to the Arabic Transmission”, Science in Context, 14, 39-84.
-Brentjes S., 2002, “On the Location of the Ancient or ‘Rational’ Science in Muslim Educa-
tional Landscapes (AH 500-1100)”, Bulletin of the Royal Institute for Interfaith Studies, 4, i,
47-71.
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19Unlike the Khulās.at al-H. isaāb (Nesselmann 1843, Marre 1846, Shawq̄ı 1976), the text assigned
for teaching basic arithmetic (De Young 1986), surviving manuscripts of Barakat’s commentary lack
significant annotation and show few signs of physical wear. Nor has it become the subject of further
commentaries. It was, however, printed at least twice, once in Iran (1296 H.) and once in India (1318
H.) (Sezgin 1974, 111).

431



Typographique Médici vers 1594”, Revue Française d’Histoire du Livre, 88-89, 5-51.
-Chamberlain M., 1995, Knowledge and Social Practice in Medieval Damascus, Cambridge:
Cambridge University Press.
-Desai Z.A., 1978, Centres of Islamic Learning in India, Ministry of Information and Broad-
casting, New Delhi.
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Figure 1. Maps Showing the Spreading of Muqarnas 
[Video: Magic of Muqarnas]

Muqarnas, the Arabic word for stalactite vault, is an architectural ornament developed around the 
middle of the tenth century in North-eastern Iran and almost simultaneously, but apparently 
independently, in central North Africa. From the eleventh century on muqarnas spread all over the 
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Islamic world (Figure 1) becoming, like the arabesque and the inscription bands, a characteristic 
feature of its architecture. A muqarnas is a three-dimensional architectural decoration composed of 
niche-like elements arranged in tiers. 

The first definition of muqarnas is given by the Timurid astronomer and mathematician 
Ghiyath al-Din al-Kashi (d. 1429), who ranks among the greatest mathematicians and astronomers 
in the Islamic world. Al-Kashi’s treatise On Measuring the Muqarnas has been the starting point 
for our research. This treatise is found in the Key of Arithmetic, one of his major works, a veritable 
encyclopedia of mathematical knowledge. It is divided in five books of which Book IV, On
Measurements, is by far the most extensive. In the last chapter al-Kashi approximates the surface 
area of a muqarnas and gives the following definition: 

The muqarnas is a ceiling like a staircase with facets and a flat roof. Every facet intersects the 
adjacent one at either a right angle, or half a right angle, or their sum, or another combination 
of these two. The two facets can be thought of as standing on a plane parallel to the horizon. 
Above them is built either a flat surface, not parallel to the horizon, or two surfaces, either flat 
or curved, that constitute their roof. Both facets together with their roof are called one cell. 
Adjacent cells, which have their bases on one and the same surface parallel to the horizon, are 
called one tier. 

This last chapter, Measuring Structures and Buildings, is really written for practical purposes: 
“The specialists merely spoke about this measuring for the arch and the vault and besides that it 
was not thought necessary. But I present it among the necessities together with the rest, because it 
is more often required in measuring buildings than in the rest.” It is often thought that al-Kashi 
explains how to construct a muqarnas. This is not the case. Al-Kashi uses geometry as a tool for 
his calculations. Besides the surface area and volume of arches, vaults, and qubbas (domes), al-
Kashi gives methods to establish the approximate values for such a muqarnas surface. He is able to 
do so, because, although a muqarnas is a complex architectural structure, it is based on relatively 
simple geometrical elements, as we shall explain below. 

These calculations were useful for appraising a building or for calculating building material and 
wages for the artisans and the master architect, as in seventeenth-century Safavid Iran. However, 
in the case of muqarnas, the complexity of the method makes it a open question whether it was 
developed for practical purposes or rather as a mathematical challenge. 

The elements of a muqarnas consist of cells and intermediate elements, connecting the roofs of 
two adjacent cells. As al-Kashi explains, the elements stand on simple geometrical figures. This 
means that the plane projection of an element, or the view from underneath, consists of simple 
geometrical forms: squares, rhombuses, half-rhombuses, almonds (deltoid), small bipeds, jugs, 
large bipeds, and barley-kernels (which only occur on the upper tier). Al-Kashi shows in his 
treatise the plane projection (Figure 2) of common elements consisting of simple geometrical 
forms. These are from left to right: a rhombus and a square, with underneath a barley-kernel, a 
biped, and its complement to a rhombus, an almond. Other elements like half-squares (cut along 
the diagonal), half-rhombuses (isosceles triangles with the shorter diagonal of the rhombus as their 
base), rectangles, and the jug with its complement the large biped are only described by al-Kashi 
and not drawn. 

The earliest known example of a muqarnas design, or ground-plan, is an Il Khanid 50 cm. 
stucco plate from ca. 1270 showing the projection of a quarter muqarnas vault found at the Takht-i 
Sulaiman, Iran. There are no known Islamic architectural working drawings from the pre-Mongol 
era despite occasional textual references to plans. After the Mongol conquest of Iran and Central 
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Asia an abundance of locally produced, inexpensive paper appears to have particularly encouraged 
architectural drawings on this medium. Rag paper had been introduced to Samarqand by Chinese 
prisoners of war in 751, and because it was much cheaper than papyrus and parchment, its use had 
spread throughout the Islamic world after the tenth century. It was not, however, until the Mongols 
arrived in the 1220s that an extensive paper industry developed in Tabriz and other Iranian towns 
under Chinese influence. Its extensive use had become essential by the increasing elaboration of 
geometric design.  

Figure 2. The Plane Projections of the Cells, as given by al-Kashi in his Key of Arithmetic
[Ms. Malek Library 3180/1 Tehran, copied in 1427, the same year the Treatise was finished]  

Fourteenth century sources frequently mention architectural drawings produced either on clay 
tablets or on paper. Gülru Necipoglu describes in her edition of the Topkapi Scroll (The Getty 
Center, Santa Monica, 1995) a late fifteenth or early sixteenth century scroll now preserved at the 
Topkapi Museum, Istanbul. This scroll, a pattern book from the workshop of a master builder, was 
probably compiled somewhere in western or central Iran, probably in Tabriz. What we find in the 
Topkapi scroll are patterns for ornaments and patterns to be used as a ground plan for muqarnas.
The scroll is a high-level design book for architects, builders and artisans. The Topkapi scroll is 
the best-preserved example of its kind, with far-reaching implications for the theory and praxis of 
geometric design in Islamic architecture and ornament. Up until Necipoglu’s discovery of the 
Topkapi scroll the earliest known examples of such architectural drawings were a collection of 
fragmentary post-Timurid design scrolls of sixteenth century Samarqand paper, retained at the 
Uzbek Academy of Sciences in Tashkent. These scrolls almost certainly reflect the sophisticated 
Timurid drafting methods of the fifteenth century. The Timurid scrolls show a decisive switch to 
the far more complex radial muqarnas with an increasing variety of polygons and star polygons. 

A continuous tradition from the thirteenth century Takht-i Sulaiman plate to the muqarnas 
designs, still in use in the nowadays Islamic world, is evident: A few years ago we visited a 
workshop at Fez, Morocco, where the artisans used a construction-plan for a muqarnas on a 1-1 
base. The pieces cut out for constructing the muqarnas could actually be put on the draft such that 
the cross section of the element, i.e. the cross section of the wooden beam, matched exactly the 
figure on the draft. Such a plan, used to construct a muqarnas in nowadays Fez, is shown in a 
former paper. As in the Il Khanid period, 700 years earlier, the plane projection of the elements in 
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the Moroccan plan consists of simple geometrical figures: squares, half-squares, rhombuses, half-
rhombuses, rectangles, almonds, bipeds. The standard patterns compiled in modern Moroccan 
sketchbooks indicate that the master who drew them repeated inherited formulas rather than 
inventing new ones. 

Donald Wilber relates (The Architecture of Islamic Iran, The Il Khanid Period (Princeton 
University Press, 1955) p. 73) how he watched at Isfahan an elderly workman who had been 
charged with repairing a badly damaged stalactite half-dome of the Safavid period. On the floor 
below the damaged elements he had prepared a bed of white plaster and on this surface was 
engaged in incising a half plan of the original stalactite system. 

In figure 3 we see on the right a small section of an Il Khanid (1256–1336) muqarnas vault: the 
entrance portal of the shrine of the Holy Bayazid at Bastam (Iran). The corresponding two-
dimensional projection, or ground-plan, of this vault segment is shown on the left. Like all ground 
plans, it consists of a small variety of simple geometrical elements. The structure is mirrored along 
the centerline. 

Figure 3. Part of a Muqarnas in the Shrine at Bastam (Iran) 
[After Harb and Pope] 

When we look at the right side, we see on the lower tier three jugs connected by two small bipeds. 
These intermediate elements are also found between the jugs and their neighbors at both sides. 
This tier corresponds with the white row on the left side. Similarly, the upper tier on the right side, 
consisting of four almonds, correlates with the gray row on the left. A more extensive explanation 
can be found in two former papers (1992/93. “Practical Arabic Mathematics: Measuring the 
Muqarnas by al-Kashi.”, Centaurus, 35, pp. 193–242; 1996; “How al-Kashi Measures the 
Muqarnas: A Second Look”, Mathematische Probleme im Mittelalter: Der lateinische und 
arabische Sprachbereich, M. Folkerts (ed.), Wolfenbütteler Mittelalter–Studien, vol. 10, pp. 56–
90). 

At the Center for Scientific Computing (IWR) of the University of Heidelberg we are working 
on the project “Mathematical Concepts and Computer Graphics for the Reconstruction of 
Stalactite Vaults – Muqarnas – in Islamic Architecture”. The three-year project started in October 
2003 and is sponsored by the German Ministry for Education and Research. Our team at IWR, 
Silvia Harmsen, Susanne Krömker, Michael Winckler and myself, is developing a video Magic of 
Muqarnas which gives an overview of different muqarnas styles. This video, explaining the 
construction and reconstruction of muqarnas and also showing our realizations of computer-
generated muqarnas, will be an important part of my presentation. 
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A [certain] man had two sons; and he came to the first, and said, Son, go work to day in my vineyard. 
  He answered and said, I will not: but afterward he repented, and went. 

  And he came to the second, and said likewise. And he answered and said, I [go], sir: and went not.
(Matthew 21:28–30) 

 ABSTRACT 
General histories of mathematics – those books which usually give didacticians their view of history – often 
state that mathematical argument or proof was a creation of the ancient Greek mathematicians, while earlier 
mathematical cultures – the Babylonians and the Egyptians – knew only rules found by accident or by trial 
and error. The same lack of mathematical argument is supposed to hold for later mathematical cultures not 
inspired by the Greeks, such as Chinese and Indian mathematics. 

The present paper shows that a reading of the words of the Babylonian mathematical texts (as opposed to 
a reading based on the mere numbers) shows these to be constructed around mathematical argument. Mostly 
this argument is “naive”, that is, it does not explicitly discuss the reasons for the validity of the argument, 
nor its possible limits; some texts, however, do contain traces of such “critique” (in Kant’s sense). The 
difference between Babylonian and Greek mathematics as regards the role of argument is that the Greek 
texts are centred around the argument, while the Babylonian argument is there because it is a didactical 
necessity. Therefore the Greek argument tends to become deductive, while the Babylonian argument rather 
builds up a tightly woven network of conceptual connections. 

The end of the paper argues that this didactical necessity is always present at least at the not totally trite 
level of any mathematical culture: The ideology of Taylorism, namely that “the hand” and “the brain” 
should be located in different persons, and that “the hand” should be a mindless instrument merely governed 
by unexplained instructions devised and imparted by “the brain”, never worked when it came to the use of 
mathematics. 

1 A metaphor

«Who talks continuously about virtue may none the less be virtuous (Tartuffe and the above 
parable notwithstanding); but even those who do not speak much about virtue may still practise 
it» – can this almost Biblical principle be transferred mutatis mutandis from the domain of moral 
discourse and morality to our topic of mathematical demonstration?Greek philosophy, or at least 
part of it, certainly spoke about virtue, that is, about demonstration. In some cases the way it is 
done may seem not to reflect our understanding of what a mathematical demonstration is, and we 
may be tempted – applying our own standards – to compare the discourse to the behaviour of the 
second son of the parable, the one who, when asked to go work in his father's vineyard, “answered 
and said, I [go], sir: and went not”1. Aristotle, however, discusses the problem of finding principles 
and proving mathematical propositions from these in a way that comes fairly close to the actual 

1The Gospel is quoted from the King James Version. All other translations from original languages are mine if 
nothing else is stated. 
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practice of Euclid and his kin. Even though Euclid himself only practises demonstration and does 
not discuss it we can therefore be sure that he was not only virtuous but also explicitly aware of 
striving for demonstrative virtue. The preface to Archimedes's Method is direct evidence that its 
author knew demonstration according to established norms to be a cardinal virtue – the alleged or 
real heterodoxy consisting solely in his claim that discovery without strict proof was also valuable. 
Philosophical commentators like Proclos, finally, show beyond doubt that they too saw the 
mathematicians' demonstrations in the perspective of the philosophers' discussions. 

Neither Euclid nor Archimedes nor Apollonios thus correspond to the first son, the one who 
“answered and said, I will not: but afterward he repented, and went”. All three professed allegiance to 
the discourse of demonstration and acted accordingly. As to Diophantos and Hero we may find that 
their actual practice is not quite as virtuous as that of the major geometers, but there is no doubt that 
even their presentation of mathematical matters was meant to agree with the norms which are reflected 
in the philosophical prescriptions. 

2 Virtue unproclaimed – or absent?

Where should we look for the first son, the one who practised without acknowledging? A good starting 
point for the search might be the scribal culture of Babylonia – if only for the reason that 
“hellenophile” historians of mathematics tend to deny the existence of mathematical demonstration in 
this area. In Morris Kline's (relatively moderate) words [1972: 3, 14], written at a moment when non-
specialists tended to rely on selective or not too attentive reading of popularizations like Neugebauer's 
Science in Antiquity [1957] and Vorgriechische Mathematik [1934] or van der Waerden's Erwachende 
Wissenschaft [1956]: 

Mathematics as an organized, independent, and reasoned discipline did not exist before the 
classical Greeks of the period from 600 to 300 B.C. entered upon the scene. There were, however, 
prior civilizations in which the beginnings or rudiments of mathematics were created. 

... 
The question arises as to what extent the Babylonians employed mathematical proof. They did 
solve by correct systematic procedures rather complicated equations involving unknowns. 
However, they gave verbal instructions only on the steps to be made and offered no justification 
of the steps. Almost surely, the arithmetic and algebraic processes and the geometrical rules were 
the end result of physical evidence, trial and error, and insight.

The only opening toward any kind of demonstration beyond the observation that a sequence of 
operations gives the right result is the word “insight”, which is not discussed any further. Given the 
vicinity of “physical evidence” and “trial and error” we may suppose that Kline refers to the kind of 
insight, which makes us understand in a glimpse that the area of a right triangle must be the half of that 
of th corresponding rectangle.

3 Evident validity

In order to see how much must be put into the notion of “insight” if Kline's characterization is to be 
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defended we may look at some texts2. I shall start by problem 1 from the Old Babylonian tablet VAT 
8390:3

Obv I 
1. [Length and width] I have made hold:4 10` [5] the surface. 

 2. [The length t]o itself I have made hold: 
 3. [a surface] I have built. 

4. [So] much as the length over the width went beyond6

 5. I have made hold, to 9 I have repeated:7

6. as much as that surface which the length by itself 
 7. was [ma]de hold. 
 8. The length and the width what? 
 9. 10` the surface posit,8

 10. and 9 (to) which he has repeated posit: 
 11. The equalside9 of 9 (to) which he has repeated what? 3. 
 12. 3 to the length posit 
 13. 3 t[o the w]idth posit. 
 14. Since “so [much as the length] over the width went beyond 
 15. I have made hold”, he has said 
 16. 1 from [3 which t]o the width you have posited 
 17. tea[r out:] 2 you leave. 
 18. 2 which yo[u have l]eft to the width posit. 

Figure 1. The configuration 
of VAT 8390 #1.

2I use the translations from [Høyrup 2002], leaving out the interlinear transliterated text and explaining key 
operations and concepts in notes at their first occurrence, drawing for this purpose on the results described in the 
same book. In order to facilitate checks I have not straightened the very literal (“conformal”) translations. 
The first text (VAT 8390 #1) is translated and discussed on pp. 61–64. 

3The Old Babylonian period covers the centuries from 2000 BCE to 1600 BCE (according to the “middle 
chronology”). The mathematical texts belong to the second half of the period. 

4To make the lines a and b “hold” or “hold each other” (with further variations of the phrase in the present 
text) means to construct (“build”) the rectangular surface  (a,b) which they contain. If only one line s is 
involved, the rectangle is the square (s). 

5 I follow Thureau-Dangin's system for the transliteration of sexagesimal place value numbers, where `, ``, ... 
indicate increasing and ´, ´´, ... decreasing sexagesimal order of magnitude, and where “order zero” when needed 
is marked . 5`2 10´ thus stands for 5 601+2 600+10 60–1. It should be kept in mind that absolute order of 
magnitude is not indicated in the text, and that `, ´ and  correspond to the merely mental awareness of order of 
magnitude without which the calculators could not have made as few errors as actually found in the texts. 
The present problem is homogeneous, and therefore does not enforce a particular order of magnitude. I have 
chosen the one which allows us to distinguish the area of the surface from the number 1/6. 

6The text makes use of two different “subtractive” operations. One, “by excess”, observes how much one 
quantity A goes beyond another quantity B; the other, “by removal”, finds how much remains when a quantity a
is “torn out” (in other texts sometimes “cut off”, etc.) from a quantity A. As suggested by the terminology, the 
latter operation can only be used if a is part of A.

7“Repetition to/until n” is concrete, and produces n copies of the object of the operation. n is always small 
enough to make the process transparent, 1<n<10. 

8 “Positing” a number means to take note of it by some material means, perhaps in isolation on a clay pad, 
perhaps in the adequate place in a diagram made outside the tablet. “Positing n to” a line (obv. I 12, etc.) is likely 
to correspond to the latter possibility. 

9 The “equalside” s of an area Q is the side of this area when it is laid out as a square (the “squaring side” of 
Greek mathematics). Other texts tell that s “is equalside by” Q.
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 19. 3 which to the length you have posited 
 20. to 2 which to  the width you have posited raise10, 6. 
 21. Igi 6[11] detach: 10´. 
 22. 10´ to 10` the surface raise, 1`40. 
    23. The equalside of 1`40 what? 10.

Obv. II 
 1. 10 to 3 wh[ich to the length you have posited] 

2. raise, 30 the length. 
3. 10 to 2 which to the width you have po[sited] 

 4. raise, 20 the width. 
 5. If 30 the length, 20 the width, 
 6. the surface what? 
 7. 30 the length to 20 the width raise, 10` the surface. 
 8. 30 the length together with 30 make hold: 15`. 
 9. 30 the length over 20 the width what goes beyond? 10 it goes beyond. 
 10. 10 together with [10 ma]ke hold: 1`40. 
 11. 1`40 to 9 repeat: 15` the surface. 
 12. 15` the surface, as much as 15` the surface which the length 
 13. by itself was made hold. 
This problem about a rectangle exemplifies a characteristic of numerous Old Babylonian mathematical 
texts, namely that the description of the procedure already makes its adequacy evident. In Obv. I 4–5 
we are told to construct the square on the excess of the length of the rectangle over its width and to 
take 9 copies of it, in lines I 6–7 that these can fill out the square on the length. Therefore, these small 
squares must be arranged in square, as in figure 1, in a 3 3-pattern (lines I 11–13). But since the side of 
the small square was defined in the statement to be the excess of length over width (I 14–15, an 
explicit quotation), removal of one of three rows will leave the original rectangle, whose width will be 
2 small squares12. In this unit, the area of the rectangle is 2 3 = 6 (I 18–20); since the rectangle is 
already there, there is no need for a “holding” operation. Because the area measured in standard units 
(square rods) was 10`, each small square must be 1/6 10` = 1`40 and its side 1`40 = 100 = 10 (I 21–
23). From this follows that the length must be 3 10 = 30 and the width 2 10 = 20 (II 1–3). 

If you follow the procedure on the diagram and keep the exact meaning and use of all terms in 
mind, you will feel no more need for an explicit demonstration than in a modern step-by-step solution 

                                                                                                                               
10 “Raising” is a multiplication that corresponds to a consideration of proportionality; its etymological origin 

is in volume determination, where a prismatic volume with height h cubits is found by “raising” the base from the 
implicit “default thickness” of 1 cubit to the real height h. It also serves to determine the areas of rectangles, 
which “are already there”, and not in need of construction, in which case, e.g., the “default breadth” (1 “rod”, c. 
6 m) of the length is “raised” to the real width. 

In the case where a rectangular area is constructed (“made hold”), the arithmetical determination of the area is 
normally regarded as implicit in the operation, and the value is stated immediately without any intervening 
“raising”. 

11 “Igi n” designates the reciprocal of n. To “detach igi n”, that is, to find it, probably refers to the splitting out 
of one of n parts of unity. “Raising a to igi n” means finding a 1/n , that is, to divide a by n.

12 In our understanding, 2 times the side of the small square. However, the Babylonian term for a square 
configuration (mithartum, literally “[situation characterized by a] confrontation [between equals]”, was 
numerically identified by and hence with its side – the Babylonian square “was” its side and “had” an area, 
whereas our “has” a side and “is” an area. 
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of an algebraic equation13, in particular because numbers are always concretely identified by their
role (“3 which to the length you have posited”, etc.). The only place where doubts might arise is why 
1 has to be subtracted in I 16–17, but the meaning of this step is then duly explained by quotations 
from the statement (a routine device). There should be no doubt that the solution must be correct. 

However, since the alias of frailty is (bi-gendered) man (pace Hamlet), a check follows, showing 
that the solution is valid (II 5 onwards). This check is very detailed, no mere numerical control but an 
appeal to the same kind of understanding as the preceding procedure: as we see, the rectangle is 
supposed to be already present, its area being found by “raising”; the large and small squares, however, 
are derived entities and therefore have to be constructed (the tablet contains a strictly parallel problem 
that follows the same pattern, for which reason we may be confident that the choice of operations is 
not accidental). 

 A similar instance of evident validity is offered by problem 1 of the text BM 13901, the simplest of 
all mixed second-degree problems (and by numerous other texts, which however present us with the 
inconvenience that they are longer):14

Obv. I 
 1. The surfa[ce] and my confrontation15 I have accu[mulated]:16 45´ is it. 1, the projection17,
 2. you posit. The moiety18 of 1 you break, [3]0´ and 30´ you make hold. 

3. 15´ to 45´ you append: [by] 1, 1 is equalside. 30´ which you have made hold 
 4. in the inside of 1 you tear out: 30´ the confrontation.

13 For instance, 3x+2 = 17 3x = 17–2 = 15 x = 1/3 15 = 5 
14 Translation and discussion [Høyrup 2002: 50–52]. 

15 See note 12. 
16“To accumulate” is an additive operation which concerns or may concern the measuring numbers of the 

quantities to be added. It thus allows the addition of lengths and areas, of areas and volumes, or of bricks, men 
and working days. 

Another addition (“appending”) is concrete. It serves when a quantity a is joined to another quantity A,
augmenting thereby the measure of the latter without changing its identity – as when interest (in Babylonian 
spolen of as “the appended”) is joined to my bank account while leaving it as mine). 

17The “projection” (w s tum, literally something which protrudes or sticks out) designates a line of length 1 
which, when applied to another line L as width, transforms it into a rectangle  (L,1) without changing its 
measure. 

18The “moiety” of an entity is its “necessary” or “natural” half, a half that could be no other fraction – as the 
circular radius is by necessity the exact half of the diameter, and the area of a triangle is found by raising exactly 
the half of the base to the height. It is found by “breaking”, a term which is used in no other function in the 
mathematical texts. 
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The problem deals with a “confrontation”, a square 
configuration identified by its side s and possessing an area. The 
sum of the measuring numbers of these is told to be 45´. The 
procedure can be followed in figure 2: The left side s of the 
shaded square is provided with a “projection” (I 1), which 
creates a rectangle  (s,1) whose area equals the length of the 
side s; this rectangle, together with the shaded square area, must 
therefore also equal 45´. “Breaking” the “projection 1” (together 
with the adjacent rectangle) and moving the outer “moiety” so 
as to “hold” a small square (30´) does not change the area 
(I 2), but completing the resulting gnomon by “appending” the 
small square results in a large square, whose area must be 
45´+15´ = 1 (I 3). Therefore, the side of the large square must 
also be 1 (I 3). “Tearing out” that part of the rectangle which 
was moved so as to “make hold” leaves 1–30´ for the 
“confrontation”, [the side of] the square configuration. 

As in the previous case, once the meaning of the terms and 
the nature of the operations is understood, no explanation 
beyond the description of the steps seems to be needed. 

4 Didactical explanations

Kline wrote at a moment when the meaning of the terms and the nature of the operations was not yet 
understood; his opinion is therefore explainable (we shall return to the fact that this opinion of his also 
reflects deeply rooted post-Renaissance scientific ideology). How this understanding developed 
concerns the history of modern historical scholarship19. But how did Old Babylonian students come to 
understand these matters? (Even we needed some explanations and some training before we came to 
consider algebraic transformations as self-explanatory.) 

Neugebauer, fully aware that the complexity of many of the problems solved in the Old Babylonian 
texts presupposes deep understanding and not mere glimpses of insight, supposed that the explanations 
were given in oral teaching. In general this will certainly have been the case, but after Neugebauer's 
work on Babylonian mathematics (which stopped in the late 1940s) a few texts have been interpreted 
that turn out to contain exactly the kind of explanations we are looking for. 

Most explicit are some texts from late Old Babylonian Susa: TMS VII, TMS IX, TMS XVI20. Since 

19See [Høyrup 1996] for what evidently cannot avoid being a partisan view. 
20All were first published by E. M. Bruins and M. Rutten [1961] who, however, did not understand their 

Figure 2. The procedure of BM 
13901 #1, in slightly distorted 

proportions.
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TMS IX is closely related to the problem we have just dealt with, whereas TMS VII investigates non-
determinate linear problems and TMS XVI the transformation of linear equations, we shall begin by 
discussing the former. It falls in three sections, of which the first two run as follows: 

#1
1. The surface and 1 length accumulated, 4[0´. ¿30, the    
     length,? 20´ the width.] 
2. As 1 length to 10´ [the surface, has been appended,] 
3. or 1 (as) base to 20´, [the width, has been appended,] 
4. or 1 20´ [¿is posited?] to the width which 40´ together   

[with the length ¿holds?]
5. or 1 20´ toge ther  with 30´ the length hol[ds], 40´ (is)  
    [its] name. 
6. Since so, to 20´ the width, which is said to you, 
7. 1 is appended: 1 20´ you see. Out from here 
8. you ask. 40´ the surface, 1 20´ the width, the length what? 
9. [30´ the length. T]hus the procedure.

#2
10. [Surface, length, and width accu]mulated, 1. By the Akka 

dian (method). 
11. [1 to the length append.] 1 to the width append. Since 1   
      to the length is appended, Figure 3. The configuration 

discussed in TMS IX #1. 
12. [1 to the width is app]ended, 1 and 1 make hold, 1 you see. 
13. [1 to the accumulation of length,] width and surface append, 2 you see. 
14. [To 20´ the width, 1 appe]nd, 1 20´. To 30´ the length, 1 append, 1 30´.[21]

15. [¿Since? a surf]ace, that of 1 20´ the width, that of 1 30´ the length, 
16. [¿the length together with? the wi]dth, are made hold, what is its name? 
17. 2 the surface. 
18. Thus the Akkadian (method). 

                                                                                                                               
character. Revised transliterations and translations as well as analyses can be found in [Høyrup 2002], on pp. 
181–188, 89–95 and 85–89 (only part 1), respectively. A full treatment of TMS XVI is found in [Høyrup 1990: 
299–302]. 

21 My restitutions of lines 14–16 are somewhat tentative, even though the mathematical substance is fairly 
well established by a parallel passage in lines 28–31. 
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Section 1 explains how to deal with an equation 
stating that the sum of a rectangular area 
(l,w) and the length l is given, referring to the 
situation that the length is 30´ and the width 20´. 
These numbers are used as identifiers, fulfilling 
thus the same role as our letters l and w. Line 2 
repeats part of the statement and specifies that 
the area as 10´. In line 3, this is told to be 
equivalent to adding “a base” 1 to the width, as 
shown in Figure 3 – in symbols, (l,w)+l = 

(l,w)+ (l,1) = (l,w+1);  the  “base”  
evidently  fulfils   the  Figure 4. The configuration of TMS IX #2. 
width and the original length 30´ is indeed 40´, as it should be. Lines 6–9 sum up. 

Section 2 again refers to a rectangle with known dimensions – once more l = 30´, w = 20´. This 
time the situation is that both sides are added to the area, the sum being 1. The trick to be applied is 
identified as the “Akkadian method”. This time, both length and width are augmented by 1 (line 11); 
however, the resulting rectangle (l+1,w+1) contains more than it should (cf. Figure 4), namely 
beyond a quasi-gnomon representing the given sum (consisting of the original area (l,w), a 
rectangle (l,1) whose measure is the same as that of l, and a rectangle (1,w) = w), also a 
quadratic completion ��(1,1) = 1 (line 12). Therefore, the area of the new rectangle should be 1+1 = 
2 (line 13). And so it is: the new length will be 1 30´, the new width will be 1 20´, and the area which 
they contain will be 1 30´ 1 20´ = 2 (lines 15–17). 

Since extension was also used in section 1, the “Akkadian method” is likely to refer to the quadratic 
completion (further arguments pointing in the same direction do not belong within the present context). 

After these two didactical explanations follows a problem in the proper sense. In symbolic form it 
can be expressed as follows: 

(l,w)+l+w = 1 ,   1/17 (3l+4w)+w = 30´ .

The first equation is the one whose transformation into 
( , ) = 2 

(  = l+1,  = w+1) was just explained in section 2. The second is multiplied by 17, thus becoming (the 
verbal equivalent of) 
 3l+21w = 8 30´ .

and further transformed into 
 3 +21  = 32 30 , 
whereas the area equation is transformed into 

(3 ,21 ) = 2`6 . 
Thereby, the problem has been reduced to a standard rectangle problem (known area and sum of sides) 
and solved accordingly (by a method similar to that of BM 13901 #1). 
The present text does not explain the transformation of the equation 1/17 (3l+4w)+w = 30´, but a 
similar transformation is the object of section 1 of TMS XVI: 

1. [The 4th of the width, from] the length and the width to tear out, 45´. You, 45´ 
 2. [to 4 raise, 3 you] see. 3, what is that? 4 and 1 posit, 
 3. [50´ and] 5´, to tear out, [posit]. 5´ to 4 raise, 1 width. 20´ to 4 raise, 
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 4. 1 20´ you see , 4 widths. 30´ to 4 raise, 2 you see , 4 lengths. 20´, 1 width, to tear out, 
 5. from 1 20´, 4 widths, tear out, 1 you see. 2, the lengths, and 1, 3 widths, accumulate, 3 you see. 
 6. Igi 4 de[ta]ch, 15´ you see. 15´ to 2, lengths, raise, [3]0´ you see , 30´ the length. 
 7. 15´ to 1 raise, [1]5´ the contribution of the width. 30´ and 15´ hold22.
 8. Since “The 4th of the width, to tear out”, it is said to you, from 4, 1 tear out, 3 you see. 
 9. Igi 4 de tach , 15´ you see, 15´ to 3 raise, 45´ you  

see , 45´ as much as (there is) of [widths]. 
 10. 1 as much as (there is) of lengths posit. 20, the     
          true width take, 20 to 1´ raise, 20´ you see. 
 11. 20´ to 45´ raise, 15´ you see. 15´ from 3015´ [tear

out], 
 12. 30´ you see, 30´ the length. 

Even this explanation deals formally with the sides l and 
w of a rectangle, although the rectangle itself is wholly 
immaterial to the discussion. In symbolic translation we 
are told that 

(l+w)–1/4w = 45´ . 

The dimensions of the rectangle are not stated directly, but from the numbers in line 3 we see that they 
are presupposed to be known and to be the same as before, 50´ being the value of l+w, 5´ that of (¼)w
– cf. Figure 5. 

The first operation to perform is a multiplica-
tion by 4. 4 times 45´ gives 3, and the text then 
asks for an explanation of this number (line 2). 
The ensuing explanation can be followed on figure 
6, which is evidently a modern reconstruction but 
is likely to correspond in some way to what is 
meant by the explanations. The proportionals 1 
and 4 are taken note of (“posited”), 1 
corresponding of course to the original equation, 4 
to the outcome of the multiplication. Next 50´ (the total of length plus width) and 5´ (the fourth of the 
width that is to be “torn out”) are taken note of (line 3), and the multiplied counterparts of the 
components of the original equation (the part to be torn out, the width, and the length) are calculated 
and described in terms of lengths and widths (lines 3–4); finally it is shown that the outcome 
(consisting of the components 1 = 4w–1w and 2 = 4l) explain the number 3 that resulted from the 
original multiplication (lines 4–5). 

Now the text reverses the move and multiplies the multiplied equation that was just analyzed by
1/4 = 15´. Multiplication of 2 (= 4l) gives 30´, the length; multiplication of 1 gives 15´, which is 
explained to be the “contribution of the width”; both contributions are to be retained in memory (lines 
6–7). Next the contributions are to be explained; using an argument of false position (“if one fourth of 
4 was torn out, 3 would remain; now, since it is torn out of 1, the remainder is 3 1/4”), the coefficient 
of the width (“as much as (there is) of widths”) is found to be 45´. The coefficient of the length is seen 
immediately to be 1 (lines 1–10). 

22 The present “hold” is an ellipsis for “make your head hold”, the standard phrase for retaining in memory. 

Figure 5. The situation of TMS XVI #1. 

Figure 6. The transformations of TMS XVI #1. 
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Next (line 10) follows a step whose meaning is not certain; the text distinguishes the “true length” 
and from the “length”, writing the value of both in identical ways. One possible explanation (in my 
opinion quite plausible, and hence used in the translation) is that the “true width” is the width of an 
imagined “real” field, which could be 20 rods (120 m), whereas the width simpliciter is that of a model 
field that can be drawn in the school yard (2 m); indeed, the normal dimensions of the fields dealt with 
in second-degree problems (which are school problems without any practical use) are 30´ and 20´ rods, 
3 m and 2 m, much too small for real fields but quite convenient in school. In any case, multiplication 
of the value of the width by its coefficient gives us the corresponding contribution once more (line 11), 
which indeed has the value that was assigned to memory. Subtracting it from the total (which is written 
in an unconventional way that already shows the splitting) leaves the length, as indeed it should (lines 
11–12).  

Detailed didactical explanations as these have only been found in Susa; once they have been 
understood, however, we may recognize in other texts rudiments of similar explanations, which must 
have been given in their full form orally23, as once supposed by Neugebauer. 

These explanations are certainly meant to impart understanding, and in this sense they are 
demonstrations. But their character differs fundamentally from that of Euclidean demonstrations 
(which, indeed, were often reproached their opacity during the centuries where the Elements were used 
as a school book). Euclidean demonstrations proceed in a linear way, and end up with a conclusion 
which readers must acknowledge to be unavoidable (unless they find an error) but which may leave 
them wondering where the rabbit came from. The Old Babylonian didactical texts, in contrast, aim at 
building up a tightly knit conceptual network in the mind of the student. 

However, conceptual connections can be of different kinds. Pierre de la Ramée when rewriting 
Euclid replaced the “superfluous” demonstrations by explanations of the practical uses of the 
propositions. Numerology (in a general sense including also analogous approaches to geometry) links 
mathematical concepts to non-mathematical notions and doctrines; to this genre belong not only 
writings like the ps-Nicomachean Theologoumena arithmetica but also for some of their aspects, 
according to [Chemla 1997], Liu Hui's commentaries to the Nine Chapters on Arithmetic, which 
cannot be understood in isolation from the Book of Changes. Within this spectrum, the Old Babylonian 
expositions belong in the vicinity of Euclid, as far removed from Ramism as from generalized 
numerology: the connections which they establish all belong strictly within the same mathematical 
domain as the object they discuss. 

5 Justifiability and critique
Whoever has tried regularly to give didactical explanations of mathematical procedures is likely to 
have encountered the situation where a first explanation turns out on second thoughts – maybe 
provoked by questions or lacking success of the explanation – not to be justifiable without adjustment. 
If didactical explanation is one of the sources of mathematical demonstration, the scrutiny of the 
conditions under which and the reasons for which the explanations given hold true is another source. 
The latter undertaking is what Kant termed critique, and its central role in Greek mathematical 
demonstration is obvious. 
 In Old Babylonian mathematics, critique is less important. If read as demonstrations, explanations 

23 Worth mentioning are the unpublished text IM 43993, which I know about through Jöran Friberg and 
Farouk al-Rawi (personal communication), and YBC 8633, analyzed from this perspective in [Høyrup 2002: 
254–257]. 
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oriented toward the establishment of conceptual networks tend to produce circular reasoning, in the 
likeness of those persons referred to by Aristotle “who [...] think that they are drawing parallel lines; 
for they do not realize that they are making assumptions which cannot be proved unless the parallel 
lines exist” (Prior Analytics II, 64b34–65a9 [trans. Tredennick 1938: 485–487]). In their case, Aristotle 
told the way out – namely to take as an axiom ( ) that which is proposed, which is indeed what is 
done in the Elements, whose fifth postulate can thus be seen to have been inserted as a result of 
metatheoretical critique. 
 However, though less important than in Greek geometry, critique is not absent from Babylonian 
mathematics. One instance is illustrated by the text YBC 6967,24 a problem dealing with two numbers 
igûm and igibûm, “the reciprocal and its reciprocal”, the product of which, however, is supposed to be 
1` (60), not 1: 

Obv.
 1. [The igib]ûm over the igûm, 7 it goes beyond 
 2. [igûm] and igibûm what? 
 3. Yo[u], 7 which the igibûm
 4. over the igûm goes beyond 
 5. to two break: 3 30´; 
 6. 3 30´ together with 3 30´ 
 7. make hold: 12 15´. 
 8. To 12 15´ which comes up for you 
 9. [1` the surf]ace append: 1`12 15´. 
 10. [The equalside of 1`]12 15´ what? 8 30´. 
 11. [8 30´ and] 8 30´, its counterpart25, lay down26.
Rev.
 1. 3 30´, the made-hold, 
 2. from one tear out, 
 3. to one append. 
 4. The first is 12, the second is 5. 
 5. 12 is the igibûm, 5 is the igûm.

The procedure can be followed in figure 7; the text is another 
instance of self-evident validity, and only differs from those discussed 
under this perspective in having the sides and the area of the rectangle 
represent numbers and not just themselves. The interesting point is found in Rev. 2–3. In cases where 
there is no constraint on the order, the Babylonians always speak of addition before subtraction. Here, 
however, the 3 30´ to be added to the left of the gnomon (that is, put back in its original position) must 
first be at disposition, that is, it has to be torn out below. 

This compliance with a request of concrete meaningfulness should not be read as evidence of some 
“primitive mode of thought still bound to the concrete and unfit for abstraction”; this is clear from the 
way early Old Babylonian texts present the same step in analogous problems, often in a shortened 
phrase “append and tear out” and indicating the two resulting numbers immediately afterwards, in any 

24 Transliterated, translated and analyzed in [Høyrup 2002: 55–58]. 
25 The “counterpart” of an equalside is “the other side” meeting it in a common corner. 
26 Namely, lay down in writing or drawing. 

Figure 7. The procedure of 
YBC 6967.
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case never respecting the norm of concreteness. This norm thus appears to have been introduced 
precisely in order to make the procedure justifiable – corresponding to the introduction in Greek 
theoretical arithmetic of the norm that fractions and unity could be no numbers in consequence of the 
explanation of number as a “collection of units”. 
 But the norm of concreteness is not the only evidence of Old Babylonian mathematical critique. 
Above, we have encountered the “projection” and the “base”, devices that allow the addition of lines 
and surfaces in a way that does not violate homogeneity, and the related distinction between 
“accumulation” and “appending”. Even these stratagems turn out to be secondary developments. A text 
like AO 8862 does not make use of them. Its first problem starts thus: 

1. Length, width27.Length and width I have made hold: 
 2. A surface have I built. 
 3. I turned around (it). As much as length over width 
 4. went beyond, 
 5. to inside the surface I have appended: 
 6. 3`3. I turned back. Length and width 
 7. I have accumulated: 27. Length, width, and surface w[h]at? 

As we see, a line (the excess of length over width) is “appended” to the area; “accumulation” also 
occurs, but the reason for this is that “appending” for example the length to the width would produce 
an irrelevant increased width and no symmetrical sum (cf. the beginning of TMS XVI, above, which 
first creates a symmetrical sum and next removes part of it). 

This “appending” of a line to an area does not mean that the text is absurd. In order to see that we 
must understand that it operates with a notion of “broad lines”, lines that carry an inherent virtual 
breadth. Though not made explicit, this notion underlies the determination of areas by “raising” (cf. 
note 9); it is widespread in pre-Modern practical mensuration, in which “everybody” (locally) would 
measure in the same unit, for which reason it could be presupposed tacitly28 – land being bought and 
sold in consequence just as we are used to buying and selling cloth, by the yard and not by the square 
yard. However, once didactical explanation in school has taken its beginning (and once it is no longer 
obvious which of several metrological units should serve as standard breadth), a line which at the same 
time is “with breadth” and “without breadth” becomes awkward. In consequence, critique appears to 
have outlawed the “appending” of lines to areas and to have introduced devices like the “projection” – 
the latter in close parallel to the way Viète established homogeneity and circumvented the use of broad 
lines of Renaissance algebra29.

All in all, mathematical demonstration was thus not absent from Old Babylonian mathematics. 
Procedures were described in a way which, once the terminology and its use have been decoded, turns 
out to be as transparent as the self-evident transformations of modern equation algebra and in no need 
of further explicit arguing in order to convince; teaching involved didactical explanations which aimed 
at providing students with a corresponding understanding of the terminology and the operations; and 
mathematical concepts and procedures were transformed critically so as to allow coherent explanation 
of points that may initially have seemed problematic or paradoxical. No surviving texts suggests, 

27 That is, the object of the problem is told to be the simplest configuration determined solely by a length and 
a width – which, according to Babylonian habits, is a rectangle. 

28 See [Høyrup 1995]. 
29 Namely the “roots”, explained by Nuñez [1567: fols 6r, 232r] to be rectangles whose breadth is “la unidad 

lineal”. 
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however, that all this was ever part of an explicitly formulated programme, nor do the texts we know 
point to any thinking about demonstration as a particular activity. All seems to have come as naturally 
as speaking in prose to monsieur Jourdain, as consequences of the situations and environments in 
which mathematics was practised. 

6 Mathematical Taylorism: practically dubious but an  
   efficient    ideology 

Teachers, in the Bronze Age just as in modern times, may have gone beyond what was really needed in 
the “real” practice of their future students, blinded by the fact that the practice they themselves knew 
best was that of their own trade, the teaching of mathematics. None the less, the social raison d'être of 
Old Babylonian mathematics was the training of future scribes in practical computation, and not 
deeper insight into the principles and metaphysics of mathematics. Why should this involve 
demonstration? Would it not be enough to teach precisely those rules or algorithms which earlier 
workers have found in the texts and which (in the shape of paradigmatic cases) also constitute the bulk 
of so many other pre-Modern mathematical handbooks? And would it not be better to teach them 
precisely as rules to be obeyed without distracting reflection on problems of validity? 

That “the hand” should be governed in the interest of efficiency by a “brain” located in a different 
person but should in itself behave like a mindless machine is the central idea of Frederick Taylor's 
“scientific management” – “hand” and “brain” being, respectively, the worker and the planning 
engineer. In the pre-Modern world, where craft knowledge tended to constitute an autonomous body, 
and where (with rare exceptions) practice was not derived from theory, Taylorist ideas could never 
flourish30. In many though not in all fields, autonomous practical knowledge survived well into the 
nineteenth, sometimes the twentieth century; however, the idea that practice should be governed by 
theory (and the ideology that practice is derived from the insights of theory) can be traced back to the 
early Modern epoch. Already before its appearance in Francis Bacon's New Atlantis we find something 
very similar forcefully expressed in Vesalius's De humani corporis fabrica, according to which the art 
of healing had suffered immensely from being split into three independent practices: that of the 
theoretically schooled physicians, that of the pharmacists, and that of vulgar barbers supposed to 
possess no instruction at all; instead, Vesalius argues, all three bodies of knowledge should be carried 
by the same person, and that person should be the theoretically schooled physician. 

In many fields, the suggestion that material practice should be the task of the theoretically schooled 
would seem inane; even in surveying, a field which was totally reshaped by theoreticians in the 
eighteenth century, the scholars of the Académie des Sciences (and later Wessel and Gauß), even when 
working in the field, would mostly instruct others in how to perform the actual work and control they 
did well. Such circumstances favoured the development of views close to those of Taylorism – why 
should those who merely made the single observations or straightened the chains be bothered by 
explanations of the reasons for what they were asked to do? If the rules used by practitioners were 
regarded in this perspective, it also lay close at hand to view these as “merely empirical” if not 
recognizably derived from the insights of theoreticians. 

Such opinions, and their failing in situations where practitioners have to work on their own, are 

30 Aristotle certainly thought that master artisans had insight in “principles” and common workers not 
(Metaphysics I, 981b1–5), and that slaves were living instruments (Politics I.4); but reading of the context of 
these famous passages will reveal that they do not add up to anything like Taylorism. 
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discussed in Christian Wolff's Mathematisches Lexikon [1716: 867]: 
It is true that performing mathematics can be learned without reasoning mathematics; but then one 
remains blind in all affairs, achieves nothing with suitable precision and in the best way, at times it 
may occur that one does not find one's way at all. Not to mention that it is easy to forget what one 
has learned, and that that which one has forgotten is not so easily retrieved, because everything 
depends only on memory.

Wolff certainly identified “reasoning mathematics” (also called “Mathesis theorica or speculativa”)
with established theoretical mathematics, but none the less he probably hit the head of the nail not only 
in his own context but also if we look at the conditions of pre-Modern mathematical practitioners: 
without insight in the reasons why their procedures worked they were likely to err except in the 
execution of tasks that recurred so often that their details could not be forgotten31. Even the teaching of 
practitioners' mathematics through paradigmatic examples exemplifying rules that were or were not 
stated explicitly will always have involved some level of explanation and thus of demonstration – and 
certainly, as in the Babylonian case, internal mathematical rather than numerological explanation. 
Whether critique would also be involved probably depended on the professionalization of the teaching 
institution itself. 

But those mathematicians and historians who were not themselves involved in the teaching of 
practitioners were not forced to discover such subtleties. For them, it was all too convenient to accept 
Taylorist ideologies (whether ante litteram or post) and to magnify their own intellectual standing by 
identifying the appearance of explicit or implicit rules with mindless rote learning (if derived from 
supposedly real mathematics) or blind experimentation (if not to be linked to recognizable theory). 
Such ideologies did not make opinions such as Kline's necessary and did not engender them directly, 
but they shaped the intellectual climate within which he and his mental kin grew up as mathematicians 
and as historians. 
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ABSTRACT 
The fact that a multicultural class requires different didactical methodologies, also when mathematics is 
concerned, still sounds strange to most of the mathematics teachers. In this paper some results from a 
European project dealing with teaching mathematics in multicultural classrooms at lower secondary schools 
are presented. In particular a didactic proposal aiming at the introduction and/or strengthening of a few 
mathematical notions, related to a handicraft type activity that is culturally relevant in the Andean region, is 
described. Remarks and comments from pupils and teachers in the classes where the proposal was piloted 
are also presented. 

1 Introduction 

Nowadays, because of the wide migrations from and to different countries, the search for possible 
new didactical methodologies and educational approaches in multicultural school contexts is 
increasingly becoming one of the most relevant issues for concerned teachers. But, as far as 
disciplines are concerned, only teaching the local language as a second language has been paid 
sufficient attention to. In many countries the only in-service training teachers have received has 
been about multiculturalism, in its general aspects. 

In fact, there is the feeling that most mathematics teachers in elementary and lower secondary 
schools are still both in need of help in their didactical activities with minority pupils and unaware 
of the various contributions from scholars in mathematics education to the teaching mathematics 
in multicultural contexts topic. 

Terms like ethnomathematics or multicultural mathematics are very often completely unknown 
to teachers. The fact that a multicultural class requires different didactical methodologies, also 
when mathematics is concerned, still sounds strange to most of the mathematics teachers. 

In such educational setting, the IDMAMIM (Innovation in Didactics of MAthematics in 
Multicultural contexts, with Immigrant and Minority pupils) project1 was prepared and has been 
developed. The Project has covered two phases: 

a first phase, in which the difficulties and needs of lower secondary schools mathematics 
teachers, when faced with the presence of pupils who are immigrants or from ethnic 
minorities, have been detected, and 
a second phase, in which didactic proposals have been provided for a truly intercultural 
education, based on Ethnomathematics and implemented with technological support. 

In the first phase a set of data have been collected through the analysis of a questionnaire (Favilli 
& Tintori, 2002; Favilli, César & Oliveras, 2002) and an interview related to: 

the knowledge held by the teacher about the characteristics of the minority pupils in the 
class, with regards to their general and mathematical learning 
the awareness about the teacher’s special role in these classrooms and their practices when 
faced with this situation. 

                                                     
1 Partially supported by the European Commission under the Socrates-Comenius 3.1 Programme. 

453



2 The micro-projects 

The theoretical approach for the didactic proposals developed in the second phase of the project 
has been the understanding that, despite of the strong links between mathematics and culture, there 
exist mathematical activities (such as counting, measuring, locating, drawing, playing and 
explaining [Bishop, 1988]) that, although they are universal, are practiced in different ways in 
each culture. The particular ways of practicing such mathematical activities by specific cultural 
group have been defined ethnomathematics by D’Ambrosio (1985 and 1995-96). 

The didactic proposals have been structured in the form of micro-project. A micro-project is a 
set of didactic units that aim to facilitate pupils’ appropriation of certain mathematical concepts, 
from a socio-constructivist outlook, starting out with relevant activities in one or several of the 
cultures present in the class (Oliveras, Favilli & César, 2002). 

This involves globalized or interdisciplinary resources, during the implementation of which 
contextualized mathematical meanings are created. The micro-projects include 

some targets, amongst which the treatment of cultural diversity is explicitly reflected 
a sequence of activities using handicraft type activities and subsequent reflection 
some mathematical contents, that are extracted from these culturally relevant activities 
a methodology, fundamentally based on learning through discovery and group work. 

In each one of the countries (Italy, Portugal and Spain) partners of the IDMAMIM project a 
different micro-project has been developed and piloted. The three micro-projects have been then 
subjected to a careful critical analysis in all three countries, before being proposed as activities for 
intercultural mathematics education, which the teachers could implement in their classrooms. 
Anyway it should be emphasized the fact that, in principle, teachers should use the proposed 
micro-projects just as examples, then creating for themselves new microprojects that will develop 
the curriculum. 

The choice of the micro-project as didactical model has been motivated by the project partners’ 
believe that the work with micro-projects should: 

raise the self-esteem of pupils with learning difficulties: in particular, of those from 
minority cultures, whose achievement in mathematics has been proved lower than the 
average by the analysis of the questionnaires 
allow a true interdisciplinary treatment of mathematical contents 
deal properly with cultural diversity, therefore producing a real intercultural form of 
education. 

3 The micro-project la zampoña

The micro-project elaborated and tested in Italy makes use of the construction of the zampoña (Pan 
pipes from the Andes), a wind instrument usually made of two series of seven and six pipes placed 
side by side. This instrument is part of the cultural heritage of the population of Ecuador, Peru, 
Bolivia and Chile. The micro-project is based on the construction of a zampoña made by a 
craftsman from Cuzco, in Peru. The micro-project follows three steps: 

1. Introduction and construction (Discovering the zampoña!) 
To make the construction possible, a video of an craftsman from an Andean country, should be 
shown thus providing the class with the knowledge of the basic activities which are necessary to 
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construct such musical instrument. Pupils have also to be given the measure of the length of the 
thirteen tubes corresponding to the musical notes. By watching the video and the direct 
construction of the zampoña (see Figures 1 – 2 – 3), pupils, through a real and attractive example, 
step by step along the different construction phases, can realize how deeply mathematical concepts 
are involved in such manual activity. Some of these concepts are quite clear and explicit, some of 
them are hidden and implicit. However, while constructing their own zampoña, pupils cannot 
avoid to deal with both types of mathematical concepts. Under the teacher’s guidance, additional 
discussion could be originated in the classroom, thus allowing the introduction of further 
mathematical notions (the mathematics seen by the teacher-researcher). These processes form the 
core educational activities of the two following steps of the micro-project development. 

2. Qualitative analysis (Getting to know the zampoña better!) 
At the end of this activity pupils should be able to 

understand the difference between dependent and independent variables; 
understand what a function is, recognize a function and provide easy examples, realize 
when a function is invertible, represent a given function through a table and/or a graphic; 
understand what a relation of order is and identify its main properties, recognize the type 
of a given relation of order. 

3. Quantitative analysis (Let's make a bigger or smaller zampoña!) 
At the end of this activity pupils should be able  

to make measures; 
to understand what is the meaning of measuring, unity of measure, instrument of measure, 
test measure; 
to understand what a ratio is; 
to know the main properties of ratios; 
to find the unknown term of a given ratio; 
to appropriate the notion of proportionality; 
to give upper or lower approximations of a number; 
to calculate the mean value, the mode, the median of a data collection. 

4 Piloting the micro-project 

Some remarks from the piloting of the micro-project in a few classrooms are now presented, with 
reference to step 3 – Quantitive analysis – and, in particular, to ratio and proportionality. But we 
want first to show how these notions can be introduced, according to our didactical proposal. 

The introduction by the teacher and the appropriation by the pupils of the notions of ratio and 
proportionality have been the object of great study and research, due to the intrinsic difficulty of 
such concepts.. According to the studies carried out by Piaget and his collaborators on 
proportionality (Piaget, Grize, Szeminska and Bang, 1968), once pupils have understood linear 
functions they should be able to solve problems of proportionality whatever the problem situation. 
Nevertheless, Vergnaud (1983) suggests that in order to understand the concept of proportionality 
the nature of the problem situation plays an important role. Analogously, Nunes, Carraher and 
Schliemann (1993) in the chapter on ‘Understanding proportions’ write: 

455



Little attention is given in math textbooks to connecting the mathematics with the problem 
situation, and the initial phases of teaching involve mostly formal demonstrations. … students 
do not concentrate on a discussion of what connections there may be between mathematical 
models and empirical situations (p. 86). 

The micro-project on the zampoña goes exactly in the direction wished for by Nunes, Carraher and 
Schliemann (1993): to create the desire in class to solve a specific problem, to stimulate debate and 
an exchange of ideas, reflections, observations and proposals by the pupils and finally to create the 
need in the class for the introduction of new mathematical concepts which may be essential to 
solve the problem assigned to the pupils. 

In order to build the zampoña the pupils have two tables of measures which refer to the 
measures, taken by the craftsman at the end of his construction, of the length and diameter of each 
of the two series of tubes cut by him and used to make the musical instrument. In actual fact the 
craftsman measures the length of the tubes using a plank of wood (see Figure 4) which size is in 
proportion to the dimension of the zampoña he wishes to make and with markings which 
correspond to musical notes. This way of measuring, which relies on a sort of graduated scale, 
bases on the craftsman's experience and is in itself a point for reflection and comment in the class 
because of the implicit knowledge and mathematical activities put into play by the craftsman. In 
fact, it was only after a specific request from the researcher that the measurements were taken, 
using a ruler, by the craftsman on completion of the construction. 

 Ray Fah Lah Doh Mi Soh Ti 
Length 18.1 14.5  12 10.2 8.0 6.6 5.5 
Diameter 1.2 1.1  1.1  1.0 0.9 0.8 0.7 

Measures for the series with 7 tubes 

 Mi Soh Ti Ray  Fah Lah 
Length 16.2 13.9 10.8 8.7 7.3 6.2 
Diameter 1.2 1.15 1.0 0.9 0.8 0.75 

Measures for the series with 6 tubes 

The numbers representing these measurements are obviously only approximate, especially as far as 
the diameter is concerned: for this reason the teachers are asked to make their pupils reflect on the 
significance of measurement, error, average, etc. and to take little notice of the diameter of the 
tubes (considering their small differences), but rather to choose just decreasing diameters in 
accordance to the decreasing length of the tubes or even equal diameters. 

To create the need for the introduction of the notions of ratio and proportionality, the pupils are 
then asked to build a zampoña of a different size, for example bigger. They are given a table – 
with incomplete numbers – showing the lengths of the tubes that are part of the series with six 
tubes of the new instrument. 

Notes Mi Soh Ti Ray Fah Lah 
Length 28  18.2 14.8   

As the pupils use this table, they realize, with a possible little help from their teacher, that there is a 
constant multiplicative2 relationship between the length of two tubes representing the same notes 
in both the instruments of different dimensions: 

                                                     
2 Very likely, pupils’ first attempt is to look for an additive relationship as the micro-project piloting in a 

few classrooms has shown. The pupils’ search for a mathematical rule has been considered a positively 
significant activity by teachers, anyway.
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 Mi:  28 / 16.2 = 1.73 - Ti:  18.2 / 10.8 = 1.69 - Ray:  14.8 / 8.7 = 1.70 

In fact, the values obtained are slightly different, but this is due both to the inaccurate 
craftsmanship and to the difficulty in obtaining precise measurements; the calculations of the 
relationship between the values is an excellent way of introducing some simple statistical notions. 
In particular, as far as the figures recorded are concerned, it is possible to calculate their average 
(1.71) and their median (1.70). 

In this way the pupils are given a simple tool which allows them to find a more accurate value 
in the relationship between the two musical instruments. 

The presence of an almost constant relationship should make pupils aware that the same 
relationship should be preserved when comparing any other pair of tubes representing the same 
note: the constant could then be useful in calculating the length of the other tubes, which measure 
is missing. Following the example above, if 1.71 is taken as being the constant value of the ratio 
between the two zampoñas (the one already built by the pupils and the one which we have only 
some measures for) it is possible to deduce the length of the tubes of the other notes; for example, 
Soh: 13.9 x 1.71 = 23.77. 

Therefore, the construction of the zampoña appears to be a concrete way of introducing the 
concepts of ratio and proportion! 

5 Some comments from the piloting 

The micro-project of the zampoña has already been used in some classes of lower secondary 
schools in Italy during the past school year (involving four teachers and around a hundred pupils, 
some of whom were from cultural minorities) and is being more widely used during this school 
year. 

The first indications referred back by the teachers in their reports and by the pupils themselves 
in their comments in class seem to be very positive. 

Teachers have greatly appreciated the opportunity to link mathematics and common life 
through a set of truly real problems related to the proposed craftship: in fact, many teachers 
complain that: “Too often, the ‘real problems’ available in the textbooks appear to be just artificial 
attempts to lead pupils to refer to a specific notion just introduced or make use of a given formula 
or solving procedure.” 

Teachers have also acknowledged that the didactic proposal have provided them with a good 
way of observing and evaluating the pupils’ ability to approach and mathematics both the global 
problem and each activity in the construction process: “It has been important to show that the 
actual production of the zampoña, that is the passage from the theory to the practice, is not too 
easy and requires the ability of solving a set of different problems.” 

The solution of these problems has been sometimes possible thanks to some mathematical 
notions and techniques already introduced by the teacher: the micro-project has thus given pupils 
the opportunity to verify the advantage of having properly appropriated those notions and 
techniques and to consolidate them. However, some problems have required the introduction by 
the teachers of new mathematical ideas and concepts, just as tools necessary for their solution. As 
regards to this point, we have already discussed about the ratios, proportions, averages, etc. Other 
topics have proved to be necessary: “From a mathematical point of view, they had to cut a cylinder 
with a plane that had to be orthogonal to its axis: this was a topic in solid geometry they had not 
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been introduced to yet... or They had never been asked to complete a table, referring to another 
given one.” 

The above examples clearly show how, when choosing the micro-projects as didactical 
methodology, teachers are asked to be as flexible as possible respect to the curriculum 
development: some priorities have to be respected, of course, but alternative choices to the 
standard ones should be considered, possibly introducing the basic ideas of a specific new notion, 
at first, and getting deeper in it later on. All this could be not easy, although worthwhile! 

As far as pupils are concerned, they have seemed to be highly motivated by the will to 
construct something, either individually or in small groups: “It's the first time I've made 
something!”

Interdisciplinary teaching has been a surprising novelty for many pupils (and teachers…): 
“What has mathematics to do with the zampoña? I think it's useful to bring together two such nice 
subjects, maths and music, in one task!” 

Mathematics has been seen by the pupils under a new light and it has appeared less boring: “It 
was interesting because it is nice to do maths like this!…or The lessons were useful and helped us 
find out more about the zampoña and they were also fun […]” 

Mathematics has turned out to be less of an ordeal than it usually is to pupils: “The lessons 
were much nicer also because it was a more enjoying way to reason, to think up original solutions 
[…] The mathematical notions were very easy to be understood […]” 

Other comments and remarks, both from teachers and pupils, could be given. As it happens 
quite often when we look for them from people involved in the piloting of a new didactical 
proposal, such comments and remarks have been absolutely positive: the usually low achieving 
pupils (among them, some from cultural minorities and disadvantaged social settings) have shown 
more interest and (sometimes significantly) improved their abilities. Nevertheless, a more careful 
investigation on the micro-project implementation is needed and this will part of our future 
research activity. 
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ABSTRACT

The mathematics and astronomy of two peoples of America before the Spanish conquest are
discussed. The Maya lived in Guatemala, in parts of Mexico, in Belize, and in the Western
parts of Honduras and El Salvador. The Aztecs lived in Central Mexico.

The Maya used a positional system with base 20 in order to denote their numbers. Their
calendar system consists of three different calendars, the Tsolk’in, the Haab, and the Long
Count. The Tsolk’in calendar consists of 260 days as combinations of 13 numbers and 20 day
names. The Haab calendar has 365 days, namely 18 months of 20 days and 5 extra days. The
combination of Tsolk’in and Haab produces a calendar round of nearly 52 years. The Long
Count is the counting of single days starting from a zero date. Due to the generally accepted
correlation this zero date was in 3114 BC.

The Aztecs did not use a positional system and denoted their numbers by collections
of certain symbols for 1, 10, 100 and so on. The Aztec calendar consisted of two systems
corresponding the Tsolk’in and Haab of the Maya.

Furthermore, some special problems are discussed in more detail or are at least mentioned,
such as the correlation problem, the first zero in the world, number 13 in Maya culture, the
end of the current Maya Pictun, and the meaning of some big Maya numbers.

Maya mathematics is not only interesting from the point of view of history of mathematics.
Also for didactical purposes Maya mathematics can be quite useful.

1 Introduction

Following the tradition of the HPM meeting in Braga of 1996 where the mathematics
of ancient cultures were discussed, but the cultures in Precolumbian America were not
covered, this talk will try to contribute one aspect to the topic ”Mathematics and
different cultures” which is announced for Uppsala 2004. This talk will be a general
introduction into the mathematics and astronomy of the Maya and the Aztecs as well
as a more detailed discussion of some of the current research problems. The general
introduction will contain a broader view while in the second part some special problems
will be addressed for the more interested readers of the paper. Furthermore some
didactical aspects will be discussed.

In the two following remarks it is reflected that mathematics and the calendar were
and are seen as typical and important aspects of Maya culture.

Mathematics was the science to which the Maya gave the most credit, and that
which they valued most and not all the priests knew how to describe it.

Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006
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So far Diego de Landa, one of the early Spanish conquistadores.
In a recently published encyclopedia Tom Jones (Jones 1997) remarks on calendars

in Mesoamerica as follows.

For many reasonably educated persons, the greatest single achievement of ancient
Mesoamerica was the Maya calendar.

2 The Maya, the Aztecs and their numbers

2.1 Geography and history

The area of the Maya consists of the South Eastern part of Mesoamerica, i.e. the states
of Guatemala and Belize, small parts of Honduras and El Salvador and mainly the
South East of Mexico (the federal states of Quintana Roo, Yucatan, Campeche and
parts of Tabasco and Chiapas). The classical period of the Maya is the middle of the
first millennium AD. The Spanish conquista reached the Maya in the sixteenth century
and transformed their culture heavily. However, Maya people have survived till today,
and also part of their culture still exists. The Olmecs are their important cultural
predecessors already in the first millennium BC.

The Aztecs built up their central state around Tenochtitlan in the central basin
of Mexico in the fourteenth and fifteenth century. This state was conquered by the
Spanish Cortez in 1517. Tenochtitlan became colonial Ciudad de Mexico. Still many
indigenous traditions have survived in modern Mexico. Important predecessors of the
Aztecs are the Teotihuanacos and the Toltecs.

2.2 Numbers

The Maya used a positional vigesimal system with base 20. A point or dot denotes 1, a
bar denotes 5, and a zero is drawn as a shell like object. By combining up to 4 dots and
bars the digits from 0 to 19 are built up. It is easy to write quite big numbers using
this positional system. These numbers are embedded in a hieroglyphic script which has
been and is still deciphered. This script was mainly used in stone inscriptions. Only
very few codices survived till today.

The Aztecs did not use a positional system. They had special symbols for 1, 20, 400
etc. In order to denote the number 13 they had to draw 13 dots. Most of the Aztec
texts are written in Latin script and produced after the conquista.

3 The Maya and Aztec calendar systems

The calendar system of the Maya consists of the Tsolk’in, the Haab, and the Long
Count.

3.1 The Tsolk’in

The Tsolk’in calendar consists of 260 days, denoted by a combination of a number
between 1 and 13 with one out of 20 day names. These 20 day names are as follows.
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Imix, Ik, Ak’bal, K’an, Chikchan, Kimi, Manik’, Lamat, Muluk, Ok, Chuwen, Eb,
Ben, Ix, Men, Kib, Kaban, Etz’nab, Kawak, Ahaw.

This results in a cycle of 260 days, e.g. 1 Kaban, 2 Etz’nab, 3 Kawak, 4 Ahaw, 5
Imix, 6 Ik, 7 Ak’bal, 8 K’an, 9 Chikchan, 10 Kimi, 11 Manik’, 12 Lamat, 13 Muluk, 1
Ok, 2 Chuwen, and so on.

3.2 The Haab

The Haab calendar consists of 365 days which is nearly one year. Each Haab date is a
combination of a number between 1 and 20 (or 0 and 19) with one out of 19 periods
(called months). 18 of these periods consist of 20 days each:

Pohp, Wo, Sip, Sotz’, Sek, Xul, Yaxk’in, Mol, Ch’en, Yax, Sak, Keh, Mak, K’ank’in,
Muwan, Pax, K’ayab, Kumk’u.

The last period has only 5 days and is called Wayeb.
The result is as follows:
1 Kumk’u, 2 Kumk’u, ....., 18 Kumk’u, 19 Kumk’u, 0 Wayeb, 1 Wayeb, 2 Wayeb, 3

Wayeb, 4 Wayeb, 0 Pohp, 1 Pohp, 2 Pohp, ....., 19 Pohp, 0 Wo, .....
The combination of a Tsolk’in date and a Haab date, e.g. 4 Ahaw 8 Kumk’u, is

repeated after 18980 days. This period of 73 Tsolk’ins or 52 Haabs or nearly 52 years
is called a calendar round.

3.3 The Long Count

By far the most remarkable is the third calendar system, the so-called Long Count which
is just counting the days starting from a zero date. In most cases 5 ”vigesimal” digits
are given. The rightmost position in this system is a K’in (Sun) or day. 20 K’ins are
1 Winal which is the second position. The next position differs from a pure vigesimal
system since only 18 Winals are 1 Tun (stone). Hence 1 Tun is 360 days or nearly 1
solar year. 20 Tuns are 1 K’atun (nearly 20 years), 20 K’atuns are 1 Bak’tun. Hence 1
Bak’tun is nearly 400 years and represents the leftmost position.

A typical Long Count date is 7 Bak’tun, 16 K’atun, 3 Tun, 2 Winal, 13 K’in. It is
denoted as 7.16.3.2.13 by modern scholars.

The correlation constant describes the Julian date of the Maya zero date and relates
the Maya calendar to our European calendar.

The generally accepted GMT correlation is named after Goodman, Martinez, and
Thompson and means that the Maya date 0.0.0.0.0 is JD 584285 (13.8.3114 BC Grego-
rian).

3.4 The Aztec calendar

The Aztec calendar system only consists of 2 cyclic systems of 260 days and 365 days cor-
responding to the Tsolk’in and Haab of the Maya. The corresponding 20 day names are
Cipactli, Ehecatl, Calli, Cuetzpallin, Coatl, Mizquitli, Mazatl, Tochtli, Atl, Itzcuintli,
Ozomatli, Malinalli, Acatl, Ocelotl, Quauhtli, Cozcaquauhtli, Ollin, Tecpatl, Quiahuitl,
and Xochitl. The corresponding 18 month names are Tlaxochimaco, Xocotlhuetzi,
Ochpanitztli, Teotleco, Tepeilhuitl, Quecholli, Penquetzaliztli, Atemoztli, Tititl, Izcalli,

463



Atlcahualo, Tlacaxipehualiztli, Tozoztontli, Hueytozoztl, Toxcatli, Etzalcualiztl, Tecuil-
huitontli, Hueytecuilhuitl. The period of 5 days is called Nemontemi.

Again these cycles are combined to a cycle of nearly 52 years or more than half a
century.

4 Research problems

The second part of my talk will introduce and discuss some of the current research
problems concerning the mathematics and astronomy of the Maya, the Aztecs, and in
Mesoamerica in general.

4.1 The correlation problem

The Maya long count date itself gives us a good internal chronology of the Maya culture.
However, as Europeans we would like to correlate this calendar to our own history and
to know which long count date corresponds to which day in the Julian or Gregorian
calendar.

The generally used correlation is the GMT correlation of Goodman, Martinez, and
Thompson. This correlation constant of 584285 means e.g. that the Maya zero date
0.0.0.0.0 or 13.0.0.0.0 corresponds to August 13, 3114 BC in the Gregorian calendar.

However, the question whether this GMT correlation is correct must be asked. On
the one hand, the acceptance does not so much depend on astronomical proofs (e.g.
solar eclipses) but is supported by a collection of many different arguments. There are
a lot of other possible correlation constants discussed in the literature which differ up
to several centuries. Further research will give more insight concerning this important
question. The dates of astronomical events should be better used in the future,

4.2 The first zero

The question for the first zero in world history is quite interesting and important and
will not be answered here. The question should be whether a certain culture developed a
positional system with zero and how the zero was denoted. Apart from the Chinese, the
Indians, and the Mesopotamians the Maya (and already their predecessors) developed
a vigesimal system with a special symbol for zero. The earliest dates which show
a vigesimal notation are 7.16.3.2.12 and 7.16.6.16.18 from the Olmec region around
Veracruz. Using the GMT described above these dates correspond to 36 BC and 32 BC
resp. They do not contain zeros, unfortunately. However, the use of such a notation
already needs the idea of a zero. An early Maya date from Tikal (292 AD) is 8.12.14.8.15.

4.3 The role of the number 13 in Maya culture

In most ancient and recent cultures of Asia, Africa and Europe the ecliptic is subdivided
into 12 parts. These are the 12 zodiacal constellations Aries, Taurus, Gemini, Cancer,
Leo, Virgo, Libra, Scorpius, Sagittarius, Capricornus, Aquarius, and Pisces. This leads
to a width of a constellation of 30 degrees corresponding to the course of the sun which
needs approximately 30.5 days to run through each constellation.
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In particular, in China and India there is a long tradition of the nakshatras. These
27 (or 28) ”lunar houses” divide the ecliptic into parts of 13 degrees and 20 minutes.
This corresponds to the moon which runs through each nakshatra in approximately one
day.

The Maya probably used 13 constellations (compare Freidel et al. 1993) which
divide the ecliptic into parts of 27.7 degrees on average. This is also related to the sun’s
course throughout a year. These nearly 28 days, however, do not support the year’s
division of 365 days as 12 months of 30 days plus 5 extra days but instead the division
of 364 into 13 parts of 28 days. The usual week of seven days in many cultures divides
these 364 days into 52 equal parts, by the way.

4.3.1 Astronomical derivation

In the following an astronomical aspect of the importance of the number 13 in connec-
tion with calendar questions is discussed. These aspects are not only important for the
ancient Maya but for all human spectators on earth who watch the sky carefully over
longer periods.

The distance of two new moons is either 29 or 30 days. This is very well established
in lunar calendars, e.g. in the Islamic calendar. The reason is that a synodic month is
nearly 29.5 days, more exactly 29.53059 days. If we also consider the time dependance
of this value, we should add a further digit. The value of 29.530586 days of around
500 AD has changed to 29.530589 days right now and is still changing 0.2 seconds per
millennium.

In the search for a good calendar we (and ancient peoples) can look for mul-
tiples of synodic months, here called n, which are close to an integer number of
days. The first small examples are n = 2, 11, 13, 17 where the corresponding values
of Δ = 0.061, 0.164, 0.102, 0.020 denote the differences to the closest integer number.
The first and the fourth value of Δ are closest to zero, the corresponding numbers of
days, however, are prime numbers (59) or twice a prime number (502). However, such
a period must be subdivided into reasonable parts in order to build a calendar. This is
better possible for n = 11 since 325 is 25 times 13 and for n = 13 since 384 is 3 times
128. A further analysis shows that 13 plays a special role in this connection.

If the fact that 11 synodic months are nearly 325 days (exactly 324.83649 days) and
the fact that 325 is 25 times 13 are combined, as a result the Tzolk’in calendar which
has 20 times 13 days is nicely correlated. The error is only 0.1635 days or approximately
4 hours in 325 days. This maybe one reason for the evolution of the Tsolk’in calendar
combining 13 because of the reasons described above with 20, the base of the number
system. The special role of 20 is quite probably related to the fact that humans have
10 fingers and 10 toes. Moreover, in a warmer climate toes are easier used for counting
than in other regions of the earth.

Not only for the moon the number 13 is a suitable prime. If we approximate the
synodic periods of the other planets we obtain for Mercury 116 days (116 = 9×13−1),
for Venus 584 days (584 = 45 × 13 − 1), for Mars 780 days (780 = 3 × 260 = 60 × 13),
and for Saturn 378 days (378 = 365 + 13). Only for Jupiter having 399 days I do not
see any relation to 13. By the way, for the Maya it was quite important that 5 Venus
periods equal 8 Haab periods of 365 days. This fact will not be discussed here further.

Apart from the mathematical and astronomical aspects discussed above there are
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further aspects of the number 13 in Maya culture which will be just mentioned here.
There are 13 important gods, 13 heavens, and maybe a hidden tridecimal system (see
below).

4.4 When is the next Maya zero date ?

Since the Maya number system is a vigesimal system it could be expected that 20
Bak’tuns form a new unit, called a Pictun. However, there is already an irregularity in
the second position (1 Tun is 18 Winals). Furthermore, the important zero date 0.0.0.0.0
is quite often denoted as 13.0.0.0.0 somehow suggesting that the day after 12.19.19.17.19
is also 0.0.0.0.0 rather than only 13.0.0.0.0. Maybe a better description is given by
including the next position such that the day after x.12.19.19.17.19 is (x+1).0.0.0.0.0.
This explanation is also supported by some big numbers on Maya stelae.

4.5 Big numbers on Maya stelae

A quite usual way of denoting the socalled zero date is not only 13.0.0.0.0 4 Ahaw 8
Kumk’u instead of 0.0.0.0.0 4 Ahaw 8 Kumk’u. However, there are some remarkable
stelae which show very big numbers. Stela 1 in Koba contains the gigantic date 13.13. ...
.13.13.0.0.0.0 or (13.)200.0.0.0 which corresponds to 4.194304× 1028 tuns. In Yaxchilan
we find a date (13.)89.15.13.6.9 which would correspond to a day in the year 744 AD.
if this long series of 13s is just neglected.

The meaning of these strange dates is still in discussion. At least, these dates
somehow indicate some doubts concerning the purity of the vigesimal system of the
Maya and ask for a further discussion of the role of 13.

4.6 The Templo Mayor in Tenochtitlan

In the last 30 years new excavations in the capital of Mexico yielded much information
on the exact positions of the main temples in Aztec Tenochtitlan, mainly of the most
important Templo Mayor.

On the other hand, there is an astronomical phenomenon which only occurs in
tropical countries of the earth, namely the zenith passage of the sun twice a year.
Depending on the degree of latitude of the place on earth the difference of these two
days in the year differs. This gives rise to the question whether the fact that for a certain
area in Mexico this difference of 73 days is related to the evolution of the Mesoamerican
calendar of 365 days. The zenith passages of the sun give rise to a division of the year
into 5 equal parts of 73 days each. The above mentioned orientation of the Templo
Mayor in Tenochtitlan is a certain support for this idea.

4.7 Mathematics and astronomy in Mesoamerican calendar
systems

The aspects discussed above give rise to the question how much the calendar systems of
the Maya and Aztecs depend on astronomical observations and considerations and how
much the Maya number system depends on their astronomy and calendars. At least
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certain numbers play a special role in astronomical contexts and may have influenced
the development of calendars and number systems.

5 Conclusion

Last but not least an important aspect should be mentioned. Apart from the general
interest in the mathematics and astronomy of foreign and ancient cultures the topic of
this talk could also be of interest for the pedagogy and didactics of mathematics in the
21st century since some features of Mesoamerican mathematics yield good examples for
the teaching of addition in primary schools or the teaching of congruence computation
in secondary schools. Addition in Maya notation is much more natural (meaning mainly
adding dots and bars in the real sense of the word) than telling 6+2 should be 8 (using
three strange looking symbols). Congruence computation in the Maya calendar systems
provides nice exercises which are not possible to do in our chaotic Gregorian calendar
(e.g. concerning the lengths of months).

A much more detailed analysis of these questions can be found in Schäffer (1993)
which contains not only interesting aspects concerning the mathematics of the Maya
but also on their history and culture in general and on didactical aspects.
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beit, Heidelberg: Pädagogische Hochschule.
-Schele L., Mathews P., 1998, The code of kings: The language of seven sacred Maya temples
and tombs, New York: Scribner.
-Schele L., Freidel D., 1990, A forest of kings: The untold story of the ancient Maya, New
York: Morrow.

467



WAR IN THE BEST OF ALL POSSIBLE WORLDS:
Leibniz on the Role of Mathematics in War, Peace, and Social Issues

George W. HEINE
Math and Maps

200 Sunset Lane, Pueblo, CO, USA
gheine@mathnmaps.com

ABSTRACT

Leibniz lived in a Germany devastated by the Thirty Year’s War. We look at how this shaped
his public life and his mathematical thought, including his quest for a ”universal rational
alphabet”.

There is no question that Leibniz understood the devastation of war. He was born
two years before the end of the Thirty Years War, and spent most of his life in a Germany
devastated by that conflict. This was the last major European war of religion—in
fact, its excesses may have contributed to ending the wars of religion. It started out
as a vaguely principled conflict between Protestant and Catholic electors in the Holy
Roman Empire, and ended as a cynical game of international power politics in which
the “Protestant” camp was led by an alliance of a Catholic Cardinal in France and a
Lutheran King in Sweden. The armies of both sides were largely mercenaries, and so
thoroughly pillaged the countryside that many districts did not recover for two centuries.

In this paper, we examine Leibniz’ attitudes toward questions of war and peace. We
then look at whether these attitudes might have influenced his specifically mathematical
works. We examine his work in symbolic logic and cryptology, and, for an insight on how
Leibniz viewed mathematics itself, look briefly at his development of binary arithmetic.

Early in his career, while employed by the Elector of Mainz, France, Leibniz con-
ceived of a plan to persuade Louis XIV to conquer Egypt and construct a canal at Suez,
thereby earning the gratitude of Europe, distracting the Turks from their attacks on
Vienna, and saving the Rhineland from danger. In support of this plan he reminded
the court of the continuing effects of the Thirty Years War (Securitas Publica, quoted
by Meyer 1952, p.8:

These consist in a badly established trade and manufacture; in an en-
tirely debased currency; in the uncertainty of law and in the delay of all legal
actions; in the worthless education and premature travels of our youth; in
an increase of atheism; in our morals, which are as it were infected with a
foreign plague; in the bitter strife of religion; all of which taken together
may indeed slowly weaken us and, if we do not oppose it in good time, may
in the end completely ruin us; yet, we hope, will not bring us down all at
once. But what can destroy the Republic with one stroke is an intestine or
an external major war, against which we are entirely blind, sleepy, naked,
open, divided, unarmed; and we shall most certainly be the prey either of
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the enemy or (because in our present state we could match none) of our
protector.

As a result of his plan, Leibniz travelled to Paris, and spent the next four years there. He
managed to meet a substantial portion of the learned community of Europe in that time.
In particular, his friendship with Huygens led to a study of the current mathematical
issues of the day, and to his independent discovery of the calculus. (For more details
on Leibniz’ stay in Paris, see Davillé 1912 for a general account and Hofmann 1974
for details of his mathematical research). However, the diplomatic plan was a failure.
Soon after his arrival, Louis XIV was sending troops toward the Rhine, and there is no
record of Leibniz ever meeting the king.

Avoiding the disruption of war remained a concern of Leibniz throughout his life.
Some thirty years later, he wrote in the Exhortation to the Germans, (Meyer 1952,
p.13):

It is well known that the security of everyone is founded on the common
peace, the disruption of which is like a great earthquake or hurricane, in
which all is confounded and none knows whither to turn for succour or
advice. There are but few who can escape this turmoil. But the many who
cannot escape it give themselves up to it helplessly, awaiting in resignation
the imminent disaster; all of which has, during the present wars, been again
and again our own experience.

The above was written during his years of diplomacy and genealogical research for the
House of Hanover, which culminated shortly before Leibniz’ death in the elevation of
that family to the British throne. Leibniz the professional diplomat may well have
been thinking of an alliance led by England to offset the power of France—exactly how
European politics played out until Waterloo.

Leibniz was naturally most concerned about the effects of war on his own German
homeland. But his travels and writings show that he was more than just a nationalist.
In Novissima Sinica(1697), he writes about the Chinese with a tolerance surprising in
the seventeenth century (Lach 1957, p.75), that

. . . it is desirable that they in turn teach us those things which are es-
pecially in our interest: the greatest use of practical philosophy and a more
perfect manner of living, to say nothing of their arts. Certainly the condi-
tion of our affairs, slipping as we are into ever greater corruption, seems to
be such that we need missionaries from the Chinese who might teach us the
use and practice of natural religion. . .

In a letter to Bouvet written a few years later, he writes (Perkins 2002, p.459) “As for
the affairs of Europe, they are in a condition to make us envy the Chinese,” and goes
on to describe the various wars in Europe.

Leibniz touches on another of his lifelong themes in Novissima Sinica, when he
suggests that “a people whose conversion we intend should not know what we Christians
disagree on amongst ourselves.” (Lach 1957, p.76). Differences of religious dogma had,
after all, been the ostensible cause of the Thirty Year’s War. And Leibniz’s work on
symbolic logic was motivated in part by his belief that it could end religious disputes.
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While still in school, Leibniz had apparently learned of the works of the 13th century
Spanish logician Raymond Lully (1234–1315)1. Lully thought it was possible to prove all
of Christian dogma by pure logic. He constructed a machine with concentric rotating
discs; letters, subjects, predicates, and logical operators were written on various of
these discs. (For a more complete description see Styazhkin 1969, pp.10-12, and its
references.)

In The Combinatory Art , published in 1666, Leibniz writes(Styazhkin 1969, p.61):

I saw that in logic, simple notions are divided into definite classes, and
I was astonished that composite sentences or statements were not divided
into classes according to a system in which every term can be derived from
another.. . . Later, I saw that the system I required was the same as that
used by mathematicians in their elementary studies, where they place their
statements in order such that each statement follows from the previous one,
this that I then vainly attempted in philosophy.

. . . Applying myself with great zeal toward these ends, I necessarily came
upon the surprising idea that it might be possible to find some alphabet of
human thought and that, by combining the letters in this alphabet and an-
alyzing the words thus composed, it might be possible to derive and discuss
everything.

Leibniz goes on to describe a logical system in which each elementary concept is assigned
a prime number, conjunction was associated with multiplication, and the logical copula
is associated with numerical equality. He shows how to map several modes and rules of
classical syllogistics to his system (see Styazhkin 1969, pp.83-84).

Leibniz’ contemporaries were just beginning to understand the great potential of
mathematics to unlock the natural world. Galileo had been convinced that the book of
the universe is written in the language of mathematics, and Descartes boldly preferred
reason over revelation as the key to understanding the world. It is hardly surprising
that Leibniz and others of his generation dared to think that reason might unlock the
secrets of the supernatural as well as the natural world. Certainly one motivation for
Leibniz’ concern with the “universal characterstic alphabet” was the dazzling possibility
that it might put an end to religious arguments and religious wars. In a famous passage
from On the Universal Science, he writes (Schrecker & Schrecker 1965, p.14):

I think that controversies will never end nor silence be imposed upon the
sects, unless complicated reasonings can be reduced to simple calculations,
and words of vague and uncertain meaning to determinate character. . . .
Once this is done, then when a controversy arises, disputation will no more
be needed between two philosophers than between two computers. It will
suffice that, pen in hand, they sit down to their abacus and . . . say to each
other: let us calculate.

Leibniz was not so naive as to believe that all human conflicts could so easily be dis-
posed of. After qualifying the paragraph just quoted by saying that the “calculating
philosophers” must have good basic data, he continues

1Lully in turn was inspired by a calculating instrument called the za‘irjat , used by Moorish as-
trologers. See Ifrah 1994, pp.550-552) for Ibn Khaldun’s fascinating description of this instrument.
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Even after this restriction, some may believe that this art will be of
very little use in any matters which require conjecture, such as research in
political or natural history, in the art of assessing products of nature or
persons, hence, in community life, medicine, law, military matters, and the
government of the state. To this I reply: as far as reason is competent in
these matters (and it is highly competent), so far goes the competence of
this art, if not much further.

In the paragraph just quoted, Leibniz includes “military matters” as an application of
reason. He not a twentieth-century pacifist (or a seventeenth-century Quaker), who
shuns all military-related activity.

Over the next few decades, Leibniz continued to refine his formulation of symbolic
logic. Around 1679 he developed a system which was published in Specimen calculi
universalis and Ad specimen calculi universalis addenda2. He develops an abstract
calculus, with terms and operators. He implies two different interpretations of this
logical calculus, one “intentional” and referring back to the classical study of syllogisms,
and the other “extensional” and referring forward to modern set theory. Logicians today
use a different, more abstract grammar, derived from the work of Frege and Russell in
the nineteenth and early twentieth century. But an interesting essay by Fred Sommers
(Sommers 1976) shows that Leibniz’ logical grammar, although it has its difficulties, is
in some respects simpler and closer to natural language than the modern incarnation.
Is it unreasonable to speculate that this might be partly because Leibniz lived in a more
hopeful age, when all fields of human knowledge, including morals, religion, and ethics,
were thought to be susceptible to reason?

We now pass from symbolic logic to another field, one with military applications,
in which reason could be applied to unlock hidden secrets. This is cryptology. In fact,
Leibniz considered cryptology a “kind of calculus” and a model for his universal knowl-
edge. It shows, he said, a way toward the “art of inferring” because it operates “pure
and abstracted from the subject matter”. (Pesic 1997, p.678) An interesting case in
point is offered by a 1697 exchange of letters in which Leibniz urges Wallis to make
teach his cryptographic art to several pupils. The letters were apparently instigated
by Leibniz’ employer, the elector of Hanover, who no doubt saw the military possi-
bilities. Leibniz himself, however, may have envisioned entirely different applications.
He seemed to have been interested, for example, in applying cryptology to restore cor-
rupted passages in sacred Scripture. In line with his general search for a “universal art
of Species” (la Specieuse universelle), he may have hoped that cryptographic techniques
would enable us to read the hidden texts of nature itself (see Pesic 1997).

When Leibniz was working out the first steps of his universal symbolic alphabet, he
was apparently experimenting with the binary system of numeration. (However, this
work did not appear in print until 1701, in Essay d’une nouvelle science des nombres.)
To Leibniz, binary numerals and binary arithmetic are steeped in symbolic and mystical
references, reminiscent of the kabbalistic works of the Middle Ages. For example, the
digit 1 was a symbol of God and 0 portrayed the Void. He considered the binary string
111 as a sign of the Trinity, and its value, seven, as the Seventh Day of Creation. Any
connection to war and peace here is quite subtle, but, as in his symbolic logic, there is
a heavy mixture of metaphysics with mathematics.

2For the details of Leibniz’ symbolic logic, we are indebted to Rescher 1954.
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Was Leibniz was concerned about issues of war and peace? It seems quite clear that
he was. Can we find traces of this attitude in his mathematical works? It appears that
we can, especially in his early works in symbolic logic and attempts to find the Universal
Characteristic Alphabet. But it also appears that Leibniz lived in a different world, and
that these questions might have different meanings for him. His mathematical works
seem frequently to rest on an underlying stratum of metaphysics.

Nowadays, it is commonplace to hear the opinion that mathematics is “ethically
neutral”, that neither its methods nor its results have any resonance in how human
beings should live or conduct their lives. Leibniz would emphatically have disagreed.
His work helped to begin the Age of Reason, but he himself was not part of that age.

Leibniz’ promotion of reason to solve problems of human society was a direct an-
cestor of the Enlightenment project to solve human problems by mathematizing them.
We might especially mention Condorcet, who writes 3

“A great man, whom I will miss for his lessons, for his example, and
above all for his friendship, was convinced that the laws of the moral and
political sciences can be stated with the same certainty as those laws which
form the foundation of the physical sciences, and even those branches of the
physical sciences, such as astronomy, which appear to approach mathemat-
ical certainty.

“This opinion was dear to him, for it leads to the consoling hope that the
human species will necessarily make the same progress towards happiness
and perfection, as it has made towards knowledge of the truth.”

The “great man” referred to was probably Turgot, but this passage might fairly repre-
sent the ideas of Leibniz himself.
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1 Ethnomathematics: Foreword 

Many societies in the post-modern era follow a value system esteeming individualism, 
competitiveness, and denial of tradition and culture of nations. Such a value system is opposed to 
humanist social values such as solidarity, respect for different cultures and human effort. With this 
perspective, the educational system is called upon today to see instruction in them as a goal not 
only for general education but also for mathematics education, for helping students “understand 
the role of mathematics in our multicultural society and the contributions of cultures to 
mathematics” (Strutchens, 1995). Moreover, discussing the contributions of mathematicians from 
different ethnic groups and of different nationalities, helps students to revere and respect their co-
religionists or members of their nationality who contributed to mathematics by spreading 
mathematics knowledge.  

If we see it from this point of view, there is the potential of understanding mathematics as an 
area whose face is diverse. Thus, it is possible to derive more than a single interpretation of 
mathematical concepts.  

At the basis of the first interpretation is a formal definition, which can be conceptualized by the 
mathematician and is sufficiently absolute, perceptually speaking, to be understood by learners 
thousands of miles apart – one, perhaps, in Australia and the other in Africa.  

The second interpretation stems from expanding the world of the mathematical concept by 
adding a local aspect to the formal aspect. This local aspect is influenced by various interpretations 
– the culture, the era (i.e. the dominant point of view during that time in human history), etc. – 
which enrich the concept and fill it with significance that enables the learner to take a personal, 
and even an emotional interest in it. This interpretation permits looking at the mathematical 
concepts as a spiritual endowment belonging to a particular society’s tradition and customs, and 
opens a window to a mathematical world with a cultural way of expression – in which, alongside 
the formal precision and logic from the world of reason, stand art and religion from the world of 
emotion.  

This is a new way for learning mathematics from a cultural perspective: to learn not only to act 
using mathematical algorithms, but to also learn to understand how they were processed, 
crystallized, and/or took on their form, style, character, or nature. In other words, it is about 
learning mathematics connected by an umbilical cord to other areas, to social and environmental 
problems – mathematics to whose development every culture around the world – or, as 
D’Ambrosio (1985) put it, “ethnomathematics.”  

D’Ambrosio discusses each part of the word “ethnomathematics” separately: he interprets 
ethno within the socio-cultural context, which contains within it the language, vocabulary, and 
norms and behaviors and symbols of a certain group. We can go further in our understanding of 
ethno and identify it as: a) dependent culturally on the group; b) affected by the historical 
developmental process of the group; and c) based on mathematical experience accumulated by the 
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group. Furthermore, D’Ambrosio interprets mathematics as corpora of knowledge derived from 
quantitative and qualitative practices, such as “counting, weighing and measuring, comparing, 
sorting and classifying”. 

Agreeing with and adopting the idea of both sides of the coin of mathematics lead us, like 
Ariadne’s thread, and bring to our awareness mathematical ideas immersed in cultural perspective. 

2 Training teachers in the cultural aspects of mathematics 

Every new idea, no matter how significant and important to mathematics education, its exposure, 
its influence, and its acceptance by many, depends first and foremost on the direction and training 
of the teachers. This is because these teachers are a living bridge joining the theoretical idea with 
its implementation by their actions in the educational field in which the idea seeks to take root.  

Training is required all the more when we aspire to bring teachers to the point of wishing to 
examine the possibility of learning/teaching mathematics with interweaving the subject that deals 
with the characteristics that concern the culture of the people – a subject that is a part of the history 
of mathematics.  

Let us say that there is a need for training planned in advance that includes laboratory 
experience that will lead the teachers themselves to exposure to and experiential study of 
mathematics in sources that lie within their people’s culture. Through this action the teachers can 
understand the potential in integrating ethnomathematics into mathematics teaching, and can 
disseminate the new knowledge in the cultural group from which they come. This is the proper 
way for acquiring the new idea, of taking ownership of it and instilling it in the consciousness of 
many. 

3 Prior to the current study 

The course “History of Mathematics and its Interlacing in Mathematics Teaching” is taught at 
Kaye College of Education to pre-service and in-service teachers from both the Jewish and 
Bedouin (an ethnic nomadic group of Arab background whose religion is Islam) sectors. The 
combination of these three – mathematics, history of mathematics, and cultural uniqueness of each 
of the sectors gave rise to the idea of introducing a fixed chapter into the course curriculum: 
“Mathematics in Judaism and Islam.” Over the seven years, this chapter has been welcome with 
enthusiasm by the teachers learned in the course. Most are exposed for the first time to 
mathematics in the holy writings, and they also discover the names of mathematicians from their 
respective peoples. As it is the opportunity both the Bedouin and the Jewish students “unwittingly 
acquire humanist values, such as respect for the history and tradition of their own and other 
peoples” (Katsap, 2002). This has served as an opening for discussion on these mathematicians 
and their countries of origin, and for the intercultural dialogue that was the salient characteristic of 
the educational process that took place in course. 

The first research, which was conducted in the course three years ago examined, interalia, the 
aspect of the multiculturalism of the history of mathematics. It was noted by all research 
participants that the utilization of fragments and commentaries taken from the Bible (Tanakh in 
Hebrew) and the Koran enabled them to combine mathematics with humanist subjects, and thus 
enrich the mathematics lesson. It was emphasized that this created a link between the internal 
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world, as the participants perceived the Bible or the Koran, and the external world, as they 
perceived universal knowledge and mathematics. Two main findings were identified: a) esteem for 
peoples from different cultures that contribute to mathematics, and b) interest in and appreciation 
of mathematics in Jewish and Islamic writings.  

Thinking about the area of ethnomathematics led to the idea of utilizing students attending the 
course, and to examine the connections of two cultures, Jewish and Bedouin, to ethnomathematics. 

Teachers learn to explore ethnomathematics 
As stated above, the research population included student teachers and teachers from both the 
Jewish and Bedouin sectors. All the Bedouin participants came from settlements in the Negev 
Desert, in southern Israel.  

The learning process involving ethnomathematics was investigated by two mathematical 
themes, time calculation and geometry patterns, that served as background for the research. 
Diverse activities were utilized in order to understand the complexity and use of the themes in 
each culture – first, by setting out and exploring the themes, and second, by analyzing 
mathematical ideas from original and sacred texts and from mathematics practice in order to see 
how they emerge in mythology and culture throughout the generations. 

Ethnomathematics: rooted in tradition and religion, and now in the college classroom 
In the framework of the theme of time calculation, the participants were exposed to the work 
involved in constructing a calendar, gained experience with complex techniques of calculation for 
determining the dates on which the holidays fall and for counting the days of holidays. The 
participants, who had up until now accepted these items of information as facts without giving a 
thought to the people who had carried out the complicated work of calculation, expressed their 
honest amazement at the knowledge in which mathematics, the history of the people, and customs 
and tradition were involved and that they were only now discovering for the first time. They 
agreed that there was a need to continue researching the respective culture to which they belonged, 
Jews and Bedouin. I will make do with a brief report regarding time calculation, and will then 
focus on two of four topics that were presented on the theme of geometry patterns: a) Learning 
Transformations: Researching Bedouin Dress Embroidery; and b) The Hemisphere Bowl Shape, 
The Circle, the Jewish Kippah, and In Between.  

These topics stood out among the other topics (“Learning the Characteristics of the Equilateral 
Triangle and Investigating the Star of David – the Symbol of Jewish Culture,” and “Geometric 
Motifs in Bedouin Carpets”) in the interest that they aroused among the participants, since the data 
collection, the investigation, and the subsequent fruitful class discussion showed that mathematics, 
whose source lies in the tradition of both the Jewish and Bedouin cultures, is all around us, and is 
available to anyone who aspires to know, to see, and to understand.  

The greatness of ethnomathematics lies in its ability to be, in the words of Ascher (2002), 
"elsewhere," to connect human experience – which emanates from the existential needs of man 
who throughout human development has sought solutions and tried to understand by means of 
creating geometric patterns of the world around him – and mathematics. The practical problems 
and ways of solving them that are obvious to us today, from the heights of the mathematical 
knowledge developed over generations of human civilization as primitive problems, still exist and 
are active and applicable in all things regarding traditional work. I refer here to knowledge that has 
over time become "oral law" passed down from father to son and/or from mother to daughter, and 
that can expand the pedagogic knowledge inculcated to the teacher even during his training.  
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The Jewish woman or the Bedouin woman who observes her religious commandments and 
rituals will teach her daughters to crochet a skullcap or embroider a bridal gown before they reach 
marriageable age – not to mention the acquisition of knowledge in calculating whole numbers and 
fractions (counting stitches) or developing skills for using different types of isometric 
transformation: reflection, rotation, translation, or glad reflection skills required to shape the 
appropriate decoration that includes geometric patterns. Ethnomathematicians report on the 
consistency in the use of practical mathematics in a particular culture in which the methods and 
ways for carrying out tasks are carefully preserved.  

Learning transformations: researching bedouin dress embroidery  
The Bedouin mother teaches her daughter to repeat and memorize the knowledge that she herself 
received from her mother and from the other elder women of her family; she does this in the hope 
that when the time comes, her daughter will convey the knowledge to her daughters and those who 
come after, and thus tradition will be preserved. The Bedouin woman also demands that her 
daughter seek a way to obtain perfection by precision that she considers esthetic – which is 
considered one of the important elements in accomplishing the final goal in embroidery.  

The young Bedouin woman invests much thought in rearranging the fixed geometric patterns of 
the embroidery she acquired from her mother, knowing that by doing so she will embroider an 
original creation that will attract her girlfriends’ attention. This is an innovation in recent years, 
this search for the “new.” This innovation reflects Bedouin girls’ great interest in higher education, 
their desire to compete and to succeed, and their wish to make their place in a fundamentalist 
society. 

The samples of dress embroidery presented in class show elements identified with the general 
Bedouin culture, as well as with the special composition that characterizes the dress embroidery in 
the Negev, as arises from stories and explanations collected by a group of participants in the 
research who investigated this subject. The surprising element was that the fascinating information 
about the decorations embroidered on the dresses was new not only to the Jewish participants but 
also to the Bedouin participants – even though they saw Bedouin dresses every day of their lives. 
Samples of embroidery were presented in the classroom, and it was stated that it arises from an 
investigation of the research literature on the subject that “geometric patterns serve as a basis for 
common embroidery patterns.” They added that “the square, the triangle, and the circle, the most 
common forms in the Muslim world, have the attribute of protection against the evil eye, while the 
symmetry calm and equilibrium.” That is, constructing the samples demands that the woman doing 
the embroidery have knowledge in the different types of transformation and symmetry. This is 
how the styles of embroidery were explained in the class (based on Tal’s article, 1990):  

The style of the Bedouin embroidery is characterized by symmetry created by repetition of 
patterns and colors. It is possible to find several types of symmetry: a) symmetry of half and 
quarter, in which each half or quarter is symmetrical to the second half or quarter, and 
sometimes there is also division into eighths; b) symmetry of repeated repetition of a basic 
pattern – usually reversed; c) diamond symmetry, in which the forms are repeated upon 
themselves from the center outwards; and d) symmetry of color – stemming from repetition of 
the order of the colors. 

The class discussed the significance of composition, which accompanies to the act of creation and 
adds enjoyment. It is also connected to the colors chosen for the embroidery. The color in the 
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embroidery symbolizes the woman’s status in society: For example, red embroidery symbolizes a 
fertile woman; in contrast, blue embroidery means a widow.  

What amazed the Bedouin students in the course was that the Bedouin women who do 
embroidering and crocheting haven’t a clue that they are using mathematics. They see their work 
as art, as honoring tradition, as local custom, or as something whose source expresses the non-
explicit law of the local culture.  

The hemisphere bowl shape, the circle, the jewish kippah, and in between  
Men have covered their heads as a sign of respect for God since the time of Moses. In the Talmud 
(Shabbat 156b, second century CE) we find, “Cover your head in order that the fear of heaven may 
be upon you.” From 1500 CE onwards the custom became obligatory, when Rabbi Caro ordered 
Jewish men to appear in public with their heads covered (Raskin, 1990). Over the past three 
centuries, in some European communities, the hat has evolved into the smaller skullcap – kippah
in Hebrew or yarmulke in Yiddish, from the Aramaic yerai malka – rounded or dome-shaped 
(according to Leo Rosten). 

Hernandez (Internet source) describes the tradition of covering the head in various cultures 
throughout history, and tells in detail about the tradition of kippah-wearing in Jewish culture. In 
Israel, wearing a kippah also has a social significance. Secular men wear a kippah while attending 
religious ceremonies.  

The kippah differs from any other hat in its shape and style, and is a kind of bridge between 
wearing a hat and going bareheaded. In principle, there is no dictate regarding how it should be 
made: different colors; different materials (fabric or crochet), different decorations (also 
undecorated); different forms. Common to all is that the kippah is placed on the head; it is a three-
dimensional hemisphere, and it ends in a circle. Thus, the wearer can be identified as a member of 
a particular religious community according to the size and decoration of his kippah. 

A discussion on the kippah can be directed towards three points of reference: first, the color of 
the kippah; second, the decoration of the kippah; and third, the form of the kippah. The color of 
the kippah indicates affiliation with a particular religious group or stream. Thus, a black cloth 
kippah indicates that the wearer belongs to the orthodox stream of Judaism; other believers wear 
colored kippah.

A group of participants that presented the subject of the kippah in the course discussed how the 
kippah’s decorative pattern has no specific meaning, and how the decorations are in the patterns: 
combinations of geometric patterns appearing as a decorative band; flowers; decoration using 
symbols such as a Star of David, and others. Included in the activities while the subject was being 
presented in the course was a presentation of patterns for decorations; the mathematics subject was 
“Symmetry in Kippah Decoration” and the participants were required “to identify geometric 
patterns and examine types of symmetry created with the use of these patterns. The presenters 
explained that the person crocheting the kippah must take the design of the decoration into 
account. 

A study carried out during the activity examining the kippah began with the presenters 
explaining that the basis of the kippah is necessarily a circle. As we know, the mathematical 
concept of the circle has fascinated the Jews since biblical times, with verses depicting the 
calculation of  appearing in the Bible. Later, a group calculated the length of the circle required 
to fit a kippah to the head of one of the participants, when according to the circumference of the 
head and the formula of the circumference of the circle 2 R, they looked for the radius R of the 
kippah.  
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Another activity examined different kippah shapes. Thus, for example, among the Bukharan 
Jews, kippah decoration and form were strongly influenced by the dominant Muslim culture where 
they lived; these kippahs are very different from kippahs from other places. 

4 Meeting ethnomathematics face to face: what teachers say  

Following are the opinions of the participants in the study, on the three issues concerning 
ethnomathematics and teacher training in ethnomathematics:  

1. Becoming aware of the variety of sources of information on ethnomathematics  
In their search for material on the selected subject, the participants used the Internet, 
encyclopedias, and books of sources with a focused religious or cultural character. Also used were 
books depicting each of the types of activity identified with practical mathematics as manifested 
both in crafts such as knitting/crocheting, weaving, embroidery and works including culture-
identified patterns, and in enumeration, calculation, measuring, arranging, and sorting. This latter 
includes making calculations for preparing a calendar, determining dates in which the religious 
holidays occur, and counting the days of the holidays. The participants from both the Jewish and 
Bedouin sectors told of those who were sources of information, enumerating as follows: a) those 
with authority in the area in question; b) a religious figure; c) those with expertise in the area; and, 
most commonly, d) elderly family members. All the participants stressed that the people to whom 
they went could not point out a direct connection between mathematics and the subject being 
investigated, which was taken from the cultural way of life.  

Following is a story written down by one participant, and in it he relates his encounter with a 
source of information (not coincidentally, his own mother) regarding weaving Bedouin carpets:  

My group chose to present a paper on ‘Geometric Motifs in Bedouin Carpets.’ I remembered 
that my home has carpets with different geometric forms. Then I went to my mother and to the 
elderly women in the family, and I asked them about the forms in the carpets. They responded 
with surprise bordering on refusal: What? You’re interested in women’s handicrafts? I 
explained to them that this was an assignment I had took upon myself as part of the preparation 
of my paper for college, and that the subject of forms is connected to geometry, an area that I 
am studying in the framework of my degree studies in mathematics teaching. Their immediate 
reaction was that I had come to mock their work, and it only when I reassured them and told 
about the geometric forms appearing in the carpets that they had made, such as triangles and 
squares, that they complied with my request, and began to tell me how the work of carpet-
weaving is done.  
In the end, they added that they had never thought that what they were doing was connected to 
mathematics. 

2. The importance of training the mathematics teacher in the cultural aspects of mathematical 
ideas through exposure to mathematics practice and texts from the sources of culture  
Among the participants, there was general agreement about the importance in training the teacher 
in ethnomathematics. They gave the following considerations: 

The teacher needs to have extensive general knowledge, and not to focus only on mathematical 
knowledge, and learning the cultural aspects of mathematics adds to this. 

One teacher said:  
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A subject that I did not previously like, such as the theory of different symmetries, I saw 
suddenly in a new way in this course, after it was connected to the culture of my people. It 
was easy to understand and I now like it, and therefore I definitely think that the process of 
exposing the teacher to the cultural aspects of the mathematical ideas is one that contributes 
to the training of the teacher. 

3. The benefit of combining topics from ethnomathematics in mathematics teaching  
The participants were very appreciative of the benefit of combining topics from ethnomathematics 
in mathematics teaching. The following list includes the characteristics of this benefit, in the 
participants’ own words:  

1. An increased sense of the pupils’ identity and belonging to their people 
2. Enriched learning on the subject of the lesson, expansion of the pupils’ world of 

knowledge.  
3. Learning mathematics through doing - more attractive.  
4. Bestowing upon the pupils wholeness and connection with their people and their 

roots.  
5. A change in the understanding of mathematics.  
6. Appreciation of communities that knew to use mathematics without being familiar 

with mathematical concepts.  
7. Creating interdisciplinary interaction.  
8. Breaking the routine framework of the mathematics lesson. 

The key word that starred in the comments of every single participant – often more than once – 
was “ours.” This word was used out of pride, both in the context of the connection between 
mathematics and each of the cultures of those participating, and when members of one culture in 
the class appreciated the practical mathematics of the members of the other culture.  

The participants claimed that the cultural discourse, which that continued beyond mathematics 
and filled the air of the college classroom with much sympathy, respect, and, most of all, 
amazement mixed with mutual appreciation, only reinforced the attention to mathematical 
concepts that were found to be useful in the daily life of both of the cultures of the participant. 

5 Conclusion 

Today, practical mathematics is found in the social strata in Israel that identify with preserving 
tradition and religion. Raising the subject among students of teaching and creating in them, 
through discussion, awareness of the preservation of the mathematical knowledge existing in the 
culture of the people, can bridge between the secular world and the world of the religiously 
observant – which is a social goal. It can also add interest to and deepen the perception of 
mathematical concepts – which are pedagogic and scholastic goals.  

Focusing on a chapter in ethnomathematics in the course on History of Mathematics, created a 
subjective niche and a search to understand the history of practical mathematics in the culture of 
the participant’s people. Nevertheless, exposure solely to mathematics in the culture of the people 
would not be sufficient to change the views of the course participants towards the relevant 
mathematical concepts without an on-site investigation of the subject, a search in the sources, and 
building content for the mathematics lesson. This method helped organize the required 
mathematical knowledge by comparing and finding similarities between the intuitive perception of 

480



a particular concept based on the years-long practice passed down from generation to generation, 
and the perception of the concept as part of the system of structures. 

Learning mathematics through doing, opens, first of all, a hidden window to the emotions of 
the teaching students. Therefore, learning through doing gives an opportunity for a non-
threatening mathematics encounter that is connected to the society in which they seek to survive 
and grow. This way create a learning environment that encourages the creation of interdisciplinary 
contexts and connections to the real social world – and, by so doing, cultivate an understanding of 
mathematics as humanist mathematics.  

The encounter with mathematics in the culture of the people, as a kind of additional lighting on 
the stage where teacher training takes place, has illuminated the dark areas of the stage – areas 
which, had this encounter not been made available within the college, would never have been 
illuminated. Just like the composition of embroidery, in which the esthetic final product depends 
not only on one particular item, however stunning, but on the matching of all the items in the 
composition so as to create harmony, ethnomathematics has succeeded in filling empty spaces, and 
has helped to create a continuum of an holistic perception of mathematical knowledge. The 
human-social side of mathematics, the deep roots of which came into being along with the roots of 
the people and its culture, increased understanding of the formal side of mathematics, and made it 
possible to give an new interpretation to the long-known mathematical concepts.  

Both these aspects created in the teaching students an enlightenment that can influence towards 
not only improvement in pedagogic methods for presenting mathematics content, but first and 
foremost expand horizons, improve pedagogic capabilities, and empower them in their own 
understanding and perception of the mathematical concepts and structures.  

The fact that the process of rediscovery takes place during the training period, as some of the 
students have not yet begun their teaching careers while the others are only beginning their 
careers, leaves an optimistic taste and a hope that the combination constructed by the participants 
under laboratory conditions within the college will gather momentum and that they, the 
participants, will want to continue on this path in the real arena where the mathematics education 
of their pupils takes place. 
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ABSTRACT 
Tangram is a rather popular recreational and educational puzzle in the East and West. The common form of 
the Chinese Tangram consists of seven pieces, which have been crafted using all types of material, from 
cardboard to stone and plastic to ivory. Although its origin is still rather obscure nowadays, the earliest 
known publication of Tangram problems can be dated back to at least the very early 19th century. By using 
the seven basic pieces of the Tangram, one can construct many interesting figures and geometric shapes. 
The purpose of this paper is to describe and classify the Ancient Chinese Tangram problems found in the 
literature. Besides, its applications in stimulating students’ creativity and problem solving skills will also be 
included.  

1 Introduction 

According to Chinese legend, Tangram has been developed and originated from the book of Yijing 
since 2000 BC (Leung and Kwan, 2005). Since the Ching dynasty (1796-1820), various types of 
Tangram have been created and become popular in Chinese society. According to Suen (2001), 
Tangram has been generalized from seven pieces into a complicated wooden board with fifteen 
pieces as shown Figure 1. Some pieces are marked with Chinese characters of Eight Trigrams on 
them. According to Martzloff (1997), the fifteen pieces of puzzle were designed according to the 
essence the Eight Trigrams in Yijing and the philosophy of Taichi and Yinyang. Hence, the total 
number of pieces is equal to 15. However, the original Tangram, called the Seven-Board of 
Cunning, consists of only seven pieces of different geometrical shapes, which are dissected from a 
square, as shown in Figure 2. 

Figure 1 A Chinese Tangram Figure 2 A Seven-Board of Cunning ( )
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The constructed figures by Tangram are normally named after their shapes. However, some of 
them may not have an appropriate name. When they have definite connotations, the constructed 
figure itself can be treated as a kind of language sign or symbol. A series of constructed figures 
can be used to compose a story and the figures themselves will be the main characters or objects 
inside. In the diagram below, we can see such kind of examples. Therefore, as mathematics 
teachers, we can make use of the Tangram to stimulate the student’s creativity. In fact, the figures 
appeared in Figure 2 have been constructed by Tangram in a primary mathematics lesson in Hong 
Kong. The students found that the activity is fascinating and good for developing their creative 
thinking. 

2 The mathematics of Tangram 

According to Elffers (1976), Tangram can be classified as convex Tangram, grid Tangram and 
connected Tangram. We shall briefly introduce such classification in this section. In addition, we 
shall discuss the application of angle sum of polygon, solution of indefinite equation and the use of 
Picks formula. We hope our discussions will be found useful to mathematics teachers and 
educators. 

(1) The Convex Tangram 
A Tangram figure is called convex when every point on a line joining any two points on the figure 
lies within the figure. For instance, a full moon is convex but a crescent moon is non-convex. A 
Tangram can be divided into sixteen identical isosceles right-angled triangles, which are called the 
basic triangles. If the lengths of the shorter sides of a basic triangle are rational numbers, then the 
length of the hypotenuse will be an irrational number. Assumed that a convex polygon has n
angles, p of these being acute (45o), q obtuse (135 o) and r right-angled (90 o), the relationship of p, 
q, r and n satisfies the following equation. 

nrqp (1) 
On the other hand, since the sum of all angles of a convex polygon with n sides is equal to (n-2) × 
180 degrees, another equation follows from the simple property of polygon as follows: 

0000 180)2(9013545 nrqp (2) 

Eliminating n from equation (1) and equation (2), we can obtain: 
823 rqp (3) 

Since p, q, and r are the sides of the convex polygon, we can determine the number of sides with 
the corresponding number of acute, obtuse and right angles in the convex polygon.  

Name of convex 
polygon 

Value of p
(acute angle) 

Value of q 
(obtuse angle) 

Value of r
(right angle) 

Octagon 0 8 0 
Heptagon 0 6 1 
Hexagon 0 4 2 
Hexagon 1 5 0 
Pentagon 0 2 3 
Pentagon 1 3 1 
Rectangle 0 0 4 
Quadrilateral 2 2 0 
Quadrilateral 1 1 2 
Triangle 2 0 1 

Table 1. Integer solutions for the indefinite equation 823 rqp
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As p, q, r are non-negative integers, it follows from Table 1 that the polygon can have a 
maximum of eight sides, with eight obtuse angles (octagon); seven sides with one right angle an 
six obtuse angles (heptagon); six sides with two right angles and four obtuse angles (hexagon), or 
one acute and five obtuse angles (hexagon); five sides with three right angles and two obtuse angles 
(pentagon), or one right angle, one acute and three obtuse angles (pentagon); four sides with four 
right angles (rectangle) or two acute and two obtuse angles (quadrilateral) or one acute angle, two 
right angles and one obtuse angle (quadrilateral); and finally three sides with two acute angles and 
one right angle (triangle). It is clear that each of these polygons can be drawn within a rectangle 
PQRS so that the rational sides of the heptagon ABCDEFG lie on the sides of the rectangle, as 
shown in Figure 3.  

Let PQ = x, QR = y, PA = PG = a, BQ = QC = b, ER = DR = c, GS = SF = d. Assumed the 
area of a basic triangle of the Tangram is 1 square unit. As the convex polygon has an area of 16 
basic triangles, it follows that there are exactly 20 convex polygons that can be formed by 16 basic 
triangles, but only thirteen polygons of twenty convex polygons constructed by using Tangram. 

P

G

S

B
Q

F

C

D

RE

A

Figure 3. A convex polygon within a rectangle 

Since the area of the polygon ABCDEFG is )(
2
1 2222 dcbaxy , so 2222 dcba  is 

minimum when a, b, c, and d are getting close together, and xy is maximum when x and y differ 
very little. For different numbers of irrational basic triangle side, there are a lot of constructible 
polygons. Teachers can ask the students to investigate the maximum area of the convex polygons 
in class. 

(2) The Grid Tangrams 
A grid consists of points of a plane with integer valued x and y coordinates. A grid Tangram is a 
Tangram in which every vertex of the seven pieces coincides with points of the grid. It is 
interesting to find that every grid Tangram can be formed into a convex polygon by adding basic 
triangles. In order to play the grid Tangrams in class, convexity number is defined as the smallest 
number of basic triangles required to form a grid Tangram into a convex polygon. The 
corresponding convex polygon is defined as the convex hull of the Tangram. The convex 
Tangrams with convexity number zero are their own convex hull. For example, there are only 13 
convex Tangrams with convexity number zero in Figure 4. 
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Figure 4. Convex Tangrams with convexity number zero 

Since a convex Tangram consists of 16 basic triangles, a figure which is possibly a Tangram can 
be produced if a basic triangle is removed form a convex polygon made up of 17 basic triangles. 
Therefore, it is possible to obtain some Tangrams of order one (convexity number equal to 1), 
namely 1-convex Tangrams, as shown in Figure 5. If fact, we can count the number of “empty 
basic triangles” removed to form a convex polygon, and this number is exactly equal to the 
convexity number. It is clear that only one empty basic triangle appears in each of the Tangrams in 
Figure 5, and it follows that all Tangrams in the figure are of order one. They are all 1-convex 
Tangrams. 

Figure 5. Convex Tangrams with convexity number one 

Similarly, following the same method, it is easily to obtain Tangram of order two (convexity 
number equal to 2), namely 2-convex Tangrams. As shown in Figure 6, they are 2-convex 
Tangrams. 
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Figure 6. Convex Tangrams with convexity number two 

Therefore, we can find all n-convex Tangrams. The following Figure is a 19-convex Tangram 
because 19 basic triangles required to form a grid Tangram into a convex polygon, the number of 
empty basic triangles is required to remove to form a convex polygon (i.e. the convexity number is 
19), as shown in Figure 7. 

Figure 7. A 19-convex Tangram 

Applying the Picks formula 1
2

NLA , (where A is the area of the Tangram, L is the number 

of points on the edge and N is the number of points inside the Tangram), we can find the area of 
the 19-convex Tangram. Since the number of points on the edge of the Tangram is 18 and no point 

is inside the Tangram, the area of the 19-convex Tangram is therefore equal to 10
2

18
 = 8 

square units. 
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(3) The Connected Tangrams 
A Tangram is called connected when any two points in the Tangram can be joined by a curve, 
which lies entirely within the Tangram. Intuitively, there is a limit to the size of the convexity 
number in the case of a connected Tangram. If we call a series of consecutive basic sides of a 
triangle as an arc, a connected Tangram always has a border, which is to say that all the pieces lie 
within a closed arc consisting of basic sides of the 16 basic triangles of the Tangram. This arc is 
therefore either a straight line or two lines with an angle of 135 degrees between them. In both 
cases, the arc is the shortest connection between the two end points. 

3 Concluding remarks 

The Tangram can be used as a game or a mathematical activity for students to construct 
geometrical figures, such as polygons, animals or daily-life objects. Moreover, the geometrical 
properties of Tangram can be integrated in the study of polygons and indefinite equations. In 
particular, students are able to construct convex Tangrams with convexity number n, and find the 
area of the grid Tangram using the Picks formula. Also, a series of Tangrams can be used to 
construct a Chinese story according to the imagination of the player.  

In fact, students have to experience the following thinking process when they play the 
Tangram. First, they have to observe the figures. Second, they have to recognize the shape of the 
figures. Third, they have to find out the characteristics of the figures. Fourth, they have to identify 
and separate the figures into basic geometric shapes. Finally, they need to judge and combine the 
basic geometric shapes into a Tangram. Therefore, the Tangram puzzle can stimulate the students’ 
creativity, enhance their learning motivation and inspire their mathematical imagination. 

REFERENCES 

-Elffers, J., 1976, Tangram: The ancient Chinese shapes game, London: Penguin. 
-Leung, H.K., Kwan, S.P., 2005, “Tangrams for children”, Hong Kong Journal of Early Childhood: 
Mathematical and Scientific Thinking, 4 (1), 53-56. 
-Martzloff, J., 1997, A history of Chinese mathematics. London: Springer. 
-Suen, W.S., 2001, Tangram, Taipei: Jiuzhang Publishing co. 

487



Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006 

THE WAY OF THE LUOSHU:
An examination of the magic square of order three as a mathematical and cultural 

artifact 

Frank J. SWETZ
The Pennsylvania State University 

616 Sandra Avenue - Harrisburg, PA - 17109 U.S.A. 
fjs2@psu.edu

ABSTRACT 
The magic square of order three originated in China where it was called the Luoshu. This number array 
served the Chinese as a cosmic map, a symbol of harmony and balance. It supplied a geometrical, 
metaphysical and numerical “world view” for their theories of yinyang and wuxing [the Five Phases] and 
eventually by the time of the Song dynasty (960-1279) evolved into a Daoist ritual charm. Outside of China, 
this magic square and its mystical powers were readily adopted by Hindu and Islamic societies. It eventually 
became known in Europe as a talisman associated with astrology. The history and use of this magic square 
serves as an example of the diversity of mathematical thinking across cultures and societies. A classroom 
discussion of its history and an exploration of its mathematical properties provide a wealth of 
learning/teaching experiences. 

1 An historical perspective 

A problem found in the Annales Stadenses of Cologne (ca. 1240) goes as follows: 

There were three brothers [monks] at Cologne who had nine casks of wine. The first cask 
contained 1 measure, the second 2, the third 3, the fourth 4, the fifth 5, the sixth 6, the seventh 
7, the eighth 8 and the ninth 9. Divide this wine equally among these three without breaking 
any casks. 

and an answer provided: 

To the oldest, I give the first [cask], the fifth and ninth, and he has 15 measures. To the middle 
one, I give the third, fourth and eighth and likewise he has 15. So to the youngest I gave the 
second, sixth and seventh; and thus he also has 15, the wine is divided and the casks are not 
broken (Singmaster, 1998) 

To a knowledgeable, contemporary reader each monk’s wine ration can be recognized as the 
column entries in a third-order, natural magic square. The existence of such a problem testifies that 
the third-order magic square and its properties were known and used in Europe by at least the 
thirteenth century. But the essence of this puzzle problem precedes its European appearance and 
can be traced back to the Luoshu, a third-order magic square configuration of ancient China. While 
legendary dating places this magic square in the Xia dynasty (2200 BC), historically its origins are 
found in the Warring States Period (475-221 BCE). 

Ancient Chinese history abounds with legendary beings: warrior kings, beneficent emperors 
and mystical creatures. It is in such a setting that we first learn of this magic square. Yu the Great, 
founder of the Xia dynasty and one of the three Sage Kings, was standing on the bank of the Luo 
River, a tributary of the Yellow River. From out of the water emerged a tortoise bearing on its 
shell an array of symbols representing numbers (See Figure 1). Within these numbers Yu saw a 
plan of China that helped him to alleviate the existing floods of the time. The configuration also 
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provided him an understanding of all science and mathematics necessary to rule his empire. This 
numerical configuration became known to the Chinese as the Luoshu, or Luo River document. 

In fact, the first textual reference to the Luoshu appears in the writings of Zhuang Zi (369-286 
BCE), one of the founders of Daoism. He refers to the “nine luo”, a phrase assumed to be a 
succinct reference to the elements of the magic square. Xu Yue, an astronomer/mathematician, in 
the second century BCE published Memoir on Some Traditions of the Mathematical Art in which 
he referenced the “Nine Halls Calculation” and the “nine palaces”. Finally in the first century BCE 
there appeared Record of Rites by Dai the Elder which discussed the ritual traditions of the Zhou 
dynasty. Among these traditions was the existence and use of a cosmic temple, the Mingtang. This 
temple was built on a square base representing the earth and supported a round roof representing 
heaven. Its interior was divided into a grid of nine rooms or chambers, symbolizing, among other 
things, the nine divisions of the earth, of which China was the middle kingdom or alternatively the 
nine provinces of China. These rooms and their ordering figured prominently in temple 
ceremonies (Soothill, 1952). Within the Record of Rites is a set of numbers: 2, 9, 4; 7, 5, 3; 8, 1, 6 
where, it is assumed, each number was associated with a particular room. Thus under the 
prescribed ordering the Luoshu, as we now recognize it, emerged (See Figure 2). Finally in the 
tenth century, Zheng Xuan (ca.906-989), a Daoist scholar, published a diagram of the Luoshu
depicted as an arrangement of knotted cords. Zheng’s graphic rendering is often referenced in 
contemporary books on the history of mathematics. 

During the reign of the Han Emperor Wudi (140-87 BCE) one god, Taiyi, emerged from the 
Chinese pantheon as a deity of special importance. Taiyi, the “Sky Emperor” was believed to 
reside in a palace that occupied the center of the night sky. Taiyi’s abode was surrounded by the 
palaces of eight cohort but lesser gods. Heaven and earth were both thought to possess a nine-cell 
structure. Paralleling the obligations of China’s emperor in making yearly inspections of his 
provinces, Taiyi similarly made an inspection tour of his realm visiting the other palaces. His 
envisioned path of travel followed the sequential ordering of the Luoshu’s numbers, and when 
committed to memory, this path became a dynamic algorithm for generating the Luoshu.
Eventually this circuit became known as Yubu or the steps of Yu in deference to the mystical 
emperor. Yubu became incorporated into Daoist ritual as a cosmic dance and when expressed as a 
symbol, it was a charm for good fortune (See Figure 3). The Luoshu became a cosmogram 
assisting seers to determine China’s place in the universe. Firmly embedded in Daoist ritual, it 
served as a basis for fortunetelling and geomancy (Cammann, 1961). 

2 The numerical and metaphysical significance of the  
Luoshu 

Two numbers in particular dominate the conception and operation of the Luoshu. They are 9 and 5. 
For the Chinese, nine represents completeness, fulfillment, and longevity---all desirable attributes. 
In ancient China, one finds a reckoning of time based on “Nine Cycles” where each cycle 
represents twenty years; the imperial civil service was comprised of “Nine Grades” of Mandarins 
who, in turn, were promoted on a system of “Nine Classes of Merit”. In particular, the number 9 
was associated with the emperor: royal gifts were presented in groups of nine and imperial 
submission was demonstrated by the kowtow, kneeling before the emperor three times and for each 
time, touching one’s head to the floor three times, for a total of nine. Within the Luoshu, there are 
nine cells and the numbers 1-9. The total sum of all entries is 45 which, when its digits are added 
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together, becomes 9. A deeper association with “nineness” is obtained through various 
correlational analogies: the nine provinces; the nine rivers; the nine mountain ranges, etc. 

While the “nineness” of the Luoshu establishes the diagram as something of a map, its 
“fiveness” provides it with a dynamic character. The magic square could not exist without the 
number 5 occupying the key central cell. In this position, it figures into calculations for the magic 
constant more often than any other number. Five is also the mean for each pair of outer numbers 
connected by a straight line through the center. That is, 5 is the mean for each of the pairs: (4,6); 
(3,7); (9,1) and (8,2). Thus 5 is the element that balances the square. In its pivotal position, it could 
be associated either with the emperor or China. Also 5 times the order of the square, 3, gives the 
magic constant 15. This rule will work for any odd-ordered magic square; that is, the number in 
the central cell multiplied by the order of the square equals the magic sum. 

Quite early in their cosmological observations, Chinese scholars noted the dualistic rhythms of 
the world around them: night followed by day; the sun succeeded by the moon in the sky; birth 
followed by death and so on. In a sense, human existence took place in a realm of competing 
opposites constantly in flux. In their attempts to understand the conditions of change, the Chinese 
developed the system yinyang. Simply, the yin, the female, “weak” force and the yang, the male, 
“strong” force, comprise a synchronized system for change. In its metaphysical reading the Luoshu
represents a state of harmony and cosmic equilibrium. The yin,yang forces balance and 
complement each other. Odd numbers are yang and even numbers yin. In the Luoshu
configuration, yin numbers are separated from yang numbers. In the whole configuration there is 
an even number (four) of yin numbers and an odd number (five) of yang numbers. The sum of all 
the numbers is 45, a number whose digits 4 and 5 represent yin and yang numbers respectively. 
The Chinese classified all objects as either yin or yang. In particular, they applied this 
classification to directions. The strong cardinal directions plus the center were assigned yang
numbers: north, 1; south, 9; the center, 5; east, 3; west, 7. Subcardinal or weak directions were 
assigned yin numbers. Thus this orientation helps in the viewing of the Luoshu as a physical map. 

While the waxing and waning of yinyang forces could help to explain some manifestations of 
change, a more subtle analysis/interpretation of change was necessary. This theory appeared in the 
concept of wuxing, which attributed change to the action of five processes or phases which, 
depending on how they were encountered, could result in a destructive cycle or a creative cycle. 
The five processes the Chinese noted were: earth, wood, water, fire and metal. The principal 
counting numbers, 1 - 9, were associated with the Five Phases according to the following scheme: 

Water Fire Wood Metal Earth 
1 2 3 4 5 
6 7 8 9  

In this designation each pair is a balance of a yin number and a yang number; five retains a special 
status. With this number reckoning, the Luoshu also became a device for wuxing predictions.   

3 The Luoshu in other cultures 

By the time of the Song dynasty (960-1279), the Luoshu had lost much of its cosmic significance. 
It remained embedded in Daoist beliefs and as an occult device. Trade connections and religious 
missions spread a knowledge of the magic square to adjacent civilizations. Magic squares of order 
three were known and used in India by the year 400. They were used as devices to pacify the nine 
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planets: sun, moon, Mars, Mercury, Jupiter, Venus, Saturn and the imaginary Rahu and Ketu. In 
this scheme, the magic square representing the sun is obtained by a 180º rotation of the Luoshu. It 
was also used as a yantra, a mystical diagram possessing special power, to ease the pain of 
childbirth. By the seventh century astrological theories and practices of yinyang and wuxing were 
adopted in Tibet. A method of “nine palaces” was included in these practices and the Luoshu
became firmly embedded in Tibetan astrological and divination ceremonies. Daoist and Buddhist 
missionaries from China imported with them into Japan the popular metaphysical theories of their 
homeland; however the first documented existence of the Luoshu appears in a text written in 970. 
The Japanese employed it primarily as a device for occult purposes. 

The first recorded Islamic involvement with magic squares is attributed to Jabir ibn Hayyan, 
the Father of Islamic alchemy. Jabir, an enigmatic figure and prolific scientist, was known in the 
West as Geber. Muslim scholars adopted the Greek concept of material creation being based on 
four primary elements: Water, Fire, Earth and Air. Affected by Pythagorean number mysticism, 
Jabir deduced a series of ratios in which the four elements combine to form all substances. Jabir 
projected his number theories onto the Luoshu. Associating the number 17 with harmony and a 
“World Soul”, he found this in the sum of the Luoshu’s four numbers: 1+3+5+8=17. These 
numbers are contained in the lower, left subsquare of the Luoshu. These numbers also represented 
the Four Elements: 1-fire; 3-earth; 5-water and 8-air. The remaining numbers in the magic square 
form a gnomon and when summed: 4+9+2+7+6 result in 28. Twenty-eight is the second perfect 
number in the Pythagorean tradition and it is the number of the seven planets and the “mansions of 
the moon”: 1+2+3+4+5+6+7. The “mansions of the moon” are the twenty-eight regions of the 
heavens marking the moon’s monthly passage and were used in frequent reference by astronomers 
and astrologers of the times. 

Further Jabir associated the Luoshu and its related numerology to his practices of alchemy. 
According to his theories, all substances possessed properties dependent on the Four Elements and 
their ratios. Properties were determined by fixed ratios centered on the number 17 and, if the ratios 
were altered, a transmutation of the substance could take place. In his Book of Balances, Jabir 
analyzed lead as containing 3 parts of coldness and 8 parts of dryness as “outer qualities” and 1 
part of heat and 5 parts of humidity as “inner qualities”, whereas gold possessed 3 parts of heat 
and 8 parts of humidity as outer qualities and 1 part of coldness and 5 parts of dryness as inner 
qualities. Alchemists held that the proportions of these qualities could be altered and, in theory, 
lead could be changed into gold. This originated the famous medieval quest of converting a base 
metal to gold. 

Jabir also introduced a coded system of magic squares where numbers were represented by 
symbols of the Arabic alphabet. This system became known as abjad, a meaningless word formed 
from the first four letters of the Arabic alphabet. Abjad variants of the Luoshu became powerful 
talismans among Muslims and their neighbors. Magic squares found many uses within Islamic 
traditions, however astrology became a main focus of their use. Eventually each of the seven 
recognized “planets” was assigned a magic square and further a specific metal upon which the 
square was to be inscribed. The Luoshu represented Saturn and its assigned metal was lead. 

From Islamic sources in North Africa, knowledge of the Luoshu in its astrological version 
spread to Spain. There in the eleventh century, Ibn al-Samh (d. 1035) published Book of the Plates 
of the Seven Planets; lost in its original Arabic, the book’s contents were reproduced in the 
Spanish work, Libros del Saber de Astrologia. Alfonso X, King of Castile, ordered a compendium 
of astrological and cosmological beliefs published. This book, written in Latin, appeared in 1256 
under the title Picatrix and introduced Christian Europe to planetary amulets based on magic 
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squares. The Luoshu found its way into the mystic traditions of Kabbala where its numbers were 
replaced by letters of the Hebrew alphabet. As an occult and astrological device associated with 
the planet Saturn, the Luoshu attracted the attention of such mathematical practitioners as Paolo 
Dagomari (1281-1374), Luca Paciolo (ca. 1445-1509), Girolamo Cardano (1501-1576), Adam 
Riese (ca. 1489-1559) and Michael Stifel (1486-1567). But it was the mystic Henricus Cornelius 
Agrippa von Nettesheim (1486-1536) who firmly established the occult reputation of the Luoshu
in Europe by discussing its use in his De occulta philosophia (1531), a manual of “white magic”. 
In the West, this reputation has been retained until the present day (Swetz, 2002). 

4 Some mathematical and pedagogical considerations 

Thus imbued with a cultural and historical background of the Luoshu, consider some classroom 
exercises and questions that can promote mathematical thinking and be used to reveal more of the 
mathematical properties of this square.  

Presenting the square to a class, I ask them to describe what mathematical properties or patterns 
they see. Beside the obvious patterns considered above, they might discover that: 

The sum of the squares of the numbers in the first row or column equals the sum of 
the squares of the numbers in the third row or column. 
The sum of the row products equals the sum of the column products; 
[(4x9x2)+(3x5x7)+(8x1x6)] = [(4x3x8)+(9x5x1)+(2x7x6)]. 
If the digits of the rows, columns or diagonals, including broken diagonals, are treated 
as three-digit numbers and these numbers are squared and added together, the sum 
will equal the sum when the process is repeated with the digits of the individual three-
place numbers reversed. Consider the result of this procedure using the rows: (4922 + 
3572 + 8162) = (2942 +7532 + 6182) 
Further, the arrived-at identities still hold if the middle digit or any two corresponding 
digits of the six addends are deleted. 

Defining a magic square as a “square array of distinct integers for which the sum of the elements 
along any row, column or diagonal is the same---the magic constant”, have students prove that: 

The first possible magic square is of order three. 
For the third-order magic square, the central number must be one-third of the magic 
constant.
The Luoshu cannot be constructed with an odd number in a corner cell. 

Students should be led to realize that other magic squares can be derived from the Luoshu and they 
should explore them. 

Through a series of rotations and reflections about its major axes, seven other third-
order magic squares can be found. 
If all terms of the Luoshu are multiplied by a constant or if the same number is either 
added to or subtracted from each term, a new third-order magic square results. 
(Can magic squares be devised where the numerical entries are fractions?) 
When two third-order magic squares are added term by term, a new magic square is 
formed. 
If the Luoshu is considered a matrix and is multiplied by itself three times, a new 
magic square results. 
Do the set of same-order magic squares form a vector space? 
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When students have developed some confidence in working with third-order magic squares, they 
can be challenged to derive specific squares, for example: 

a square composed of all even numbers. 
a square composed of all odd numbers. 
an antimagic square using the numbers 1 - 9 in which a constant sum cannot be 
achieved. (Gardner, 1998) 

Geometric patterns and symmetries within the Luoshu can be explored. For example, in one 
exercise I ask students to trace out the yubu circuit on a given copy of the Luoshu. Vertices for this 
path are the center points of the respective number cells. When the paths are completed and the 
initial square is partitioned into a set of convex regions, I have them color in the regions using the 
minimum number of colors necessary to distinguish adjacent regions - for the Luoshu, two suffice. 
Two variations of the resulting design are possible depending on whether there is a line 
constructed between the initial 1 and the final 9. Both variations are shown in Figure 4. In turn, 
these squares can be used as tiles to cover a plane and a discussion of symmetries can be 
undertaken. 

This is just a sampling of some learning/teaching activities that can be designed around the use 
of the Luoshu. It provides a rich resource for mathematics teachers. 

5 Some final thoughts 

In the perceptive reader’s mind, two questions might remain that deserve answers: 
1. Why did the concept of a magic square first appear in China and not in the West? 
2. What happened to the Luoshu as a symbol of cosmic harmony within the Chinese 
3. context?

A response to both questions is, of course, speculative; however, based on existing research and 
evidence, reasonable answers can be offered. 

The Chinese were one of the first societies to employ a base 10, positional counting system 
whose recording depended basically on the use of nine symbols (numerals). Further calculations 
were performed on a counting board or surface where configurations of numbers were confined to 
a rectangular or square matrix. This method of working within a square may have been a 
contributing factor in the Chinese discovery of magic squares. 

It should be remembered that the form and uses of the Luoshu evolved over a period of at least 
one thousand years. The magic square and its numbers were frequently altered to accommodate 
specific needs. In particular, in its adaption to wuxing theory, the numbers of the Luoshu were 
rearranged into a cruciform configuration which emphasized a “Five Direction” correlation 
stressing the opposing natures of Fire-Water and Wood-Metal interactions. This diagram is called 
the hetu. In its numerical span, the hetu differs from the Luoshu in that it includes the number ten. 
Both the numbers five and ten represent Earth. In a true yinyang context, the number ten is 
superfluous; in a dynamic sense, numbers evolve or move toward their yinyang complement---the 
number added to which makes ten, so 1 goes to 9, 3 moves toward 7, and so on. Now, if this policy 
is followed and the yin numbers and the yang numbers within the hetu are partitioned from each 
other, a spiral configuration of lines is formed and the circle containing the hetu is divided into two 
complementary regions. If these regions are given opposite colorings, white and black, the figure 
that emerges is the taijitu, the traditional, recognized symbol of yinyang interaction (See Figure 5). 
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The emergence of the taijitu as a symbol of cosmic harmony in China can be traced to about the 
tenth century (Berglund, 1990). 

The Luoshu and its history provided fascinating insights into how mathematical ideas are 
formed and shaped by society. The mathematical interactions of this simple magic square have 
intrigued people for thousands of years---they will intrigue and inspire your students also! 
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ABSTRACT 
Takebe Katahiro (1664 - 1739) is a great man in the history of mathematics in Japan.  We here show the 
outline of his works.  After Seki Takakazu and Takebe Katahiro, mathematics was actively studied in Japan 
in isolation from other countries. 

1 Introduction 

Takebe Katahiro (1664-1739) is a great man in the history of mathematics in Japan. He made 
important steps towards the later development of mathematics. 

Wasan, the mathematics properly developed in Japan during the Edo period (1603 - 1867), 
inherited the mathematics of China. In China, as early as in the 3rd century, a comprehensive 
treatise Jiuzhang Suanshu (Nine Chapters on the Mathematical Art) was edited. Then, gradual 
progress was made for centuries, and in the 13th century, marvellously advanced development was 
made. These products are considered to have been imported in Japan in earlier days, but no 
evidence has been found yet.  Some literature was brought in in the late 16th century.  And the true 
study of mathematics in Japan was begun after this.  In the beginning, the progress was slow, but 
in the middle of the 17th century, we see several persons concerned with the study of mathematics.  

The great advance was made by Seki Takakazu (1640?-1708). By his ingenious works, wasan 
began to take different steps from the Chinese mathematics.  

Takebe Katahiro was his most outstanding student.  His main works on mathematics are as 
follows: 

Kenki Sanp� Mathematical Methods to Pursue Matters from Slight Signs, 1683  
Hatsubi Sanp� Endan Genkai Annotated Text of Hatsubi Sanp� (Methods to Explore Subtle 
Mathematical Points), 1687  
Sangaku Keim� Genkai Taisei Great Commentary on Suanxue Qimeng (Introduction to 
mathematics), 1690  
Tetsujutu Sankei Mathematical Treatise on the Technique of Linkage, 1722, Dedicated to 
Sh�gun Yoshimune  
Fuky� Takebe Sensei Tetsujutu Shinpon Master Takebe's Technique of Linkage, 1722 

He also made Taisei Sankei (Great Accomplished Classic of Calculation) by the cooperation with 
Seki and his brother Takebe Kata-akira during 1684 to 1710. 

Beyond these, there is an enormous quantity of research papers concerning the calendar.  
One may wonder why there is a blank period for about 30 years in his works.  This is due to his 

career.  He was born in a good family, and he served sh�guns as a chamberlain.  He was busy with 
his works at the house of sh�gun, and had no time to work with mathematics.  But he must have 
kept the ideas to be fostered in his mind, and after the retirement, he regained his activity. 
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2 Celestial element method 

The mathematics of China exploited in the 13th century was the celestial element method.  This is 
the theory of algebraic equations.  One used counting rods to express numbers.  They are sticks of 
about 5 cm long in red and black colour, red ones showing positive, and black ones showing 
negative.  Placed them on a board, they show numbers. 

1 2 3 4 5 6 7 8 9 

Order of 1, 100, 104, ……. | || ||| |||| |||||
__
|

__
||

__
|||

__
||||

Order of 10, 103, 105, …… ⎯ ⎯⎯
⎯⎯⎯

⎯⎯⎯⎯
⎯⎯⎯⎯⎯ |⎯

|⎯⎯
|⎯⎯⎯

|⎯⎯⎯⎯
A counting board is a board drawn with horizontal and vertical lines.  One 

fixes a position on the board as to express the origin, and the position next under it 
is called the celestial element. If one puts there 1, then it is the celestial element 
unit, and it expresses the unknown to treat. Let it be x. And the following 
positions under it are the places of x2, x3, x4, and so forth. Thus the figure on the 
right expresses 6-3x+2x2+x3

From only this expression, one does not know if it is merely an expression or it is an equation. 
That should be decided from the context. In case that it expressed an equation, then they knew 
how to get the numerical value as the solution of the equation, how large the degree of the 
equation may be. 

3 Seki's writing aside method, and Takebe's contribution 
In the celestial element method, one can treat only numerically given equations.  Regarding this, 
Seki has invented a new writing method, which is, aside the counting rod bars, to write the 
coefficients given by letters. 

   a4

-4a3

b2 – 4 a2

2a

On the left we show an example. The left side is what 
stands in the text of wasan. The meaning is shown on 
the right side.  And it expresses   

a4+(-4 a3)x+(b2-4 a2)x2+2ax3

In this way, he established a way to treat algebraic 
expressions and algebraic equations having coefficients 
of divers constructions.  The year when Seki made up 
this writing way is not certain, but it is considered that 
he used this in his Hatsubi Sanp� (1674), though it was 
not explicitly given there; here, we see Takebe's great 
contribution.
Takebe's work Hatsubi Sanp� Endan Genkai
explained contents of Hatsubi Sanp� by widely using 

this writing aside method, and perhaps people for the first time came to know Seki's excellent 
method. Indeed, before the publication of this book, it seems to us that people could not 
understand what was written in Hatsubi Sanp�.
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4 Seki's method of conversion, and Takebe's contribution 

Seki Takakazu developed the important technique of Method of Conversion in his Kai Fukudai no 
H� (Methods for Solving Concealed Problems). It is the process from several equations of two 
unknowns to eliminate one unknown and to get an equation concerning the unknown left. This is, 
in the European mathematics was only done in the last years of the 18th century. His theory 
terminates with the establishment of the method of the determinant 

Seki wrote: Suppose one is provided with some conditions, and wants to determine the value of 
some quantity, which satisfies these conditions. If it is impossible to establish an equation directly 
taking this quantity as the unknown, then one takes another quantity as a subsidiary unknown, and 
writes down the relations among these. Arrange them as equations of the subsidiary unknown. The 
desired unknown is then involved in the coefficients of these equations. And after having been 
eliminated this subsidiary unknown, one will get the equation concerning to the true unknown. 

We exhibit an example. 
On the left stand two equations. These are equations 
concerning the subsidiary unknown as celestial element 
unit. True unknown is hidden in the coefficients.  
Multiply the lowest term of Left to Right equation and 
multiply the lowest term of Right to Left equation and 
subtract.
Multiply the topmost term of Left to Right equation and 
multiply the topmost term of Right to Left equation and 
subtract.
Then one gets newly two equations. 
This is one step of conversion. One may say that this is an 
ordinary process of elimination. 
Continuing this step repeatedly, we will get finally the 
following scheme. 

A         C 
B         D 

Make A × D – B × C. Then, the subsidiary unknown is eliminated, and there is left an equation 
composed of the coefficients of the starting equations.  Now as the true unknown is comprised in 
the coefficients, one gets an equation of the true unknown. 

Takebe used this Seki's method of conversion extensively in his Kenki Sanp�. But he did not 
show in this book the method he used.  The method is shown in a booklet entitled Kenki Sanp�
Endan Genkai. About this booklet, neither the author nor the year made are not given, but we 
suppose that this was made by Takebe himself. 

By virtue of these works of Takebe, Seki's method of conversion became to be known to 
contemporary mathematicians. We think Takebe's role of propagating the revolutionary processing 
method of Seki was very great. 
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5 Technique of linkage 

Takebe's claim: When one wants to resolve a problem, make a trial once. If, by one trial he could 
not arrive at the desired solution, try again. By repeating the trials one after another, one surely 
gets the final answer. 

As an example of his assertion, he took the calculation of the length of the circumference of a 
circle. He says: 

Master Seki has invented the method of acceleration in computing the length of the 
circumference of a circle. He started with a square inscribed in a circle and by doubling the 
number of sides of the inscribed regular polygon; he continued to calculate the length of the 
circumference of these polygons. Using the polygons of the number of sides up to 131,072, 
he has determined the circle number up to the 13th place of decimals by a skilful method of 
acceleration. But he used this method only once. I made the repeated uses of the method of 
acceleration, slightly different from his. By using the polygons of the number of sides only 
up to 8,192, I could determine the circle number up to the 40th place of decimals. 
Another example he took is the method of continued fractions.  He found out the process of 

making continued fractions, and explained how to get the approximating fractional expression 
355/113 of the circle number.  This fraction was gotten by Z� Ch�nzh� of China in the 5th century, 
but the method to get it was not known. 

6 Beginning of the theory of measuring the arc length 
According to the acceleration method due to Seki and Takebe, the mathematicians of those days   
could obtain the precise value of the length of an 
arc in each separate case, given some data. 

Most popular way for the data was to give the 
length of the chord or diameter, and the sagitta. 

Seki tried to get a formula to obtain the arc 
length by giving the length of chord and sagitta. 
But it was unsatisfactory. His method was to give 
by a polynomial, and of course it was impossible. 
Takebe, after a long trial, obtained the following 
series expansion (l is the arc length, s is the sagitta, 
d is the diameter) 
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This was the first success in wasan in this direction.  The study of the series expansion became 
after him the tradition in wasan 
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ABSTRACT 
My question: What place does history and culture have in the Bangladeshi mathematics curriculum where 
content and pedagogy accentuate the separation between classroom academic mathematics and any other 
practical maths? 

This is not a question for teachers, pupils, parents and the government of Bangladesh who accept that: 
mathematics = what goes on maths classrooms  +  in textbooks 

Only one problem: how to be successful learning the content for tests/exams? 
“transmission of school mathematics as a neutral way of knowing is part of the maintenance of modern 

social and political order” 
Valerie Walkerdine shows how “school ‘empties’ and ‘represses’ the multiple and embedded 

mathematical understanding which a child constructs at home and replaces it with a unique, disembodied 
and ‘superior’ school mathematics” 

This is not just true in Britain but also in developing countries like Bangladesh. 
Of concern, as in England and other developed countries, are the difficulties children have with 

learning this separate mathematics. 
In this paper, I have not tried to reduce its scope by rigorously defining culture or history though this 

analysis may be a useful way forward. Instead I have collected the experiences and contexts for learning 
maths in Bangladesh and made small attempts to relate these to the bigger picture of globalisation. 

More research in contrasting countries may shed light on my question. In particular I have only 
classified Bangladesh as a developing country whereas it may be more appropriate to use other categories 
such as ‘poor’, ‘partially industrialised’ or by the percentage of the population who are literate. 

In August 2000, I read a short paper in Taipei on using the Royal Observatory in Greenwich to 
inspire my students training to be teachers at Greenwich University. It was talking about visits I 
had made over several years until we moved to Bangladesh in March 1999. After one or two 
questions from the audience, John Fauvel in characteristic fashion, asked that most pertinent 
question - “but what are you doing in Bangladesh?” This was the question to which I did not really 
have an answer at that point. I had been learning Bangla, the national anthem, visiting places, 
getting to know all sorts of people but with hindsight (which I did not have at the time), most of all 
I was recovering from culture shock. It was only after a year there that I could begin to understand 
and make sense of the culture I was living in as a foreigner. It was after exploring local centres of 
activity; hospitals, a centre for women doing embroidery, a local brass manufacturer, the Centre of 
the Rehabilitation of the Paralysed, a tea plantation, Hindu Street in downtown Dhaka, the 
Armenian church, the local markets, parliament, artist’s studios, our cleaning lady’s house and 
finally schools. Although my Bangla never did become fluent enough for me to participate in 
teacher training in a local ‘free’ school or government school, I did spend a lot of time working in 
various capacities in an Islamic international school in Dhaka. Working with the principal, with 
the pupils and the teachers helped me answer John’s question during 2001 and 2002. So in his 
memory this is what I was doing or rather, learnt in Bangladesh. 

Manarat Islamic international college is a 4 to 18 year old secondary school in Gulshan, a 
northern suburb of Dhaka. The principal is, or rather was, an American born of Christian 
missionary parents in Korea, only lived in North America for college where she met her 
Bangladeshi husband, converted to Islam and has lived 20 years in Bangladesh. Her children go to 

501



the school though her son recently moved to a Madrasah to complete his education. My role 
evolved as we combined our needs. I became a consultant advisor to the principal for curriculum 
development across the whole school which involved lengthy discussions, much classroom 
observation and written and oral feedback. Wide ranging issues were covered including; the school 
year, the choice of examination boards and syllabi, testing, changing the culture of the school, 
timing of the school day, teacher’s main concerns, parental attitudes, the place of English, teacher 
training and the ubiquitous coaching classes. Later I worked with groups of teachers of Standards 
I, III and VI who taught 6 to 12 year olds. For myself, I wanted in particular to look at the maths 
classrooms to analyse the teaching styles, the language used, the mathematics content, the learning 
styles and look at its effectiveness and relate it to my previous experiences in England but more 
particularly to the culture and history of Bangladeshis in modern Bangladesh. 

There are more similarities than differences between the international schools that use English 
to teach all subjects and the myriads of other Bangla-medium schools funded by the government 
or by non-governmental organisations. The physical conditions imposed by the climate are harsh 
in a country where March to November is hot and humid with monsoon rain mostly between June 
and September. The other three months are dry with English summer temperatures only marred by 
the mosquitoes. All the classrooms are crowded, with at most basic tables or desks and chairs, bare 
walls and often a blackboard. Electricity is variable across the country with long periods of cuts so 
even if fans and lights are fitted, they may not be operational. All schools are staffed and run for 
Bangladeshis and reflect the model of education prevalent across the country. This corresponds in 
general to transmitting a body of knowledge from the teacher to the pupils following a textbook. 
Skills needed for learning are mainly listening, memorising, copying, following instructions and 
answering direct questions. Most teachers have a little or no training beyond succeeding in the 
education system themselves and any training they get places most emphasis on raising the 
teachers’ own personal academic standard rather than on pedagogy. At primary and secondary 
level the textbook not only supports the curriculum, but additionally forms the syllabus. The aims 
of education for the pupils and their parents is to succeed, to gain high marks in tests, to get the top 
places in exams in order to get one of the better paid jobs.  

International schools which use English as the language of instruction, increase the cultural 
distance between the language of school learning and the local Bangla dialect; Sylheti for 
example. This makes it unlikely that there is any relationship between home and school and even 
less likely that children or adults will see any connections between the two. It is well documented 
(see for instance Jo Boaler’s work) that children in England see their school mathematics as 
separate from the mathematics they may even need in another subject in school. It is especially 
different from any problems they may meet outside school. The other distinction such schools 
have in Bangladesh (and other similar developing countries), is the high status of learning and 
speaking English because it is seen as giving access to higher paid jobs in government and the 
foreign non-governmental organisations. Thus the majority of parents who pay to send their 
children to an international school are investing that much more in their child’s future earning 
possibilities than an equally talented child at a Bangla-medium school. In some ways, these 
parents have even less shared culture with their children than illiterate parents have with their 
literate children. 

Manarat international school is one example of such an English-medium school with the extra 
difference that it is an Islamic school with a board of governors who are high up in the local 
Muslim community. Here I observed and later contributed to many different lessons in 
mathematics. The first noteworthy feature to me as a mathematics teacher from England was the 
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physical working conditions, which I found very trying. Next the most overwhelming impression 
was of such formal, traditional teaching methods being used almost uniformly from the 5 year-olds 
up to 16 year-olds. But this is common to all schools, but what is uncommon is this particular 
English used only for teaching mathematics. There is a version of English recognizable as being 
used on the Indian subcontinent with its peculiarities of missing articles (no a’s or the’s), few 
plurals with s added at the end, pronunciation emphasizing syllables strange to my ear, and special 
local English vocabulary absorbed into the local Bangla dialect (a computer lead was called a wire 
pronounced why-er).  

Bangla, as a language also has something to offer learning mathematics. The numerals in 
Bangla script are different from the international ones we have inherited via India and Arabia but 
have similarities which insist on a history to see how they relate. The order of writing numerals is 
the same with the units written on the right hand side and the largest value on the left. The base ten 
system we adopted in Europe hundreds of years ago was in place on the Indian subcontinent 
thousands of years ago. Names for different categories of large numbers exist for the digits 0 to 9, 
ten (dosh), hundred (ek sho), thousand (ek hajar), hundred thousand (ek lakh) ten million (ek 
crore) Pupils learning in Bangla have access to the same powerful base 10 place value system as 
that used internationally so written numbers and calculations are exactly the same as in the UK. 
However unlike in English, the spoken words for two digit numbers are said units first so poytrish 
is 35 meaning five-thirty. So the written numerals are not a direct reflection of the spoken 
numbers. Also the links with thirty for example, start with 29 as uno-trish which is ‘one before 
thirty’, up to 38 as ‘attrish’ then on to 39 which is said as ‘one before forty’. This rule is only 
broken by 99 which has it’s own version of ‘nine-ninety’. There are more difficulties for learners 
at 50 which is ‘pontash’ but from 51 to 58, ‘anno’, a completely different word is substituted for 
the fifty part so ‘pontanno’ is 55. tens. It is not surprising that although children learn their 
numbers in Bangla at school, they can’t necessarily count easily up to a hundred by following the 
pattern as in English; thirty one, thirty two etc. since the prefixes for the one, two etc. alter slightly 
for each group of ten. The four and the six are particularly similar and can easily be mixed up 
when hearing twenty-four and twenty six (chobbish and chabbish).  

This non-matching between the spoken and written pattern of digits means that pupils have to 
memorise all the individual numbers up to 100 with only some help from rhyming patterns for 
each group of ten numbers. Since memorisation is a strong part of the curriculum, it appears that 
learning to chant all the numbers in order is not a problem. Neither is learning to copy out the 
numbers up to a hundred in order where the pattern of digits is very clear. There has been already 
some interesting work in this field by Bill Barton on mathematical discourse in different languages 
and Keith Devlin in his book The Maths Gene, who identifies Chinese numbers to be the easiest to 
learn since the spoken and written correspond so closely that there is little interpretation to do 
because the base 10 system is highlighted in the number names. Miller, Smith, Zhu and Zhang 
actually measured this difference by using pre-school children in China and the United States. 
Harder for pupils, is relating the two systems in order to use the numbers for any further 
manipulation. However this is exactly the situation for Bangladeshi pupils learning their numbers 
in English. They memorise the symbols and the words both of which exhibit strong patterns then 
have to use them in problems. Both systems make school number work divorced from everyday 
use and context. Learning in Bangladesh is not unique; much of Richard Barwell’s experiences 
working in north Pakistan found similar comparisons between the languages and contexts of 
learning mathematics. 
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With John Fauvel’s question and my own interest in using ideas from the history and nature of 
mathematics, I kept asking myself what place if any, these concepts and ideas had in this 
curriculum. A curriculum which seems as far removed as is possible, from the culture, history and 
experience of the country. I classified three main contexts for learning mathematics; outside 
school, in Bangla-medium schools and in English-medium schools.  

- Outside school in the ‘bajar’ or market, bargaining takes place in the local dialect and a price 
agreed verbally. Very little is available at fixed prices although more western-style stores are 
opening in the capital. The only connection with English in this context is the widespread use of 
basic electronic calculators for totaling prices, deducting a percentage discount and calculating 
change. This in turn means that the international number system is used and recognised even if it is 
not written on the bill. The whole discussion, prices and calculations are in Bangla. Research by 
Nunes, Schliemann and Carraher tries to build on ‘Street mathematics’ to relate to school 
mathematics.  

- In Bangla-medium schools, ‘gonit’ or ‘onko’ is learned at primary level usually using the 
government produced national textbooks printed on thin, recycled paper to make them affordable 
for all. The illustrations and contexts are from Bangladesh; fruits to count are mangos, jackfruit, 
bananas and pineapples, vegetables are begum (aubergine), sak (spinach), and green papaya. As 
pictures and contexts are seen as less necessary for the higher grades or classes, so they disappear 
from the texts to leave traditional textbooks filled with the specially contrived problems of the pre-
calculator age. These only include Euclidean geometry, arithmetic calculations and algebraic 
manipulations, which avoid awkward numbers. Higher-level textbooks in Bengali are available 
imported from Calcutta, which is in West Bengal but part of India, where the context is different 
again.  

- In English-medium schools, arithmetic and mathematics are all learned using textbooks in 
English. The most local of these may be imported from India or Singapore so have some Asian 
flavour even if the money examples use rupees or dollars instead of taka. However, old English 
textbooks from the 1950’s are often reprinted or photocopied and then reprinted wholesale with 
imperial measures, pounds shillings and pence and examples which are half a century out of date. 

So what place does Bangladeshi history and culture have in such a mathematics curriculum 
where content and pedagogy both accentuate the separation between classroom academic 
mathematics and any mathematics which goes on in the ‘bajar’, in business, in fabric weaving, 
garment making, in brick-making, brass manufacturing, ceramic factories and many of the other 
indigenous crafts and enterprises which busy the people of this heavily populated country? I 
realized that this was only my question as an outsider. Everyone; teachers, pupils, parents and the 
government, accepted that mathematics was exactly what went on in Maths classrooms and it all 
came from textbooks. It was of no concern whether this learning was in Bangla or English since 
the language used in the mathematics classroom was meant to be separate from its uses outside 
school. Their only problem was how to be successful at learning the content in order to do well in 
their tests and exams. No one questioned the relevance of the content since it did not matter. This 
is put more forcefully by Walkerdine (1988) who recognizes that “transmission of school 
mathematics as a neutral way of knowing is part of the maintenance of modern social and political 
order”.  She shows how “school ‘empties’ and ‘represses’ the multiple and embedded 
mathematical understanding which a child constructs at home and replaces it with a unique, 
disembedded and ‘superior’ school mathematics” Of concern though, similar to England, were 
some of the difficulties children had with learning this separate mathematics.  
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Although I was looking at the maths curriculum to find links to Bangladeshi culture and 
history, I was actually looking in the wrong place. For modern Bangladesh, history, religion and 
language are such strong forces in the culture, in every facet of life, that to identify no explicit 
links with the maths classroom is to underrate its impact. The war of independence in 1971 fought 
by East Pakistan against the occupying West Pakistani army is very recent history. Since it was a 
war to preserve the Bengalis’ right to speak, read and write in the Bangla language, so even the 
name of the country Bangladesh means the country ‘desh’ of the Bangla-speakers. This enshrines 
the importance of the Bangla language, which evolved from the original Sanskrit. Within the study 
of language comes the history of the region stretching back not just hundreds, but thousands of 
years. Bangladesh does not have the right sort of climate for preserving many historical artifacts 
(Miller 1995). There is no stone or gravel so buildings are built of bricks and concrete which are 
both made locally from raw materials close to the rivers. Bengal does not have a history of using 
fired clay to make tablets for recording purposes as in ancient Iraq, nor does it have the legacy of 
stone monuments so history is at best transitory. Before 1971, as East Pakistan under the rule of 
Urdu-speaking West Pakistan over a thousand miles away, Bangladesh was trying to recover from 
the partition of India in 1947 when thousands of it inhabitants moved East or West depending on 
whether they were Hindu or Muslim. British rule of India is remembered by a few as being a more 
peaceful era. The centre of Power and the government capital had moved to Delhi from Calcutta 
years before so Bengal had been more of a backwater. The other overwhelming historical force is 
Islam the national religion. By converting to Islam, Bangladesh bought into Islamic history back to 
Mohammed in 622CE. Since all children study the Koran, calls to prayer can be heard anywhere 
and everywhere in the country, and since Islamic festivals dominate the year’s events, everyone 
feels part of the wider Muslim community and can lay claim to all their achievements through the 
last 1400 years. Bangladesh itself is only thirty-three years old, and feels a young country trying to 
establish itself in modern global society. Globalization is not something it dislikes or rejects but 
welcomes with open arms. If the school curriculum is in English, so much the better for getting 
close to the action though English is never seen as a substitute for Bangla, just an addition. Being a 
good Muslim does not conflict with these aims.  

Back to the introduction of the ICMI study ‘History in Mathematics Education’ where John 
Fauvel states that ‘School mathematics reflects the wider aspect of mathematics as a cultural 
activity’. Where does this leave my belief that to learn mathematics effectively, it needs to be set 
in some sort of historical context even if that is very recent history? Certainly as a means of 
motivating pupils to see the point of mathematics, using history in a Bangladesh maths classroom 
is not necessary in the same way as in the UK, since the economic and cultural commitment to 
education means motivation is strong. However, pride in your ancestors’ achievements, is a 
common theme which motivates all learners in all sorts of countries and ethnic groups.  George 
Joseph cites an example is from nearby northern India; Aryabhata I was probably born in Bengal 
around AD476 and wrote his great work Aryabhatiya in Kushu Pura in modern day Bihar just west 
of Bengal. Early Muslim dynasties from 1200 to 1600 saw a gradual absorption of Arab and 
Persian maths and astronomy by Indian schools creating the new Islamic Madrasah schools by the 
17th century. The achievements of their Muslim brothers in any part of the world would be even 
more important to the modern Islamic country of Bangladesh. So it is possible for young 
Bangladeshi learners to have ownership of some of their textbook mathematics. This is one of the 
things we are trying to achieve in the UK - for learners to see that they ‘own’ the mathematics of 
now because their predecessors from all over the world developed ideas and mathematical 
theories.  
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I realize that from these experiences, the mathematics classroom is not the only place to do this 
but that history, geography and religious studies lessons may take pupils closer to the background 
of mathematical ‘discoveries’ than ever we can achieve by giving a historical snippet in a maths 
textbook. This has implications not envisaged by the team who collaborated to write the ICMI 
study in 2000. Maths teachers are ever in short supply and often do not have a background or 
training in history themselves. If we only try to seek a change in attitudes through mathematics 
classes, we may only scratch the surface for pupils in school, students at university and teachers in 
training. Making culture, identity and language part of learning in each subject seems ideal but 
faced with the reality in the UK and in developing countries like Bangladesh, then the whole 
community needs to be more involved. A good start would be if the history of mathematics, 
science, language, art and religion were included in the humanities teachings of history and 
geography. Then maths teachers would have a greater pool of examples and resources to draw on 
when teaching mathematics topics in class. I am not giving up trying to integrate history into 
mathematics teaching but hope to widen access to the mathematics in as many ways as possible. 
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I have often taken up a book and have talked to it and 
then put my ears to it, when alone, in hopes it would 
answer me: and I have been very much concerned 
when I found it remained silent. 

The interesting narrative of the life of O. Equiana
(Cited by M. Harbsmeier, 1988, p. 254)

ABSTRACT 
The main thesis of this paper is that algebraic symbolism emerged in the Renaissance as part of a new type 
of thinking  a new type of thinking shaped by the socioeconomic activities that arose progressively in the 
late Middle-Ages. In its shortest formulation, algebraic symbolism emerged as a semiotic way of knowledge 
representation inspired by a world substantially transformed by the use of artefacts and machines. Algebraic 
symbolism, I argue, is a metaphoric machine itself encompassed by a new general abstract form of 
representation and by the Renaissance technological concept of efficiency. To answer the question of the 
conditions which made possible the emergence of algebraic symbolism, I enquire about the cultural modes 
of representation of knowledge and human experience and look for the historical changes which took place 
in cognitive and social forms of signification. 

1 Introduction 

The way in which I wish to study the problem of the emergence of algebraic symbolism can easily 
lead to misunderstandings. Perhaps the most tempting misunderstanding would be to think of this 
paper as a historical investigation of the external factors that made possible the rise of symbolic 
thinking in the Renaissance. “External factors” have usually been seen as economic and societal 
factors that somewhat influence the development of mathematics. They are opposed to “internal 
factors”, which are seen as the true factors accounting for the development of mathematical ideas. 
The distinction between the internal and external dimensions of the conceptual development of 
mathematics rests on a clear cut distinction between the sociocultural on one side, and the “really” 
mathematical on the other. Within this context, the former is seen, as Lakatos suggested, as a mere 
complement to the latter. Viewed from this perspective, it may appear that the route I am taking to 
investigate the emergence of algebraic symbolism belongs to the sociology of knowledge. 
However, to cast my intentions in such a dichotomy is misleading. 

On the one hand, current research on human cognition is emphasizing the tremendous role 
played by the context in the concepts that we form about the world. As Otte (1994, p. 309) 
summarized the idea, “The development of knowledge does not take place within the framework 
of natural evolution but within the frameworks of sociocultural developments.” Thus, if we want 

                                                     
1 This paper is a result of a research program funded by The Social Sciences and Humanities Research 

Council of Canada / Le Conseil de recherches en sciences humaines du Canada (SSHRC/CRSH). 
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to understand the mathematical ideas of a certain historical period, we need to understand their 
encompassing sociocultural developments in the amplest sense. 

On the other hand, in the past few years, more and more arguments have been produced to the 
effect that mathematics bears the imprint of its culture, so that, under closer examination, what 
seemed to be “external” is not. As Crombie (1995, p. 232) noted, the cultural conception of 
mathematics determines the organization of scientific inquiry, the kind of arguments that will be 
socially accepted, the kind of evidence and the type of explanations that will be considered valid. 

The awareness that there may be a relationship between mathematical thinking and its own 
cultural context has moved current historical and epistemological discussions away from naturalist 
and rationalist accounts of mathematical thinking. However, the awareness of the relationship 
between culture and thinking is not enough. As a matter of fact, historical and epistemological 
accounts of mathematical conceptual developments have thus far not been very successful in 
specifying how mathematical thinking relates to culture. I want to go further and suggest that if we 
do not specify the link between culture and mathematical conceptualizations, we risk using culture 
as a generic term that attempts to explain something, while in reality it does not explain anything. 

In the first part of this paper, I will outline the theoretical framework to which I will resort in 
order to attempt to answer the question of the conditions of the emergence of algebraic symbolism. 
In the second part, I will deal with the place of algebra in its historical setting, focusing mainly on 
changes in the cultural forms of signification and knowledge representation. 

2 The link between culture and knowledge 

The Semiotic Anthropological Perspective that I have been advocating2 draws from the socio-
historical school of thought developed by Vygotsky, by Leont’ev’s Theory of Activity and from 
Wartofsky’s and Ilyenkov’s epistemologies3. In this perspective, mathematics is considered to be a 
human production. This claim is consonant with claims made by Oswald Spengler (1917/1948) 
almost one century ago and revitalized by contemporary scholars such as Barbin (1996), 
D’Ambrosio (1996), Restivo (1992, 1993), Høyrup (1996, 2002).  

There are three key interrelated elements underpinning the Semiotic Anthropological 
Perspective: 

– The concept of activity as a unit of analysis. 
– A reconceptualization of knowledge. 
– A cultural definition of thinking. 

The concept of Activity:

Activity, as a unit of analysis for the understanding of conceptual developments, refers not only to 
what mathematicians were doing at a certain historical moment and how they were doing it. It also 
refers to the ineluctably sociocultural embeddedness of the ways in which mathematics is carried 
out. Activity, as understood here, emphasizes the culturally grounded “rational” inquiry that 
constitutes the particularities of mathematical thinking in a certain historical period and setting. 

The concept of activity does not tell us, however, in which sense we have to understand the link 
between culture and knowledge. What we have asserted about activity is good enough for 

                                                     
2 Radford (1997, 1998, 1999, 2003a). 
3 See Vygotsky (1962, 1978, 1981), Leont’ev (1978), Wartofsky (1979), Ilyenkov (1977). 
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conceiving of mathematics as a human endeavour, but it is certainly insufficient to bring us 
beyond the internal/external dichotomy of classical historiography. In other words, the idea of 
activity expounded thus far provides room for seeing “connections” between mathematical 
knowledge and its cultural settings, but in no way tells us the nature of such “connections”. 
Without further development, the “connections” cannot be explained but only empirically shown4.

A reconceptualization of knowledge. 

What then exactly is the relationship between culture and knowledge? In opposition to Platonist or 
Realist epistemologies, knowledge is not considered here as the discovery of something already 
there, preceding human activity. Knowledge is not about pre-existing and unchanging objects. 
Knowledge relates to culture in the precise sense that the objects of knowledge (geometric figures, 
numbers, equations, etc.) are the product of human thinking. Knowledge is generated through 
sociocultural activities. The way in which knowledge is generated and the very nature of the 
content of knowledge are related to the sensuous forms of these activities and the historical 
embodied beliefs and intelligence kept in them. The Pythagorean knowledge about numbers, for 
instance, was generated in the course of the social-intellectual activities of the brotherhood, 
mediated by the sensuous use of stones and other mathematical signs to represent knowledge and 
the historical, cultural, ontological belief that there was a link between the nature of numbers and 
the universe (Radford, 1995, 2003a). 

A cultural definition of thinking. 

Following Wartofsky (1979), I conceive of thinking as a cognitive praxis. More precisely, 
thinking, I want to suggest, is a cognitive reflection of the world in the form of the individual’s 
culturally framed activities.

As we can see from the previous remarks, activity is not merely the space where people get 
together to do their thinking. The essential point is that the cultural, economic and conceptual 
formations underpinning knowledge-generating activities impress their marks on the theoretical 
concepts produced in the course of these activities. Theoretical concepts are reflections that reflect 
the world in accordance to the social processes of meaning production and the conceptual cultural 
categories available to individuals. 

What I am suggesting in this paper is that algebraic symbolism is a semiotic manner of 
reflecting about the world, a manner that became thinkable in the context of a world in which 
machines and new forms of labor transformed human experience, introducing a systemic 
dimension that acquired the form of a metaphor of efficiency, not only in the mathematical and 
technical domains, but also in aesthetics and other spheres of life. 

In the next section, I will briefly discuss some cultural-conceptual elements of abacist algebraic 
activity. In the subsequent sections, I will focus on the technological and societal elements which 
underlined the changes in Renaissance modes of knowledge representation. 

                                                     
4 This is the case with Eves’ book An Introduction to the History of Mathematics. In contrast to the 

previous editions of the book (see e.g. Eves, 1964), in the 6th edition (see Eves 1990), a section was added 
in which the cultural setting was expounded before each chapter. Connections are shown rather than 
explained. That Netz (1999) placed the cultural aspects of Greek mathematics in the last part of his 
otherwise enlightening book, after all the mathematical aspects were explained (as if the cultural aspects 
were independent of or at least not really a part of mathematical thinking), is representative, I believe, of the 
difficulty in tackling the theoretical problem of the connection between culture and mathematical 
knowledge. 
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3 Abacist algebraic activity 

In his work Trattato d’abaco, Piero della Francesca deals with the following problem: 

A gentleman hires a servant on salary; he must pay him at 25 ducati and one horse per year. 
After 2 months the worker says that he does not want to remain with him anymore and wants to 
be paid for the time he did serve. The gentleman gives him the horse and says: give me 4 ducati 
and you shall be paid. I ask, what was the horse worth? (Arrighi (ed), 1970, p. 107) 

This is a typical problem from the great number of problems that can be found in the rich quantity 
of Italian mathematical manuscripts that abacus teachers wrote from the 13th century onwards. 
This problem conveys a sense of the kinds of reflections in which the Italian algebraists were 
immersed as a result of the new societal needs brought forward by changes in the forms of 
economic production. While in feudal times the main form of property was land and the serfs 
working on it, and while agricultural activities, raising cattle and hunting, were conducted in order 
to meet the essential requirements of life, during the emergence of capitalism, the fundamental 
form of property became work and trade (see Figure 1) 

Figure 1. To the left, a man is planting peas or beans, following the harrow (from Life in a 
Medieval Village, F. & G. Gies, 1990, p. 61). To the right, merchants selling and trading products 

(from Paolo dell’Abbaco’s 14th Century Trattato d’Aritmetica, Arrighi (ed.), 1964). 

Changes in the form of human labor gave rise to new conceptual demands, requiring new 
cognitive abilities to cope with the various economic practices and new aspects of life. Let us see 
how della Francesca solved this problem. Note that, to represent the unknown quantities, in some 
parts of the text, della Francesca uses the term “thing” (cosa); in other parts he uses a little dash 
placed on top of certain numbers. Historically speaking, della Francesca’s symbolism is in fact one 
of the first known 15th Century algebraic symbolic systems. 

Do this. You know that he has to give him 25 ducati per year, for 2 months it comes to 4 I/6; 
and the horse put that it’s worth  thing, for 2 months it is worth 2/12 of the thing that is I/6 
(sic). You know that you have to have in 2 months 4 ducati and I/6 and I/6 of the thing. And 
the gentleman wants 4 ducati that added to 4 I/6 makes 8 I/6. Now, you have 1/6 of the thing, 
[and] until  there are 5/6 of the thing; therefore 5/6 of the thing is equal to 8 I/6 number. 
Reduce to one nature [i.e. to a whole number], you will have 5 things equal to 49; divide by the 
things it comes out to 9 4/5: the thing is worth so much and we put that the horse is worth ,
therefore it is worth 9 ducati 4/5 of a ducato. (Arrighi (ed), 1970, p. 107). 

I will come back to the question of symbolism in the next section. For the time being, I want to 
comment on two of the key concepts involved in the problem: time and value.
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Time: Time appears as a mathematical parameter against which labor is measured. Although 
time is a dimension of human experience with which cultures have coped in different ways, here 
we see that the quantification of the labor value (as money loaned at interest in other problems, 
etc.) requires a strict quantification of time. It requires conceiving of time in new quantifying terms 
(a detailed discussion about the quantification of time can be found in Crosby, 1997). 

Value: Equally important is the fact that summing labor with animals, as Piero della Francesca 
does here, requires a formidable abstraction. It requires seeing labor (an already abstract concept) 
and animals (which are tangible things) as homogeneous, at least in some respect5.

As I argued in a previous article (Radford, 2003b), what makes the sum of a horse and labor 
possible is one of the greatest mathematical conceptual categories of the Renaissance –the 
category of value, a category that neither the abacists nor the court-related mathematicians (see 
Biagioli, 1989) theorized in an explicit way. Value is the top element in a concatenation of cultural 
conceptual abstractions. The first one is “usage value”. The usage value U(a) of a thing a is related 
to its “utility” in its social and historical context. The second one is the “exchangeable value”; it 
puts in relation two usage values and as such it is an equality between two different things, 
something like U(a) = U(b). The third one is of the “value” V(a) of a thing a measured, as in the 
problem, in terms of money. Value is what allowed individuals in the Renaissance to exchange 
wax, not just for wool, but for other products as well, and what allowed them to imagine and 
perform additions between such disparate objects as labor and horses6.

Value is one of the crystallizations of the economic and conceptual formations of Renaissance 
culture. As with all cultural categories, value runs throughout the various activities of the time. It 
lends a certain form to activities, thereby affecting, in a definite way, the very nature of 
mathematical thinking, for thinking –as we mentioned before– is a reflection of the world 
embedded in, and shaped by, the historically constituted conceptual categories that culture makes 
available to its individuals. 

Horses and labor can be seen in the 15th Century as homogeneous because both have become 
part of a world that appears to its individuals in terms of commodities. They are thought of as 
having a similar abstract form whose common denominator is now money. It makes sense, then, to 
pose problems about trading and buying in the way it was done in the Renaissance, for money had 
already become a metaphor, a metaphor in the sense that it stored products, skill and labor and also 
translated skill, products and labor into each other (see McLuhan, 1969, p. 13). 

What does all this have to do with algebra? We just saw that value was the central element 
allowing individuals in the Renaissance to establish a new kind of abstract relationship between 
different things. In terms of representations, value made it possible to see that one thing could 

                                                     
5 To better appreciate the abstraction underpinning the homogeneous character with which two different 

commodities such as labor and animals are considered in the previous problem, it is worthwhile to recall the 
case of the Maoris of New Zealand, for whom not all things can be included in economic activity. As 
Heilbroner reminds us, “you cannot ask how much food a bonito hook is worth, for such a trade is never 
made and the question would be regarded as ridiculous.” (Heilbroner, 1953/1999, p. 27). 

6 Of course, money as the concrete expression (i.e. the sign) of value was used in ancient civilizations 
such as Mesopotamia, Egypt and Greece (Rivoire, 1985; Sédillot, 1989). However, during the Renaissance,
money is no longer simply a convention as it was for Aristotle and Athenian society (see Hadden, 1994; 
Radford, 2003b). During the period of emergent capitalism, money was conceived of as belonging to the 
class of things coming from nature and from the work of individuals. Thereby, it was possible to conceive of 
things as being, in a sense, homogenous. (For additional details about the cognitive impact of commodity 
exchange activities see the classical work of Sohn-Rethel, 1978. Sohn-Rethel rightly pointed out the kind of 
abstraction that emerges from commodity production but, in a move coherent with historical materialism, 
went too far to reduce cognition to the economic sphere. Indeed, this move leads one to a too reductive 
picture of human cognition. See Radford, in press). 
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take the place of another, or, in other terms, that one thing (a money coin, e.g.) could be used to 
represent something else. And this is the key concept of algebraic representation.  

However, although the conceptual category of value was instrumental in creating new forms of 
signification and of representation, the concept of value cannot fully account for the emergence of 
algebraic symbolism. To be sure, value was instrumental in creating different new forms of 
signification which were distinct from medieval ones (which were governed by iconicity or figural 
resemblance, or those mentioned by Foucault (1996), like convenientia and aemulatio, or analogie
and sympathie). Without a doubt, value has shown that representation is arbitrary in the sense that 
the value of a thing does not reside in the thing itself but in a series of contextual usage values, and 
we know that the arbitrariness of the signifier is one of the key ideas of algebraic representation. 
But I will argue later that, along with value, there was another cultural category that played a 
fundamental role, too. I will come back to this point shortly. Let us now deal with what I want to 
term oral algebra.

4 Oral algebra

As Franci and Rigatelli (1982, 1985) have clearly shown, algebra was a subject taught in the 
abacus schools. Algebra was in fact part of the advanced curriculum of merchants’ education. As 
in the case of the other disciplines, the teaching and learning of algebra was in all likelihood done 
for the most part orally. The abacists’ manuscripts, which were mostly intended as teachers’ notes, 
indeed exhibit the formulaic texture of oral teaching. They go from problem to problem, 
indicating, in reasonable detail, the steps to be followed and the calculations to be performed. 

Let us come back once more to della Francesca’s problem. The text says: 

Do this. You know that he has to give him 25 ducati per year, for 2 months it comes to 4 I/6; 
and the horse put that it’s worth  thing, for 2 months it is worth 2/12 of the thing that is I/6 
(sic). 

From the text, we can easily imagine the teacher talking to one student. When the teacher says “Do 
this” he uses an imperative mode to call the student’s attention to the order of the calculations that 
will follow. Then, he says: “You know that …”. The colloquial style of face to face interaction is 
indeed a common denominator of abacists’ manuscripts7. In all likelihood, oral explanations were 
accompanied by the writing of calculations. This is suggested by the use of the recurrent 
imperative accompanying the algebraic symbolization (here “put” used to indicate the 
symbolization of the value of the horse). The written calculations could have been done on 
wooden tablets, covered with wax and written on with styluses. Tablets of this type had been in 
use since the 12th Century in school activities to write and compose written exercises in prose and 
verse. Calculations could also be done on paper, which had become increasingly available at the 
time. 

                                                     
7 Høyrup (1999) remarked that the Algebra of Master Jacob of Florence (1307) includes colloquial-

pedagogical remarks such as “Abiamo dicto de rotti abastanza, però…”, “Et se non te paresse tanto chiara 
questa ragone, si te dico que ogni volta che te fosse data simile ragione, sappi primamente …” “Et abi a 
mente questa regola”, etc. 
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In this context, the student could hear the teacher’s explanation and could see the teacher’s 
gestures as he pointed to the calculations (see Figure 2). 

Figure 2. A woodcut showing a teacher examining a pupil (from Orme, 1989, p. 72) 

Perhaps, while talking, the teacher wrote something like the text shown if Figure 3. 

Figure 3. The teacher’s hypothetical written text accompanying the oral explanation (perhaps 
the written text was less linear than here suggested). 

Such a text would support the rich audio (but also perceptual and kinesthetic) mathematical 
activity that I want to term oral algebra. The adjective oral stresses the essential nature of the 
teaching and learning situation –a situation which eventually could also have had recourse to the 
teacher’s notes. In fact, the rich audio and tactile dimension of the learning experience of the time 
is very well preserved by the look of certain manuscripts. Many of them bear vivid colors and 
drawings which still stress the emphatic involvement of the face-to-face setting (see Figure 4; for 
more details, see Shailor, 1994). 

As shown by “The gentleman and the servant problem”, oral algebra involved making recourse 
to a text with some algebraic symbolism. However, symbols were not the focus of the 
mathematical activity. They were part of a larger mathematical discourse, their role being to 
pinpoint crucial parts of the problem-solving procedure. As we shall see in the next section, at the 
end of the 15th Century the emergence of printing brought forward new forms of knowledge 
representation that changed the practice of algebra, as well as the status of symbols. 
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4
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Figure 4. Example of a mathematical manuscript. From Calandri’s 15th century Aritmetica
(Arrighi, ed., 1969, p. 96) 

5 Written algebra 
No doubt, the emergence of the printing press not only transformed the forms of knowledge 
representation, it also altered the classical structures of learned activities. More importantly, the 
printing press ended up modifying the individual’s relationship to knowledge, as is witnessed by 
the passage quoted in the epigraph of this paper. 

With the arrival of the printed book, new cognitive demands arose. The arsenal of resources of 
oral language, such as vocal inflections, gestures that help to focus the interlocutor’s attention on 
specific points of the problem at hand, the empathy and participation of all the senses, all of this 
was definitely gone. The reader was left in the company of a cold sequence of printed words. 
Speech was transformed into writing. And so too was algebra. 

For a reader of the 16th Century, to learn algebra from a printed book such as Luca Pacioli’s 
Summa de Arithmetica geometria Proportioni: et proportionalita (1494) or Francesco Ghaligai’s 
Pratica d’Arithmetica (1521), meant to be able to cope with the enclosed space of the book. It also 
meant to cope with a mathematical experience organized in a linear way and to overcome the 
difficulties of a terminology that, for the sake of brevity, used more and more abbreviations, such 
as “p” for piu (plus), “m” for minus “R.q.” (or sometimes “R”) for square root, or contracted 
words, like “mca” for multiplica (multiply) (see Figure 5). 

While in a face-to-face interaction ambiguities could be solved by using gestures accompanied 
by explicative words, the author of the book had to develop new codes to make sure that the ideas 
were well understood. Syntactic symbols were a later invention to supply the reader with 
substitutes for the pauses that organize sentences in oral communication8. Brackets are perhaps a 
good example to mention. In a printed book, the numbers affected by the extraction of a square 
root have to be clearly indicated. 

                                                     
8 Arrighi tells us that, in his remarkable modern editions of abacists manuscripts, he added modern 

punctuation (See Arrighi’s introduction to his 1970 edition of della Francesca’s Trattato d’Abaco; see also 
Arrighi, 1992). 
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Figure 5. Excerpt from Pacioli’s Summa d’arithmetica, edition of 1523 

Thus, in his book L’Algebra, Bombelli used a kind of “L” and inverted “L” to remove the 
ambiguity surrounding the numbers affected by the square root sign (see Figure 6). 

161642024
422024

220244

2 xxx
xx

xx

Figure 6. To the left, an extract from L’Algebra by Rafaele Bombelli (1572) (Bortolotti, E., (ed.), 
1966) with, to the right, its translation into modern symbols. The square root is symbolized by 

“R.q.” (“Radice quadrata”). Parentheses having not yet been invented, to indicate that the square 
root affects the term 24-20x, Bombelli uses a letter L and the “inverted” letter L 

It is clear from the above discussion that the printed book led to a specialization of algebraic 
symbolism. It conferred an autonomy to symbols that they could not reach before. Even if symbols 
kept the traces of the previous cultural formations where they had played the role of abbreviations, 
the printed book modified the sensibility of the inquisitive consciousness of the Renaissance. This 
inquisitive consciousness was now exploring the avenues and potential of the new linear and 
sequential mathematical experience. Thus, Bombelli’s symbolism is made up of abbreviations, but 
interestingly enough it is also made up of arbitrary signs, that is, signs with no clear link to the 
represented object. Bombelli’s representation of the unknown and its powers belong to this kind of 
sign.

Peletier’s algebraic symbolism is also made up of abbreviations (e.g. “R” for racine) and 
arbitrary signs (see Figure 7). 
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Figure 7. Peletier’s symbolism as elaborated in L’Algèbre, 1554, p. 8.

Bombelli’s and Peletier’s algebraic symbolisms are examples of systems of representation which 
are partly concrete-contextually based, partly abstract-decontextually based. Their attempts still 
keep the vestiges of oral algebra, to the extent that when Peletier introduced his abstract symbols, 
he told his reader how to pronounce them in natural language (see Figure 8). 

Figure 8. Peletier explains how to pronounce the 
algebraic symbols. L’Algèbre, 1554, p. 11. 

In light of the previous remarks, can it now be suggested that algebraic symbolism is a corollary of 
the printing press? My answer is no. The printing press itself was the symptom of a more general 
cultural phenomenon. It was the symptom of the systematization of human actions though 
instruments and artefacts. Such a systematization radically modified human experience in the 
Renaissance, highlighting factors such as repeatability, homogenization and uniformity proper to 
mass production. As manufacturing, trading, banking and other activities underwent further 
refinement from the 13th Century onwards, a new crystallization of the economic and conceptual 
formation of Renaissance culture arose –efficiency. Like value, efficiency (understood in its 
technological sense) became a guiding principle of human activity. 

Following this line of thought, in the next section, I will argue in more detail that the changes 
in modes of representation were not specifically related to printing (which was nonetheless the 
highest point in the process of the mechanization of all handicrafts), but to the development of a 
technology that transformed human experience, impressing its mark on the way in which the 
reflection of the world was made by the inquisitive consciousness of the Renaissance. 

6 The cultural and epistemological conditions of algebraic 
symbolism

Commenting on the differences between the classic geometric procedures (“démonstrations en 
lignes”) and the new symbolic ones, as Bombelli’s or Vieta’s, Serfati pointed out the huge 
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advantage of the latter in that they bring forward “a strong automatism in the calculations” 
(Serfati, 1999, p. 153). 

A similar remark was made by Cifoletti in her studies on Peletier. She rightly observed that 
Peletier’s  

principal innovation resides in the introduction of as many symbols as there are unknowns in 
the problem, as well as in the fact that the unknowns in the problem correspond to the 
unknowns in the equations, in contrast to what was being suggested by, for example, Cardan 
and Stifel. (Cifoletti, 1995, p.1396)9

The introduction of arbitrary representations for the several unknowns in a problem is indeed part 
of Peletier’s central idea of elaborating an “automatic procedure” (Cifoletti, 1995, pp. 1395-96; 
Cifoletti, 1992, p. 117 ff.) to tackle the problems under consideration. Instead of having recourse 
to sophisticated artifices like those used by Diophantus several centuries before the Renaissance, 
the symbolic representation of several unknowns offered the basis for a clear and efficient method. 

Clarity and efficiency of method, of course, are cultural concepts. Diophantus would have 
argued that his methods were perfectly clear and efficient (see Lizcano, 1993). And Plato would 
have claimed that efficiency (in its technological sense) should be the last of our worries10.

Thus, the emergence of algebraic symbolism appears to be related to a profound change around 
the idea of method. Jacob Klein clearly noticed this when he stated that what distinguishes the 
Greek algebraists, like Diophantus, from the Renaissance ones is a shift from object to method:
ancient mathematics 

[…] was centered on questions concerning the mode of being of mathematical objects […]. In 
contrast to this, modern mathematics [i.e. 16th and 17th Century mathematics] turns its 
attention first and last to method as such. It determines its objects by reflecting on the way in 
which these objects become accessible through a general method. (Klein, 1968, p. 122-123; 
emphasis as in the original) 

The difference between “ancients” and “moderns” can be explained through an epistemological 
shift that occurred in the post-feudal period. Referring to 16th Century “modern” epistemology, 
Hanna Arendt argues that the focus changed from the object to be known to the process of 
knowing it. Even if “man is unable to recognize the given world which he has not made himself, 
he nevertheless must be capable of knowing at least what he has made himself.” (Arendt, 1958a, p. 
584). Or “man can only know what he has made himself, insofar as this assumption in turn implies 
that I ‘know’ a thing whenever I understand how it has come into being”. (op. cit. p. 585; the idea 
is elaborated further in Arendt, 1958b).  

The use of letters in algebra, I want to suggest, was related to the idea of rendering the 
algebraic methods efficient in the previous sense, that is to say, in accordance to the general 16th

century understanding of what it means for a method to be clear and systematic, an understanding 
that rested on the idea of efficiency in the technological sense. You write down your unknowns, 
and then you translate your word-problem. Now you no longer have words with meanings in front 

                                                     
9 “L’innovation principale réside dans l’introduction d’autant de symboles qu’il y a d’inconnues dans le 

problème, et en ce que les inconnues du problème coïncident avec les inconnues des équations, 
contrairement à ce que suggéraient, par exemple, Cardan et Stifel.  (Cifoletti, 1995, p. 1396)] 

10 The use of mechanical instruments made by e.g. Eudoxus and Architas was indeed criticized by Plato: 
“But Plato took offense and contended with them that they were destroying and corrupting the good of 
geometry, so that it was slipping away from incorporeal and intelligible things towards perceptible ones and 
beyond this was using bodies requiring much wearisome manufacture.” (Plutarch, Lives: Marcellus, xiv; 
quoted by Knorr 1986, p. 3). 
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of you. What you have is a series of signs that you can manipulate, in a machine-like manner, in an 
efficient way. Signs become manipulated as commodities were manipulated in the 16th century 
market place. And as you do not even need to know who made the commodity, in the same way 
you do not need to know what objects the signs refer to. We are here in front of a new 
epistemological stratum that regulates in a same way the abstraction of the referent in algebra and 
in the economic world. 

In more general terms, what I want to suggest is that the social activities of the post-feudal 
period were highly characterized by the two crystallizations of the economic and conceptual 
formations of Renaissance culture discussed in this paper, namely value and efficiency.
Mathematical thinking as a reflection of the world was shaped by these crystallizations. These 
crystallizations led to two points. On the one hand, to an unprecedented creation of instruments 

e.g. military machinery, da Vinci’s impressive investigations on flying machines, parabolic 
mirrors, pulleys, etc. (see Pedretti, 1999), Dürer’s perspectograph, and so on. On the other hand, to 
a reconceptualization of mathematical methods and the creation of new ones (e.g. analytic 
geometry) modelled to an important extent on the technological metaphor of efficiency. 

Within this context, the effort carried out by one of the fathers of algebraic symbolism to 
legitimize the use of instruments in mathematics is fully understandable. Indeed, in his Geometry,
Descartes (see Figure 9) complains about the lack of interest shown by ancient mathematicians for 
“mechanical curves”, i.e. curves constructed with some sort of instruments for, as he argues, one 
must to be consistent and then also reject circles and straight lines, given that they are constructed 
with rule and compass, which are instruments too (Descartes, 1637/1954, pp.40-43; see Figure 9): 

To sum up, although certainly not the only elements, value and efficiency (in its technological 
sense) helped to build the epistemological foundations for the emergence of algebraic symbolism. 

Figure 9. Descartes’ construction of a curve with the help of an instrument made up of several 
rules hinged together. Descartes argued that curves described by several successive motions or 

continuous motion of instruments may yield exact knowledge of the resulting curve (Dover edition 
of La Géométrie, 1954, p. 46). 

7 Synthesis and Concluding Remarks 

Cultural conceptual categories are crystallizations of historic, economic and intellectual 
formations. They constitute a powerful background embodying individuals’ reflections of the 
world as it appears to them, for living in a culture means to be diversely engaged in the interactive 
zones of human activity that compose that culture.  
The two aforementioned crystallisations were instrumental in creating the conditions for a new 
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kind of inquisitive consciousness –a consciousness which expressed its reflection about the world 
in terms of systematic and efficient procedures. 

That the previous crystallizations reappeared in other sectors of human life can indeed be seen 
if we turn to painting. Perspective calls for a fixed point of view, an enclosed space, much like the 
page of the written book. It supposes homogeneity, uniformity and repeatability as key elements of 
a world that aligns itself according to the empire of linear vision and self-contained meaning (see 
Figure 10). 

Perspective is a ‘clear method’ with which to represent space in a systematic and efficient 
instrumental form (see Figure 11), in the same manner that the emergent algebraic symbolism is a 
‘clear method’ with which to represent word-problems through symbols. Symbolic algebra and 
perspective painting in fact obey the same form of cultural signification. This is why perspective 
lines are to the represented space what algebraic symbols are to the represented word-problem. 

Figure 10. A perspective drawing from 1545 

Figure 11. Dürer’s perspectograph or 
instrument to draw and object in perspective 

It is important to note at this point in our discussion that the two aforementioned crystallizations, 
value and efficiency, were translated in the course of the activities into an ontological principle 
which, during the Renaissance, made the world appear to be something homogeneous and 
quantifiable in a manner that was unthinkable before. Converted into an ontological principle, it 
permeated the various spheres of human activity. In the sciences, it led to a mechanical vision of 
the world. In mathematics, such a principle, which nonetheless remained implicit, allowed 
Tartaglia, for instance, to calculate with what would have been considered non-homogeneous 
measures for the Greek episteme. As Hadden, remarked, 

Niccolo Tartaglia (d. 1557), for example, formulates a statics problem in which it is required to 
calculate the weight of a body, suspended from the end of a beam, needed to keep the beam 
horizontal. Tartaglia’s solution requires the multiplication and division of feet and pounds in 
the same expression. Euclidean propositions are employed in the technique of solution, but 
Euclidean principles are also thereby violated. (Hadden, 1994, p. 64) 

The homogeneous and quantifiable outlook of things (see Crosby, 1997) was to the ontology of 
the Renaissance what the principle of non-contradiction was to Greek ontology or what the yin-
yang principle of opposites was to the Chinese one. 

It is perhaps impossible to answer, in a definitive way, the question of whether or not the 
alphanumeric algebraic symbolism of today could have emerged had printing not been invented. 
Piero della Francesca’s timid algebraic symbolism suggests, however, that the idea was ‘in the air’ 
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– or to say it in more technical and precise terms, the idea was in the zone of proximal development
of the culture11. Perhaps printing was a catalyzer that helped the Renaissance inquisitive 
consciousness to sharpen the semiotic forms of knowledge representation in a world that 
substantially transformed human experience by the use of artifacts and machines and which 
offered a homogeneous outlook of commensurate commodities through the cultural abstract 
concept of value. Value has certainly shown that things are interchangeable and that their 
representation is in no way an absolute claim for the legitimacy of the represented thing. Giotto’s 
paintings are representations in this modern sense of the word: they do not claim a coincidence 
between the representation and the represented object. Stories, in Giotto’s paintings, are often told 
by moving a few signs around the painting surface (the rock, the dome, the tree, the temple, the 
heritage, the church, etc.), much as algebraic symbolism produces different stories by moving its 
signs around. 

Peletier’s immense genius led him to see that the key concept of our contemporary school 
algebra is the equation. For sure, Arab algebraists classified equations before abacists such as 
Pacioli or della Francesca and Humanists like Peletier or Gosselin, but these equations referred to 
‘cases’, distinguished according to the objects related by the equality. For Peletier, the equation 
belongs to the realm of the representation: an equation is an equality, not between the objects 
themselves, but as they are dénommés, that is, designated (see Figure 12). 

For Peletier, the equation is a semiotic object. Peletier belongs to the post-feudal ear, the era 
where, as Foucault (1966) remarked, things and names part company12.Value, as a cultural abstract 
concept, has made the place of things in the world relative, thereby leading to new forms of 
semiotic activity. 

As Otte (1998, p. 429) suggested, the main 
epistemological problem of mathematics lies in 
our understanding of ‘A=B’, that is, in the way 
in which the same object can be diversely 
represented13. Abacists were the first to tackle 
this problem through the intensive use of the 
cultural category of value, thereby opening the 
door for subsequent theorizations, as the 
mathematician Bochner very well realized, 
although not without some surprise. He said: 

It may be strange, and even painful, to 
contemplate that our present-day mathematics, which is beginning to control even the minutest 
distances between elementary particles and the intergalactic vastness of the universe, owes its 
origination to countinghouse needs of ‘money changers’ of Lombardy and the Levant.
(Bochner, 1966, p. 113) 

Perhaps our debt to the abacisits would be less painfully resented if it were recognized that 
knowledge relates to culture in the precise sense that the activity from which the object of 

                                                     
11 The concept of zone of proximal development was introduced by Vygotsky (1962) to explain the 

ontogenesis of concepts in individuals. I am expanding it here to account for that which becomes potentially 
thinkable and achievable in a culture at a certain moment of its conceptual development. 

12 See also Nicolle, 1997. 
13 See also Otte (in press). 

Figure 12. Peletier’s definition of equation. 
L’Algèbre, 1554, p. 22 
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knowledge is generated impresses in the object of knowledge the traces of the conceptual and 
social categories that it mobilizes, and that what we know today and the way that we have come to 
know it bear the traces of previous historical and cultural formations. 
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The causality proof scheme1

“We do not think we understand something until we have grasped the why of it. … To grasp the 
why of a thing is to grasp its primary cause,” asserts Aristotle in Posterior Analytics. Some 16-17th

Century philosophers argued that mathematics is not a perfect science because “implication” in 
mathematics is a mere logical consequence rather than a demonstration of the cause of the 
conclusion. If we are to draw a parallel between the individual’s epistemology of mathematics and 
that of the community, the following questions are of paramount importance: Was the causality 
issue of marginal concern to the mathematics of the sixteen and seventeen centuries, or had it 
significantly affected it? To what extent did the practice of mathematics in the sixteen and 
seventeen centuries reflects global epistemological positions that can be traced back to Aristotle’s 
specifications for perfect science? Mancosu (1996) argues that the practice of Cavalieri, Guldin, 
Descartes, and Wallis, and other important mathematicians reflects a deep concern with these 
issues. He shows, for example, how two of the major works of the 1600s—the work by Cavalieri 
on indivisibles and that by Guldin, his rival, on centers of gravity—aimed at developing 
mathematics by means of direct proofs. These two mathematicians, argued Mancosu, explicitly 
avoided proofs by contradiction in order to conform to the Aristotelian position on what 
constitutes perfect science—a position Aristotle articulated in his Posterior Analytics. Mancosu 
(1996) also argues convincingly that Descartes, whose work represents the most important event in 
seventeenth-century mathematics, was heavily influenced by these developments. Descartes 
appealed to a priori proofs against proofs by contradiction because they show how the result is 
obtained and why it holds, and they are causal and ostensive. 

The history of the development of the concept of proof may suggest that our current 
understanding of proof was born out of an intellectual struggle during the Renaissance about the 
nature of proof—a struggle in which Aristotelian causality seem to have played a significant role. 
If the epistemology of the individual mirrors that of the community, we should expect the 
development of students’ conception of proof to include some of the major obstacles encountered 
by the mathematics community through history. We conjecture that Aristotelian causality is one of 
these obstacles. In my studies, causality has been observed with able students, who seek to 
understand phenomena in depth, than with weak students who usually are satisfied with whatever 
the teacher presents.  

REFERENCES 

-Harel, G., Sowder, L., 1998, “Students’ proof schemes”, in Research on Collegiate Mathematics 

                                                     
1 “Proof scheme” is the sense given in Harel & Sowder (1998). 
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Proof in History and the Classroom 
Historically the philosopher Thales has been accredited as the inventor of the mathematical proof. 
I have seen an argument which questions this honour where the main point is that since Thales did 
not have an axiom system, he could not prove anything at all. 

However, the purpose of a proof is to convince an audience, by making them "see for 
themselves" that what I say is true. /What is needed is not a system of axioms, but that the prover 
and the audience agree on what is considered as known and what is accepted as obvious or 
convincing./ Therefore it can be said that in this respect, Thales was in a situation similar to that of 
a school teacher in front of a class. 

Ever since the time of Thales, the "mathematical proof" has been the distinguishing feature of 
mathematics - nevertheless as Lakatos observed in his famous Proofs and Refutations, "yesterday's 
proof" might be just a good joke today. 

Therefore a teacher who wants to convey the spirit of mathematics to her students has to create 
an understanding of what a mathematical proof is, and hopefully also a feeling for it. Mathematics 
is often considered as an authoritarian subject at school, while it could in fact be the least 
authoritarian, and thereby the most democratic subject of all. When a student has understood a 
proof, she knows that what the teacher told is true - not because the teacher said so, but because 
she has understood the proof. 

The issue of using proof in the class-room is certainly one of the most important questions to 
discuss among all teachers of mathematics. It was therefore clear to us that we needed a Panel 
Discussion concerning proofs, and at HPM such a discussion should consider both the historic and 
the educational aspect of this issue. The participants of this discussion were Guershon Harel, Siu 
Man-Keung, Tasos Patronis and Anders Öberg, with me as coordinator. Unfortunately the first 
edition of the proceedings was published in such a haste that only Guershon Hare’s contribution 
was included. 

I shall conclude this posteriorly written introduction to the panel discussion by telling about my 
own favorite “first proof in class”. I actually believe that this proof can be given already in primary 
school, perhaps in the second or third grade. The proof is preceded by asking the students to make 
a simple drawing on paper as follows. 

The teacher starts by asking the students to put say 7 dots on a piece of paper, and then connect 
pairs of points by drawing a curve between them. The rules are that every curve has to go between 
two different dots, and there is only allowed one curve between any two given dots. It is of course 
not necessary to connect all pairs of points. Two points are then said to be neighbors if there is a 
curve between them. The teacher then promises any student who is able to draw curves in such a 
way that all points have a different number of neighbors will be given something - say a small 
amount of money. 
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When the students have tried for some time, somebody will probably ask if it is possible, and it 
is then time to have a vote on whether it is possible or not. Perhaps it is then time to tell that it is 
impossible and hope for the question - how do we know that? 

One can then look at the simpler cases, 2 points, 3 points, 4 points, before one goes to the 
general case, and introduces the pigeon-hole principle. 

Contribution by  
Tasos Patronis  

Department of Mathematics, University of Patra, Patra, Greece 
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Geometric explanation in elementary number theory from Pythagorean tradition to students 
of today: the case of triangular numbers 

According to the modern Greek historian of Mathematics Evangelos Stamatis (1898-1990), 
Triangular and Polygonal Numbers were constructed within the Pythagorean Tradition (as it 
appears in Nicomachus’ Introduction to Arithmetic) inductively, starting from a unit (monas),
which was given a particular polygonal shape. This unit was considered as a “potential” triangle, 
square or other regular polygon, which then was successively “augmented” into a similar polygon 
of sides 2,3,4 etc. by adding, each time, a suitable gnomon, i.e. a shape representing the difference 
between two successive polygonal numbers. This inductive construction can explain several 
properties of such numbers, as e.g. that the nth square number n2 is the sum of all n first odd 
numbers 1+3+5+…+(2n-1). However, it seems that it is not possible to use gnomons directly in 
order to find a “closed” form for the computation of the nth triangular number 

Tn = 1+2+3+…+n
The problem of computing Tn in an easy way (and its solution) was published together with 
Nicomachus’ Introduction to Arithmetic by R. Hoche in 1866, but apparently this problem does 
not belong to the work of Nicomachus. Modern textbooks of Elementary Number Theory 
sometimes re-arrange Tn into an orthogonal triangle shape, which they complete to a square or a 
rectangle and then compute Tn as the number of lattice points belonging to half of this rectangle 
(figures will be used in my panel 10-minutes introduction of the subject). Now this switch of the 
shape of representation, from a “regular” to an orthogonal one, causes some unexpected and 
interesting confusions to students of today and reveals a notable inherent logical difficulty in 
geometric explanations of this kind. 

Contribution by  
Man-Keung Siu  

Department of Mathematics,  University of Hong Kong, Pokfulam, Hong Kong, China
mathsiu@hkucc.hku.hk

Proof in History and in the Classroom  
Through examples this introductory talk tries to explore the practice of mathematical pursuit, in 
particular on the notion of proof, in a cultural, socio-political and intellectual context. Not so much 
attention would be paid to the evolution of the standard of rigour or to the epistemological aspect 
of a mathematical proof (like in Proofs and Refutations by Imre Lakatos). Because of time 
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constraint not much attention would be paid to the technical detail of a proof of a specific theorem 
either. Rather, we try to look at a few examples, including: 

(1) the influence of the exploratory and venturesome spirit during the ‘era of exploration’ in the 
15th and 16th centuries on the development of mathematical practice in Europe, 

(2) the influence of the intellectual milieu in the period of the Three Kingdoms and the Wei-Jin 
Dynasties (in the 3rd and 4th centuries) in China on mathematical pursuit as exemplified in the 
work of LIU Hui, 

(3) the influence of Daoism in mathematical pursuit in ancient China with examples on 
astronomical measurement and surveying from a distance. 

One objective in mind in the discussion is to show how mathematics constitutes a part of human 
endeavour rather than stands on its own as a technical subject, as it is commonly taught in the 
classroom. The examples may also suggest ways to enhance understanding of specific topics in the 
classroom, but that would be best left to those who are doing the actual teaching in the classroom. 
Comments and suggestions are most welcome during the open discussion. 
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ABSTRACT 
A. In this paper we consider some issues concerning the historical presentation of a mathematical 

concept, with particular reference to the educational introduction of infinitesimal methods: we present some 
theoretical frameworks and highlight the importance of non-mathematical elements. 

B. We propose an historical survey, taking into account some approaches by Euclid, Cavalieri, Wallis, 
Leibniz, Euler, d’Alembert, Lagrange and Cauchy. 

C. We conclude that educational introduction of infinitesimal methods by historical references requires a 
socio-cultural contextualization; nevertheless, historiographically, an aprioristic platonic epistemological 
perspective is frequently assumed. 

1 Theoretical preface 

In his The Essential Tension, T.S. Kuhn offers students the maxim: 

When reading the works of an important thinker, look first for the apparent absurdities in the 
text and ask yourself how a sensible person could have written them. When you find an answer 
[…] then you may find that more central passages, ones you previously thought you 
understood, have changed their meaning. (Kuhn, 1977, p. xii) 

This quotation will provide us with an important hint in order to evaluate some historical 
contributions and to use them correctly and effectively in educational practice. 

Some theoretical frameworks can be mentioned in order to link learning processes with 
historical issues. According to the epistemological obstacles perspective, some systems of 
constraints in the History must be studied for understanding existing knowledge. Obstacles are 
subdivided into epistemological, ontogenetic, didactic and cultural (Brousseau, 1989), so 
knowledge is separated from the other spheres; an important assumption is connected to the 
reappearance in teaching-learning processes of the same obstacles encountered by mathematicians 
in the History; the isolated approach of a pupil to the knowledge, without social interactions with 
other pupils and with the teacher, is moreover remarkable. 

However can we directly compare different historical periods? What is the role played by 
socio-cultural factors? It is impossible, nowadays, to interpret historical events without the 
influence of modern conceptions (Furinghetti & Radford, 2002); so we must accept our point of 
view and take into account that, when we look at the past, we connect two cultures that are 
“different [but] they are not incommensurable” (Radford, Boero & Vasco, 2000, p. 165). 
According to Radford’s socio-cultural perspective, knowledge is linked to activities of individuals 
and related to cultural institutions; it is built into a social context and the educational role played 
by historical elements must be considered with reference to different socio-cultural situations 
(Radford, 1997 and 2003). 

In our opinion, knowledge can hardly be considered according to a classical teleological vision: 
let us explain this by a first example. In his Quadratura parabolae, Archimedes (287-212 BC) 
proved the following Proposition 23 (see: Euclid’s Elements, IX-35): “If some quantities are such 
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that everyone of them is four times the following one, all these quantities plus the third part of the 
lowest are 4/3 of the greatest one” (Frajese, 1974, pp. 511-512. In this paper the translations are 
ours). 

Many centuries later, F. Viète (1540-1603) calculated the sum of a geometric infinite series; 
and in 1655 A. Tacquet (1612-1660) published a similar result (see moreover Wallis’ Arithmetica 
infinitorum) and stated: “It is amazing that [ancient] mathematicians, who knew the theorem 
concerning finite progressions, did not consider the result concerning infinite ones, that can be 
immediately deduced by such theorem” (Loria, 1929-1933, p. 517). 

Tacquet made reference to ancient mathematics with no historical contextualization; although 
Aristotle implicitly noticed that the sum of a great number of addends (an infinite series, 
potentially considered) can be finite, Greek conceptions distinguished actual and potential infinity; 
mathematical infinity, following Aristotle himself, was accepted only in potential sense: so it is 
quite meaningless to suppose any explicit Greek consideration of infinite series. Of course 
Tacquet’s position, too, must be contextualized: we cannot suppose the presence of our 
philosophical awareness in 17th century. 

2 Focus and methodology: an historical survey 
Author Date Platonic perspective Socio-cultural contextualization 

The exhaustion argument 
Euclid 300 BC A first example of 

infinitesimal method 
True knowledge cannot be reached 
through sense: the indirect method 

assured rigor to proofs 
Towards the infinitesimal

B. Cavalieri 1598-1647 A relevant step towards 
infinitesimal methods 

17th-century mathematicians needed 
effective tools 

J. Wallis 1616-1703 His definition of limit 
“contains the right idea, 
but his wording is loose” 

Rigor must be referred to the cultural 
institutions of the considered period 

“Vanishing quantities”?
G.W. Leibniz 1646-1716 Very success of his 

algorithms, but “uncertainty 
over concepts” 

His position with reference to 
“vanishing quantities” was complex 

and changed in the time 
L. Euler 1707-1783 His results are very 

important, but he didn’t 
consider difficulties with 

actual infinitesimals 

His position was influenced by the 
features of the scientific frame of 

mind in the 17th century 

Against “vanishing quantities”
J. d’Alembert 1717-1783 He refused vanishing 

quantities, but “his 
definition of limit lacked 
clear-cut phraseology” 

J.L. Lagrange 1736-1813 His attempt to reduce 
Calculus to Algebra “reveals 

his folly” 

Concerning the foundations of the 
Calculus, their ideas must be 

considered against the background of 
the Enlightenment 

The definition of limit
A.L. Cauchy 1789-1857 His definitions were still 

expressed in the verbal 
register 

His definitions were expressed in the 
register available at his time 

Table 1 
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When we introduce historically a mathematical concept, the selection of historical data is relevant 
(Radford, 1997). Problems are connected with their interpretation, which is always based upon 
cultural institutions and beliefs. Often original data are approached by later editions, so we must 
take into account editors’ conceptions (Barbin, 1994). 

We do not propose a complete survey of the historical roots of the Calculus; we present our 
references in order to show that: (a) the educational introduction of infinitesimal methods by 
historical references requires a correct contextualization; (b) historiographically, often an 
aprioristic platonic epistemological perspective is implicitly assumed (see Table 1). 

3 The exhaustion argument 

The exhaustion argument is attributed to Eudoxus (405-355 BC): proofs by exhaustion argument 
are considered important infinitesimal processes, sometimes proposed in classroom practice. 

Proofs by exhaustion argument are based upon the following proposition: 

Liber X, Propositio I. Duabus 
magnitudinibus inequalibus expositis, si à 
maiori auferatur maius, quàm dimidium,, 
ab eo, quod eliquum est rursus auferatur 
maius, quam dimidium;, hic semper fiat: 
relinquetur tandem quaedam magnitudo, 
quae minori magnitudine exposita minor 
erit (Commandino, 1619, p. 123r). 

Proposition X-1. Two unequal 
magnitudes being set out, if from the 
greater there is subtracted a magnitude 
greater than its half, and from that which 
is left a magnitude greater than its half, 
and if this process is repeated 
continually, then there will be left some 
magnitude less than the lesser magnitude 
set out. And the theorem can similarly be 
proved even if the parts subtracted are 
halves. 

Euclid applied the so-called Eudoxus’ postulate (which in Elements is a definition: in III-16 Euclid 
considered the set of rectilinear and curvilinear angles that is not a class of Archimedean 
magnitudes; so Greeks were not unaware of quantities that can be infinitesimal): 

Liber V, Definitio IV. Proportionem 
habere inter se magnitudines dicuntur, 
quae multiplicatae se invicem superate 
possunt (Commandino, 1619, p. 57v). 

Definition V-4. Magnitudes are said to 
have a ratio to one another which can, 
when multiplied, exceed one another. 

Concerning the Proposition X-1, A. Frajese remembers the following fragment by Anaxagoras 
(500?-428 BC): “For neither is there a least of what is small, but there is always a less. For being 
isn’t non-being” (Frajese & Maccioni, 1970, p. 596). 

Can we refer such fragment to the limit notion? Underlying the concept of limit there is the 
concept of the number system, so it would be necessary to consider the difference between 
magnitude and number in Greek contribution: the concept of number line is different as seen by 
Greeks or, for instance, by Cauchy. Hence a direct comparison between Anaxagoras and Cauchy is 
meaningless. 

Let us now consider once again X-1: can we suppose the presence of a limit in the exhaustion 
argument? M. Kline writes states that “there is no explicit limiting process in it; it rests on the 
indirect method of proof and in this way avoids the use of a limit” (Kline, 1972, p. 83). The non-
equivalence is not only in the formal sense: most differences pertain to the ontological realm 
(Radford, 2003). In the exhaustion argument we can recognize nowadays an infinitesimal process; 
but this interpretation is ours, based upon modern conceptions: as Kline notices, the indirect 
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method of proof avoids the use of a limit. Euclid often applied the Proposition X-1, but he neither 
gave a definition of infinitesimal, nor proposed any particular denomination for infinitesimal 
processes. Greek beliefs and cultural institutions played a relevant role; Greek way of 
argumentation was shaped by the social and political context and was developed in the 
philosophical circles since the 5th century BC (Radford, 1997): such context cannot be forgotten 
when we interpret Greek contribution. 

Let us moreover consider the following propositions:  

Liber XII, Propositio I. Symilia polygona, 
quae in circulis describuntur, inter se sunt, ut 
diametrorum quadrata (Commandino, 1619, 
p. 211r). 

Proposition XII-1. Similar polygons 
inscribed in circles are to one another as the 
squares on their diameters. 

Liber XII, Propositio II. Circoli inter se 
sunt ut diametrorum quadrata 
(Commandino, 1619, p. 211v). 

Proposition XII-2. Circles are to one 
another as the squares on their diameters. 

Twenty centuries later, G. Saccheri (1667-1733) wrote: “Euclid previously proved (XII-1) that 
similar polygons inscribed in circles are to one another as the squares on their diameters; by that it 
would be possible to deduce XII-2, by considering circles as polygons with infinitely many sides” 
(Saccheri, 1904, p. 104). Saccheri’s remark is interesting, referred to the 17th century, but Greek 
mathematicians never used infinity according to this idea: Euclid’s proof XII-2 is completely 
different (Frajese & Maccioni, 1970). 

4 Towards infinitesimal 

In a different context, infinitesimals were considered in a very different way. Cavalieri proposed a 
new method and a denomination (indivisibles) but did not give a definition of indivisible 
(Lombardo Radice, 1989). Surely his work can be considered a step towards the awareness of 
infinitesimal concepts; but this judgment is based upon our modern conceptions. Cavalieri’s 
method, sometimes used in classroom practice, deserves a careful historical introduction. 

Cavalieri had no preference for indirect methods (Kline, 1972; reductio ad absurdum was used 
only in Proposition II-12 of Geometria indivisibilibus continuorom; and some years later, 
Cavalieri gave another direct proof of such result in his Exercitationes geometricae sex: Lombardo 
Radice, 1989, p. 256). B. Pascal (1623-1662) and I. Barrow (1630-1677) expressed doubts about 
the utility of exhaustion argument; P. de Fermat (1601-1665) wrote: “It would be easy to present 
proofs based upon Archimedean methods; I underline it once and for all, in order to avoid 
repetitions” (Fermat, 1891-1922, I, p. 257). 

Seventeenth-century mathematicians needed effective tools: Cavalieri’s method would not 
appear completely rigorous (Kline, 1972). But rigor must be investigated in its own conceptual 
context, in order to avoid the imposition of modern conceptual frameworks to works based upon 
different ones. It is immensely unlikely that mathematicians in the History could refuse a method 
because of its foundational weakness that will be pointed out only through a modern approach 
(Radford, 1997, p. 27). 

In fact, frequently historical evaluation is referred to our modern point of view: about J. Wallis, 
Kline writes: 
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Wallis, in the Arithmetica Infinitorum, advanced the arithmetical concept of the limit of a 
function as a number approached by the function so that the difference between this number 
and the function could be made less than any assignable quantity and would vanish ultimately 
when the process was continued to infinity. His wording is loose but contains the right idea” 
(Kline, 1972, p. 388). 

“His wording is loose”: what do we mean by that? If we investigate Wallis’ correctness against our 
contemporary standards we conclude that his expression is not rigorous. But such investigation 
would be historically weak: Wallis’ wording would not be correct, nowadays; but Wallis was
rigorous, in his own way. 

5 Vanishing quantities 

The title of the present section does not suggest a direct comparison between the giants of the 
mathematics: for instance, I. Newton (1642-1727) and G.W. Leibniz were responsive to his own 
primary intuition, which in the case of Newton was physical and in the case of Leibniz algebraic. 

Leibnizian position was complex: he noticed in 1695 that “a state of transition may be 
imagined, or one of evanescence” in which “it is passing into such a state that the different is less 
than any assignable quantity; also that in this state there will still remain some difference, some 
velocity, some angle, but in each case one that is infinitely small” (Kline, 1972, p. 386). “It is 
apparent that neither Newton nor Leibniz succeeded in making clear, let alone precise, the basic 
concepts of the Calculus: the derivative and the integral. Not being able to grasp these properly, 
they relied upon the coherence of the results and the fecundity of the method to push ahead 
without rigour” (Kline, 1972, p. 387). “It is nevertheless clear that Leibniz allowed himself to be 
carried away by the very success of his algorithms and was not deterred by uncertainty over 
concepts” (Boyer, 1985, p. 442). But how can we state “uncertainty over concepts” in Leibnizian 
thought? We can recognise it through our conceptions; we agree with F. Enriques (1938, p. 60), 
who pointed out a problem residing into our modern interpretation of Leibnizian ideas. 

L. Euler’s ideas about infinitesimal are interesting, although a parallelism between Leibniz and 
Euler cannot be stated uncritically. Euler in his Institutiones calculi differentialis (1755) argued:  

Nullum autem est dubium, quin omnis 
quantitas eousque diminui queat, quoad 
penitus evanescat, atque in nihilum abeat. 
Sed quantitas infinite parva nil aliud est nisi 
quantitas evanescens, ideoque revera erit = 
0. Consentit quoque ea infinite parvorum 
definitio, qua dicuntur omni quantitate 
assignabili minora: si enim quantitas tam 
fuerit parva, ut omni quantitate assignabili 
sit minor, ea certe non poterit non esse nulla; 
namque nisi esset = 0, quantitas assignari 
potest ipsi aequalis, quod est contra 
hypothesin (Euler, 1787, I, pp. 62-63). 

There is no doubt that every quantity can be 
diminished to such an extent that it vanishes 
completely and disappears. But an infinitely 
small quantity is nothing other than a 
vanishing quantity and therefore the thing 
itself equals 0. It is in harmony also with 
that definition of infinitely small things by 
which the things are said to be less than any 
assignable quantity; it certainly would have 
to be nothing; for unless it is equal to 0, an 
equal quantity can be assigned to it, which is 
contrary to the hypothesis (Kline, 1972, p. 
429). 

Unfortunately Euler did not see the possibility that a vanishing quantity can be a different kind of 
quantity from a numerical constant; he was aware of problems with actual infinitesimals, but in 
mathematical practice he preferred a different approach (Euler, 1796, pp. 84-91). Connections 
between mathematics and socio-cultural context are fundamental: Euler’s approach was not just 
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“tuned in” to applicative features of the scientific frame of mind in the 17th century (Crombie, 
1995) and this situation requires a deep study. 

6 Necessity of rigor 

J.B. d’Alembert’s conception about Calculus deserves a careful interpretation; he refused 
Leibnizian and Eulerian assumptions about differentials and in 1767 stated that a quantity “is 
something or nothing” and “the supposition that there is an intermediate state between these two is 
a chimera” (Boyer, 1985, p. 493). This point must be considered with reference to d’Alembert’s 
rich personality, linking his Jansenist education with his friendship with Voltaire; moreover it must 
be seen against the background of the Enlightenment (Grimsley, 1963): “D’Alembert denied the 
existence of the actually infinite, for he was thinking of geometrical magnitudes rather than of the 
theory of aggregates proposed a century later. D’Alembert’s formulation of the limit concept 
lacked the clear-cut phraseology necessary to make it acceptable to his contemporaries” (Boyer, 
1985, p. 493). 

Of course it was impossible for d’Alembert to perceive by intuition ideas introduced by Cantor, 
so this judgment needs a bit of caution. In his article on Limit written for the Encyclopédie he 
stated that one quantity is the limit of a second variable one if the second can approach the first 
quantity closer than by any assignable quantity, without coinciding with it. This statement is weak 
if compared with the modern limit notion (Boyer, 1985). But d’Alembert’s position must be 
framed into a socio-cultural context, nearly seventy years before the publication of Cauchy’s 
treatise! 

In 1797 J.L. Lagrange tried to reduce Calculus to Algebra (Lagrange, 1813); Kline writes: 

Lagrange made the most ambitious attempt to rebuild the foundations of the Calculus. The 
subtitle of his book reveals his folly. It reads: Containing the principal theorems of the 
differential Calculus without the use of the infinitely small, or vanishing quantities, or limits 
and fluxions, and reduced to the art of algebraic analysis of finite quantities. (Kline, 1972, p. 
430).

Can we consider Lagrange’s attempt just as a “folly”? It is hard to forget Kuhn’s suggestions 
quoted at the beginning of the present paper: as a matter of fact, Lagrange’s “apparent absurdities” 
(Kuhn, 1977, p. xii) tried to overcome the weakness of the Calculus. Surely his idea was based 
upon wrong assumptions (it met great favor for some time, but later it was abandoned: Kline, 
1972), nevertheless it must be framed into a wider context: and once again, nowadays, our 
judgment needs our modern conceptions and our mathematical skill. 

7 Concluding remarks 

In 1821, A.L. Cauchy gave the following definitions: “When values of a variable approach 
indefinitely a fixed value, as close as we want, this is the limit of all those values. For instance, an 
irrational number is the limit of the different fractions that gave approximate values of it (…). 
When values of a variable are (…) lower than any given number, this variable is an infinitesimal or 
an infinitesimal magnitude. The limit of such variable is zero” (Cauchy, 1884-1897, p. 4). 
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Cauchy introduced the distinction between constants and variable quantities, although he had 
no formal axiomatic description of real numbers. It is educationally interesting to underline that 
Cauchy’s verbal formulation was expressed in the paradigm available at the time: nowadays it can 
lead to the use of different representation registers. 

As noticed, presented examples are not a full collection of historical data referred to the limit 
notion: many authors are still missing, e.g. L. Valerio, K.T.W. Weierstrass, A. Robinson (1966). 
For instance, Weierstrass’ definition of limit allows a modern symbolic representation, although it 
would be misleading to make reference to a single symbolic register: there are different registers in 
different communities of practice; Leibniz, Newton, Cauchy had their own symbolic registers 
which differ from each other and differ, too, from that of Weierstrass (Bagni, to appear-a). 

The passage from discrete to continuum is a cultural problem and many historical references 
are important in order to approach it. Turning back to educational issues, the transfer of some 
situations from History to Didactics needs a wider cultural dimension keeping into account non-
mathematical elements, too (Radford, 1997). Some experimental results seem to suggest that in 
classroom practice we can see, in students’ minds, several reactions, doubts and inner 
representations that we can find in the History (Tall & Vinner, 1981; Bagni, 2005); but many 
aspects must be considered: for instance, what do we mean by “students’ minds”? Can we consider 
one’s mind as a “mirror of nature” (Rorty, 1979) and make reference to our “inner representations” 
uncritically? According to W.V.O. Quine, “epistemology, or something like it, simply falls into 
place as a chapter of psychology and hence of natural science. It studies a natural phenomenon, 
viz., a particular human subject” (Quine, 1969, p. 82). And R. Rorty highlights the importance of 
“the community as source of epistemic authority” (Rorty, 1979, p. 380): “We need to turn outward 
rather then inward, toward the social context of justification rather than to the relations between 
inner representations” (Rorty, 1979, p. 424). 

Of course this theoretical perspective needs further research in order to be effectively applied in 
educational practice (see for instance: Bagni & D’Amore, 2005; Bagni, to appear-b). Nevertheless 
we can state that a sociological approach is very important: as a matter of fact, a crude paralleling 
of History with learning processes would connect two cultures referring to quite different contexts 
(Radford, 1997), so it cannot be proposed without a clear consideration of the social and cultural 
backgrounds. An “internalist” History, that is, a conception of the development of mathematics as 
a pure subject isolated from “external” influences, is hardly useful in education (Grugnetti & 
Rogers, 2000, p. 40). 
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ABSTRACT 
We will analyse the main technical aspects of the style and the contents of some texts whose aim is to 
provide scientific information to a large public audience. Starting from journalistic, encyclopedic and 
literary sources, we will also derive some hints on how to set up mathematical education for adults. The 
activity is addressed to teachers and researchers interested in the problem of conveying basic mathematical 
ideas in an informal way to non-mathematicians. 

1 Introduction  

The main assertion we want to substantiate is that the presentation of mathematics at all non-
research levels should be object-centred. The question “what are we talking about?” should be 
clarified at the very beginning. By this we do not mean that the topic should be taken out of its 
context and turned around or inspected inside (anatomical approach), but rather, that it should be 
placed at the centre of a logical map, and possibly magnified with respect to the surrounding areas, 
but without ever excluding its connections with the rest of the world (geographic approach). This 
network of relations provides, first of all, an indirect classification of the object (similar to the 
navigation tree appearing at the top of certain web pages). Moreover, it gives a number of 
directions to move away from its border (which should no longer be thought of as a barrier): this 
should allow us to go back and forth between the part and the whole (rotation in the plane – group 
theory), and to re-consider the same object from different points of view (symmetry of figures – 
plane transformation – matrix and vector analysis), depending on the teaching schedule.  

My experience as a teacher of a pre-calculus course at an American university shows that non-
mathematicians prefer a direct contact with facts, rather than a low-impact entrance into the 
subject, whose only (useless) effect it to postpone the hard part. Instead of simply wrapping it up 
in a soft package, the mathematical object should be re-styled properly, in order to make it suitable 
for being the main character right from the start. Whoever wants to find out the meaning of a new 
word will look it up in a dictionary or encyclopaedia: the entry should immediately be clear to 
him, regardless of his background knowledge. Or better: the compiler should try to figure out the 
average status of someone who may be interested, e.g., in learning what a group is. This term 
won’t arouse his curiosity unless he is familiar with arithmetic and is aware of the existence of 
abstract structures (or, a least, of mathematical definitions referring to non-numerical objects). 
Otherwise he is even quite unlikely to ever come across the notion of a group while reading a 
book. On the other hand, someone asking about groups is not supposed to know of semigroups;
one can understand maps even if he has no idea of what an ordered triple is; everyone has the right 
to be introduced to binary relations without being forced to hear about cross products. After all, 
no teacher would ever dare to regard the concept of axiom as a prerequisite for that of theorem,
even if the latter actually cannot exist without the former: pupils can fully enjoy the marvels of the 
Pythagorean Theorem without being drilled in formal logic. I experimented this encyclopaedic 
approach as a contributor to the on-line mathematical encyclopaedia Mathworld (Weisstein et al.). 
Let me quote the first paragraph of the entry “Homotopy type”: 
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A class formed by sets in Rn which have essentially the same structure, regardless of size, shape 
and dimension. The “essential structure” is what a set keeps when it is transformed by 
compressing or dilating its parts, but without cutting or gluing. The most important feature that 
is preserved is the system of internal closed paths. In particular, the fundamental group remains 
unchanged. This object, however, only characterizes the loops, i.e., the paths which are 
essentially circular lines, whereas the homotopy type also refers to higher dimensional closed 
paths, which correspond to the boundaries of n-spheres. Hence the homotopy type yields a 
more precise classification of geometric objects. As for the circular paths, it makes no 
difference whether the object is located in the plane or on the surface of a sphere, so the 
fundamental group is the same in both cases. 

2 Don’t tell the whole truth 

The middle way between respecting the axiomatic-deductive completeness (which, in the post-
Hilbertian era, serves the essence of mathematics, and is therefore totally subject-oriented) and 
studying every item for itself (which serves the principle of modularity, and is hence rather user-
oriented) is an easy-to-tell recipe: focusing the object – without forgetting the rest. This sort of 
chromatic metaphor reminds us that a sphere won’t be recognized as such in a picture unless 

it is painted with shading and nuances showing its convexity; 
it has a different colour than the background; 
it is not covered by extraneous drawings. 

A mathematical concept can be outlined in a satisfactory way only if you take care of the 
following: 

you must be able to hint at its main features, without giving too many details (the flat 
image of a sphere needs only a few additional marks to call to mind a ball: you need not 
give its curvature at every point); 
you must point out the properties that distinguish it from other similar objects (a ball is 
neither an egg, nor a bean); 
you must avoid adding remarks that do not stick to the object (a cube can be inscribed in a 
sphere: okay, what for?) 

Hardly any of my 150 students cared when I told them that number e is important in computing 
radioactive decay. And they certainly could not make anything out of its non-periodic decimal 
expansion written on the blackboard. One must carefully choose the few words that leave the right 
things unsaid: one must stop exactly at the point where the listeners’ imagination and intuition is 
spontaneously activated to design the desired mental image, or to raise the expected questions. All 
the rest is superimposed “syllabus material”, that adds nothing to the audience’s understanding of 
the subject.  

It seems that one has to pursue a kind of balance between the Cartesian view, which requires 
the description to be “neat” and “distinguished” (and therefore implies that the “being” and “not 
being” be explicitly declared) and the Platonic prescription that appeals to memory and a self-
induced comprehension (which expects the teacher to let the pupil’s mind run its course from some 
time on). Maybe the compromise is reached when children derive the notion of triangle by 
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themselves, by comparing a collection of triangles with a collection of non-triangles. Furthermore, 
the possibility of combining graphic evidence (perceptive input) and abstract understanding 
(mental output) is contained in the etymological ambiguity of the German word Anschaulichkeit, 
in which Felix Klein, in his Erlanger Programm, sums up his epistemological approach to 
geometry: anschauen means to look at but also to conceive as. Abstract mathematical objects are 
often constructed as a mental variation of real things: a disk without border, an unbounded line.
The modification is normally subtractive: in our mind we take out something that in the physical 
world must always be there. This should not be seen as an unnatural privation: sometimes we just 
get rid of all the accidental properties of real-life furnishings to get a unique (general), ideal 
(perfect) configuration: it is the mathescope (Kasner 1939), that turns the jagged, discontinuous, 
thick, finite essence of the track drawn at the blackboard with a ruler and a piece of chalk into the 
concept of a straight line. Eliminating something and forcing the mind to fill the gap is more 
challenging and suggestive than a constructive description (Imagine there is no heaven, no 
countries, no possessions,…), and, moreover, it helps us to make distinctions (a semigroup is a 
kind of group, which does not necessarily have an identity element), and to show the independence 
of conditions that otherwise would seem to be bound together (the Koch snowflake is a bounded
curve, but it has infinite length, it is everywhere continuous, but it is nowhere smooth): we can thus 
create counterexamples, which show that, even in plane geometry, mathematical coherence is 
dramatically detached from physical evidence. On the other hand, negation is the only possible 
way to point at certain notions (an infinitesimal number lies between the negative and the positive 
real numbers, but is not zero), and, in many cases, gives the most concise expression (speaking of 
a disk without border is certainly more convenient than defining the set of points whose distance 
from the origin is less than 1). 

Words should not override the fine thread between sight and thought. In particular, the 
language used should be natural: it does not suffice to rephrase the symbolic syntax in words (my 
students objected that a formula becomes even more complicated when you replace variables and 
operation signs by nouns and verbs); in fact, it is no use turning back to natural language once that 
the concept has been formalized. Consider the following excerpt, which could be taken from an 
introductory chapter in topology: 

The interior is the largest open set contained in the set, and the closure is the smallest closed set 
that contains the set. The interior is contained in the set and coincides with the latter if and only 
if the set is open. The boundary is disjoint from the set if and only if the set is open, and it is 
contained in the set if and only if the set is closed. The closure contains the set and coincides 
with the latter if and only if the set is closed. The closure is the union of the set and its 
boundary and is also the union of the interior and the boundary. 

First of all, one could remark that this text is only a fake version of natural language, which it 
mimics only in the grammar, but not in the vocabulary. All the above statements can be more 
clearly illustrated with the help of the following set-theoretic relations:  

where the white dot, the bar and  denote the interior, the closure and the boundary of the set X,
respectively, O is any open set contained in X, C is any closed set containing X, and the symbol 

 o

X X X

 o
O X X X C
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with the black dot denotes the disjoint union. This is the typical case where it is formalism that 
effectively supports a correct understanding: regardless of their actual meaning, the expressions 
reflect, in their structure, the symmetry and the duality between open/closed: they call to mind the 
features of the purely syntactical reasoning in Wilhelm Leibniz’s characteristica universalis or in 
George Boole’s algebraic logic. In topology the gap between geometric visualization (full disk 
with border) and formal definition (a compact set is a set such that every open cover admits a 
finite subcover) is huge: the two views actually live in separate worlds, and constructing a link 
between them is a delicate task, which certainly cannot be settled trivially by a linguistic shortcut. 

3 Tell me a history 

In the mathematician’s mind, as well as in the history of mathematics, there is a place and a time 
for intuition and one for formalization. Images (visual diagrams or verbal metaphors) can depict an 
idea in the exact moment when it sees the light; its conversion to a specific technical syntax is 
needed for further investigation and manipulation in a disciplinary context, but is normally not 
adequate to convey the very essence of the underlying concept. Formal abstraction is required by 
the researcher who wishes to answer questions and build up new truth: he wants to know if. As a 
student, however, he first had to understand what. If the teaching, on the contrary, is restricted to 
working with formulas and training in prescribed problem-solving procedures, the pupils will miss 
the fundamental issue: they will not understand anything (as the great majority of adults use to 
declare, when asked about their experience with school mathematics), simply because there is 
nothing to be understood, since the object itself is absent. In fact, the learner/listener should be 
taught that whatever is presented for computation is a transliteration/portrait of something else, 
which may occur in a very particular situation (the fair prize for a lottery winner), but actually 
reflects a much more general notion (total and compound probability). What Pierre de Fermat and 
Blaise Pascal, in the 17th century, described as the chance (hasard) of winning a game, was first 
put in numbers by enumerating the possible outcomes reported in a table (referring to two players 
disputing a given amount of money in a fixed number of matches). Later on, Jakob Bernoulli was 
able to provide general algebraic expressions covering all conceivable cases. In this example 
mathematization takes place in three steps: 

Quality   quantity   structure                                                    (1) 

This process is activated by putting forward the crucial distinctive feature: probability is a criterion 
for grasping the course of future events; therefore any calculation should also be based on data 
coming from what still has to happen (and is, as such, totally unknown) and not merely from the 
present status. This is the real novelty with respect to the past centuries, where the input was 
always supposed to consist of the countable (or measurable) existing quantities. Here, and in many 
other cases, history helps us to stress what is new about a concept, by showing a difference (i.e., 
by putting the “not being” in the foreground), which, for probability as well as for the homotopy 
type, may indicate that an extension has been accomplished. The development of mathematics as 
an enlargement of views: this is the effect of (1) in many respects. The final step leads directly into 
abstraction (which may not sound good to the layman), which, however, is the key for finding 
applications to different concrete cases and for establishing links to other objects. After all, 
viewing the structure means looking from above, and seizing many things at a glance, as in the 
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desired geographic approach. A global vision does not contain all details, but any representation 
is imperfect: it can only record certain properties of the object and necessarily provides a partial 
insight into it. The student should be constantly kept aware of this limitation. The teacher/speaker 
ought to make clear that the model selected for the lecture is the one that better fits into the context 
he is dealing with, the one that exhibits the properties that are relevant for his present purpose. The 
possibility of choosing among various alternative presentations is often granted due to the complex 
historical evolution of a concept: the older the object, the longer its history, the larger the spectrum 
of aspects that may have been discovered and studied through the centuries. This is true especially 
in the cases where the way to formalization was long and difficult, as, e.g., for the notion of 
function, which nowadays can be treated through set-theoretic, analytic-geometric and algorithmic 
tools. Passing from Isaac Newton’s physical idea of a measurable quantity, continuously varying 
in time, to the abstract concept of a law assigning objects to other objects induces a generalization 
which has surprising effects, such as the Dirichlet function (the characteristic function of the 
rational field as a subset of the real field). 

4 You will believe this 

We have just considered an unexpected by-product which goes beyond intuition and visualization; 
some other time a result of a formalization may even go against intuition: the Koch snowflake 
fulfils the definition of simple closed curve, it is the border of a closed bounded area and, 
nevertheless, its length is infinite. And what about the fact that its (fractal) dimension is not a 
positive integer, but a real number lying between 1 and 2? The explanation can be found at the 
roots of Benoit Mandelbrot’s invention: a contour (similar to that of Brittany’s coast (Mandelbrot 
1975)) can be so crooked that it becomes “fat” and turns into an intermediate thing between a line 
and a surface. The pattern of gulfs and promontories can be so deep-reaching that no polygonal 
line can approximate the profile of a peninsula in a satisfactory way. However short its sides may 
be taken, there will always be infinitely many inlets that remain undetected, since they are simply 
bridged over by the straight segments.  

(Apparent) paradoxes arise in the most recent areas of mathematics, where abstract 
constructions move away from what is observable, through paths that are designed by systems of 
properties, rather than being inspired by concrete visible shapes. Despite of their distance from the 
real world, they may however appeal to the public, since they rely on everyone’s capacity to 
conceive things that cannot be recorded by perception nor supported by common sense, such as the 
creatures and events that make up our dreams at night, which may include some idea of fourth 
dimension, infinity, multistate logic. If this oneiric setting may be found intriguing by adults, it is 
less likely to appeal to children, who, besides other things, are less able to fully verbalize and 
structure their fantasies. For them it is rather recommended to resort to objects whose origin dates 
back to antiquity or the middle ages, to a period where the mathematical issues were elementary 
and closely related to every-day life and/or rested upon spontaneous mental categories. The rabbit 
problem introduces recursion in a quite natural way, and the three steps in (1) are summed up in a 
single passage: the number of pairs of rabbits at each month is equal to the number of pairs which 
existed one month before plus the number of those which were already there two months before, 
i.e., those which have reached the age of fertility and have just given birth to a new pair. 
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5 Figures or figures? 

The first two steps in (1) can be reversed as soon as the numbers themselves are the objects of 
study. 

Quantity    quality   structure                                                    (2) 

Regularities arising from counting procedures can be justified (proven) by supplying numbers with 
a form that reveals the determining pattern. The polygonal arrangements of dots (which, again, 
belong to the ancient history) and their relations provide evidence for the role of geometry (and 
thus, visualization) in the passage from arithmetic to algebra. Al-Khuwarizmi’s innovations in the 
number system and in the treatment of quadratic equations are both based on the same principle: 
numbers should be represented as structured quantities (sums of powers of ten, or areas of 
rectangles, respectively). The didactic significance of this approach was resumed by Descartes in 
his Regulae ad directionem ingenii (1627-1628), where he supported figurate arithmetic as a tool 
that immediately appeals to perception, and thus yields direct comprehension. As it is well known, 
curves and histograms are far more convincing and self-explanatory than tables of values. 
Geometric shapes can be measured, moved, folded, cut and glued, compared by superposition or 
decomposition, in activities that resemble puzzle games. This allows us to emphasize the relations 
between numbers, rather than the numbers themselves: the grid paper can be rescaled, or even 
replaced by blank sheets, without affecting the properties of the areas. Manipulation is, in fact, a 
concrete way to abstraction, which is recommended when particular numbers are to be substituted 
by letter variables, or even when the numerical environment must be left behind in order to land in 
the field of abstract algebra. The main learning processes start with action on materials: this 
principle is applied today in the laboratories of many modern science museums. 

6 You won’t believe that! 

The above, however, only suggests how to make mathematics accessible to a non-specialized 
audience. Other tools have to be applied to make it also interesting. This requires re-thinking about 
the context and the style of mathematical expositions. Mathematics as a recreational topic is not an 
artificial framework, but involves the deep essence of scientific research and education: whatever 
is surprising - an unexpected law discovered in numbers or the mystery of a number guessing 
game - should induce the listeners to ask or to investigate how this works. Disclosing the reason 
behind the magic: this should be the main goal of teachers/popularizers, which was already 
recognized, two and a half centuries ago, by Giuseppe Antonio Alberti. In the preface of his 
treatise I giuochi numerici fatti arcani (1747), he motivates his endeavour by mentioning the 
following episode: a microscope containing a flea was found on the corpse of a foreigner, who had 
suddenly died during a trip in Flanders. Through the magnifying glass the animal looked like an 
awful monster, but removing the glass revealed the trick. Thus the man was unmasked as a 
travelling magician, one of those who earned fame and money by impressing masses of 
uneducated people. Alberti’s scope was to free mankind from credulity and prejudice: this appears 
to be necessary still today, if one considers how many people fall victim to usurers and charlatans 
simply because they are unable to compute compound interest and are unaware of the rules of 
probability. Justifying mathematics by its utility is certainly a way to overcome the public’s 
distrust. On the other hand, the lack of solutions to concrete problems is the main cause of 
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scientific progress. Note that here concrete is not a synonym for practical, it does not indicate that 
the question arises when dealing with objective quantities (money, merchandise, weight, and so 
on). The human beings have other innate needs, which concern them even more directly than 
material issues. Their minds instinctively tend to speculation; but an inquiry that does not offer 
any outcome in prospect is a frustrating endeavour. As a consequence, some topics are 
investigated simply because they are accessible (such as thrillers or crosswords), and assure the 
pleasure of discovery, the satisfaction deriving from an accomplished task, of a meditation which 
has come to a conclusion. In Jean D’Alembert’s foreword to the Encyclopédie (1763) we read: 

Cependant, quelque chemin que les hommes dont nous parlons et leurs successeurs aient été 
capables de faire, excités par un objet aussi intéressant que leur propre conservation, 
l’expérience et l’observation de ce vaste univers leur ont fait rencontrer bientôt des obstacles 
que leurs plus grands efforts n’ont pu franchir. L’esprit, accoutumé à la méditation, et avide 
d’en tirer quelque fruit, a dû trouver alors une espèce de ressource dans la découverte des 
propriétés des corps uniquement curieuse, découverte qui ne connaît point de bornes. En effet, 
si un grand nombre de connaissances agréables suffisait pour consoler de la privation d’une 
vérité utile, on pourrait dire que l’étude de la nature, quand elle nous refuse le nécessaire, 
fournit du moins avec profusion à nos plaisirs: c’est une espèce de superflu qui supplée, 
quoique très imparfaitement, à ce qui nous manque. (Ducros 1893, p. 34) 

In the course of time, man has become aware that no intellectual research is just for itself: many 
purely speculative results have afterwards, unexpectedly, turned out to be useful for practical 
purposes, too. In fact, the origin of probability theory shows how even trivial games can be the 
source of problems that produce advances in mathematics; but games can also be used, a
posteriori, to demonstrate the practical use of methods belonging to abstract areas (e.g., the parity 
of permutations as the fine thread connecting the solvable arrangements of the 15-puzzle). Both 
examples prove that whenever the number of possible situations becomes too large (and their 
ramifications too complex), mathematics can intervene to by-pass the confuse arithmetical maze 
and provide a neat, legible classification in terms of structures. This should also contribute to 
undermine the prejudice of mathematics as the art of computing. And here, once again, process (2) 
and the bird’s view are invoked. The beauty of mathematics resides, after all, in the skilful way in 
which it can avoid tedious (unpopular) calculations by elegant, global considerations. 
Sequentiality can be overcome by grouping operations, as once suggested by Evariste Galois, and 
the young Gauss tells us that even the sum over the first 100 integers can be taken in a few 
seconds. In Galois’ Preface (1831) to his planned two memoirs on pure analysis, it says: 

Sauter à pieds joints sur ces calculs; grouper les opérations, les classer suivant leurs difficultés 
et non suivant leurs formes; telle est, suivant, moi, la mission des géomètres futurs: telle est la 
voie ou je suis entré dans cet ouvrage. (Bourgne & Azra, 1962, p. 9) 

The starting point of all successful popularization is, of course, attracting the audience’s attention, 
arousing their curiosity. This can be also reached by a skilful use of metaphors, contrasts, 
comparisons, word games, colloquialisms. It could be a useful exercise to track down some of 
these elements in the following quotation, which contains the first two paragraphs of the beautiful 
article Double bubble, toil and trouble, (Stewart 1998): 
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The dodecahedron has 20 vertices, 30 edges and 12 faces - each with five sides. But what solid 
has 22.9 vertices, 34.14 edges and 13.39 faces – each with 5.103 sides? Some kind of elaborate 
fractal, perhaps? No, this solid is an ordinary, familiar shape, one that you can probably find in 
your own home. Look out for it when you drink a glass of cola or beer, take a shower or wash 
the dishes. 

I’ve cheated, of course. My bizarre solid can be found in the typical home in much the same 
manner that, say, 2.3 children can be found in the typical family. It exists only as an average. 
And it’s not a solid: it’s a bubble. Foam contains thousands of bubbles, crowded together like 
tiny, irregular polyhedra – and the average number of vertices, edges and faces in these 
polyhedra is 22.9, 34.14 and 13.39, respectively. If the average bubble did exist, it would be 
like a dodecahedron, or slightly more so. 

It is worthwhile to note that even negative stylistic elements, such as commonplaces, redundancy, 
approximation and sensationalism can help the popularizer’s message make his way through the 
public’s mind.
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ABSTRACT

In their 1982 essay On Mathematics and War, Booß and Høyrup argued that military con-
cerns have never (yet) led to essential breakthroughs in mathematics, nor altered the overall
development of mathematical thought. In this talk, we accept the invitation issued in their
2003 Mathematics and War: an Invitation to Revisit, and revisit the historical analysis of the
original essay. Like Booß and Høyrup, our primary motivation is to gain insight into how we,
as individual mathematicians and teachers of mathematics living in a world filled with armed
conflicts, can best conduct our lives and work.

1 Introduction

In their 1982 essay On Mathematics and War, Booß and Høyrup argue that funda-
mental research conducted in response to military needs has never led to essential
breakthroughs in mathematics. Based on historical analysis reaching back to the Baby-
lonian period, they further argue that the overall development of mathematical thought
has never (yet) been altered by military concerns — not even in response to increased
military influence on mathematical research during the twentieth centurys World and
Cold Wars. Having reached the conclusion that “mathematicians are thus not depen-
dent on the commerce of killing in their striving for the advantage and the progress of
their science”, Booß and Høyrup remind us that “in the real world, as it exists and as
it will go on existing according to current trends, mathematics is thus bound up with
the military and the arms race; . . . [Booß and Høyrup, 1982, pp. 262, 263 of English
translation]. In short, although their analysis suggests mathematics could continue to
thrive in a world of peace, such a world does not exist today, nor does peace appear to
be imminent.

In this paper, we accept the invitation issued in Mathematics and War: an Invitation
to Revisit [Booß and Høyrup, 2003a]. Like Booß and Høyrup, our primary motivation
for examining the historical relationship of war and mathematics is to gain insight into
how we, as individual mathematicians and teachers of mathematics living in a world of
armed conflicts, can best conduct our lives and work. In doing so, the author adopts the
ethical stance that ‘best conduct’ is guided by a quest for peace in the widest possible
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sense: inner peace, military peace, environmental peace, and social peace which respects
the human dignity of all individuals (see [d’Ambrosio, 1998], [Fasheh, 1998]).

We begin by reviewing the analysis offered by Booß and Høyrup, using parallel
developments in the history of ethics to then expand their framework beyond the ques-
tion of whether the practice of war shaped the direction of mathematical research. In
our conclusion, we return to the question of whether mathematics can be practiced
and taught in a way that promotes peace in the sense described above, and raise new
questions for the consideration of those committed to the quest for such peace.

2 Booß and Høyrup on mathematics and war

Booß and Høyrup begin both essays with a survey of pre-twentieth century episodes in
which mathematics and war appear intimately related. Specific examples cited include:

• Babylonian ‘siege computations’ of the second millennium BCE;

• Plato’s emphasis in the Republic on the importance of mathematical training for
commanders;

• development of military technology based on mechanics and mathematics during
the Hellenistic period;

• development of mathematical ballistic theory initiated by Tartaglia and others
during the Renaissance;

• 15th century Portuguese efforts in navigational mathematics; and

• the practice of Academy Prize Problems in the early scientific period.

In light of the significant role warfare played in these societies, Booß and Høyrup
remark that it is impossible to deny that the demands of military practice influenced
the development of mathematics during these periods. But, they go on to argue, the
practice of war possessed no particular privilege among other societal practices that
influenced mathematical development: “shipbuilding remains shipbuilding, as bricks
remain bricks” [Booß and Høyrup, 1982, p. 236 of English translation] regardless of
the context of their initial study. Ultimately, they assert, it was the broader societal
practices connected to mathematics (e.g., commercial calculation and algebra in the
late Middle Ages and Renaissance) that led to coherent mathematical developments.

In their Invitation to Revisit, Booß and Høyrup re-affirm their previous conclusions
and develop a more extensive analysis of post-World War I relationships between math-
ematics and war, drawing largely on the proceedings of a 2002 conference which brought
together mathematicians, historians of mathematics, military historians and analysts,
and philosophers (see [Booß and Høyrup, 2003b]). Based on this expanded analysis, a
number of additional conclusions are offered, of which we cite two:

• Where mathematical war research resulted in fundamental theoretical
innovations, these appear to depend on an exceptional individual (e.g.,
Turing).

546



• The utility of mathematics for the treatment of military problems does
not depend critically on the presence of an exceptional individual, but
relies on routine application of existing mathematical tools.

3 Parallels and intersections:

history of ethics and history of mathematics

While it may be true, as Booß and Høyrup conclude, that military applications have
primarily relied on existing mathematics (at least up the twentieth century), the re-
peated appearance of military actions throughout the ages prompts one to ask whether
war influenced the development of mathematics in more subtle and general ways. Ex-
amining the complex issues surrounding this question is, admittedly, an ambitious and
difficult task. One approach for doing so is to consider developments in the history of
ethics alongside developments in the history of mathematics. For a variety of reasons,
this paper examines developments within western Europe only.

Beginning with the origins of formal mathematics and the philosophy of western
ethics in Greek society of the fifth century BCE, a number of interesting parallels
appear. Witness, for example, Plato’s doctrine that the study of mathematics was
necessary to prepare state leaders for the study of ethics. Classicist John Onians uses the
discussion of a militarily-useful mathematics curriculum in the Republic to support his
claim that mathematics gained its dominant role in Greek culture due to the influence
of the military sphere therein [Onians, 1989]. Although a close reading of the Republic
shows Plato placed far greater weight on the role of mathematical studies to promote
access to ethical knowledge over its military applicability, Onians’ thesis remains an
interesting one: namely, that constant military preparedness dictated by geography
embedded anxieties about military matters in the Greek consciousness in such a way
that state security based on military discipline encouraged belief in mathematical order
as the basis of security in the universe. In particular, Onians’ thesis underscores the
possibility that militaristic world views can influence the societal value of mathematics
in ways that transcend the direction of research.

The religious crusades of the medieval period (based on the Augustinian concept of
‘just war’) that preceded the re-birth of algebra in Renaissance Europe suggest another
way in which warfare may have influenced the practice of mathematics. Augustine (354
– 430), whose thinking was influenced by the alliance of Christianity and a decaying
Roman political order, held that the ultimate purpose of war is peace. His concept
of ‘Just War’ required three components: right authority (sovereign government versus
individuals), just cause (to avenge wrongs or restore what was unjustly seized), and
right intention (advancement of good or avoidance of evil). For the Crusades of 1095
to 1270, just cause resided in the need to safeguard the (spiritual) peace and safety
of the Christian community. The sometimes-told story of how the Crusades brought
mathematics back to western Europe is belied by the fact that the 1085 reconquest of
Toledo (the site of most early translations) occurred before the first Crusade. Yet the
Crusades played a critical role in re-establishing political and social stability during this
extremely violent era of western European history. Prior efforts to contain this violence
included the ‘Peace of God’ (outlawing violence against clergy) of the 10th century and
the ‘Truce of God’ (outlawing violence against any group on Holy Days) of the 11th
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century. The Crusades contributed to these stabilizing efforts simply by exporting the
region’s violence elsewhere.

The post-Crusade stability of western Europe proved particularly beneficial for cap-
italism, which in turn made possible the Renaissance. Direct gains accrued by math-
ematics from renewed interest in classical knowledge are well known. Ethical develop-
ments again suggest mathematics may have benefited less directly due to changes in
the conduct of warfare. In particular, the chivalric moral code of the medieval period
suffered increasing erosion due to technological advances, including the 13th century
introduction of gunpowder. In combination with other social transformations, this ero-
sion led to a more utilitarian moral code in which old bonds between religious ethics
and political science were severed, as epitomized by the writings of Machiavelli (1469
– 1527). As the “gentleman soldier” of the chivalric age became obsolete, mathemat-
ics gained new military value as one component in establishing credentials for military
officers. (See, for example, [De Leon, 1996].) In this context, it was not the utility of
mathematics which justified its study by military officers, but its role in legitimating
the profession which justified societal support for mathematics.

Within the political context of expanding European nation states, we also find
mathematical practitioners of the early modern period undertaking a variety of tasks
of potential military value: ballistics, fortification design, hydraulic engineering, nav-
igation, cartography and cryptography. The objection is sometimes raised that these
were (practical) mathematical ‘arts’, and not the (theoretical) mathematical ‘sciences’
which constitute the “main story line” of mathematics. Yet even in those instances
where mathematical theory lagged behind any application of real military value (e.g.,
Tartaglia’s efforts to develop a mathematical ballistic theory in his La nova scientia of
1537), the fact remains that the drive to reconcile practical (military) knowledge with
theoretical (mathematical) knowledge was often a critical element in shaping mathe-
matical theory (e.g., Galileo’s further development of Tartaglia’s work that culminated
in the discovery of the parabolic projectile trajectory in 1638). [Büttner et al, 2003] offer
an insightful analysis of this aspect of the work done on projectile motion by Tartaglia,
Harriot, Galileo and others. [Pesic, 1997] also raises interesting questions about an-
other “mainstream” mathematical development in his study of the cryptanalysis work
completed by Viète in 1588 – 1594 and the influence of this work on the algebraic
thinking of his In artem analyticem Isogoge of 1591. The existence of a continuum
of social and intellectual relationships by which abstract theoretical speculations were
linked, directly and indirectly, with the practical skills of craftsmen is also supported
by [Willmoth, 1997].

Additional historical examples in which military, ethical and mathematical devel-
opments coincided include the emergence of mathematical analysis during the period
of revolution and Napoleonic conquests of Enlightenment France, and the subsequent
mathematical and colonial expansions of the nineteenth century Industrial Revolution
that served as a sort of battlefield for the rival ethical theories of utilitarianism and
idealism. The way in which the French revolution created a space for new mathemati-
cal directions is particularly intriguing. Within this setting, we again see mathematical
expertise lending prestige to a military order. [Alder, 1998, 1999] argues convincingly
that the mathematical curriculum for French military engineers not only provided ex-
pertise and discipline that helped legitimate merit (versus birth) as the new basis for
professional advancement, but that descriptive geometry in particular, developed by
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Monge as tool in artillery design, served to make knowledge appear more objective
by removing the personal idiosyncrasies of individual craftsmen from the production
process. Mathematics thereby promoted both the political transformation from abso-
lutism to popular sovereignty, and the economic transformation from a guild system to
the entrepreneurial capitalism of the nineteenth century.

These examples and others make it evident that mathematics, like philosophy, flour-
ished best inside western Europe during periods of rapid social transformations that
were, in turn, often accompanied by military activity of some kind. That this should
be true of ethics is no surprise: a re-examination of societal rules of conduct and the
underlying philosophical concepts used to legitimate them naturally occurs when the
social order changes. Why this same phenomenon should occur in mathematics is not
completely clear, but appears to be more than coincidence. That is, if not the actual
‘offspring of war’, mathematics does appear to have been a close family relation to war
throughout much of western European history.

In examining the history of ethics alongside the history of mathematics, we also find
points of intersection at which ethics and mathematics appear more closely related to
each other than either was to war. This occurred most explicitly at the birth of early
modern ethics in the sixteenth and seventeenth century, when a number of thinkers (e.g.,
Spinoza) attempted to apply the deductive method of geometry to the study of ethics.
Not all ethicists of this period attempted a complete deductive system; Descartes, for
example, recognized that practical subjects (like ethics) differ from mathematics in
important ways. Yet common strands appeared in arguments of this time, including an
increasing belief that mathematics provided a form of knowledge free from the distorting
effects of controversy and conflict. While the success of the “scientific revolution”
reinforced this trend, religious conflicts of the period also played a part in the seduction.
Thus, we find thinkers as divergent as Hobbes (1588 – 1679) and Locke (1632 – 1704)
committed to a belief in the possibility of a rational foundation for political science in
which ethical truths could be derived from ‘self-evident propositions’. These and other
historical examples remind us that mathematics has long been perceived by western
thinkers to embody the important values of objectivity, infallibility and universality.
Although recent historical studies question this (mis)conception of mathematics, it
remains strongly held by the general public and the mathematics community.

We close this section with a final observation on the histories of mathematics and
ethics. As amply documented elsewhere, the relationship between mathematics and
war has become increasingly more intimate during the period since World War I. Given
the significant rise of pacifism and peace movements during this time, it appears that
ethical issues surrounding war simultaneously became more complex. Yet stories of
mathematicians facing ethical dilemmas remain few. (A brief summary of such stories
appears in [Booß and Høyrup, 2003, pp. 20 - 22].) This phenomenon may be explained
in part by individual decisions concerning the ‘justness’ of these particular wars (espe-
cially World War II). Another explanatory factor is suggested by the following quote
by logician and numerical analyst H. Barkely Rosser (1931-1989):

I have written to practically every [U.S.] mathematician still living who did
mathematics for the War (WWII) effort. Many did not answer. And many
who answered said they did not really do any mathematics. I had a one-
sentence answer from a man who said that he did not do a thing that was
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publishable (As quoted in [Booß and Høyrup, 1982], English translation,
page 244, emphasis added.)

Mathematicians, it would appear, are valuable to war efforts not in their capacity as
mathematicians producing publishable results, but for their capacity as routine problem
solvers, employing existing mathematical tools. Implicit in this notion is the idea that
mathematics, per se, is ethically neutral, a notion that is conveyed with even greater
clarity in the following quote by statistician Jerzey Neyman (1894 - 1981):

I prove theorems, they are published, and after that I don’t know what
happens to them. (As quoted in [Booß and Høyrup, 2003a], page 20.)

This view of mathematical practice as neutral and value-free clearly appears pervasive
today, and goes beyond the view of mathematical knowledge as neutral and value-free
expressed at earlier stages of history. As such, it is perhaps more dangerous than
the equally suspect view of mathematics as independent of time and culture discussed
above.

4 Setting a course of ‘best conduct’

How would mathematics be different today if its relationship to war had been less
intimate in the past? Like most historical “what if” questions, the issues are far too
complex to fully unravel. In this case, the situation is further complicated by the
(nearly) impossible task of imagining, as residents of a heavily militaristic world, what
a non-militaristic world might look like.

And yet the growth of the military-industrial complex since World War II make it
more urgent than ever to understand the ways in which mathematics, ethics and war
are able to support or to undermine each other. Technologies based on mathematics
become even more frightening when combined with a view of mathematics as clean,
rational and objective, such as that projected in the following newspaper description of
the 1991 Gulf War:

In mathematical terms, war is becoming more and more electronically con-
trolled and, as a result, it is moving away from the battlefield - in other
words, it keeps troops, photographers, TV operators and journalists at a
distance from the enemy. Then, when war comes down to earth, it becomes
bloody, it loses its mathematical asceticism, and the feasibility of live broad-
casting becomes impracticable for those involved. (Bernardo Valli, February
1991, La Repubblica, as quoted in [Emmer, 1998].)

Objective and rational mathematics not only makes precision warfare possible - it helps
to make precision warfare appear more objective and rational.

Perhaps the skeptic’s view as described by Booß and Høyrup is correct, and “most
mathematicians, if they chose not to cooperate in mathematics research and teaching,
will have little effect”, so that “deciding to abstain from working with a particular
discipline because it seems ‘corrupt’ is mostly futile” [Booß and Høyrup, 2003a, p. 23].
The assumption that ethical best conduct should be guided in part by the ideal of
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inner peace for all individuals further suggests that each of us, as an individual, has a
right to choose and pursue a discipline that we love as our life’s work. Nevertheless,
as Booß and Høyrup remind us in their 1982 essay, “mathematicians are also citizens”,
a fact “that imposes the same responsibility upon [us] as upon everybody else” [Booß
and Høyrup, 1982, p. 277 of English translation]. This author would go further to
propose that, within a society that affords such high status to mathematics, the privilege
mathematicians gain from that status impose responsibilities upon us that go beyond
those of the ‘average citizen’.

As mathematics educators, we have a particular responsibility to alert our students
to ethical issues and enable them to intelligently critique and direct the role that math-
ematics will play in their world, in their wars, and in their own quest for peace. Since
intelligent critiques require an understanding of the technologies and their mathemat-
ical bases, solid training in technical skills by good teachers is absolutely necessary
to achieve this end. (See, for example, [Gunther].) Strong technical training is not,
however, sufficient. Indeed, the very technical skills that underpin the ‘success of tech-
nology’ help imbue mathematics with a special mystique that seems to place it beyond
the influence of the surrounding culture and the need of critique. Gaining a better un-
derstanding of the historical relationships and interdependencies between war, politics,
power and mathematics — and sharing that understanding with our students — is one
small step we can take towards dispelling this myth.

Beyond this, and despite the difficulty of imagining a world in which peace exists,
this author proposes that each of us has a responsibility to consider whether there
are (small or large) changes we could make in our individual teaching and classroom
practices to promote peace. In this regard, the historical analysis of the previous section
suggests two additional questions that individuals weighing various course(s) of action
must ask:

• Does the practice and/or content of mathematics itself embody moral
values that promote (or hinder) the quest for peace?

• What role do our beliefs about mathematics and mathematics teaching
play in promoting (or hindering) the quest for peace?

The intention of this paper is not to prescribe answers to these questions, or to
propose a common course of action for all. In fact, the course we individually set for
ourselves must be based on the individual responsibilities and resources of our particular
personal situations as citizens and as mathematics educators. Again as Booß and
Høyrup remind us, this responsibility remains even for those who accept the idea that
mathematics is itself ethically neutral (in its content and/or its practice):

Mathematical theories are ethically neutral, it has been argued. Mathemat-
ics as a social undertaking is ethically ambiguous: responsibility, whether
they acknowledge it or not, remains with its practitioners, disseminators
and users. [Booß and Høyrup, 2003a, page 24, emphasis in original.]

Choosing not to acknowledge our responsibility, as individuals and as a community, for
how mathematics is understood and used is itself an ethical stance - but one we can no
longer afford if committed to the quest for peace.
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ABSTRACT

In this discussion it is argued that Mathematics as a subject should be viewed in a wide
sense in a framework of contexts (such as the context of history, science, society, nature and
religion), instead of the narrow subject field only. Such a contextual approach can be used
to one’s advantage in teaching Mathematics. It gives one the opportunity of integrating the
history of mathematics with the specific mathematical course material. It also gives one the
opportunity of stressing the embeddedness of mathematics in culture and nature. At the
end, if only a few students have, in some sense, been positively influenced by studying the
contextual topics, such a study has served a good purpose and has resulted in a positive, value
added, outcome.

1 Introduction

I would like to start off with a few questions – some of which might tend to the philo-
sophical side:

• Is Mathematics embedded in culture and nature? Or, is it totally divorced from
anything else in science and reality?

• What is meant by the words “culture”, “nature” and “reality”?

• What is meant by the word “science”? Or, in the title words of AF Chalmers’
book on science: “What is this thing called Science?” (1994).

• Can there be a dialogue between science and religion? Or, in the title words of
George Coyne’s focal point article in the December 2003 issue of the astronomical
journal Sky and Telescope? (2003:10): “Can we talk?”

• May one ask such questions in a Mathematics class?

• May the teacher/lecturer of a Mathematics class – or for that matter, any other
subject – view his/her subject from a certain perspective? Or, is it possible to
have (or not to have) any viewpoint concerning Mathematics?

It is not my intention to answer all these questions. However, as part of my in-
troduction I would like to formulate answers to some of the questions. In my opinion,

• one may ask such questions in class (I believe that at university level it is precisely
one’s duty not only to teach students the theorems, proofs and technical points
of Mathematics, but also to teach students to think – that is, about Mathematics
in particular, but also about the broader scientific enterprise in general);

Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006

553



• one may bring a certain perspective on Mathematics in one’s classes (on the one
hand this might perhaps be a view of Mathematics as a rigid, formal subject, in
the traditional handbook structure of theorem-proof-corollary; or, on the other
hand, this might be in the form of a certain personal viewpoint);

• mathematics is definitely embedded in culture and in nature (but I can understand
that this may, in some sense, also depend on one’s viewpoint of what “mathemat-
ics” in its broadest sense and “Mathematics” as a subject, mean).

I want to formulate two personal points of departure that form the underlying basis
of my presentation, together with accompanying comments:

First point of departure: Mathematics as a subject could be viewed in a framework
of contexts.

Comment: Such a framework could be visualised as a set of concentric circles fitting
into each other with the narrow subject field at the centre. These contexts could, for
example, include the context of the history of mathematics, of mathematical theories
and relationships, of science and society, of nature and of religion. I will call this
viewpoint the view of science in context. It stands contrary to the standard view of
science in which science is seen as something that can stand on its own, totally separated
from life.

Second point of departure: Man’s life is integral without being compartmentalised
into religious and nonreligious parts.

Comment: In my view this point of departure holds for everyone – whether one is
inclined religiously or nonreligiously. It certainly played a major role in the development
of science in the past. The interested reader may consult the following two books:

• Religion and the rise of modern science by Reijer Hooykaas (1972) and

• The myth of religious neutrality – an essay on the hidden role of religious belief
in theories by Roy Clouser (1991).

In the present discussion I want to argue that the science-in-context viewpoint can
be used to one’s advantage in teaching Mathematics. It seeks to afford a wider and
broader view of mathematics than that which is usually regarded as the narrow subject
field. It gives one the opportunity of integrating the history of mathematics with the
specific mathematical course material. It also gives one the opportunity of emphasising
the embeddedness of mathematics in culture and nature.

I would like to ask your attention for the following points: (a) An elucidation of
the science-in-context approach, (b) the practical class situation, (c) the history of
mathematics: positive aspects, (d) mathematics embedded in culture and nature, and
(e) an evaluation and conclusion.

2 An elucidation of the science-in-context approach

The science-in-context approach provides one with a useful framework for class discus-
sions. It can be used in a continuous, well-planned manner for weekly or biweekly class
discussions. It gives one the opportunity of discussing some nonmathematical, even
philosophical, matters in a structured and planned way.
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In my classes (which range from numerical analysis to mechanics) I use the following
contextual themes:

• The context of history

• The context of mathematical theories and relationships

• The context of science and society

• The context of nature

• The context of religion.

Throughout this discussion I would like to emphasise the context of the history of
mathematics. However, before doing that I would like to give some thematic examples
of the other contexts.

The context of mathematical theories and relationships:

• Theorising in mathematics: induction and deduction in science.
Example: The function f(x) = x2 + x + 41 gives, for x = 1, 2, . . . , 39, the prime
numbers 43, 47, . . . , 1601, respectively. But, f(40) = 412, which is not a prime!

• Truth in mathematics and science: when is an inductive theory true?
Example: Consider the following two sentences and decide which is/are true/false:
A meteorite hit the earth 65 million years ago, causing the end of the dinosaur
era.
According to a scientific theory, a meteorite hit the earth 65 million years ago,
causing the end of the dinosaur era.

The context of science and society:

• The “power” of science and mathematics: the idealisation of science and mathe-
matics.
Example: Nonnatural sciences affected by mathematics: During the 1630s the po-
litical philosopher Thomas Hobbes (1588-1679) became a prominent leader in this
regard: political economics became the first social science to be mathematised.

• Ethical matters concerning mathematical courses: This applies perhaps more to
certain mathematical fields than to others.
Example: Working on a Ph.D. in numerical analysis and failing to get “good”
computational results towards the end of the study, the temptation to “improve”
some of the data a little so as to finalise the Ph.D., can become quite strong.

The context of nature:

• Mathematisation of nature: Do mathematicians still see the beauty of nature, or
are we only interested in it as long as it can be counted, measured and weighed?
Example: Do we view a natural plant like a spleenwort leaf still as some kind of
fern, or has it only become a beautiful fractal picture on a computer screen?

• Mathematical mindscape: To what degree do we discover mathematics and to
what degree do we invent mathematics?
Example: Is there – perhaps in some platonic view – a “mathematical cosmos”
or “mindscape” with the mathematical objects waiting for mathematicians to
be picked up (just as the rocks on the moon had been there, even before Neill
Armstrong walked on the moon)? (Rucker, 1982).
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The context of religion:

• Dialogue/debate between science and religion: Should there be any dialogue /
debate or has the one nothing to say to the other?
Example: “At a time when religious fundamentalism frequently makes headlines,
and when astronomical discoveries are being made at a dizzying pace, respectful
dialogue about the respective roles of science and religion in our lives takes on
new urgency.” (Coyne, 2003:10).

• Mathematics as a form of religion: Can mathematics be seen as a form of religion
– or even the true religion?
Example: Oskar Schlemmer remarks about mathematics: “It is the ultimate, the
most refined and the most delicate” (Davis & Hersh, 1981:110).

3 The practical class situation

With respect to the practical class situation, I would now like to discuss some ideas
concerning the integration of the history of mathematics and the mathematical course
material. I consider the following educational matters as important:

A good organisational planning and educational strategy is necessary. At my univer-
sity we have study guides for every subject. In such a study guide specific didactic aims
are made clear. A course may be divided into different learning units and these are
covered in such a study guide. My own study guides are further divided into 12 weekly
subunits for a 12-week semester. In each subunit the following topics are discussed: a
description of the particular mathematical content, learning outcomes, time allocation,
study material, reading matter, exercises, etc.

In more or less every second subunit of my study guides attention is also paid to an
overview of the science-in-context aspect of the course. This includes an introductory
description of every context, together with a separate discussion of about two to three
pages.

One of these is of course the context of the history of the subject. As an example,
the introductory description to the context of the history reads as follows: “In this
learning unit on Kinematics of a particle we start with the mathematical formulation
of Mechanics. However, to fully understand the development of Mechanics as a subject
field, it is necessary to pay attention to its history and development. Special emphasis
will be placed on Newton’s role in the formalisation of the subject as we know it today.”

A good choice of historical material is necessary. I think it is important to thor-
oughly plan the integration of historical material for a particular mathematics course
before the start of such a course.

On the one hand, it might be that there is time for only one discussion of a historical
nature during a course. Then one can perhaps discuss one important builder of the
specific mathematical subarea.

On the other hand, it might be that a larger part of the history of mathematics
for the particular course can be integrated on a more regular basis. A wider choice
could then, of course, be made. Personal biographical information concerning some of
the mathematicians concerned might be a good starting point, and it will interest most
people. However, in my view time should also be spent on the problems, philosophical
ideas and paradigms of the particular time period concerned.
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Different pedagogical approaches might be useful in class discussions. Several differ-
ent pedagogical approaches may be used. One can think of a biographic approach, an
anecdotal approach, a philosophical approach, a religious approach, etc.

Another possibility is the teaching of Mathematics according to its historical devel-
opment. In their book, Analysis by its History, the authors, Hairer and Wanner, try
to do exactly this. They remark (1997:v): “In this book ... we attempt to restore the
historical order, and begin ... with Cardano, Descartes, Newton, and Euler ...” They
continue with 17th and 18th century integral and differential calculus (take note of the
order) “on period instruments” (as they call it), finally ending with the well-known
mathematical rigour of the 19th century for one and several variables introduced and
used by Cauchy, Weierstrass and Peano.

In the same vein Edwards in his The historical development of the calculus makes the
following important remark (1979:189): “What is involved here is the difference between
the mere discovery of an important fact, and the recognition that it is important – that
is, that it provides the basis for further progress.”

There is one question about this approach that interests me: Can such a strategy
work in any course, for example classical Mechanics? After reading A history of Me-
chanics (Dugas, 1988) I came to the conclusion that it cannot necessarily be done in
Mechanics. I can motivate this remark as follows.

Firstly, let us consider a pure mathematical course: Due to the axiomatic-deductive
structure of mathematics it is, in a sense, easy to teach such a course according to
its history. It can be done without investigating every diversion of the mathematical
road. And even if one examines such a diversion, it may still be in order because the
mathematics will be well accounted for. For example: Although the well-known sine
and cosine formulae are no longer used for the purpose of multiplication and division
(as has been done before the days of logarithms) there is still nothing wrong with using
it for this purpose (Boyer & Merzbach, 1989:346).

Secondly, the case of classical mechanics is, in contrast, totally different. Although
this subject is also based on, and developed according to, logic-deductive rules, the
basic structure is different to that of pure mathematics. In the case of mechanics there
are also some inductive assumptions. For example, one of the rules in the newtonian
method consists of extending to all bodies the properties which are associated with
those on which it is possible to make experiments (Dugas, 1988:200). By studying the
history of mechanics, one realises how many cul de sacs – that is, dead ends, not mere
diversions as in pure mathematics – there were in the past. One such an example is that
of the idea of “impetus” (that is, the viewpoint that “something” pushes a projected
body like a stone or javelin, in its flight through the air). My viewpoint is therefore
that there is no real sense in studying Mechanics strictly according to its historical
development (Dugas, 1988:49) – at least, not to the same extent as it can be done in a
pure mathematics course.

4 The history of mathematics: positive aspects

Considering the fact that a Mathematics course might already be overfull, the question
may be asked: Should one still try to find some time for discussing the mentioned
contexts in general, and the context of the history in particular? The deeper question
is actually: What is the value of integrating the history of a subject with the subject
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itself and what motivations are there for someone who is not positive about the history
of mathematics or science?

I would like to answer these questions with the following remarks:

• The history of mathematics can add to the student’s interest of the subject; and
it can also make clear that mathematicians of the past were also live people:
“Biographical notes have been inserted ... partly to add human interest but
also to help trace the transmission of ideas from one mathematician to another.”
(Stillwell, 2002:x)

• The history of mathematics can help in the illumination of mathematics itself:
“For example, the gradual unfolding of the integral concept ... cannot fail to pro-
mote a more mature appreciation of modern theories of integration.” (Edwards,
1979:vii)

• The history of mathematics can bring forward something of the cultural flavour
of mathematics: “This book ... is not intended as a text book, but to provide a
cultural context, a sort of ‘source book’ for the history of mathematics.” (Chabert,
1999:5)

• The history of science can motivate students and give the teacher/lecturer a richer
and more authentic understanding of science in general: Such a study “... can
humanize the sciences and connect them to personal, ethical, cultural and political
concerns. There is evidence that this makes science and engineering programs
more attractive to many students, and particularly girls, who currently reject
them.” (Matthews, 1994:7)

• The history of science can bring one to an understanding of the sociological phe-
nomenon and roots of science: “The scientific revolution was ... a sociological
phenomenon...” and “... this book expresses my conviction that the history of
the scientific revolution must concentrate first of all on the history of ideas.”
(Westfall, 1977:2)

With such a historical approach one can guide students to the point of realising that
there is a relationship between mathematical matters on the one hand and the wide
field of reality on the other. Mathematics does not stand in isolation, but forms part of
a much bigger reality relating to different real world contexts. (In this respect my view
is that every science student should read Dava Sobel’s books, Longitude and Gallileo’s
Daughter (1998, 2000).)

5 Mathematics embedded in culture and nature

Almost everything in reality can be classified as either culture or nature. Everything
man touches immediately becomes culture. The nest of a weaver bird, however intri-
cately woven, remains nature and never becomes culture. A piece of woven hessian,
however simple, is culture and would never become nature, even if it is used to keep a
dog warm in winter.

In the basic natural science subjects we are to a great extent busy with nature –
for instance in a subject such as Astrophysics. However, some other natural science
subjects like Chemistry, Botany and Zoology may include applied fields that is directed
more to culture than to nature.
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In modern Applied Mathematics the mathematical processes of model building are
studied with problems from nature and culture in view (although tools might also be
developed). In this way bridges are built to other subjects. Examples from Applied
Mathematics may include a study of the motion of the planets around the sun (as a
problem from nature) and a study of the motion of a projectile (as a problem from
culture).

Where does pure Mathematics stand? In a sense one is concerned in Mathematics
only with the development of the tools. In developing mathematical theories, one is –
at least during the first stages – led by problems from either nature or culture. One can
therefore say that mathematics (in its broadest sense) is deeply rooted in nature and
culture. Also concerning the development of Mathematics, but specifically with respect
to symbols, logic, language, etc, it is clear that the subject can also not be separated
from culture. Mathematics can in no sense be cut loose from its roots in nature, culture
and the rest of science. And this aspect can only come to its full right when studying
the history of the subject and the broader contexts.

Although hundreds of examples may be mentioned in this regard, I will conclude
this section with the following two examples.

An example from culture dating from antiquity to the present.
The problem that concerns us in this case is the problem of finding the ratio of

the circumference of a circle to its diameter (that is, to find the value of π) (Chabert,
1999:140). The problem dates back to well before the time of Archimedes; however, he
showed how to do this calculation.

From his time up to the 1600s a geometric approach was used for finding the value of
π. The different methods concerned used ratios of lengths or areas. The circumference
of a circle (and thus the value of π) is bounded from above by the perimeters of all
regular polygons circumscribing the circle and from under by the perimeters of all
regular polygons inscribing the circle. Archimedes showed with this technique, for a
polygon of 96 sides, that 310

71
< π < 31

7
.

More accurate values have been calculated since. In the second century Ptolemy
found for π the sexagesimal value 3+ 8

60
+ 30

3600
= 3.1417̇; in the 500s Aryabhatta obtained

the value 3.1416 for a polygon with 3× 27 sides. In 1609 Ludolph van Ceulen obtained
an accuracy of 36 decimal places by using a polygon with 262 sides.

Hereafter the use of infinitesimal calculus caused a revolution in the evaluation of π.
Infinite sums and products, using trigonometric functions and even infinite continued
fractions, improved the decimal values of π more and more. John Machin obtained a
value of π to 100 decimal places in 1706, M de Lagny to 127 places in 1719. William
Shanks reached 600 decimal places by the middle of the 1800s. By 1958 the record
was 104 decimal places, calculated by F Genuys and 6× 109 decimal places in 1995 (Y
Kanada and associates).

Perhaps there is not very much sense in doing such calculations. However, like all
other parts of mathematics (and the rest of culture), there is the view: when there is
still a higher mountain to climb, do it.

An example from nature in which a problem led to a mathematical theory.
The problem of locating an object on the surface of the earth (for example a ship at

sea) amounts to finding its longitude and latitude (Goldstine, 1977:143; Sobel, 1998:96).
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It is easy to find the latitude (at least in the northern hemisphere) by measuring the
height of the pole star. However, the longitude is much more complicated. Among
others it can be found by measuring the time difference between one’s location and a
fixed base point, for example Greenwich. The time difference can then be converted to
degrees. Thus, if one has a clock on board a ship which keeps exact Greenwich time
and one would observe the clock time at the instant of local noon at one’s location, one
would be able to work out the longitude.

So far this is a problem from culture. However, another solution to the same problem
would be to know the moon’s position as a function of time. Then the moon can be
used as a timekeeper, and it has the advantage that it is visible almost every night.

The important names of the 1700s in lunar theory are those of Euler, Clairaut,
D’Alembert and Newton. All four calculated the motion of the moon’s apogee to be
only about half of what it actually is. This caused both Clairaut and Euler to doubt
whether the inverse square law was correct. However, at the end the difficulty was
solved in realising the many perturbations of the moon (among others, those known as
evection, annual equation and variation). Euler’s mathematical lunar theory is espe-
cially outstanding in this respect and amounts to several volumes in his Opera Omnia,
Series Secunda. A more exact mathematical theory was later published by GW Hill in
1878 and was finally perfected by the research of EW Brown (Bate et al 1971:322).

In 1713 the British Government offered a substantial prize of £20000 for a method of
locating position to within half a degree for solving the longitude problem. One solution
was the invention of the chronometer. However, for the purpose of our example the
work of the German astronomer Johann Tobias Mayer (1723-1762) must be mentioned.
He used Euler’s mathematical theories and accurate observations, which enabled him in
1755 to set up tables. These were agreed to result in locating positions to be within the
required half a degree of accuracy. In 1765 awards were made by the British Government
to both Mayer’s widow (£3000) and Euler (£300), for the practical and the theoretical
aspects of the work on lunar theory.

6 Evaluation and conclusion

Many viewpoints on the history of mathematics have been given thus far. It is not
necessary to repeat these. However, as a final evaluation, I would like to make the
following remarks, because in my view they give us an in-depth look into the topics
discussed here.

• One can bring students to the point of realising that one’s viewpoint can indeed
play a role in one’s scientific work. Kepler is a very good example with his belief
that God constructed the universe according to a mathematical (and specifically,
a geometrical) scheme (Kozhamthadam, 1994).

• One can counter the viewpoint that a subject is a real and complete entity that
can stand on its own, totally divorced from reality, by studying the history of a
subject. Hooykaas says (1994:120): “The teaching of science is more than techni-
cal training. If we restrict ourselves to the latter, the psychological effect will be
that the scientific world picture is taken to be the real and full one, representing
all that can be said with certainty about the universe and mankind.”
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• One can avoid educating intelligent specialists who possess no knowledge of the
frameworks of thought and paradigms underlying their subject. Rather, one can
give students an insight into the history of the subject as well as into the philo-
sophical views of any specific time. Du Plessis (2000:1) formulates it in a negative
way as follows: “A bad university therefore is a university where we train spe-
cialists without foundational knowledge, specialists who lack knowledge of the
thought systems and paradigms of their subject fields.”

Mathematics students are not always particularly fond of doing “deeper” mathe-
matical work than easy problems and numerical calculations. However, everyone would
agree that it is to the advantage of every mathematics student also to learn definitions,
to prove theorems, to study corollaries, etc. In the same way it is necessary for a
well-educated mathematics student to know something about the history and character
of mathematics (and even the broader field of mathematical sciences). This could be
attained by studying topics like mathematical paradigms of the past, the foundational
crisis in mathematics, etc.

To conclude: If only a few of my students have, in some sense, been positively
influenced by studying the contextual topics mentioned in this discussion (with the
inclusion of the history of mathematics), then, in my view, such a study has served a
good purpose and has resulted in a positive, value added, outcome.
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ABSTRACT 
According to the HPM 2004 conference website: 

The spirit of HPM is much more than the use of history in the teaching of mathematics — it is the 
conception of mathematics as a living science, a science with a long history, a vivid present and an as 
yet unforeseen future — together with the conviction that this conception of mathematics should not 
only be the core of the teaching of mathematics, but it should also be the image of mathematics 
spread to the outside world. Through our common history we see that: 

mathematics is the result of contributions from many different cultures 
the philosophy of mathematics has evolved through the centuries 
the teaching of mathematics has developed through the ages 
mathematics has been in constant dialogue with other sciences 
mathematics has been a constant force of scientific, technical, artistic and social development. 

Over the years, many mathematicians, mathematics educators and teachers have espoused the ideals of HPM 
in their research, teaching of mathematics, and/or preparation of mathematics teachers or developing 
researchers. My personal experience since 1992 has been of a lively international community of scholars 
who are willing to share their work — whether practical or theoretical —with great generosity of spirit. 
There are many theoretical frameworks which could underpin the philosophy and epistemology of HPM, 
but in this paper I propose to explore the possibilities of activity theory, following the work of Yrjö 
Engeström in particular. 

1 Engeström’s expansive learning framework 

According to Engeström (1987, 2001), activity theory built on the work of Lev Vygotsky, who 
initiated the first generation of cultural-historical activity theory and created the idea of cultural 
mediation of actions, overcoming the Cartesian duality of individuals and social structures. 
Leont’ev overcame the limitation that the first generation remained centred on the individual and 
instead focused on the complex interrelations between the individual subject and his/her 
community. (See also Radford, 1998, for a post-Vygotskian semiotic perspective.) Following 
international challenges in relation to diversity and dialogue, a third generation of activity theory 
needed to generate a structure for a human activity system and Engeström proposed a model for 
two or more interacting activity systems, in order to “develop conceptual tools to understand 
dialogue, multiple perspectives, and networks of interacting activity systems” (Engeström, 2001, 
p. 135).

An activity system (see Figure 1) is composed of interacting components (subject, mediating 
artefacts or tools, object, division of labour, community, and rules) in what Engeström (1987) 
describes as four subsystems: production, consumption, exchange, and distribution. The 
production subsystem is comprised of the subject, artefacts, and object, and is generally regarded 
at the most important because it is through this process that the object is transformed into the 
outcome (Jonassen, 2000). The subject of the activity is the individual or any group engaged in 
the activity. Jonassen notes that concurrent with the production of physical objects, the subject is 
also constructing knowledge about the activity. The object of the activity is the production of 
physical, symbolic, or mental artefacts, and the transformation from object to outcome represents 
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the purpose or intention of the activity. The consumption subsystem is comprised of the subject, 
the object, and the community. According to Jonassen, knowledge is distributed among members 

Mediating artefact 

Subject                                          Object [Outcome] 

Rules                                   Community                   Division of labour 

Figure 1. The basic mediational triangle expanded (after Engeström, 1987) 

of the subject group, the community with whom it interacts, the tools they use, and the products 
they create. The production activities also consume effort from the subject and the community, 
which supports it. The consumption process thus represents a contradiction inherent in activity 
systems. However, it is contradictions (internal to the activity system or external to it) that cause 
change and hence learning. The distribution subsystem divides up activities according to social 
laws or expectations, linking the object of the activity with the community by defining a division 
of labour. This division of labour can refer to the horizontal division of tasks between co-
operating members of a community as well as to the vertical division of power and status 
(Engeström, 1999). Finally, the exchange subsystem regulates the activities of the system, as the 
exchange of personal, social, and cultural norms negotiated by members of the community and 
the subject of the activity system become the rules for regulation of performance. According to 
Engeström (1987), the internal tensions and contradictions of an activity system are the motive 
force of change and development.  

In the particular case of formal mathematics education, Engeström observes a major 
contradiction in the ‘strange reversal’ of object and artefact. Whereas in work the object is to 
achieve a concrete outcome such as task completion via the use of mediating tools (e.g., text, 
machinery, and/or measuring devices), in formal mathematics education text is most commonly 
found to take on the role of object, where the textual artefact has been reproduced and modified, to 
solve well-structured, closed problems. This is of particular salience for HPM where, in many 
teaching and learning situations, the outcome is the creation of mathematical objects or artefacts, 
rather than yet more text. 

2 Activity theory and HPM 

Activity theory is useful as a conceptual model for research because it overcomes the reductionism 
apparent in other paradigms by linking the subject and object dialogically through the inclusion of 
culturally-based mediating artefacts, and incorporating social relations implied in the (often 
invisible) contexts of rules, community, and division of labour. Within the HPM community, Luis 
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Radford has explored historical and cultural epistemological and semiotic perspectives on the 
teaching of mathematics. For example, Radford (1997) stresses the importance of the composite 
extra-mathematical cultural structure in which any mathematical knowledge is embedded. He 
argues that the history of mathematics has much to offer the epistemology of mathematics when 
viewed from a sociocultural perspective, where “knowledge is a process whose product is obtained 
through the negotiations of meaning which results in the social activity of the individuals and is 
encompassed by the cultural framework in which the individuals are embedded” (p. 32). In a more 
recent article on the epistemological limits of language (Radford, 2003), he suggests that “all 
efforts to understand the conceptual reality and the production of knowledge cannot restrict 
themselves to language and the discursive activity, but … they equally need to include the social 
practices that underlie them” (p. 132).  

In my previous HPM conference presentation (FitzSimons, 2000), I wondered how the 
espoused goals of lifelong learning in a technological society might have a chance to benefit 
citizens, local communities, industry, and society at large — in particular the development of an 
understanding and appreciation of mathematics beyond instrumentalist notions of calculating and 
measuring skills (see also FitzSimons, 2002). In response I suggested that in order to counter the 
inevitable economic rationalist arguments, there was a need for the HPM community to establish a 
“theoretical framework, including an epistemology and a methodology, and to accumulate a body 
of research” (p. 153). While there is certainly evidence of these in abundance (e.g., Fauvel & van 
Maanen, 2000), this paper will review a small selection from the HPM proceedings of the last 
decade in order to illustrate how activity theory could provide one conceptual framework for 
analysis. 

Masami Isoda (2000), in his keynote address on the use of modern technology inspired by the 
history of mathematics, drew upon a Vygotskian or socio-historical-cultural perspective as 
elaborated by James Wertsch (1991, cited in Isoda, 2000), while acknowledging the importance of 
Michael Otte’s extensive exploration of the interaction between mathematics and technology. 
Tools not only provide feedback for students, but also provide a cultural perspective such as the 
restrictions caused by mediational means (e.g., Descartes’s awareness of the ancients’ restriction 
of use of rulers and compass). As Wertsch and others have observed, “forces that shape 
mediational means introduce unintended effects into mediated action” (p. 29). 

In order to overcome the complications of replicating physical constructions of earlier times, 
Isoda makes use of modern technology in a laboratory approach, where the power of visualisation 
and manipulation of higher mathematical concepts accelerates the use of various representations to 
support students’ understanding as well as the development of competence in selecting and 
creating appropriate tools. The history of mathematics provides one didactical means. 

In terms of Engeström’s (1987) version of activity theory (see Figure 1), Isoda is using 
technology as a tool or mediating artefact with the object of enabling students to re-create existing 
mathematical knowledge, thereby generating new knowledge for themselves. The outcome of the 
activity is that students are emulating the activities of mathematicians — albeit within the rules, 
community of practice, and division of labour of formal education classrooms (or other spaces 
where students have access to technology). 

Wendy Troy (2000) described her work with trainee teachers in utilising the resources of the 
Greenwich Observatory in London, recognising that all writers, including historians, are limited by 
their own cultural perspectives and experiences (c.f., Radford, 1997). She observed that school 
students are finding it increasingly difficult to relate to their classroom mathematics since many 
results and techniques were developed to solve astronomical problems but are now presented in 
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isolation. This situation is concomitant with the use of the Global Positioning System (GPS) by 
police, ambulance and taxi drivers, air traffic controllers and pilots, seamen, and so forth — uses 
with which many current students may be familiar. Her intention was to make the links between 
the key themes in the mathematics of astronomy, navigation, and time measurement, past and 
present. Each of her teacher education students was to choose a particular topic of interest at the 
Observatory and, following a period of research, to make a presentation which unfroze the 
mathematics, placing it in its correct historical context, and making personal sense of it in order to 
explain it clearly to the whole group. For the presentation, the students devised transparencies and 
other artefacts relevant to their projects. 

In terms of Engeström’s (1987) version of activity theory, Troy’s subjects were beginning 
mathematics teachers, who were using the history of mathematics as a tool (including the 
mediating artefacts they devised) with the object of teaching their fellow students some facet of 
mathematics as historically, socially, and culturally located. Again, this is within the constraints of 
the rules, the community of practice, and the division of labour of a teacher training institution. 
The intended outcome was that these students would become more professional mathematics 
teachers as a result of this activity. 

Over the last decade there have been several HPM presentations in the form of papers and 
workshops linking the history of mathematics with the history of music – for example, Abdounur 
(1996, 2000), Fauvel (1996). Oscar Abdounur (2000) focused on the interrelationship between 
theoretical music and the mathematical theory of ratio and proportions. According to him: 

such links contributed significantly to the determination of different traditions in the 
treatment of these mathematical concepts, traditions which provided ontological differences 
in the comprehension of ratio and proportions that could in turn improve the assimilation of 
these concepts through teaching and learning. (p. 83) 

Abdounur discussed articulately questions concerning mathematical theories underlying the 
manipulation of ratios from Antiquity until the late Middle Ages and the Renaissance, as well as 
outlining the discoveries of Pythagoras who, by means of a monochord, discovered the connection 
between ratios of whole numbers and pure musical intervals. In what seems to me to resonant with 
the article by Radford (2003) in his discussion of the influence of the social history of the abacists 
on the mathematics of their time, Abdounur illustrates the influence of music theory of the Middle 
Ages and the Renaissance on the handling of ratios. 

Beyond this, however, Abdounur makes explicit links with teaching and learning in an enriched 
reconstruction of the monochord experiment. He uses music as a tool in the interweaving of 
meanings — overcoming known difficulties with fractions by converting them to ratios, 
encouraging students to extend their interests in both mathematics and music. 

Such crossing capacity not only stimulates the relationship between both areas and the related 
skills but also demands mathematics skills in musical contexts and musical skills in mathematical 
contexts … (p. 86) 

Children were given a set of activities concerning the relationship between various lengths of a 
string and the resulting pitch in a workshop where they could solve such problems from either a 
mathematical or musical orientation, and then check the practical results from the other 
orientation. Such experiential learning has the potential to contribute to the better understanding of 
the concepts of identity, proportionality, ratio, and fraction, according to Abdounur, and opens up 
possibilities for their exploration in both contexts. 

From an activity theory perspective, the work of Abdounur is interesting in that he takes both 
musical and mathematical objects as tools with the object of developing knowledge and practical 
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outcomes which are both visible and audible in each area. The learning is embodied by the 
students, with the intended outcome being the development of more mathematically and musically 
confident students. 

3 Conclusion 

Although activity theory has been used to frame each of the three presentations described above, 
this is just one possibility. Clearly the history of mathematics is central to each of these, whether it 
be used as a tool or an object. As an aside, it is also apparent to me that aesthetics also plays a 
central role in each — a role which is often neglected by mathematics teachers and learners, not to 
mention the general public. One of the characteristics of activity theory is that it brings into 
consideration the range of stakeholders involved in the processes of teaching and learning — 
largely ignored in this analysis so far. For example, the ‘rules’ governing any teaching/learning 
interaction are pervasive and teachers and (oftentimes) students are generally unconscious of the 
role these play. These rules can come from the highest level through policy determinations, 
through the school administration, from the teacher, and even be almost imperceptibly determined 
within the classroom by the students themselves. Not all teachers find themselves in the privileged 
position of being able to take up the wealth of suggestions made at HPM conferences, for reasons 
beyond their control. 

The community of practice within the classroom, as just noted, has its own rules of governance. 
However, beyond the classroom it is possible that other friends and relations may come to 
appreciate more about the qualities of mathematics through their social interactions with students 
who have gained new insights through activities such those described above. Conversely, 
supportive family and friends may even contribute to the culture of the mathematics classroom — 
as described, for example, by Marta Civil (2003) through her work on dialogical learning with 
Spanish-speaking parents in the USA, and by Tamsin Meaney (2002) through the community 
involvement of indigenous groups in mathematics curriculum decision making. 

The division of labour traditionally was that the teacher imparted mathematical knowledge and 
skills, and the students absorbed and attempted to replicate these on examination papers. In many 
countries this is no longer the norm, since the popularisation of social-constructivist theories of 
education. In recent years, new learning technologies are coming to play a more pervasive role in 
school and university education. In the case of online delivery, this is supported ostensibly by 
economic arguments for doing more with less, and for offering greater flexibility to learners in 
greater choice of time and place of study, so that students can learn in new and different ways. 
However, there are always unintended consequences when new technologies are involved, as they 
are constantly evolving with effects that cannot be determined in advance. The underlying 
assumptions are often that mathematics is culture- and value-free (Ellerton & Clements, 1989), and 
also that teaching and learning can be reduced to the production and consumption of a 
commodified version of education (FitzSimons, 2002). Having said this, it is also true that there 
are exemplary materials for learners young and old, designed to meet the local and contextualised 
needs of a specific cohort of students, and which recognise that teaching and learning are socially, 
culturally, and historically situated activities.  

There is so much high quality work being done by members of the HPM community, as 
evidenced in the publications, presentations, workshops, and poster sessions associated with this 
study group. They reflect a wide range of different approaches in creating purposeful learning 
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experiences for students. By reflecting critically upon our own and others’ experiences and 
theorisations it is possible to identify different ways of understanding mathematics teaching and 
learning involving the history of mathematics, the principles embodied, and the goals to which 
these are directed. For our own part, we often need the language to be able to justify these to 
others. Activity theory provides one possible theoretical foundation. 

REFERENCES 

-Abdounur, O.J., 1996, “Da matemática à musica: Um passeio numéri co através dos sons”. in Proc. 2nd 
European Summer University on the History and Epistemology in Mathematics Education and the ICME 8 
Satellite Meeting of HPM, M.J. Lagarto, A. Viera, E. Veloso (eds.), Braga, Portugal: University of Minho, 
vol. II, pp. 457-464. 
-Abdounur, O.J., 2000, “Theories of ratio and theoretical music: An education approach”, in Proc. HPM 
2000 conference, History in mathematics education: Challenges for the new millennium, vol. II, W.-S. 
Horng, F.-L. Lin (eds.), Taipei: National Taiwan Normal University, pp. 83-93. 
-Civil, M., 2003, “Adult learners of mathematics: A look at issues of class and culture. Keynote address”, in 
Proc. 9th International Conference of Adults Learning M (ALM9) (Policies and practices for adults learning 
mathematics: Opportunities and risks, J. Evans, P. Healy, D. Kaye, V. Seabright, A. Tomlin (eds.), London: 
Adults Learning Mathematics – A Research Forum (ALM) in association with King’s College London, pp. 
13-23. 
-Ellerton, N.F., Clements, M.A., 1989, Teaching post-secondary mathematics at a distance: A report to the 
Commonwealth Secretariat, Geelong, VIC: Deakin University. 
-Engeström, Y., 1987, Learning by expanding: An activity-theoretical approach to developmental research.
Helsinki: Orienta-Konsultit. [Retrieved February 20, 2003, from the World Wide Web: 
http://lchc.ucsd.edu/MCA/Paper/Engeström/expanding/toc.htm] 
-Engeström, Y., 1999, “Activity theory and individual and social transformation”, in Perspectives on 
activity theory, Y. Engeström, R. Miettinen, R.-L. Punamäki (eds.), Cambridge: Cambridge University 
Press, pp. 1-16. 
-Engeström, Y., 2001, “Expansive learning at work: Toward an activity-theoretical reconceptualization”, 
Journal of Education and Work, 14 (1), 133-156. 
-Fauvel, J., 1996, “Music and mathematics”, in Proc. 2nd European Summer University on the History and 
Epistemology in Mathematics Education and the ICME 8 Satellite Meeting of HPM, vol. I, M.J. Lagarto, A. 
Viera, E. Veloso (eds.), Braga, Portugal: University of Minho, pp. 241-248. 
-Fauvel, J., Van Maanen, J. (eds.), 2000, History in Mathematics Education - The ICMI Study, Dordrecht-
Boston-London: Kluwer. 
-FitzSimons, G.E., 2000, “Lifelong learning and the history of mathematics”, in Proc. HPM 2000 
conference, History in mathematics education: Challenges for the new millennium, vol. I, W.-S. Horng, F.-
L. Lin (eds.), Taipei: National Taiwan Normal University, pp. 147-154  
-FitzSimons, G. E., 2002, What Counts as Mathematics? Technologies of Power in Adult and Vocational 
Education, Dordrecht-Boston-London: Kluwer. 
-Isoda, M., 2000, “The use of technology in teaching mathematics with history - Teaching with modern 
technology inspired by the history of mathematics”, in Proc. HPM 2000 conference, History in mathematics 
education: Challenges for the new millennium, W.-S. Horng, F.-L. Lin (eds.), Taipei: National Taiwan 
Normal University, vol. I, pp. 27-34.  
-Jonassen, D., 2000, “The Meaning of Learning Project”, Learning Development Institute, Paper presented 
at Presidential Session at Association for Educational Communications and Technology (AECT) 
Conference, Denver CO, October 25-28. [available http://www.learndev.org/dl/DenverJonassen.PDF]
-Meaney,T., 2002, “Symbiosis or cultural clash? Indigenous students learning mathematics”, Journal for 
Intercultural Studies, 23 (2), 167-187. 
-Radford, L., 1997, “On psychology, historical epistemology and the teaching of mathematics: Towards a 
socio-cultural history of mathematics”, For the Learning of Mathematics, 17 (1), 26-33. 
-Radford, L., 1998, “On culture and mind: A post-Vygotskian semiotic perspective with an example from 
Greek mathematical thought”, Paper presented at the 23rd Annual Meeting of the Semiotic Society of 
America, University of Toronto, 15-18 December. 
-Radford, L., 2003, “On the epistemological limits of language: Mathematical knowledge and social practice 
during the renaissance”, Educational Studies in Mathematics, 52, 123-150.  
-Troy, W.S., 2000, “The Royal Observatory in Greenwich: Ethnomathematics in teacher training”, in Proc. 
HPM 2000 conference, History in mathematics education: Challenges for the new millennium, W.-S. 
Horng, F.-L. Lin (eds.), Taipei: National Taiwan Normal University, vol. I, pp. 132-139. 

567



Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006 

MATHEMATICS AS THE SCIENCE OF PATTERNS: 
What history can tell us 

Michael N. FRIED
Program for Science and Technology Education - Ben Gurion University of the Negev 

P. O. B. 653, Beer Sheva 
84105 Israel 

mfried@bgumail.bgu.ac.il 

ABSTRACT 
In this paper the often-heard definition of mathematics as the “science of patterns” is considered. 
Specifically, it is shown, by way of an example, that while this is presented to students as a timeless—that 
is, non-historical—definition, in fact, it represents a modern view of mathematics. It is shown that Greek 
mathematics, for example, is not a search for patterns but for concrete properties of concrete mathematical 
objects; and, conversely, it is when mathematics becomes symbolic that patterns, as such, are suggested to 
mathematicians and become objects of their thought. The example discussed the well known propositions 
from elementary geometry concerning the products of the segments of intersecting chords of a circle: a 
comparison will be made between Euclid’s treatment of these proposition and Jacob Steiner’s 19th century 
return to them in the form of the ‘power of a point’. 

1 Introduction 

It often happens that in the attempt to combine mathematics education and history of mathematics, 
the main lesson of the history of mathematics is lost, namely, that mathematics itself is an 
historical entity (see Fried, 2001). When teachers bring problems and mathematical ideas from the 
past into the classroom, they tend to speak about Roberval’s solution to this or Apollonius’ 
approach to that, as if the problems and ideas are eternal and only the solutions and approaches 
change. But to say that mathematics is historical is to say not only that its problems and ideas 
change but also what mathematics is and what it means to be mathematical. 

In view of this, I shall consider in this paper the often-heard definition of mathematics as the 
“science of patterns.” Specifically, I shall try to show, by way of an example, that while this is 
presented to students as a timeless—that is, non-historical—definition, in fact, it represents a 
modern view of mathematics. I shall show that Greek mathematics, for example, is not a search for 
patterns but for concrete properties of concrete mathematical objects; and I shall show, conversely, 
that it is when mathematics becomes symbolic that patterns, as such, are suggested to 
mathematicians and become objects of their thought. 

2 Mathematics as the science of patterns 

The characterization of mathematics as the “study of patterns” seems to have been first made by 
the British mathematician, G. H. Hardy. Lamenting his waning mathematical powers, Hardy, 
perhaps as a curative for his despair, wrote a small book on his life as a mathematician. Although 
the book was, indeed, an account of what it is to be a mathematician, it naturally could not escape 
also being an account of mathematics itself. Thus, when Hardy wrote in A Mathematician’s 
Apology,
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A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more 
permanent than theirs, it is because they are made with ideas” (Hardy, 1992, p.84) 

he gave us something like a definition of mathematics, and a beautiful one at that! 
Hardy may or may not have been the first to use the metaphor of patterns to describe the heart 

of mathematics, but he certainly was not the last. In recent years the most well known and often 
quoted statement to this effect is that of Lynne Steen, who referred to mathematics as the ‘science 
of patterns’ (Steen, 1988). Since then, the metaphor has become almost commonplace. One finds it 
in key documents in mathematics education, such as the NCTM Principles and Standards (NCTM, 
2000), in books such as K. Devlin’s Mathematics: The Science of Patterns (Devlin, 1994), and in 
the classroom as well. 

That it has become commonplace to call mathematics a science of patterns is probably a sign 
that there is something right about it. But what does it mean? Certainly, patterns are often the 
explicit subject of mathematics—sometimes even in the perfectly ordinary sense of the word, as in 
the study of ‘tilings’ and ‘wall-paper’ symmetries. Of course, the case may be made that the study 
of symmetry comprises a greater part of mathematics than might seem on first sight, but one 
hesitates to say that this is the reason it is right to call mathematics, in general, the science of 
patterns. 

Why does this word ‘pattern’ seem so apt? No doubt because it connotes order, regularity, and 
lawfulness. Moreover, as the pattern, say, for a shirt is not cloth but the plan, scheme, or idea for a 
shirt, the word ‘pattern’ calls up the fact that, as one writer puts it (in a book called again 
Mathematics as a Science of Patterns (Resnik 1999)!), “[…] in mathematics the primary subject-
matter is not the individual mathematical objects but rather the structures in which they are 
arranged” (Resnik, 1999, p.201). 

3 Pattern-thinking as the mark of modern mathematics 

The view of mathematics contained in the last quotation did not arise all at once. A mathematics 
that looks at patterns rather than individual properties of individual mathematical objects was what 
Descartes’ sought in mathesis universalis, ‘universal mathematics’, which he associated with the 
then new subject of algebra. This ‘general science’, he said, existed “…to explain that element as a 
whole which gives rise to problems about order and measurement, restricted as these are to no 
special subject matter” (Descartes, 1970, p.13). What Descartes was suggesting, in other words, 
was that when one writes an expression like x2-y2=k one may look at it as a purely symbolic 
expression, an abstract pattern, to be manipulated and studied; one should not have to tie it to 
square figures whose sides have lengths x and y. Descartes said his algebraic approach was only a 
rediscovery of a mathematics secretly practiced by the Greeks; in fact he was leading a revolution 
in mathematics. 

We do not always appreciate how far the symbolic character of modern mathematics, which 
began to take shape in Descartes’ time, distinguishes modern mathematics from, for example, 
Greek mathematics. Greek mathematicians typically began with specific mathematical objects, 
such as a circle or a section of a cone, and then proved that those objects possess certain 
properties. They did not begin with some property and then find an object possessing it or a set of 
objects that could be related by it. For Greek mathematics was a non-algebraic mathematics 
(Klein, 1968; Grattan-Guinness, 1996; Fried & Unguru, 2001), and to begin with a property 
abstracted from any particular object is precisely what symbolic algebra allows us to do supremely 
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well, indeed, what it is made for. Such abstracted properties are what we are looking for when we 
are looking for patterns. And this is what Hardy had in mind, surely, when he said the 
mathematician’s patterns “are made with ideas.” The symbolic nature of modern mathematics, 
then, is what allows mathematics to be a science of patterns, and it is now, indeed, a science of 
patterns; but because mathematics was not always symbolic we ought to take care and say that 
mathematics is the science of patterns because it has grown to be so. 

To illustrate the way modern mathematics has become a science of patterns, I have chosen a 
rather subtle example, one from elementary geometry. I shall look at the Euclidean proposition, “If 
in a circle two straight lines cut each other, the rectangle contained by the segments of the one is 
equal to the rectangle contained by the segments of the other,” and the Euclidean proof of it. Then 
I shall show how the 19th century mathematician Jacob Steiner transformed this, and propositions 
related to it, into his idea of the ‘power of a point’. Two reasons guided the choice. First, in 
thinking about how modern mathematics is a science of patterns high school teachers do well to 
think about mathematics at the level they teach; in this way, an example from elementary 
geometry is better than one from, say, group theory, which in other respects would be ideal. 
Second, a subtle example shows how pattern-thinking lurks even where one does not expect. 

4 Euclid 

Book III of Euclid’s Elements concerns the basic properties of circles, for example, that one can 
always find the center of a given circle (proposition 1); that a line through the center is 
perpendicular to a chord if and only if it bisects the chord (proposition 3); that two circles can 
intersect one another in at most two points (proposition 10); that the diameter is the greatest chord 
(proposition 15); that a line is tangent to a circle if and only if it is perpendicular to a radius 
through the point of contact (propositions 18, 19); that the sum of the opposite angles of an 
inscribed quadrilateral is equal to two right angles (proposition 22); that the angle in a semicircle is 
right (proposition 31). Proposition 35 is the proposition stated above, namely: 

If in a circle two straight lines cut each other, the rectangle contained by the segments of the 
one is equal to the rectangle contained by the segments of the other. 

Proposition 36 tells us, in addition: 

If a point is taken outside the circle, and from it two lines fall on the circle, one cutting the 
circle and the other tangent, then the rectangle contained by whole of the line cutting the circle 
and the part of it intercepted outside the circle between the point and the convex circumference 
will be equal to the square on the tangent. 

Proposition 37, which ends the book, is the converse of Proposition 36, providing a criterion for 
concluding when a line from a point outside a circle will be tangent to the circle.   

The demonstration of proposition 35, which I shall present in a moment, is well worth seeing 
since Euclid’s approach is different than the usual classroom approach via similarity; indeed, 
Euclid does not treat similarity at all until the sixth book of the Elements. Before that, though, the 
reader ought to know why I go to pains to avoid the usual “product of the lengths of two 
segments” and insist on saying “the rectangle contained by two segments.” First of all, this is the 
way Euclid says it. And if one is dealing with history, one ought to be sensitive to the way things 
are put. Second, Euclid really means “the rectangle contained by two segments”; for Euclid, 
multiplication (pollapl sios in Greek) is reserved for numbers, and ‘numbers’, for him, means only 
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natural numbers. That a rectangle, for Euclid, is a rectangle and square a square is crucial when 
one considers propositions such as this from Book II of the Elements: 

If a straight line be cut into equal and unequal segments the rectangle contained by the unequal 
segments of the whole together with the square on the straight line between the points of 
section is equal to the square on the half (Book II, proposition 5). 
Thus if AB is bisected at C and divided again at D (see fig. 1), then Euclid says the rectangle 

contained by AD and DB (which I shall abbreviate hereafter as rect.AD,DB) together with the 
square on CD (which I shall abbreviate hereafter sq.CD) is equal to sq. CB. With CZ being the 
square built on CB, BE being joined, and KM and DH being drawn parallel to AB and BZ, 
respectively, Euclid must show that rectangle AQ together with the square LH is equal to the 
square CZ; once one realizes that AQ is equal to the figure CBZHQL, the proof becomes, with all 
the squares and rectangles in plain view, almost a ‘proof-without-words’. 

K

A C D

L Q
M

HE

Figure 1. Elements, II.5 

Taking AC=a and CD=b, this proposition has been understood in the past to show, in geometric 
language, the algebraic identity (a+b)(a-b)+b2=a2, or, in its more familiar form, (a+b)(a-b)=a2-b2.
For someone who already knows algebra and knows its importance in modern mathematics, this is 
a very seductive interpretation. The problem is that while the interpretation makes sense 
mathematically it really does not hold water historically, as I described above (see Fried & 
Unguru, 2001). But let us leave that issue and return to Euclid’s proof (slightly paraphrased) of 
III.35, which, incidentally, relies on the proposition just cited! 

Let circle ABCD be given and let chords AC and BD meet at E (see fig. 2). We need to show 
that the rect.DE,EB equals rect.AE,EC. From the center Z, draw ZH and ZQ perpendicular to AC 
and BD (thus, also, H bisects AC and Q bisects BD), respectively, and let ZE, ZB, and ZC be 
joined. 

Thus, by the theorem quoted from Book II, rect.AE,EC together with sq.HE equals sq.HC. 
Therefore, also, rect.AE,EC together with sq.HE and sq.ZH equals sq.HC and sq.ZH. But, sq.HE 
and sq.ZH equals sq.ZE, while sq.HC and sq.ZH equals sq.ZC, by the ‘Pythagorean Theorem’ 
(proposition 47 in Book I of the Elements). So, rect.AE,EC together with sq.ZE equals sq.ZC. 
Similarly, rect.DE,EB together with sq.ZE equals sq.ZB. But, ZC is equal to ZB because they are 
radii. Therefore rect.AE,EC together with sq.ZE equals rect.DE,EB together with sq.ZE, so that, 
rect.AE,EC equals rect.DE,EB. 

Geometry lessons usually include also the complement to propositions 35 and 36, namely, that 
if two lines from a point outside a circle cut the circle then the rectangle contained by the whole of 
one of the lines and its exterior segment is equal to the rectangle contained by the whole of the 
other line and its exterior segment (call it 36*). This proposition, however, is not found in the 
Elements. The reason, presumably, is simply that the proposition follows from proposition 36 
almost immediately; Euclid does not have to spell out explicitly every property of circles that can 
be easily deduced from the main propositions. 
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Figure 2. Elements, III.35 

But is this not the important point? Euclid is interested in finding properties of geometrical 
objects, not patterns they manifest. A pattern in propositions 35, 36, 36* emerges particularly 
clearly when one gets over what Descartes’ called the “scruple that kept the ancients from using 
arithmetical terms in geometry” (La Géométrie, p.305) and writes these propositions, as we do 
now and Euclid did not do, in terms of products. Thus, if AC and BD are chords of a circle 
meeting at a point E (see fig. 3), it will always be the case that AE EC=BE ED, even where B 
and D are the same (i.e. when EB is tangent to the circle).  

D

D=B

A

C

E

B C

E

A

C D

E

A
B

Figure 3. Varying positions of points E 

One with an algebraic eye can spot a slightly different, and even more compelling, pattern in 
Euclid’s own proof. It is where, in the course of the proof, Euclid shows that rect. AE, EC together 
with sq.ZE equals sq.ZC (see fig. 2): let ZE, which is the distance between the center of the circle 
and the point E where the chords meet, be d, and let ZC, which is the radius of the circle, be r. 
Then, AE EC+d2=r2 or AE EC=r2-d2. Similarly, had we gone over the proof for proposition 36* 
where E is outside the circle, we would have found that AE EC+r2=d2 or. Thus, AE EC=r2-d2 if E 
is inside the circle, AE EC=d2-r2 if E is outside the circle, and, obviously, AE EC=0 if E is on the 
circle (for then d=r). Put even more succinctly, if AC is any chord of a circle through a point E 
(possibly on the circumference of the circle so that C and E or A and E coincide), then 
AE EC=|r2-d2|. This brings us to Jacob Steiner. 
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5 Jacob Steiner and the power of a point 
Jacob Steiner lived from 1796 until 1863. He was a fascinating figure in the history of 
mathematics not only because of the depth and originality of his geometrical work but also 
because of his unique educational background. For he was born to a poor peasant family that could 
hardly afford to send him to school; he could not even write before the age of fourteen! Luck 
came, however, in the form of the great Swiss educational reformer, Johann Heinrich Pestalozzi, 
who discovered Steiner, and, in 1814, enrolled him in his school at Yverdon. Later, in an 
application to the Prussian Ministry of Education written in 1826, Steiner credited Pestalozzi’s 
methods in forming his general approach to mathematics, his desire to find “the deeper bases” of 
mathematical theorems (see Burckhardt, 1970).  

In 1826, the same year he wrote the application just mentioned, he also wrote a long article 
entitled “Einige geometrische Betrachtungen”—“A Few Geometrical Observations” (Steiner, 
1971, I, pp.17-76). It is in this work that Steiner defines the ‘power of a point’. To do this, Steiner 
refers to the Euclidean propositions discussed above but shifts the focus from the chords AC and 
BD to the point E. Since the product AE EC for any chord AC through E is the constant value |r2-
d2|, Steiner defines the ‘power of a point (Potenz des Puncts) E with respect to a given circle’ to be 
this invariant number. Incidentally, one ought to note that when the point E is outside the circle, 
the power of E is just the square of the tangent from E. 

A
E

C
A

E

C

Figure 4. Focusing on the point: the power of the point E 

The shift from the chords in a circle to a point is more significant than it might seem at first. The 
power of a point is not a property of a point, for, unlike chords in a circle, points in geometry 
really have no properties; the power of a point is a relation at a point with respect to a circle and 
having the form A2-B2=constant; it is, indeed, the recognition of a certain pattern. Accordingly, 
Steiner precedes the definition of the power of a point with a geometrical locus having, ostensibly, 
nothing to do with circles—rather, a locus connected to the form A2-B2=constant. He notes that if 
Mm is a line segment containing the point G and PG is perpendicular to Mm at G, then if P is any 
point on PG, we have MP2-mP2=MG2-mG2, which is constant since M, m, and G are fixed. The 
proof follows immediately by the Pythagorean theorem: MP2-MG2 =PG2 and PG2=mP2-mG2, so 
MP2-MG2= mP2-mG2, or MP2-mP2=MG2-mG2. Since the converse also follows easily, Steiner can 
state that the locus of points whose distances D and d from two fixed points M and m satisfy the 
relation D2-d2=constant lies along a straight line perpendicular to the line Mm. Following this and 
the definition of the power of a point, Steiner develops these ideas in a series of beautiful theorems 
and constructions that fully justify Hardy’s statement that “A mathematician, like a painter or a 
poet, is a maker of patterns.”  
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Figure 5. Steiner’s first step 

To start, Steiner asks what is the locus of points having the same power with respect to two given 
circles? Let the centers and radii of the circles be M and m and R and r, respectively. Then we are 
looking for the set of points P satisfying, MP2-R2=mp2-r2 or R2-MP2=r2-mP2. In either case, this 
means that the points P satisfy the relation MP2-mP2=R2-r2, which we have just seen is a line 
perpendicular to the line Mm, the line joining the centers of the circles! This ‘line of equal 
powers’, as Steiner called it, is also known as the ‘radical axis’ of the two circles. When the circles 
intersect, the radical axis is particularly easy to find, for the power of the points intersection are 0 
with respect to both circles; therefore, the radical axis is the common chord of the two circles (and, 
of course, it follows immediately, that that line is perpendicular to the line joining the centers of 
the circles). Similarly, if the circles are tangent the radical axis has to be the tangent line. The 
various cases are shown in the figure below.  

Figure 6 The radical axis 

In the cases where the radical axis lies outside the two circles it is clear that the axis can be given 
another interpretation, namely, the locus of all points from which the tangents to the two circles 
are equal since the power of a point P with respect to a circle equals the square of the tangent to 
the circle from P.  

From here, Steiner moves on to three circles. Let the centers of the circles, which we shall 
assume do not lie along a line, be M1, M2, M3, and let the radical axis of circles 1 and 2 be denoted 
l(12), of circles 2 and 3, l(23), and of circles 1 and 3, l(13) (these are all Steiner’s notations). 
Suppose l(12) and l(23) meet at point p(123). Then the power of p(123) is the same with respect to 
circles 1 and 2 and also with respect to 2 and 3; therefore, the power of p(123) with respect to 
circles 1 and 3 must be the same, so that p(123) must also lie on l(13). In other words, given three 
circles whose centers do not all lie on a line, the radical axes all pass through one point. That point 
is also known as the radical center of the three circles. That there is a radical center means, among 
other things, that 1) if three circles intersect pair-wise then the three common chords intersect at a 
point (see fig. 7a), 2) if three circles are tangent pair-wise then the three tangents meet at a point 
and are equal (see fig. 7b), and, similarly, 3) if three circles are all non-intersecting then the three 
tangents from the radical center to the three circles are equal (see fig. 7c). It is clear, moreover, that 
a circle is orthogonal to three given circles, its center will be the radical center of the three circles 
and its radius the length of the equal tangents. 
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Figure 7a. Three mutually intersecting circles 

Figure 7b. Three mutually tangeng circles 

Figure 7e. Three non intersecting circles and a 
circle urthogonal to all three 

6 Conclusion 

None of these theorems which Steiner demonstrates is immediate without the idea of the ‘power of 
a point’, but all are almost obvious with it. How it makes these things obvious is not by supplying 
some previously unknown property of some geometrical object, but by supplying a kind of 
organizational principle, a pattern to look for, something providing “scientific unity and 
coherence,” as Steiner says in another context. Thus, the comparison between Euclid and Steiner 
makes it clear that the difference between them is not so much knowledge as it is perspective and 
how they perceive what it is they are doing when they do mathematics. Both seem to be concerned 
with circles, but, in fact, while Euclid looks at circles as objects with properties, Steiner looks at 
circles as the carriers of patterns. The ability to take a pattern as a starting point, even if one has a 
definite object in view, placed Steiner and moderns like him in a conceptual camp quite different 
from that of Euclid—in fact, one might say that if truth is a great ocean, as Newton put it, surely 
Euclid and Steiner stand on opposite shores. 
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ABSTRACT

It is a truism of the HPM movement that ignorance of the history of one’s field can seriously
distort one’s perception of what constitutes a barrier for learners; the story of British algebra
is a beautiful example. In this paper I describe some of the twists and turns in the strange
saga of the transition to symbolic algebra, which prepared the way for novel (non-arithmetical)
algebras, which in turn led to the emergence of abstract algebra and axiomatics. It was (sur-
prisingly) the British, passionately concerned with conceptual clarity, who brought about the
great transition, not the more formal, rigour-oriented Continental mathematicians. Yet the
British did not and probably could not have gone on to invent abstract algebra. The curiously
different way in which the British perceived, developed and agonised over their algebra, has,
I believe, much to tell us about our own students’ various predicaments in any classroom and
country today. External factors such as culture, world-view, personality, political and moral
values, would seem to have a much more profound effect than is usually admitted, on the mak-
ing of mathematics, and also on learners’ predispositions to embrace and make themselves
at home in abstract modern mathematics. It was the peculiarly British concern with the
meanings and concrete referents of signs – with exemplifications of the concepts represented
by formal symbolic mathematics, that fitted them to be the creators of the new algebras.
Augustus De Morgan, in particular, emerges from this story as a paradoxical exemplar and
spokesman for the view that the strict logic and axiomatics that mathematics historians tend
to associate with his name is actually peripheral to the progress of mathematics. It should
not be allowed to displace, in the teaching of mathematics, the gradual, delicate construction
of conceptual clarity, which was so important in nerving mathematicians to embark upon the
audacious exploration of new mathematical worlds in the nineteenth century.

Keywords: Peacock; De Morgan; Cauchy’s revolution vs. British revolution in symbolic
algebra; new algebras; styles; formalism; conceptual clarity; nerve

1 Strong language

Here are some colourful phrases selected from three centuries of writing on algebra:
“Mental torture”, “wild thoughts”, “weird reasoning”, “a scab of symbols”, “hard to
stomach,” “obscurity and paradox”, “clouded over, obscure, and disgusting”, “a par-
cel of algebraic quantities, of which our understandings cannot form any idea”, “such
difficulties and mysteries”, “destitute of meaning”, “vitiated with jargon, absurdity,
and mystery, and perplexed with paradox and contradiction”, “impossible quantities ...
the great and primary cause of the evils under which mathematical science labours”,
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“all just reasoning is suspended by exhibitions that resemble ... juggling tricks”, “alto-
gether unintelligible ... how can we conceive one impossibility removing or destroying
another?” “vague, perilous, and irregular analogy”, “unaccountable paradoxes, or in-
explicable mysteries”, “like symbols bewitched and running about the world in search of
meaning”, “confusions of thought”, “obscurities or errors of reasoning”.

Our students may not say it in these words today, but I think their thoughts and
feelings are often quite similar to the acute consternation and even anguish that these
people (all mathematicians or philosophers) were experiencing in relation to algebra,
as it developed between the mid-16th and mid-19th centuries. There are profound
difficulties intrinsic to a first encounter of human mind and psyche with abstract or
symbolic algebra, and the history of algebra is an excellent way to deeper awareness of
these difficulties, and sympathy with our students.

2 The paradox of the potent phantoms

Much of that strong language was a response to encounters with the first mathematical
symbols to break out of the strict limits of classical algebra–those representing negatives
and “impossible” numbers like

√−1. Because they seem to work (“impossible numbers”
can be used to find real roots of cubic equations, to derive trigonometric formulae,
series expansions, and elegant connections between real functions, to integrate stubborn
functions, etc.), many mathematicians were persuaded to take them seriously. However,
the doubts and suspicions would not go away: surely, these things are mere fictions of
our minds; they aren’t legitimately conceived; they should not be entertained or taught
as a legitimate part of mathematics at all... The numbers that we now call “complex” or
“imaginary” (note the vestigial disapproval and suspicion that attended their use for so
long), and even the negative numbers, had a long and winding road to full acceptance
by mathematicians. Descartes dubbed the negatives “false”, and Leibniz referred to
the square root of minus one as “that amphibian between being and non-being”. From
Cardano until well into the nineteenth century, these undeniably useful entities were
labelled “fictitious”, “impossible”, “sophistic”, “monstrous”, “chimeras”, “ridiculous”,
as well as “false” and “imaginary”. (Some modern English equivalents might be “fake”,
“illusory” “artificial”, “inauthentic”, unreal.) John Playfair expressed the dilemma
nicely: “Here then is a paradox which remains to be explained. If the operations of this
imaginary arithmetic are unintelligible, why are they not also useless?”[Playfair 1778.]

3 Early anxieties

Consider the “posthumous misfortunes” of Thomas Harriot [Stedall 2000, 455-497], “so
learned (according to one of his followers and commentators) that had he published all
he knew in algebra, he would have left little of the chief mysteries of that art unhandled”.
His procrastination cost him his rightful place with Cardano, Viete and Descartes. This
eccentric Englishman was simply out of step, psychologically, with his English contem-
poraries, who, faced with the task of posthumous publication of his work, subjected it
to a kind of epistemic cleansing, purging it of what they found incomprehensible or em-
barrassing. One implication is that Harriot’s mathematical originality far outstripped
his pedagogic effectiveness. When his Praxis was finally published in 1631, it substan-
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tially omitted his explicit and bold use of negatives and imaginaries, because his editors
and commentators (among them, Walter Warner, Robert Hues, Nathaniel Torporley)
could not cope with them. “Harriot may have been at ease with [what we call complex
conjugates] but Warner was decidedly not” [Stedall, 469]. Harriot has been generally
under-rated for centuries, but George Peacock knew in 1833 that Harriot had “left the
theory of composition of equations in so complete a form that it became necessary to
consider negative and even impossible numbers as having a real existence in algebra,
however vain might be the attempt to interpret their meaning”[Peacock 1834, 190].

Meanwhile, the variety of responses to symbolic reasoning among Harriot’s contem-
poraries, and slightly later English mathematicians, mirrors those found in classrooms
today. Hobbes was nauseated by this “scab of symbols”, and Barrow worried about its
excesses. But Oughtred, Wallis and Wallis’s disciples “revelled in it” [Pycior 1997, 7].
Pycior points out that, though there was a “near mania to coin new symbols,” those
early English algebraists had trouble (some more than others) accepting symbols with
no “ready referents”, signs with “no ideas signified”. “In the seventeenth and early
eighteenth centuries, symbolic reasoning on idea-less symbols was for hardy thinkers
alone” – for the “venturous”, as John Wallis put it. Wallis, says Pycior, “made the leap
to symbolic mathematics, but only by beginning to re-write the rules of mathematics”.
Berkeley also made the leap, but only by beginning to re-write Western philosophy.
Berkeley is, of course, celebrated for his hard-hitting attack (in The Analyst of 1734) on
mathematicians of the euphoric post-Calculus era, challenging them to live up to their
ancient standards of rigour as epitomised by Euclid. But he was demanding, not quite
what we now mean by rigour, but much more, “conceptual clarity”. One of his leading
questions was: “...whether the mathematicians of the present age act like men of sci-
ence, in taking so much more pains to apply their principles than to understand them.”
He complained that it was asking more of him to “digest a second or third fluxion”, or
to stomach a “nascent augment of a nascent augment”, than to swallow any theological
point. His comparison with squeamishness about foodstuffs reveals a deep concern with
underlying ideas and meaning. Although he did draw attention to logical inconsisten-
cies in the treatment of “infinitely small quantities”, it was their conceptualisation (or
lack of it) that truly bothered him: “not a finite quantity, nor yet nothing; may we not
call them the ghosts of departed quantities?”; “... a thing which hath no magnitude
... take it in what light you please, the clear conception of it will, if I mistake not, be
found impossible.” His cry for clarity must resonate with the experience of many con-
scientious teachers and students of mathematics. Newton’s attempts to give conceptual
credibility to his infinitesimals, by various linguistic contortions and appeals to physical
intuition, show how concerned he too was with meaning and conceptual clarity.

The episode of Harriot’s Praxis, together with the long and typically English con-
troversy, from Harriot to Berkeley, which raged over the very nature of mathematics,
illustrate the peculiar propensity of the British to anxious introspection over meanings,
‘significations’, and conceptual clarity. It seems likely that the well-known divergence
of calculus styles allegedly accounted for by the Newton-Leibniz priority dispute may
have more dimensions to it than is often realised. The rejection of Leibniz’s symbolic
machinery may have been motivated as much by the English need to cling to the con-
ceptually familiar Newtonian scheme, grounded in geometrical and physical intuition,
as by mere patriotism and institutional isolation.
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4 A divergence of moods

Generally, the 18th century Continental mathematicians were not terribly concerned
about what they saw as purely metaphysical problems surrounding the use of negatives
and imaginaries. While lively debate was conducted between Leibniz, the Bernoulli’s,
Euler, d’Alembert, etc., over the “logarithms of negative and impossible quantities”,
the issue was over technicalities and choice of ambiguities, rather than any deeply-felt
concern over conceptual meanings. D’Alembert probably represents the later Continen-
tal feeling well, in his “articulate but faintly puzzled” 1 Encyclopédie articles (c.1770)
on imaginaries and negatives: “... the rules of algebraic operations with negative quan-
tities are generally admitted by everyone, and acknowledged as exact, whatever idea we
may have about these quantities”; and in his famous injunction (part of mathematical
folklore): “Go on, and faith will come to you!”

Early-modern algebra was far from neglected by British mathematicians and ped-
agogues. In eight textbooks explicitly on “Algebra” (from Harriot to Saunderson)
written between 1630 and 1740, there can be seen an increasing acceptance of sym-
bolic style, a new emphasis on analysis as the specific language of algebra, challenging
the subordinate relationship of algebra to geometry, and an already perceptibly ex-
panding algebraic universe. But what distinguished the British from the Continental
algebraists, was a continuing tradition of worried pondering about negatives and imag-
inaries, in spite of having achieved, by the mid-eighteenth century, what Pycior calls a
“pragmatic détente” with them.2 What the British were seeking for algebra was not
what we now mean by rigour, or axiomatics, but the conceptually clear, foundational
reasoning of Euclid, and their concern was closely linked to the pedagogical problems
and function of mathematics. On the extreme right, a die-hard “sect” (as Augustus
De Morgan referred to it much later) was led, in eloquent denunciations of “quantities
less than nothing”, by Robert Simson, Francis Masères and William Frend. It was
not only extremists taking issue: the concern, controversy, and embarrassment were
widespread. The rejection of the negative and imaginary numbers “took place in a par-
ticular philosophical context, ... which posited physical or ideal backing for all general
terms” [Pycior 1997]. By the late 18th century there was a new note of urgency, a
“new persistence and candour” [Pycior 1997, 313], as the arena of debate moved from
textbook to journal. John Playfair, attempting to secure at least heuristic justification
for imaginary characters, reveals in his 1778 paper the importance to him of clarity of
underlying backing concept [Playfair 1778].3

At the dawn of the 19th century, Robert Woodhouse [Woodhouse 1802] sounds a
lone progressive voice at Cambridge. Criticising his English colleagues for appealing
to vague analogy, and his Continental colleagues for lack of “evidence and rigour” in
their appeal to “obscure doctrines” and mere symbol manipulation, he is most critical
of those who have turned their backs too quickly on the questionable would-be quan-

1This description by Jackie Sip.
2For example, Saunderson publicly queried whether he ought to call the imaginaries “quantities”.
3In reference to this paper, Nagel claims that Playfair “almost guessed the secret of the nature

of mathematics.” But Playfair would not have recognized Nagel’s twentieth century answer to the
question as anything close to his own. Such “secrets” are not riddles to be guessed; they are historically
conditioned positions to be reached by complex processes and communal intellectual negotiation -
perhaps in the modern classroom also!
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tities4. His own solution is still very English: “to recur to the original notions”, and
“to establish a logic” for them; that is, to take the accused symbols with all serious-
ness and give them meaning as well as logical foundation. Woodhouse thus appears as
the first, somewhat uncomfortable, inhabitant of that “precarious middle ground sus-
pended between conceptual and formal views”, thus aptly described by Joan Richards
[Richards 1987, 9] as the peculiar (and fertile) habitat of the nineteenth-century British
algebraists. It was he, more than any other establishment figure, who was a precursor
and instigator of the revolution which began properly with the young members of the
Analytic Society at Cambridge in 1811. Before sketching their story, it is necessary to
outline its distinctive context, by contrasting the wider cultural scenes in England and
France, within which mathematics and mathematics education were being shaped.

5 Two states of affairs at 1800

This brief summary follows the analysis of Joan Richards [Richards 1980, 1987, 1991,
1992, 2002]. In post-Revolution France, mathematics was for the elite, a specialist sub-
ject that acted as a kind of sieve to separate the initiates from the mass. In England,
mathematics was perceived as the epitome of true reasoning and therefore central to all
education; the mathematical tripos at Cambridge was compulsory for all students. The
tendencies toward deism or even atheism among French intellectuals contrasts vividly
with the pervasive influence of “evangelical” theology in England at that time, which
encouraged a strongly unitary notion of truth and hence of education. While mathe-
matics in France was treated more functionally as a means to scientific, technical and
national progress for all citizens, the subject was regarded in England (particularly at
Cambridge) as fundamental to the broadly liberal education of gentlemen of the upper
and ruling classes, – an essential aid to all sound reasoning, exemplifying sure, incon-
trovertible truth. With culturally-conditioned perceptions differing so greatly about its
nature, mathematics in France and England was bound to develop in distinctive ways.

6 A very British revolution

It is well-known that a Cauchy-initiated revolution in rigour took place during the
nineteenth century, largely in a Continental setting5. It is less well understood that
a quite different mathematical revolution of equal importance but more subtlety was
wrought during the same period, almost entirely amongst the British, and centred
upon Cambridge6. Just what was at the heart of the “remarkable revitalisation of
British mathematics and mathematical physics during the first half of the nineteenth
century”[Fisch 1994] is the question we now explore, for it has profound significance for
pedagogy.

4In this he foreshadows the attitude of the yet-to-be-born Augustus De Morgan to emergent but
ill-understood ideas such as divergent series.

5Judith Grabiner argues that it bears all the marks of a Kuhnian revolution in science [Grabiner
1995]

6Many commentators and historians seem to have missed the significance of the drama being played
out in and through the University of Cambridge during the early decades of the 19th century. According
to Grattan-Guiness, the books of Van der Waerden (1985) and Scholz (1990) “sadly overlook the
concerns” relating to the British reform movement and the symbolic algebraists.
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Initiating the first phase of this reform process was the formation of the Analytic
Society at Cambridge in 1811, led by the young Babbage, Herschel and Peacock, firmly
resolved to end what they perceived as the intolerable isolation and stagnation of British
mathematics. Their activities centred around the translation of Lacroix’s Calculus
[Lacroix 1816]. Strangely, they completely re-cast Lacroix’s treatment (which was based
on the concept of limit, following d’Alembert) using Lagrange’s definition of derivatives
as coefficients of Taylor expansions, on the grounds that this was less fraught with con-
ceptual obscurities than the limit concept. It is now generally accepted that most of the
copious annotations were by Peacock. These may indicate an early divergence between
his conceptualism and Babbage’s formalism, but anyhow their passionate mission to
clarify the concepts of the calculus shows clearly throughout what was intended to be
a “translation” of a typically French work. The Analytic Society was short-lived, but
its ideals lived on in Cambridge and slowly wrought far-reaching changes in the style
and content of the mathematics taught there.

The second and more problematic phase was inaugurated by the publication of
George Peacock’s Treatise on Algebra in 1830, which provoked a keen and “singularly
British debate” [Fisch 1994, 249], involving Peacock, Whewell, Hamilton, De Morgan,
and (peripherally by this stage) Babbage and Herschel, and infected the younger gener-
ation: Murphy, Ellis, Gregory, Boole, Cayley. The debate was characterised by intense
creative conflict and a profound re-thinking of the very nature of mathematics. Recent
scholarship interprets this debate as the intellectual crucible in which was forged a new
self-confident mathematical and pedagogical style that helped to nurture a generation
of British mathematicians able to lead the world in mathematical physics7. More im-
portantly for our purposes, this style empowered the British to be the first actively to
create new algebras, flouting some of the most “obvious” laws, and preparing the way
for full-blooded abstract algebra to emerge. The story of early Victorian algebra “was
not one of mere import (or re-import) and dissemination of ready-made ‘exotic’ alterna-
tives to deficient local thinking, but one of truly innovative and at times path-breaking,
and, in a sense, singularly English trouble-shooting”[Fisch 1994, 249].

This prolonged debate initiated a process known as “the algebraisation of mathe-
matics”. Up until 1870 it was a British story; after that the Continentals and Americans
made significant contributions. By the turn of the century the ancient moorings had
been permanently cut: algebra became non-referential, uninterpreted – abstract alge-
bra. The peculiar role of the conceptual-minded British in this great transformation is
full of surprises and lessons for teachers.

7 Symbols bewitched

It was five years before Augustus De Morgan [De Morgan 1835] felt able to review his
mentor’s seminal book – a work [Peacock 1830] that today we find unremarkable, and
even an awkward compromise. But the delay is revealing, as is De Morgan’s frank
description of his first reactions:

The work of Mr Peacock is difficult but logical ... At first sight it seemed

7See the work of Richards, Pycior and Fisch. Also Walter Cannon: “This [he refers to the full
two-stage analytic ] revolution ....was basic to the development of British physics and the prominent
role played by Cambridge in that development.” [Cannon, 1964, 177].
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to us as something like symbols bewitched, and running about the world in
search of a meaning.

Peacock himself displays a strongly felt sense of mission, urgency and novelty. His
contemporaries, too, received his work as truly novel, path-breaking, and very puzzling.
It seems to constitute Peacock’s response to a painful dilemma. Frend, Masères and
company are unanswerable, yet the algebraists’ toolkit which has become so much
a part of him simply cannot be jettisoned, to return to an uncorrupted arithmetic.
He shares the strongly conceptual mind of most of his compatriots, but knows in his
mathematician’s heart that algebra must go free. He feels compelled, according to
[Fisch 1999 137-179.], into a strangely schizophrenic solution, where he splits algebra
right down the middle, Arithmetical Algebra retaining the status of a science, with the
symbols standing for clearly conceptualised (positive, real) numbers, and Symbolical
Algebra sacrificing all referential authenticity to gain operational freedom. The quiet,
respectable clergyman has finally followed his eccentric friend Charles Babbage and
made the ultimate surrender for an Englishman of his time: he has surrendered truth
– the very truth of algebra. He calms his conscience by fiercely protecting the pre-
eminence of the mother-subject, Arithmetical Algebra (whose truth is as sure as that
of geometry). The laws of the newly-licensed Art of Symbolical Algebra are to be
decreed logically by a Principle of Permanence, like an umbilical cord that he could
never bring himself to cut, preserving for him the living truth of algebra – so important
to his English mind. Fisch perceives the significance of Peacock’s work as crucially
drawing attention to the very problem Peacock himself was ultimately unable to solve,
and preparing his younger followers (perhaps by its very strained and uncomfortable
quality) for the courageous outward journeys he himself was unwilling or unable to
make [Fisch 1999, esp. 140, 176].

8 Algebra: art, language or science?

The debate provoked by Peacock’s Treatise eventually redefined mathematics for the
British, and acted as a catalyst for profound qualitative change in algebra. For the first
time, the implicit laws of common algebra came under sustained formal scrutiny. Fully
engaging in this debate, the brilliant William Rowan Hamilton in Dublin produced his
far-sighted construction of the complex numbers a + ib as real number pairs (a, b) with
appropriate operations, in the context of a paper [Hamilton 1837] seeking to imbue sym-
bolic algebra with truth and meaning. He recognises three distinct ways (perhaps still
convenient for pedagogy today) in which algebra can validly be perceived: the “prac-
tical” the “philological” and the “theoretical”, wherein algebra is pursued and valued,
respectively, as an “instrument”, a “language”, or a “contemplation”. That is, algebra
is (1) an applied art or system of useful rules and techniques; (2) a formally coherent
and concise language; (3) a science – a system of connected propositions about clearly
contemplated ideas. Whereas the first school values algebra for its usefulness and the
second for its beauty, the third school values algebra chiefly, according to Hamilton, for
its truth: one desires to “look beyond the signs to the things signified”. And it is the
state of this third “theoretical” and truly “scientific” algebra that Hamilton deplores,
as full of imperfections: “confusions of thought”, “obscurities or errors of reasoning”.
In thus wanting algebraic symbols to stand for something “real” (and demonstrating
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how to do this in his grounding of the “imaginary” numbers in the intuitively real num-
ber couples representing related moments in the flow of time), Hamilton was strongly
influenced by Kant and German Nature philosophy.

Driven by his desire to have an algebra authentically modelling the physical world
of time and three spatial dimensions he went on to seek first a “triple algebra”, and
(while unsuccessful in this) ultimately to create his “quaternions” in 1843 – perhaps
the first truly novel non-arithmetic algebra.

While Hamilton, Graves and De Morgan (and the younger Duncan Gregory), in
correspondence with each other and with Peacock, pondered over triple algebras and
the foundations of algebra (and actually changed their views quite substantially over
the years), George Boole (and also De Morgan) sought to express the very laws of
logical thought algebraically – and Boole was led to invent the algebraic system that
became Boolean algebra. Neither Boole nor De Morgan saw themselves inventing ab-
stract algebraic systems for their own sake. The meaning of the symbols was of the
utmost importance to them. Meanwhile, William Whewell at Cambridge struggled
(and ultimately failed) to include Peacock’s symbolical algebra in his great scheme for
the Philosophy of the Inductive Sciences, probably because was no fundamental idea
on which to get a good conceptual hold! Whewell went so far as to urge that algebra
had no place in Cambridge education. From George Woodhouse onward, “the work
of Britain’s great algebraists rests on a precarious middle ground suspended between
conceptual and formal views” [Richards 1987, 8-9].

What was the elusive driving force behind this enigmatic two-phase British adven-
ture? It is far from the mark to diminish the outcome of the young Analytics’ idealism
to either: (1) the ultimate failure to achieve their goals (for British mathematicians did
not actually espouse the rigour and formal analytic style of the Continent); or (2) a
wholesale recovery of Continental ways leading to the triumphant attainment of Con-
tinental analytic methods and rigour as a universal good, as the British catch up with
their neighbours. Curiously, both opposite tales have been told by historians, which is
an indication that it is not a simple and unproblematic story! The plot revolves rather,
according to Joan Richards [Richards 1991, 316], around a painful “struggle to define
the essential nature of mathematical study and its role in society.” And, from two soci-
eties on opposite sides of the Channel, each with distinctive national consciousness and
radically different immediate past history, how (especially after recent scholarship on
the institutional and societal influences upon mathematical practise) should we expect
the same conclusion?

9 A tale of two styles

The Continentals were not asking the same questions as the British. Cauchy’s revolution
in rigour was strikingly different [Judith Grabiner 1995] 8.

Cauchy made a conscious break with the creative heuristic epitomised by Euler and
other eighteenth century analysts. He explicitly described himself as concerned, not
with discovering results using the “generalness of algebra”, but with rigorous justifica-

8It was a largely single-handed effort, although Abel and Bolzano (in partial isolation) were thinking
along similar lines, being heirs to the same eighteenth century stimuli. And Riemann, Weierstrass, et
al, would inherit and propagate the revolutionary passion.
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tion of results – proving theorems: “I have sought to give them all the rigour which
exists in geometry”. He turned his back on the rampant, reckless extrapolations and
“inductions”, by means of which his forbears had moved from convergent series to di-
vergent, from finite symbolic expressions to infinite ones, and from “real” quantities
to “imaginary figments”. These were “sometimes appropriate to suggest truth”, but
had “little accord with the much-praised exactness of the mathematical sciences.” He
described his achievement thus, with the fervour and hyperbole of the true revolution-
ary: “... by determining these conditions and these values [for which algebraic formulae
hold], and by fixing precisely the sense of all notations I use, I make all uncertainty
disappear.” [Cauchy 1821.]

The sense in which Cauchy understood the ideas he embodied in the words rigour,
precise, exact and certain, was quite different from what his contemporaries across the
Channel meant when they used those same words. Today we are closer to Cauchy’s
meaning, which was un-ambiguity of definition, determining precisely what may or may
not be ascribed to the concept in a proof; that is why we hail him as the pioneer of
rigour, and find it hard to understand what all the fuss was about in Britain. But what
the British meant was extremely important to them, and, I suggest, crucial – not only
in the very different revolutionary advance in mathematics talking place in Britain, but
in teaching mathematics today. They meant precision of concept, exactness of fit of
definition to concept, rigorous correlation of concept to definition. For them, the Holy
Grail was conceptual clarity, and they fought hard for it.

Cauchy’s originality lay in making the definition of limit, not the concept described,
the basis for all that followed. He gives his famous definition in the Cours de Anal-
yse, followed by a single off-hand example, and then gets on with the task. In stark
contrast, his English near-contemporary, Augustus De Morgan, in his Differential and
Integral Calculus of 1842 (written after some years of playing the algebraic formalist
[Pycior 1983]) spends all of 29 pages discoursing upon, exemplifying and generally try-
ing to de-mystify the concept of limit, without once giving a rigorous definition in the
sense of Cauchy. He seeks to build instead a firm conceptual foundation, reinforced by
experimental, observational and intuitive understanding. What’s more, it seems that
no Englishman ever saw fit to translate Cauchy’s epoch-making Cours into English!
(De Morgan gives us a clue to why: “As if mere statements of definitions could give
instantaneous power of using terms rightly.”) For contrast, a German translation ap-
peared very quickly (1826), and was probably a crucial influence for Abel. De Morgan’s
own Calculus embodied “personally grounded conceptual clarity rather than externally
established mathematical rigour” [Richards 1992, 64], entailing “the scientific descrip-
tion of a real, historically-generated concept rather than the prescription of rules for
generating internally consistent formal statements” [Richards 1987, 25].

From 1830 British mathematics was developing, once again, in a very different way to
the French9. However, this time their distinctive style was not perceived by the British
themselves as a problem; they were following their own star, even if the destination was
still very unclear..

9So was German mathematics, in yet a third qualitatively different way.
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10 New worlds: a question of nerve

The dominant theme of the story of algebra in the period 1800-1860, as Ivor Gratton-
Guinness puts it in the Fontana History of Mathematics [p.409], is that “algebra was
definitely becoming algebras, with a range of new ones appearing in a short time.”
However, the sheer nerve required for the first explorers to make their voyages into
the unknown is hard for us to appreciate in retrospect, much as it is hard now, in the
global village, to understand the courage and fear of Columbus and his men in 1492.
Bourbaki’s rather bald description [Bourbaki 1969] of these dramatic events glosses over
the audacity required to venture forth thus, and does not stop to enquire what concrete
conceptual intuitions encouraged these abstract novelties:

The algebraists of the English school were the first to isolate, between 1830
and 1850, the abstract notion of law of composition, and then immediately
broadened the field of algebra by applying this notion to a host of new
mathematical entities....

Hamilton’s quaternions demanded of him the sacrifice of commutativity (ij =
k, ji = −k), and nothing less than these long-sought and joyfully- recognised crea-
tures could have persuaded him to go so far. He had been prepared for his imaginative
leap by grappling, for years, with the nature of algebra, motivated always by his drive
to find a mathematical framework for expressing the intuitively-mediated concepts of
physics. Hamilton’s conceptualism carried him where no-one else (except perhaps Her-
mann Grassman) dared to go. Hamilton has been criticised for his pervasive meta-
physics, perceived by mathematicians as an annoying distraction. But his biographer,
Thomas Hankin, is forthright in asserting his verdict that it was because of his meta-
physics that Hamilton was able to move so radically beyond the horizons of others in
both his construction of the complex numbers as real number-pairs, and his conception
of quaternions 10.

De Morgan was the first mathematician to give explicitly the axioms for a field
in essentially the modern form. He called them the “laws of operation” of “logical
algebra” – that algebra rich and free enough to include

√
( − 1). He recognises the

novelty (“I believe no writer has professed to throw together in one place every thing
that is essential to algebraical process”), yet seems to present them rather off-handedly
[De Morgan 1842b]. For him the point was not to create an abstract system and thereby
open the gates to some algebraic heaven with hosts of new algebras; it was rather to
explicate the foundational laws of the well-known and long-used system in order to give
“complete significance” to it.

For the British, the symbols were inseparable from the precise, exact (in the British
sense, not Cauchy’s!) conceptual meaning and significance, which had been strong

10The subtle role of quaternions in the evolution of algebra to algebras, and finally to the whole
field of abstract algebra, is of inestimable importance. They re-fuelled the search for “triple algebras”,
thereby focussing attention on algebraic laws: such as associativity, commutativity, distributivity and
divisors of zero, and so naturally raising the novel question of what constitutes a valid algebra. The
quaternions were followed closely by Arthur Cayley’s matrices (1858), soon to become equally impor-
tant in enlarging algebraic perspectives, and relating linear algebra to the general theory of algebras.
Cayley, in his pioneering the analytic geometry of n dimensions (1843) and the theory of groups
(1854-59) contributed a “notable step in the evolution of abstract thinking” [Kolmogorov 1992, 39].
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enough to lure them into uncharted mathematical waters in the first place. It was only
after long and profound preliminary meditation on the content of what later became
their algebraic systems – on the underlying concepts themselves, that Hamilton, Boole,
De Morgan and Cayley could ride securely on the backs of their concepts, like beloved
and well-trusted mounts, and be carried beyond themselves, to create and explore new
worlds. Only after apprenticeship in this newly-discovered variety of algebraic worlds
could mathematicians begin to develop the requisite nerve for conceiving of arbitrary
creation and exploration of abstract worlds. There is historical irony here: those who
approached symbolic language with the most awe and circumspection were, in the event,
the ones most fitted to follow its truly novel pathways, and most prepared to commit
themselves to go where the language took them for its own sake, into new worlds of
great beauty, charged with meaning and significance. It was for others, nurtured in this
wider universe of multiple (yet meaningful) algebraic worlds to complete the separation
of form from matter, the signs from the signified, and make the next great leap, into
abstraction.

11 De Morgan looks back

In De Morgan’s Presidential address to the first meeting of the London Mathematics
Society, on 16 January 1865, he urged members of the fledgling Society to examine the
history of their subject:

It is astonishing how strangely mathematicians talk of the Mathematics,
because they do not know the history of their subject ... There is in the
idea of every one some particular sequence of propositions, which he has in
his own mind, and he imagines that that sequence exists in history; that
his own order is the historical order in which the propositions have been
successively evolved ...

De Morgan goes on to express his strong sense of the importance of the conceptual,
organic development of mathematics. The road to discovery is quite different from the
final, formal version in the textbooks. Mathematics taught “straight ahead”, ignor-
ing the twists and turns of the historical development, is poor training to do creative
research. In his second paper on the foundations of algebra, just after presenting his
laws of operation [De Morgan 1842b, 289-290], he challenges the idea that mathemat-
ics is essentially axiomatics – or: “the art of operation previously to the explanation
of its symbols ... namely, a pure consequence of definitions, which upon other defini-
tions might have been another thing”. He goes on to use his famous analogy of the
jigsaw puzzle to illustrates his conviction that insight into meaning, intuitive grasp of
underlying concepts and subtle connections, and vision of the bigger picture, is what
distinguishes a real mathematician from a formal logical machine: “... a person who
puts one of these together by the backs of the pieces, and therefore is guided only by
their forms, and not by their meanings, may be compared to one who makes the trans-
formations of algebra by the defined laws of operation only: while one who looks at
the fronts ... more resembles the investigator and the mathematician.” How, then, are
we training our future mathematicians in the twenty-first century, when formal symbol
manipulation is increasingly a task for machines?
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12 Conclusions for teaching mathematics

(1) If the gradual, delicate, construction of clear concepts, solidified and ramified
through concrete and highly-motivating examples, was so important to those who first
developed the nerve to open the way to the abstract mathematics of the 20th century,
then it should feature as centrally in our teaching as it did in their experience. They
succeeded in constructed for mathematics “a conceptual foundation that they found
both strong and appropriate,” [Richards 1991, 317] and which served as a rock solid
enough to soothe anxieties, and as a launch-pad for voyages into novel regions. Here
is a challenge to teachers to do the same for their students. Is it significant that,
among the characters in our story, Peacock and De Morgan [Rice 1999] were justly
celebrated as excellent teachers, while Cauchy was very unpopular with his students?
If Joan Richards has aptly expressed (see quotes in section 9) what made De Morgan
a great mathematics teacher, and what nerved the British symbolic algebraists of his
time to such self-confidence and fruitfulness, then perhaps we may adapt her words
to frame a manifesto for the classroom: Let us resist introducing definitions and no-
tations to our students in the authoritarian tradition, as prescriptions for generating
subsequent formal statements; let us rather introduce them as appropriate, timely and
welcome descriptions of real, classroom-generated concepts – a distillation and naming
of personally-grounded ideas whose clarity has been gently and patiently constructed
through observational, experimental and intuitive understanding.

(2) Revolutionary advances that were accompanied by much confusion and conflict
are taught today without a care for the shocking impact on the student: the great
steps are expected to be routine. If Peacock experienced intellectual schizophrenia,
if De Morgan saw symbols as bewitched lost souls, if Argand and Grassman found
themselves talking to nobody, if even Hamilton and Boole and the brilliant young
Gregory struggled, and needed to be “psyched up”, by conceptual grounding, to make
their creative voyages, – we should not be surprised at our students’ reactions as we
propel them headlong into the world of non-referential abstract symbols. There is
a psychological process to parallel the historical. The 18th century was a period of
unveiling of beautiful structure and mysterious connections; in the 19th century came
comparative structural study and description; only in the early 20th century could the
structures be perceived in a truly abstract way.

(3) The fact that France, Germany and Britain pursued such different mathematical
styles, and made such different contributions to mathematics during the 19th century,
suggests that mathematics-making is far from independent of culture and psyche. Ad-
vances made by a particular group, under particular conditions and with characteristic
motivations, are mostly taught today according to purely logical schemes, with little
concern for the organic historical-cultural mix that fuelled the big push. The original
catalysts may not be appropriate today, but to understand what it was that excited the
pioneers and steeled their nerves, making the new assault seem possible and right, can
assist us in choosing a helpful approach with our students. “One text, one style suits
all” is not valid.
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ABSTRACT 
The Principle of Continuity was a broad law, often not explicitly formulated, but used widely throughout the 
17th, 18th, and 19th centuries. We give examples of its use in history and explore its bearing on teaching.

1 History 

The Principle of Continuity was a very broad law, often not explicitly formulated, but used widely 
and importantly throughout the seventeenth, eighteenth, and nineteenth centuries. In general terms, 
the Principle of Continuity says that what holds in a given case also holds in what appear to be like 
cases. Specifically, it maintains that  

(a) What is true for positive numbers is true for negative numbers. 
(b) What is true for real numbers is true for complex numbers. 
(c ) What is true up to the limit is true at the limit. 
(d) What is true for finite quantities is true for infinitely small and infinitely large quantities. 
(e) What is true for polynomials is true for power series. 
(f) What is true for circles is true for other conics. 
(g) What is true for ordinary integers is true for (say) Gaussian integers {a + bi: a, b Z}.

Each of these assumptions was used by mathematicians at one time or another, as we shall see. No 
doubt they realized that not all properties holding in a given case carry over to what appear to be 
like cases; they chose the properties that suited their purposes. Moreover, these purported 
analogies, even when they failed to materialize, were often starting points for fruitful theories.  

André Weil, in his essay “From metaphysics to mathematics”, gives poetic expression to some 
of the above thoughts (Weil, 1980, p. 408): 

Mathematicians of the eighteenth century were accustomed to speak of “the metaphysics of the 
calculus”, or “the metaphysics of the theory of equations”. They understood by this a vague set 
of analogies, difficult to grasp and difficult to formulate, which nonetheless seemed to them to 
play an important role at a given moment in mathematical research and discovery […] 
All mathematicians know that nothing is more fertile than these obscure analogies, these 
troubled reflections of one theory in another, these furtive caresses, these inexplicable 
misunderstandings; also nothing gives more pleasure to the investigator. A day comes when … 
the metaphysics has become mathematics, ready to form the material whose cold beauty will no 
longer know how to move us.  

Our story begins with Kepler, who in the early seventeenth century enunciated a Principle of 
Continuity in connection with his study of conics. All conics, he claimed, are of the same species. 
For example, a parabola may be regarded as a limiting case of an ellipse or a hyperbola, in which 
one of the foci has gone to infinity. And “a straight line goes over into a parabola through infinite 
hyperbolas, and through infinite ellipses into a circle” (Rosenfeld, to appear). (Desargues and 
Pascal thought along similar lines.) See also (Knobloch, 2000). 
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It was Leibniz, however, who made the Principle of Continuity into an all-embracing law. It 
appears throughout his work—in mathematics, philosophy, and science. Here are several ways in 
which he expressed it (Grant, 1994, pp. 291-294): 

(i) Nature makes no leaps … We pass from the small to the great, and the reverse, through the 
medium. 
(ii) When the essential determinations of one being approximate those of another, all the 
properties of the former should also gradually approximate those of the latter. 
(iii) As the given quantities are ordered, so the affected quantities are ordered also.  
(iv) Since we can move from polygons to a circle by a continuous change and without making a 
leap, it is also necessary not to make a leap in passing from the properties of polygons to those 
of a circle, otherwise the law of continuity would be violated. 

Leibniz’ rationale for this encompassing Principle was that “the sovereign wisdom, the source of 
all things, acts as a perfect geometrician. … [And geometry is] but the science of the continuous” 
(Grant, 1994, p. 292). 

The major focus of the first part of this paper will be on examples from several areas of 
mathematics— analysis, algebra, geometry, and number theory—to illustrate the Principle of 
Continuity “in action”, in its various guises. We will also highlight in each case the transition from 
the metaphysics to the mathematics, from vague analogies to fruitful theories. 

I. Analysis 
(a) The seventeenth century saw the rise of calculus/analysis, one of the great intellectual 

achievements of all time. It was founded independently by Newton and Leibniz during the last 
third of that century, although practically all of the prominent mathematicians of Europe around 
1650 could solve many of the problems in which elementary calculus is now used. At the same 
time, it took another two centuries to provide the subject with rigorous foundations. The 
immediate task of Newton and Leibniz—the “basic problem”— to which the Principle of 
Continuity (Weil’s “metaphysics”) was applied was 

Basic problem: To devise general methods for discovering and deriving results in analysis. 
Central to Leibniz’ approach in dealing with this problem was the notion of “differential”, the 

difference between two infinitesimally close points. For example, 
he searched for some time to find the rules for differentiating products and quotients. When he 

found them, the “proofs” were easy. Here is his discovery/derivation of the product rule:  
d(xy) = (x+ dx)(y + dy) – xy = xy + xdy + ydx + (dx)(dy) – xy =  xdy + ydx. Leibniz omits (dx)(dy),
noting that it is “infinitely small in comparison with the rest” (Edwards, 1979, p. 255). 

The dx and dy are the differentials of the variables x and y, respectively. The notions of 
derivative and of function—used nowadays to formulate the product rule—were introduced only 
in the following century (though Newton’s “fluxion” is, in modern terms, the derivative of a 
variable with respect to time). Note that Leibniz has here both discovered and derived the product 
rule. Discovery and derivation (“proof”) often went hand-in-hand. Of course Leibniz’ 
demonstration would not be acceptable to us, but standards of rigor have changed, and in any case 
contemporaries of Leibniz were not looking for rigorous proof. They were satisfied with what 
Polya would call “plausible reasoning” (Polya, 1954) and what Weil would describe as 
“metaphysics”. 
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The metaphysics (1670s-): What holds for the real numbers also holds for the “hyperreal” numbers 
(essentially, the reals and the infinitesimals/differentials), with some exceptions (in this case, 
ignoring higher differentials). 

Basic problem: To give precise meaning to those exceptions. 
It took 300 years to fix the problem, to turn the metaphysics into mathematics. The fixing was 
done by Robinson. 

The mathematics (1960): Robinson’s nonstandard analysis. Robinson saw nonstandard analysis as 
a vindication of Leibniz’s (and Euler’s) calculus. 

Robinson (1966, p. 266) explains the long delay: 

What was lacking at the time [of Leibniz] was a formal language which would make it possible 
to give a precise expression of, and delimitation to, the laws which were supposed to apply 
equally to the finite numbers and to the extended system including infinitely small and 
infinitely large numbers. 

The “formal language” was model theory and the Transfer Principle — a law that decreed the 
conditions under which transferability of concepts and results between the reals and hyperreals 
was permissible. 

(b) Already in the seventeenth century, but especially in the eighteenth, power series became a 
fundamental tool in analysis. They were usually treated like polynomials, with little if any concern 
for convergence. The operative (and philosophical) principle, even if not explicitly stated in 
general form, was that the rules applicable to polynomials could also be applied to power series. 
Newton, Euler, and Lagrange (among others) subscribed to this view.  

An excellent example of Euler’s use of these ideas is his discovery/derivation of the formula 1+ 
1/22 + 1/32 + 1/42 + … = 2/6. This is how he argues: 

The roots of sin x are 0, ± , ±2 , ±3 , … These, then, are also the roots of the “infinite 
polynomial” x – x3/3! + x5/5! – …, which is the power-series expansion of sinx. Dividing by x,
hence eliminating the root x = 0, implies that the roots of  
1 – x2/3! + x4/5! – … are ± , ±2 , ±3 , … . 

Now, the infinite polynomial obtained by expansion of the infinite product  
[1 – x2/ 2][1 – x2/(2 )2][1 – x2/(3 )2]… has precisely the same roots and the same constant term as 
1 – x2/3! + x4/5! – …, hence the two infinite polynomials are identical (cf. the case of “ordinary” 
polynomials):  
1 – x2/3! + x4/5! – ... = [1 – x2/ 2][1 – x2/(2 )2][1– x2/(3 )2]. Comparing the coefficients of x2 on
both sides yields – 1/3! = – [1/ 2 + 1/(2 )2 + 1/(3 )2 +…]. Simplifying we get 1 + 1/22 + 1/32 +…= 

2/6.
What a tour de force! One stands in awe of Euler’s wizardry. The result was quite a coup for 

him: Neither Leibniz nor Jakob Bernoulli was able to find the sum of the series 1 + 1/22 + 1/32 + 
1/42 +… . Note that, as in the previous example, discovery and demonstration went hand-in-hand, 
although even some of Euler’s contemporaries objected to his demonstration.  
The metaphysics: What holds for polynomials also holds for power series. 

Basic problem: Justification of “algebraic analysis” (a term coined by Lagrange). That is, how do 
we justify analytic procedures by using formal algebraic manipulations? 

What made seventeenth- and especially eighteenth-century mathematicians put their trust in the 
power of symbols? First and foremost, the use of such formal methods led to important results. 
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Moreover, the methods were often applied to problems, the reasonableness of whose solutions 
“guaranteed” the correctness of the results and, by implication, the correctness of the methods. In 
an interesting article on eighteenth-century analysis, Fraser (1989, p. 331) puts the issue thus: 

The 18th-century faith in formalism, which seems to us today rather puzzling, was reinforced in 
practice by the success of analytical [algebraic] methods. At base it rested on what was 
essentially a philosophical conviction. 

II. Algebra
For about three millennia, until the early nineteenth century, “algebra” meant solving polynomial 
equations, mainly of degree four or less. This is now known as classical algebra. By the early 
decades of the twentieth century, algebra had evolved into the study of axiomatic systems, known 
collectively as abstract algebra. The transition occurred in the nineteenth century. We focus on 
one aspect of this transition: English contributions to algebra in the first half of that century. 

The study of the solution of polynomial equations inevitably leads to the study of the nature 
and properties of various number systems, for of course the solutions of the equations are  
numbers. Thus the study of number systems constituted an important aspect of classical algebra.  

The negative and complex numbers, although used frequently in the eighteenth century (the 
Fundamental Theorem of Algebra made them indispensable), were often viewed with misgivings 
and were little understood. For example, Newton described negative numbers as quantities “less 
than nothing,” and Leibniz said that a complex number is “an amphibian between being and 
nonbeing.” Although rules for the manipulation of negative numbers, such as (– 1)(– 1) = 1, had 
been known since antiquity, no proper mathematical justification for these rules had been given in 
the past. 

During the late eighteenth and early nineteenth centuries, mathematicians began to ask why
such rules should hold. Members of the Analytical Society at Cambridge University made 
important advances on this question. In the early nineteenth century Mathematics at Cambridge 
was part of liberal arts studies, and was viewed as a paradigm of absolute truths employed for the 
logical training of young minds. It was therefore important, these mathematicians felt, to base 
algebra, and in particular the laws of operation with negative numbers, on firm foundations 
(Pycior, 1981). 

Basic problem: To justify the laws of manipulation with negative numbers. For example, why is    
(–1)(– 1) = 1? 

The most comprehensive work on this topic was George Peacock’s (1791-1858) Treatise of 
Algebra of 1830 (improved edition, 1845). His main idea was to distinguish between “arithmetical 
algebra” and “symbolical algebra.” The former referred to laws and operations on symbols that 
stood only for positive numbers and thus, in Peacock’s view, needed no justification. For example,  
a – (b – c) = a – b + c is a law of arithmetical algebra when b > c and a > b – c. It becomes a law 
of symbolical algebra if no restrictions are placed on a, b, and c. In fact, no interpretation of the 
symbols is called for. Thus symbolical algebra was the subject, newly founded by Peacock (and 
others), of operations with symbols that need not refer to specific objects, but that obey the laws of 
arithmetical algebra. (Recall that Newton, already in the 17th century, referred to algebra as 
“universal arithmetic”.) 

Peacock justified his identification of the laws of symbolical algebra with those of arithmetical 
algebra by means of his Principle of Permanence of Equivalent Forms. It said that (Pycior, 1981, 
p. 38): 
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Whatever form is Algebraically equivalent to another, when expressed in general symbols, 
must be true whatever those symbols denote. Conversely, if we discover an equivalent form in 
Arithmetical Algebra or any other subordinate science, when the symbols are general in form  
though specific in their nature [i.e., referring to positive numbers], the same must be an 
equivalent form, when the symbols are general in their nature [i.e., not referring to specific 
objects] as well as in their form. 

In short, the laws of algebra shall be the laws of arithmetic. What these laws were was not 
made explicit at the time. It is important to point out that what we do in trying to clarify the laws 
that numbers obey is not very different from what Peacock did: we too decree what the laws of the 
various number systems shall be. These decrees we call axioms. The laws of arithmetic that 
Peacock spoke of were clarified in the second half of the nineteenth century, when they turned into 
axioms for rings and fields (Kleiner, 1998: 1999). 
The metaphysics: What holds for positive numbers holds for negative numbers. 

Peacock’s Principle of Permanence turned out to be very useful. For example, it enabled him to 
prove the following  

Theorem (1845): (– a)( – b) = ab.
Proof: Since (a – b)(c – d) = ac + bd – ad – bc (**) is a law of arithmetical algebra whenever 

a>b and c>d, it becomes, by the Principle of Permanence, a law of symbolical algebra, which 
holds without restriction on a, b, c, d. Letting a = 0 and c = 0 in (**) yields (– b)( – d) = bd.

Peacock’s work (and that of others) signaled a fundamental shift in the essence of algebra from 
a focus on the meaning of symbols to a stress on their laws of operation.

Witness Peacock’s description of symbolical algebra (Pycior, 1981, p. 36): 

In symbolical algebra, the rules determine the meaning of the operations … we might call them 
arbitrary assumptions, in as much as they are arbitrarily imposed upon a science of symbols and 
their combinations, which might be adapted to any other assumed system of consistent rules. 

This was a very sophisticated idea, well ahead of its time. In fact, however, Peacock paid only lip 
service to the arbitrary nature of the laws. In practice, as we have seen, they remained the laws of 
arithmetic. In the next several decades English mathematicians put into practice what Peacock had 
preached by introducing algebras with properties, which differed in various ways from those of 
arithmetic. In the words of Bourbaki (1991, p. 52): 

The algebraists of the English school bring out first, between 1830 and 1850, the abstract 
notion of law of composition, and enlarge immediately the field of Algebra by applying this 
notion to a host of new mathematical objects: the algebra of Logic with Boole, vectors, 
quaternions and general hypercomplex systems with Hamilton, matrices and non-associative 
laws with Cayley. 

Thus, whatever its limitations, symbolical algebra provided a positive climate for subsequent 
developments in algebra. Symbols and laws of operation on them began to take on a life of their 
own, becoming objects of study in their own right rather than a language to represent relationships 
among numbers. 

The mathematics: Advent of abstract (axiomatic) thinking in algebra. 

III. Geometry 
For several millennia, until the early nineteenth century, “geometry” meant euclidean geometry. 
The nineteenth century witnessed an explosive growth in the subject, both in scope and in depth. 
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New geometries emerged: projective geometry (Desargues’ 1639 work on this subject came to 
light only in 1845), hyperbolic geometry, elliptic geometry, Riemannian geometry, and algebraic 
geometry. Poncelet (1788-1867) founded (synthetic) projective geometry in the early 1820s as an 
independent subject, but lamented its lack of general principles. For example, the proof of each 
result had to be handled differently. Thus, the  
Basic problem: To develop tools for the emerging subject of projective geometry. 

This Poncelet did by introducing a Principle of Continuity in his 1822 book Traité des 
propriétés projectives des figures.

The metaphysics: Poncelet’s Principle of Continuity (Brieskorn, Knörrer, 1986, p. 136]:  
A property known of a figure in sufficient generality also holds for all other figures obtainable 
from it by continuous variation of position. 
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As an elementary illustration of his 
Principle, Poncelet cited the well-known 
(and easily established) theorem about the 
equality of the products of the segments of 
intersecting chords in a circle: PB×PB  = 
PA×PA  (Fig. 1). The Principle of 
Continuity then implies that also PB×PB
= PA×PA  (Fig. 2) and PB×PB  = (PT)2
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The Principle of Continuity was criticized (by, among others, Cauchy) for being vague and 
heuristic, but it was a powerful tool, used by Poncelet to great effect to establish projective 
geometry as a central discipline. (It was he who coined the term “principle of continuity”.)  

A natural question arose: What is projective geometry? In due course it was incorporated in a 
broader question: What is geometry? There were good reasons to pose this question: 

The nineteenth century was a golden age in geometry. New geometries arose (as we have 
mentioned). Geometric methods competed for supremacy: the metric versus the projective, the 
synthetic versus the analytic. And important new ideas entered the subject: elements at infinity 
(points and lines), use of complex numbers (e.g., complex projective space), the principle of 
duality, use of calculus, extension of geometry to n dimensions, Grassmann’s calculus of extension 
(this involved important geometric ideas), invariants (e.g., the Cayley-Sylvester invariant theory of 
forms), and groups (e.g., groups of the regular solids). A broad look at the subject of geometry was 
in order. 

The mathematics: Klein’s definition of geometry: the Erlangen Program (1872) (Klein, 1893). 
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In a lecture at the University of Erlangen, entitled A Comparative Review of Recent Researches 
in Geometry, Klein classified the various geometries using the unifying notions of group and 
invariance. He defined a geometry of a set S and a group G of permutations of S as the totality of 
properties of the subsets of S that are invariant under the permutations of G. This conception of 
geometry, although not all-encompassing (for example, it excluded Riemannian geometry, of 
which Klein seems to have been unaware in 1872), had considerable influence on the development 
of the subject (Birkhoff, Bennett, 1988). 

As for Poncelet’s Principle of Continuity, its “mathematical content is today reduced to the 
identity theorem for analytic functions and the fundamental theorem of algebra” (Brieskorn, 
Knörrer, 1986). 

IV. Number Theory 
The study of number theory goes back several millennia. Its two main contributors in ancient 
Greece were Euclid (ca 300 BC) and Diophantus (ca 250 AD). Their works differ fundamentally, 
both in method and in content. Euclid’s comprises Books VII - IX of the Elements and is in the 
“theorem - proof” style. Here Euclid introduced some of the subject’s main concepts, such as 
divisibility, prime and composite integers, greatest common divisor and least common multiple, 
and established some of its main results, among them the euclidean algorithm, the infinitude of 
primes, results on perfect numbers, and what some historians consider to be a version of the 
Fundamental Theorem of Arithmetic. 

Diophantus’ work is contained in the Arithmetica—a collection of about 200 problems, each 
giving rise to one or more diophantine equations, many of degree two or three. These are equations 
in two or more variables, with integer coefficients, for which the solutions sought are integers or 
rational numbers. Their study has since Diophantus become a central topic in number theory 
(Bashmakova, 1997; Weil, 1984). 

Basic problem: To develop tools for solving diophantine equations. 
We consider two celebrated examples.  

(a) x2 + 2 = y3. This is a special case of the Bachet equation, x2 + k = y3 (k an integer), which is 
an important example of an elliptic curve. The case x2 + 2 = y3 appears already in the Arithmetica
(Problem VI.17). Fermat gave its positive solution, x = 5, y = 3, but did not publish a proof of the 
fact that this is the only such solution. It was left for Euler, over 100 years later, to do that. 

Euler introduced a fundamental new idea to solve x2 + 2 = y3. He factored its left-hand side, 
which yielded the equation (x + 2i)(x 2i) = y3. This was now an equation in a domain D of 
“complex integers”, where D = {a + b 2i: a, b Z}. Here was the first use of complex numbers—
“foreign objects”— in number theory. 

Euler now proceeded as follows: If a, b, c are integers such that ab = c3, and (a, b) = 1, then a = 
u3 and b = v3, with u and v integers. This is a well-known and easily established result in number 
theory. (It holds with the exponent 3 replaced by any integer, and for any number of factors a,
b,….) Euler carried it over—without acknowledgment—to the domain D. Since (x + 2i)(x 2i)
= y3, and  (x + 2i, x 2i) = 1 (Euler claimed, without substantiation, that (m, n) = 1 implies (m + 
n 2i, m n 2i) = 1)), it follows that x + 2i = (a + b 2i)3 for some integers a and b. Equating real 
and imaginary parts and performing elementary algebraic manipulations gives a = ± 1, b = 1, 
hence x = ± 5, y = 3. These, then, are the only solutions of x2 + 2 = y3 (Weil, 1984). 

Now to our second example. 
(b) xp + yp = zp, p prime. In 1847 Lamé claimed before the Paris Academy to have proved 

Fermat’s Last Theorem, the unsolvability in integers of this equation, as follows:  
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Assume that the equation xp + yp = zp has integer solutions. Factor its left-hand side to obtain (x
+ y)(x + yw)(x + yw2)…(x + ywp-1) = zp (**), where w is a primitive p-th root of 1 (that is, w is a 
root of xp = 1, w  1). This is now an equation in the domain Dp = {a0 + a1w +…+ ap-1wp-1: ai Z}
of so-called cyclotomic integers.

Lamé claimed, not unlike Euler, that since the product on the left-hand-side of (**) is a p-th
power, each factor must be a p-th power. (By multiplication by an appropriate constant he was 
able to make the factors relatively prime in pairs.) He then showed that there are integers u, v, w
such that up+vp = wp, with 0<w<z. Continuing this process ad infinitum leads to a contradiction. So 
Fermat’s Last Theorem was proved. 

Both Euler’s and Lamé’s proofs were essentially correct, on the assumption—which they both 
implicitly made—that the domains under consideration (D and Dp) possess unique factorization. 

The metaphysics: The unique factorization property, which holds for the domain of ordinary 
integers, also holds for various domains of “complex integers” (e.g., D and Dp).

Of course, this is not always the case. While unique factorization holds in D, and in Dp for 
p<23, it fails in Dp for all p 23. So Euler’s proof was essentially correct, while Lamé’s failed for 
all p 23. But it was a driving force behind important developments. Mathematicians began to 
address the questions: For which “integer domains” (such as D and Dp above) does unique 
factorization hold? What is an “integer domain”? When unique factorization fails, can it be 
restored in some way?  
The mathematics: The study of unique factorization in various domains. This led in the second half 
of the nineteenth century to the introduction of fundamental algebraic concepts, such as ring, ideal, 
and field, and to the rise, in the hands of Dedekind and Kronecker, of algebraic number theory 
(Kleiner, 2000). 

We turn now to 

2 Pedagogy 

Underlying the use of the Principle of Continuity is the tension between rule and context. In the 
final analysis, context is, of course, all-important, but it was not so in the case of the mathematical 
breakthroughs we have discussed. Even the cases in which the Principle of Continuity was 
inapplicable—the cautionary tales, if you will— were often starting points for fruitful 
developments (cf. Lamé’s “proof” of Fermat’s Last Theorem).  

We touch on three aspects of “rule versus context”, using historical examples: importance of 
context, importance of rules, disregarding context, and importance of ignoring rules. 
(a) Importance of context

We give three examples. 
(i) If a/b = c/d and a > b, then clearly c > d. But then how can we have 1/ 1 = 1/1? This is 

precisely the argument Arnauld made to Leibniz. The latter agreed this was a difficulty, but argued 
for the tolerance of negative numbers because they are useful and, in general, lead to consistent 
results. See (Cajori, 1913, pp. 39-40). 

(ii) x2 + 1 = 0 has infinitely many solutions: true or false? It depends of course on the context. 
The statement is true in the domain (skew field) of quaternions, where  
x = bi + (1 b2) j, 1 b  1, b real, j2= 1, ij = ji, does indeed give infinitely many solutions (as 
is easy to verify). Every polynomial equation in the domain of quaternions has a quaternion 
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solution, but the number of solutions is not necessarily equal to the degree of the polynomial. See 
(Niven, 1941; 1942). 

(iii) The following is the power-series expansion of the logarithmic function:  
log (1 + x) = x – x2/2 + x3/3 – x4/4 + … . It follows that log 2 = 1 – 1/2 + 1/3 – 1/4 + … . 
But the right side = (1 + 1/3 + 1/5 + …) + (1/2 + 1/4 + 1/6 + …) – 2(1/2 + 1/4 +1/6 + …) = (1 + 
1/2 + 1/3 + 1/4 + 1/5 + …) – (1 + 1/2 + 1/3 + 1/4 + 1/5 + …) = 0. Hence log 2 = 0. 

We have been using freely the associative and commutative laws in arriving at this “result”. 
But such use is not always permissible for infinite sums. “The discovery of this apparent paradox 
contributed essentially to a re-examination and rigorous founding … of the theory of infinite 
series” (Remmert, 1991, p. 30). 

The upshot of all this is that there are no absolute truths in mathematics. It all depends on the 
context. The relativity of mathematics! On the other hand, it is useful sometimes to disregards 
context, especially in the process of discovery, which often bears the seeds of a method of 
demonstration.  
(b) Importance of rules, ignoring context (perhaps “suppressing context” would be a better 
expression). 

Note that all the examples in the historical part of the paper are of this type. Here are three 
more. 

(i) The equation x3 = 15x + 4 has the root x = 4, which Bombelli in the 16th century noted, by 
inspection. On the other hand, it has the “meaningless” root  
x = 3 2 + 121 + 3 2 121, found using Cardan’s formula for the solution of the cubic, 
discovered several decades earlier. (It was “meaningless because Cardan and his contemporaries 
did not accept square roots of negative numbers.) How do we reconcile these two facts? 

Bombelli’s bold answer: let us calculate with such “meaningless” expressions using the rules 
which apply to real numbers. He was thus able to show that one of the values of  
3 2 + 121 + 3 2 121 is indeed 4. It was the birth of complex numbers. See (Kleiner, 1988). 

(ii) Euler discovered the important formula eix = cosx + i sinx by comparing the power series 
expansions of both sides. There was no basis in logic for what he was doing. 

(iii) Abstract algebra is context-free. That is its strength! This is, of course, true for  axiomatic 
system in general, except when they define specific mathematical objects, such as Euclidean 
geometry or the real numbers. 
(c) Importance of ignoring rules

The Principle of Continuity is surely not a universal law. In particular, there are many 
important instances in which progress was made by disregarding it, bucking what appeared to be 
immutable laws. Here are three examples: 

(i) Ignoring the commutative law of multiplication (which had been a “sine qua non” for 
number systems) in attempts to extend the multiplication of complex numbers to triples enabled 
Hamilton in the 1840s to invent/discover quaternions (Hankins, 1980). 

(ii) Ignoring the law that the whole is greater than any of its parts (one of Euclid’s “common 
notions”) overcame a major obstacle in Cantor’s introduction of infinite cardinals and ordinals in 
the 1870s (Dauben, 1979). 

(iii) Ignoring the received wisdom that a function must be given by a formula or a curve (the 
seventeenth–and eighteenth–century view of functions) enabled the introduction of “pathological” 
functions (e.g., everywhere continuous and nowhere differentiable functions) and the rise of 
mathematical analysis (Kleiner, 1989). 
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Analogy (the Principle of Continuity is, after all, an argument by analogy) has been, and 
continues to be, a most important tool of mathematical discovery and demonstration – important in 
both mathematical research and in its teaching. There is an ongoing delicate tension between rule 
and context, between computation and conceptualization, between algorithm and proof, between 
form and content, between syntax and semantics. We ignore it at our peril.  

We conclude with two quotations, by Whitehead and Freudenthal, respectively, which bear on 
these issues: 

It is a profoundly erroneous truism, repeated by all copybooks and by eminent people when 
they are making speeches, that we should cultivate the habit of thinking of what we are doing. 
The precise opposite is the case. Civilization advances by extending the number of important 
operations which we can perform without thinking about them. Operations of thought are like 
cavalry charges in battle – they are strictly limited in number, they require fresh horses, and 
must only be made at decisive moments [Whitehead, 1948, pp. 41-42]. 

I have observed, not only with other people but also with myself … that sources of insight can 
be clogged by automatisms. One finally masters an activity so perfectly that the question of 
how and why is not even asked any more, cannot be asked any more, and is not even 
understood any more as a meaningful and relevant question (Whitehead, 1948, p. 469). 
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ABSTRACT 
In the present study the role of the intuitive and logical aspects of mathematical knowledge constitution is 
analysed. The intuition is being understood here, as in Kant: an immediate knowledge, which can be both 
empirical and a priori. This analysis passes through the following philosophical currents: platonic and 
Aristotelian realism, Descartes’ idealism, English empiricism (Locke, Berkeley, Hume and Newton), 
Leibnitz’ rationalism, Kant’s transcendental idealism and the philosophy of mathematics currents (logicism, 
formalism and intuitionism) that predominated in the 19th century and beginning 20th century. It is known 
that such currents were not able to give to mathematics a solid foundation what give birth new discussions 
in the philosophical scenery. The paper describes that in the philosophy of history of mathematics, before 
Kant, the intuitive and logical aspects were considered alone and excluding each other. Despite Kant’s 
position between empiricism and rationalism such aspects were considered incompatible after this 
philosopher. Thus in Meneghetti (2001) we defend that the intuitive aspect supports the logical aspect and 
vice-versa, in levels more and more elaborated in the gradual and dynamic process in a spiral form. To 
stress the importance of viewing intuitive and logical aspects as complementary in the process of 
mathematical knowledge construction we exemplify a historical event about the calculus development, 
which suffered both empiricist and rationalist influences. Besides, in this work some philosophical 
conceptions, which appeared after the beginning 20th century will be analysed too. In this analysis the role 
of logical and intuitive aspects in the constitution of mathematical knowledge will be focused. From the last 
study it was possible to notice that the considerations here presented get stronger when we analyze the 
recent claims of the philosophy of mathematics that, among another collaborations, recognize the 
importance of empirical and intuitive aspects in the constitution of mathematical knowledge.  
We tried to investigate the conception of mathematical knowledge throughout the history of philosophy 
from Plato to beginning 20th century philosophic currents. Our main focus is the role that the intuitive and 
logical aspect has played in the constitution of mathematical knowledge. 

We know that in Plato’s theory of knowledge (427-347 B.C.) there are two distinct loci(topoi): the 
sensible and the intelligible in which there are two degrees of knowledge (opinion and science), 
two flows of knowledge (sense and reason), and two objects of knowledge: a multiple reality, 
material, fluent, space and time-dependent, object of opinion; and another unchangeable reality: 
unique and immaterial, transcending the sensible and which provides reason for the existence of 
the diversity of things. 

Our knowledge consists of elevating ourselves -through dialectics- from the sensible world to 
an intellectual intuition in this ultra-sensible world, composed by ideas. 

In this theory, mathematical sciences1 are in the intelligible locus, but in a region immediately 
lower than that of dialectics, that is, they are propaedeutic to the latter.  

From a historical point of view, platonic realism formalises a change in the truth criterion in 
mathematics from justification by experience to justification for theoretical reasons: the primitive 
empiricist mathematical knowledge of Egyptians and Babylonians is replaced by the deductive, 
systematic Greek mathematical science based on definitions and axioms2.

                                                     
1 For Plato mathematics means arithmetic, geometry, music and astronomy.  
2 Bicudo, 1998. 
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Concerning our object of investigation, at this stage in our research we could see that in 
platonic realism, besides the clear distinction between the sensible world and the intelligible world, 
knowledge remains indeed only in the intelligible world. 

Realism has its continuity with Aristotle (384-322 B.C.), who intends to undo the duality 
between the sensible and the intelligible. He melts these two worlds in the broad concept of 
substance3. In the sensible world each thing has an existence and is a substance. The substance 
consistency occurs through the concept4. The concepts would not reproduce the forms or 
transcendent ideas, like in platonic realism, but the framework inherent to the objects themselves. 
In such a philosophy, the object of science is the sensible world, from where the intelligible forms 
are extracted through abstraction. 

The objects of intellect are the universal essences of the things, inherent to the things. It is from 
the reality that science should try to establish essential definitions and reach the universal5.

Although Aristotle considered that a science is more exact and previous when it knows ‘what’ 
and ‘why’6 at the same time (‘what’ being obtained through sensation, by means of observation of 
the particular - empirical view-, and ‘why’ obtained only through demonstration - logical aspect of 
knowledge), in the Aristotelian abstraction process ‘what’ gets increasingly apart from ‘why’. 
Such process may be characterized through the following steps: i-) the initial point is reality; the 
abstractions are made from the base, taking into account the common characteristics of the objects; 
ii-) the way up from one level to the other posterior is through the abandonment of certain features, 
that is, the objects are then grouped according to their classes of equivalence; iii-) the generic 
concept is the top of the pyramid; it concerns the abstract representation of the thing, the 
determinations in which the objects agree7.

Thus Aristotle conceived universal knowledge as superior to the sensations and intuition8; and 
since the demonstrations are universal and the universal notions are not sensuous, there may not be 
for him an art representative of knowledge achieved by sensation. In this sense he thought, like 
Plato, that science is a necessary and unchangeable knowledge of essences. 

Hence in Aristotelian realism knowledge arises from the sensible world but becomes 
increasingly apart from it by means of the abstraction process, and the concept itself is analogous 
to Plato’s idea. 

In spite of the importance of Hellenistic philosophy, especially that of stoic logic and of 
Boecius, Abelard, Augustianian, Thomas Aquinas’ medieval philosophy, we believe that our focus 
will not be compromised if we shift from Aristotle to the 15th century A.C. 

From the 15th century on, the realistic philosophy comes to a crisis due to the end of the 
religious unity - the advent of Protestantism - which leads to spirits’ change of attitudes; the 

                                                     
3 Substance has two meanings in Aristotle, used indistinctly. Most of the time it means the unit where all 

other characters of the things rest. When in a judgement we say: this man is...; Socrates is mortal; Socrates is 
Athenian, and so on, we are saying things about someone. The quid, the subject of the proposition about 
which we say all that, is the substance. The essence is all we say about the substance, that is, the sum of 
predicates with which we can predicate the substance. These predicates are characterised in such a way that, 
if one of them lacked the substance, it would not be what it is. As to the others predicates convenient to the 
substance, even though one of them lacked the substance, it would remain what it is, they are the accidents. 
The accident may or may not belong to the subject, being attached to it in a contingent way. The other 
meaning given by Aristotle to the word substance, taken in the broad sense, is that of wholeness of the 
thing, with its essential and accidental characters. 

4 Concept is the mental representation of the thing, the result of an intellectual intuition. 
5 Palácios and Palácios, 1999, p. 45. 
6 Aristotle, 1987, p. 95. 
7 Cassirer 1953. 
8 Aristotle, 1987, p.87. 
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discovery of the earth - based on the fact that the planet is round -; and the discovery of heaven - 
the earth is no longer the centre of the universe. As a consequence of this crisis, a completely 
different view is generated: Descartes’ idealism, which raises the idea of caution and carefulness. 

Descartes (1596-1650) seeks a primary truth which no one can deny, and he finds it in his own 
thought, adopting as a primary philosophic principle the celebrated: ‘I think, therefore I exist’ 
(Cogito, ergo sum) - for which he argued that because of the very fact that he thought about 
doubting the truth of the other things, he concluded, in an evident way, that he existed.9

From this primary certainty he built all his philosophy, taking as a general rule that only the 
things we clearly and distinctly conceive are true.  

In his method he regarded intuition10 and deduction11 as the only sources of knowledge. 
Intellectual intuition was used not only to be sure about the simplest things, but also to have clear 
and distinct understanding of each deduction step12.

The primary principles can only be known through intuition, whilst the distant conclusions are 
formalized only through deduction. 

Descartes regarded the sensible world as composed by obscure and confused thoughts which 
could lead to doubt. For him, one can have a correct experience only with the purely simple and 
absolute things, this being the reason why he refuted experience as a source of knowledge13. On 
the basis of such a conception, he aimed to ground science on rational and logical principles. It is 
the universal mathematics discursive reasoning that has a privileged position in the scale of 
knowledge.  

Cartesian philosophy provided mathematics with a great capacity for generalisation and 
consequently for extension, mostly in the symbolic algebra and in the geometric interpretations of 
algebra. Formal algebra, which had been developing since the renaissance, had its climax with ‘La 
Geométrie’, which established the beginning of modern mathematics.14

Basically, Cartesian idealism led to the absolute predominance of the intellect in science, with 
reason being employed as ideal being. 

From Descartes’ idealism, the outer world reality - which was not a problem for realism, 
because in realism things in the world were considered intelligible in themselves - becomes a 
problem, since in Descartes’ philosophy the thinking self is the only one that really exists. Thus, 
modern philosophy stars to think about this problem: “how to extract the outer world from the 
thought and the self?” To solve it, there come two philosophic currents: empiricism, which aims to 
ground knowledge on science, and rationalism, which views a solution based on the logical aspect 
of knowledge.  

The English empiricism began with Locke (1621-1704), who aimed to ground knowledge only 
on experience. Our ideas, for him, are all derived either from sensation (outer experience) or from 

                                                     
9 Descartes, 1989b, p.56. 
10 For intellectual intuition Descartes meant the concept of pure mind, which arises only from the light of 

reason, in which no doubt appears. 
11 Deduction was defined as what is necessarily concluded from other things well known with certainty. 
12 Descartes, 1989a, p.21.
13 Descartes, 1989a, p.12. 
14 Descartes, 1947. 
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reflection (inner experience). These two sources provide the understanding with simple ideas15 and 
then are able to repeat, compare and join such ideas, developing others, the complex ideas16.

For Locke the demonstrative knowledge is an obscure knowledge because it does not provide 
us with an immediate certainty17. On the other hand, he considered the intuitive knowledge as the 
clearest and safest one, a certainty about all knowledge. For this reason he argued that each step 
developed by reason in the demonstrative knowledge should rest on an intuitive certainty. 

That was particularly his conception about the mathematical knowledge; he believed that this 
knowledge is neither grounded on the axioms nor derived from them, but obtained by means of 
comparing clear and distinct ideas, resting also on intuition and not on discursive reasoning18. We 
can then claim that Locke stressed intuitive knowledge in detriment of the logical one. 

Our next philosopher is Berkeley (1685-1753), who was mostly concerned with psychologism. 
He considered as possible objects of human knowledge: 1-) ideas settled by the senses, which are 
the real objects and given to the senses by god, nature’s author; 2-) or realised ideas, like the 
passions and the spirit’s operations; 3-) or ideas formed with the aid of memory and imagination, 
composing, separating or simply representing the ones originally apprehended in the ways 
mentioned above19.

In his philosophy, the ideas do not exist alone; their existence consists of their being realised. 
Besides an infinite variety of ideas or objects of knowledge, there is something that knows them or 
realises them, performing several operations such as wanting, imagining and remembering them. 
He calls this active being mind, spirit, soul or self.

Through our experience and the series or sequence of ideas in our spirit we can have well 
grounded and secure predictions concerning ideas, which will affect us as a result of a great series 
of actions. Then we will be able to make a correct judgement about events under circumstances 
distinct from the current ones. Therefore general laws - or rules - are based on the analogy and the 
uniformity of natural effects. 

Berkeley regarded mathematics particularly as a science with existence only in spirit; therefore 
the objects of this science should also be realised20. He contested the use of abstract general ideas 
and the belief in objects existing apart from the spirit, regarding them as sources of errors and 
difficulty21. Knowledge was thus reduced to the existence or perception; there is no other 
substance besides the spiritual one or of the perceiving entity. 

Following that empiricist current we have Hume’s philosophy (1711-1776). For him 
experience and observation are the only solid ground with which we can provide human science. 
Experience becomes then the base of all sciences, including mathematics, because all sciences, in 
different ways or degrees are related to human science or grounded on it. 

                                                     
15 Such ideas are realized by our minds in four ways: i- by means of only one meaning, i.e., The idea of 

solidity; ii- by means of more than one meaning, i.e., The ideas of space and motion; iii - by means only of 
reflection, i.e., Perception and willingness; or iv- by means of both sensation and reflection, i.e. The ideas of 
pleasure and suffering. 

16 The complex ideas are divided into: forms (ideas of things that cannot subsist by themselves, i.e., the 
idea of triangle; substances (ideas of things subsisting by themselves, i.e., The idea of man; and relations 
(ideas gathered form a composed one, although representing distinct things). 

17 Locke, 1980, p.310. 
18 Locke, 1980, pp. 358 e 378. 
19 “[...] the sun that I see by day is the real sun, and that which I imagine by night is the idea of the 

former.“ (Berkeley, 1980, p.419). 
20 Berkeley, 1980, p.437. 
21 Berkeley, 1980, p.431. 
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His attitude was to analyze the ideas22 to find the impressions23 that generated such ideas. He 
understood as proof the arguments derived from experience, which did not allow doubt or 
opposition.

In Hume’s view, the maximum effort of human reason consists of reducing principles - product 
of natural phenomena - to a greater simplicity, restricting the several particular effects to a small 
number of general causes, through reasoning based on analogy, experience and observation. 
Therefore he considered imperfect the abstract or general ideas, when they were not achieved 
through the habit of the relations among particular ideas.24

Thus we conclude that Hume’s world is a world with no reason or logic, because custom or 
habit is the last principle that can be marked in our whole conclusions derived from experience. 

Thus mathematics in Hume’s view does not have the privileged stance it had in Descartes’ 
idealism, or as a propaedeutic science in Plato’s realism. It is a secondary, peripheral science. 

Finally we also point out among the empiricists the physicist-mathematician Newton (1643-
1727) who regarded science as a real body absolutely sure about the natural world. 

For him, mathematics had the purpose of allowing explanation for observed phenomena and 
should therefore fit the experience. Thus he rejected everything that could not be reduced to 
perceptible or verifiable phenomena; he did not accept hypotheses or certainties absolutely a
priori25.

Therefore we conclude that, for Newton, the certainty about knowledge relies on experiment, 
and mathematics is subject to it. 

In opposition to empiricism, we have rationalism, a current to which the mathematician Leibniz 
(1646-1716) belonged. He claims that the certainty about knowledge cannot arise from 
experience26 but rests only on reason27.

For him Knowledge’s ideal is the necessary knowledge, which provides us with the truths of 
the reason. There is no chaos between the ideal and the inferior knowledge of truths, but rather a 
series of continuous transitions; a continuum of transitions such that the effort to know has to 
increasingly transform the truths of fact into truths of reason.  

Applying this principle of continuity between truth of fact and truth of reason and claiming that 
the more rational the more mathematical knowledge will be, Leibniz precisely discovers the 
infinitesimal calculus. 

With Leibniz’ philosophy the rationalist realm is settled in the whole science and in the 
European philosophy. 

As a criticism to both empiricism and rationalism, Immanuel Kant’s (1724-1804) 
transcendental idealism claims that science should not consist of analytic judgements28, as Leibniz 
wanted, because it would be vain. On the other hand, if science consisted of synthetic judgements, 
that is, judgements made by connection of facts, as Hume wanted, it would not be science; it 
would be habit, with no foundation, having no universal or necessary validity. 

                                                     
22 The ideas are the copies of our impressions, which remain in our mind as soon as the impressions 

cease. 
23 The impressions are our original sensations, that is, the primitive elements of experience. 
24 Hume, 1981, pp. 83, 110, 111. 
25 Burt, 1991, p.173. 
26 Experience provides the truths in fact, confused and obscure. The connection in this kind of truth 

occurs only through the truths of reason, which are innate, virtually instilled and independent of experience. 
27 Leibniz, 1996, p.371. 
28 The analytic judgements are those where the concept of predicate is contained in the concept of 

subject; they do not add anything to the subject, they are true due to their forms. 
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Knowledge, in Kant, is a subject’s elaboration of the subject. Thus whilst rationalists and 
empiricists stressed the object to be known, Kant sought the subject who knows. Causality in Kant 
is centred on the subject. For him what the self is after becoming the subject, who knows, is related 
to the object to be known; and what the object to be known is, after becoming more than a mere 
sensation, is not in itself related to the subject who knows. Neither the subject who knows is ‘in 
himself’, nor the object to be known is ‘in itself’. To know is an active function of the subject. 

For Kant, unless our own spirit creates according to its levels, we cannot therefore know a 
priori things with necessity and universality. It is in sensuous intuition29 that he seeks certainty and 
security30.

In Kant’s criticism, knowledge results from the connection of intuitions (provided by the 
sensibility), and the concepts (provided by the mind). The intuition lets us apprehend the object 
and represent it; the concept lets us think of it through that representation.  

Kant’s place is in between empiricism and rationalism31. For him - in agreement with the 
empiricists - all knowledge comes from experience - what he called a synthetic process. Like the 
rationalists, he regards the a priori conditions (universality and necessity) and understands that 
science, despite coming from experience, should be independent of it. The scientific judgements 
have thus a synthetic and a priori nature. 

The whole mathematics represents a system of a priori laws, which prevail over any sensuous 
perception. This is possible because space and time, mathematics foundations, are not things we 
know through experience, but rather, forms of our ability to realise things; therefore they are 
frameworks which we, a priori, apart from all experience, insert into our sensations to make them 
cognoscible objects, that is, pure intuitions, through which the a priori synthetic process 
judgements in mathematics are possible. They are, therefore, the logical foundations of 
mathematics. Thus, mathematical judgements are synthetic because they rest on a synthesis 
performed in intuition, and are a priori because that intuition itself is a priori32.

With Kant, philosophy is no longer ontology; nevertheless, he seeks a transcendental 
philosophy, beyond empiricism, that is, a system of transcendental concepts. 

In our view, Kant’s philosophy is an attempt to equilibrate the intuitive and logical knowledge, 
but unfortunately such philosophy did not remain, for, after Kant, experience is set aside again. As 
a result, philosophy becomes fragmented and the philosophic bases are rethought. 

A similar event occurred in the philosophy of mathematics. At the beginning of the 19th 
century, three philosophic currents, logicism, formalism and intuitionism, intended to determine 
the essence of mathematical knowledge. Such currents have in common the abandonment of 
experience as the source of knowledge.  

In logicism, with Frege(1848-1925) and Russell(1872-1970), mathematics rests only on logic. 
Frege intended to reduce arithmetic to logic. Earlier, the arithmetization of analysis was achieved. 
So, if Frege had been succeeded in his intension, then matehematics, pratically, as a whole would 
have been reduced to logic. He regarded arithmetic as consisting of analytic and a priori truths, 
that is, the only principles required for arithmetical statements are those of logic33. He started in 
1879 with his work ‘Begriffsschrift34‘, in which he developed a language appropriate for 

                                                     
29 Intuition is an immediate knowledge, which can be both empirical and a priori.
30 Kant, 1997, p.79. 
31 Kant, 1997, p.80.
32 Kant, 1997, pp. 47, 109-110, 184, 261, 200. 
33 Frege, 1959 e 1983, § 3. 
34 The complete name of this work in the original is ‘Begriffschrift, eine der Arithmetischen 

nachgebildete Formelsprache des reinen Denkens’. 
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arithmetic, connecting logic and mathematics. With such work the logic present in proposition 
calculus, which had been previously expressed through formulas and studied by means of intuitive 
logic-based arguments, becomes a language needing no intuitive reason supplement35.

Once the bases of the new logic were settled, Frege carried out the task of showing that 
arithmetic laws are grounded on the laws of logic. The heart of this work lies in his number theory, 
within ‘The Foundations of Arithmetic’ (1884)36, in which he establishes as principles: to separate 
the psychological from the logical, the subjective from the objective; to never ask separately for 
the meaning of the word in the proposition context; and to be attentive to the distinction between 
concept and object37. Regarding number as a logical ideal object, with no space-temporal 
existence, whose access is only through reason38, as a first step towards his goal he set out to show 
a logical definition of cardinal number39. After having defined number, Frege wanted to 
determined if the well-known number properties could be derived from that definition. He starts 
this research in this same work (“The Foundations of Arithmetic”) and remains on it in ‘The
Arithmetic Fundamental Laws’ (1903)40.

It is important for our study to stress that the main characteristic of Frege’s logicism is his 
search for the total prevalence, in arithmetic, of the logical aspect of knowledge, ruling out, 
consequently, and the intuitive one. 

Frege did not succeed in fulfilling his goals; his system was not consistent, as pointed out by 
Russell in 1902 in the famous ‘Russell’s paradox’.41

Logicism continued with Russell himself (1872-1970) showing a more radical stance: to reduce 
the whole mathematics to logic42, within his work ‘Principles of Mathematics’ -1903- but most of 
this project was carried out together with Whitehead, as the three volume of ‘Principia
Mathematica´ (1910-1913). 

Russell’s view is that the world exists independently of our perception43, and while Frege 
regarded arithmetic as consisting of purely logic knowledge, he extended such conception to the 
whole mathematics. For him the arithmetic truths are logic truths, and thus they are not related to 
empirical knowledge, and also cannot express objective knowledge. 

The mathematical truths should therefore be kind of logical or analytic truths and these, in turn, 
should be products of linguistic conventions. The introduction of mathematical terminology and its 
use in empirical sciences should thus at first be ruled out. 

                                                     
35 The advance in logic allowed the appearance of two areas: set theory and the foundations of 

mathematics. 
36 Original title: Die Grundlagen der Arithmetik.
37 Frege, 1959 e 1983, introduction. 
38 Frege, 1959 e 1983, §45. 
39 In Frege’s logic, a logical object is associated with every concept; it is an extension of it (being the 

group of all objects which fall under such concept). Numbers are defined as concept extension. To say that 
something is a number means that there is at least an f concept such that something is an extension of the 
‘equinumeric to f concept’. 

40 Original title: Grundgesetze der Arithmetik. 
41 The paradox pointed by Russell is that in Frege’s theory, concept admits extension. Such extension is 

an object. One may ask if this object falls under the concept. One may also ask if it falls under the concept 
that generated it. Such questions generated the paradox, since if we admit the x  x concept, its extension is 
the class y= {x; (x  x)}, this is, the class of everything that is not a member of itself. Since y is an object, 
we may ask whether or not it falls under x  x, that is, y y or y y. But if y y we conclude that y y, and if 
y y we have y y. Nevertheless, both cases are contradictory. Such paradox impaired all of Frege’s work 
and for this reason he tried to find a solution, but did not succeed. 

42 Russell, 1919, p.194.  
43 Russell, 1919, p.194.  
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According to Russell, the meaning of all expressions, which apparently concern abstract objects 
should be shown by providing appropriate definitions, as logical constructs (fictions)44, organized 
from empirical world constituents. 

To avoid the inconsistency of Frege’s theory, Russell presented as a solution the creation of an 
object hierarchy. Nevertheless, he had to introduce the so called ‘vicious circle principle’- VCP45 - 
as an additional logical principle with the purpose of restricting definitions and avoiding the 
paradox in Frege’s theory; he also had to postulate a non-logical principle, ‘the axiom of 
reducibility’46.

The axiom of reducibility was the way Russell found to completely separate knowledge and the 
empiricist or intuitive world, because such axiom seems to express the belief that all findings 
involving abstract object expressions with some empiricist or naive content could be re-expressed, 
reduced to languages not provided with such manifestations47.

However, that axiom, besides being a non-logical supposition, showed incompatibility with 
VCP48. Thus it was possible to show that also Russell’s logicism could not be sustained. 

Regarding formalism, Hilbert’s goal (1862-1943) was to unite the logicist and axiomatic 
methods, for he understood formalism not only as a way to support the axiomatic method but also 
as a manner to guarantee consistent investigations in mathematics. He believed that by analysing 
mathematical processes and concepts, logical or not, and by representing them through an 
appropriate symbolism, as a symbolic logic, we would be able to demonstrate that, through 
fundamental formulas and rules grounded in manipulation of symbols, we would never obtain a 
formula allowing contradiction. Thus, for him, things exist if new concepts and entities can be 
defined without contradiction.49

We could say that formalization turns mathematics into a collection of formulas. These are 
distinct from common formulas only in that, together with common symbols and signals, there are 
the logical symbols, especially the implication ( ) and the denial ( ).

Formulas which act as stones for the mathematical formal building are called axioms. A proof 
is the formula sequence F1,F2,....Fn, in which each formula is either an axiom or comes from 
formulas appearing before it in the sequence, by means of inference rules. A proof is a proof of its 
last formula (Fn). A formula is probable or is a theorem if there is a proof of it. 

We notice that, in formalism, mathematics is in fact concerned about forms, not about Plato’s 
ones but the manners to represent objects.50

The philosophy closer to formalism is ‘nominalism’.51 In nominalism the abstract entities do 
not have any kind of existence, either apart from human mind, sustained by realism, or as mental 

                                                     
44 The term ‘logic fictions’ as used by Russell does not necessarily mean that such things do not exist, 

but that we do not have a direct perception of them. 
45 VCP establishes that no entity can be defined in terms of a totality of which it is itself a possible 

member. It is this principle that allows the appearance of a hierarchy of types of subjects: ‘the simple type 
objects’. 

46 Such axiom claims that all propositional functions are formally equivalent to a ‘predicative function’. 
Functions are called ‘formally equivalent’, if they are true or false for their same variables values. 

47 Tiles (1991). 
48 Because, as Tiles -1991- states, such existential and not logical axiom suggests a return to some form 

of Platonism. That would awaken VCP, since the platonic stance about numbers, classes, concepts and 
functions with an existence independent of us and our mathematical activities, violates VCP. Well, such 
matter is at the basis of Russell’s theory of types, which in turn represented the solution for the paradoxes. 
This was essentially Gödel’s argument, implying the inviability of the logicist project. 

49 Hilbert, 1927, in: Heijenoort, 1971, p. 479. 
50 Tiles, 1991. 
51 Snapper (1979). 
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constructs inside the human mind, sustained by conceptualism. For nominalists the abstract entities 
are mere vocal articulations or written lines, mere names. 

Hilbert’s program justified classic mathematics, including Cantor’s transfinite theory, as 
follows: i- by expressing mathematics in formal language, which could then, by itself, be related as 
a mathematical object of study; ii- by using only finitary methods to prove that the formal system 
of infinitary mathematics is consistent, proving that no ‘0=1’ formula is proved in it.52 Such 
criteria allowed the development of works in mathematical logic, generating model theory, formal 
system theory and recursive function theory. 

However, the formalist program cannot be implemented since mathematics was not able to 
prove its consistency, showing therefore that it is unviable trying to reduce knowledge to formal 
chains. 

In the heart of the modern intuitionism created by Brouwer (1881-1966)53, mathematics is 
considered purely intuitive (in its abstract formation) and logic-independent. All in mathematics 
can be a derivation of fundamental series of natural numbers through ‘intuitively clear’ 
constructive methods, that is, the fundamental ideas are in intuition54. Language and other 
symbolic apparatuses, including logic, are not mathematical instruments, but means of 
communicating mathematical ideas and therefore they are not fundamental to mathematics. 

Thus, intuitionism reduces mathematical knowledge to subjective knowledge. Maybe due to the 
contrast between this current and classic mathematics, the mathematicial community almost 
universally rejected such philosophy.55

As a result, intuitionism, logicism and formalism failed to provide mathematics with a solid 
foundation. 

After that crisis, the nature of mathematical knowledge was questioned again. Thus both 
philosophy and mathematical philosophy sought new ways. We tried to show that considering the 
intuitive and logical aspects of mathematical knowledge opposing each other generated such crisis. 
We stress the importance of viewing them as complementary in the process of mathematical 
knowledge construction. We mention here a historical event about the calculus development, 
which suffered both empiricist and rationalist influences. We started with Descartes since it was 
the Cartesian idealism that promoted, as we have already said, this dual manner of treating 
philosophical questions. 

The germination of analytical geometry by Descartes (1596-1650) and Fermat (1601-1665) led 
to great progress in mathematics, favouring the advent of infinitesimal calculus.56 Until that time 
all valid anticipations of calculus methods were related to geometry.57

The infinitesimal numbers arose first because of some problems faced by Fermat that led him to 
formulate his celebrated method to determine maximum and minimal. But the purpose of his work 
was to find solutions for geometric problems and therefore he considered the practical advantages 
of the infinitesimal method. 

                                                     
52 That was what Gödel showed to be impossible. 
53 Although we can also point out in this current the French mathematician Poincaré (1854-1912) and the 

German mathematician Kronecker (1823-1891). 
54 Intuition here has a meaning similar to Kant’s temporal intuition. 
55 Snapper (1979) argued that this was due to three main reasons: i-) the classical mathematicians’ refuse 

in ruling out many ‘beautiful’ theorems that are meaningless combinations for the intuitionists; ii-) in 
theorems that can be proved both by the intuitionists and classical mathematics, the classic proof is much 
smaller; iii-) there are theorems that are true for intuitionists but false for classical mathematics. 

56 Descartes, 1947, p.43. 
57 With analytic geometry new curves could be created and studied. Their systematic investigations 

demanded new algorithmic techniques.  
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Although Descartes used infinitesimal numbers in his initial mathematical works (1618)58 and 
again in 163859, he criticised such method, pointing out the mistakes it contained. His fear was 
related to the lack of a clear theoretical base for infinitesimal reasoning. As a consequence he 
presented a purely algebraic approach to obtain the tangent, which did not involve any 
infinitesimal or limit concepts. 

The analytical method was used by the English mathematician Wallis (1616-1703), Newton’s 
predecessor who came closer to the limit definition. In the development of calculus, as also 
observed for philosophy in general, two pathways had been taking shape, respectively leading to 
empirism and rationalism. Calculus began, on the one hand, to be settled (after the formulation of 
clear definitions) within arithmetic concepts instead of geometric ones. Wallis’ work was an 
attempt to lead to such arithmetization, receiving support from his contemporary, James Gregory 
(1638-1675).60

On the other hand, with a completely opposite stance, the philosopher Thomas Hobbes (1588-
1651) and the mathematician and theologian Isaac Barrow (1630-1677), among others, wanted to 
present solutions for the already mentioned problems by means of geometric considerations. 

Hobbes sought an intuitive base (instead of logic) satisfactory for calculus and he regarded 
mathematics as an idealization of sensory perception.61

Isaac Barrow, whose stance is in the transition from infinitesimal procedures to fluxions and 
differential methods, also criticised Wallis’ arithmetization as well as Descartes’ analytical 
geometry. He valued sensory evidence, his view was essentially infinitesimal, and his propositions 
rested on geometric forms instead of analytic symbolism. Among all mathematicians, who 
anticipated some parts of differential calculus, Barrow and Fermat’s approaches were the closest to 
the new analysis. For example, the fundamental theorem of calculus which explicitly establishes 
the relationship between tangent and area (or, in current terms, between differentiation and 
integration) was settled and proved by Barrow as a geometric theorem.62

Newton and Leibniz received the title of ‘inventors of calculus’ for they recognized the 
‘Fundamental Theorem of Calculus’ as a mathematical fact, and used such theorem to refine the 
rich blend of the previous infinitesimal techniques. 

Newton was influenced by Hobbes and Barrow63 who in a way characterize the empiricism 
present in the development of calculus. Newton’s infinitesimal calculus was developed with the 
purpose of being applied to physical problems, a tool to demonstrate his experimental findings 
concerning motion problems; the variables were considered time-dependent. He had the 
continuous motion as fundamental in his system and considered any attempt to question the 
instantaneity of motion as linked with metaphysics. 

The concept of a point speed along a straight line was regarded as intuitively evident. He did 
not feel that it was necessary to set a definition for that. He called fluxion the generation reason, 

                                                     
58 When he dealt with the laws of the bodies that fall. 
59 When using the rotation instantaneous centre concept, Descartes used limit and infinitesimal 

indirectly, seeking a non-algebraic curve tangent. 
60 Among other things, Gregory exposed the limit passage as an arithmetic operation, appropriated to 

define new numbers different from the ordinary irrational. 
61 Impressed with the success of Galileo’s conception about motion laws in terms of inertia and speed 

shift, he wished to explain such ideas in metaphysical and geometric terms. For this purpose he introduced 
the concept of conatus: principle of motion analogous to the concept of point as the geometric principle of 
extension. 

62 Boyer (1949). 
63 By the way, Newton was Barrow’s pupil. 
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and fluent the generated quantity. In his work ‘Methodus Fluxionum et Sevierum Infinitarium64‘,
Newton’s ‘infinitely small’ has the dynamic form of Galileo’s moment or Hobbes’ conatus.

Concomitantly, Leibniz also got involved with similar problems, but his view was quite 
different from Newton’s. Following the rationalism current he aimed to set all the infinitesimal 
implications within algorithm procedures, there being a strong arithmetic and formal tendency in 
his work. He intended to create a notation and terminology system, which could codify and 
simplify the essential elements of logic reasoning. This was accomplished particularly in his 
infinitesimal calculus, with an additional general algorithmic approach which allowed the 
unification of results and techniques existing at that time.65

Thus Leibniz stressed the algorithmic nature of the method and did not appeal to geometric 
intuition to obtain a clarification. For him, if the rules were properly formulated and applied, 
something rational and correct should result. Nevertheless, no clearness was required as to the 
meaning of the symbols involved. His infinitesimal conceptions were confirmed through the 
operational success of his differential method. 

But despite Newton’s and Leilbniz’ different views as an empiricist and a rationalist, 
respectively, their works were extremely important for the development of calculus. 

Therefore, the above considerations serve not only to exemplify how the general philosophy 
reflected itself on the mathematical philosophy but also to stress that calculus was established due 
to the contributions of these two tendencies - empiricism and rationalism. We think that it is not 
possible to credit greater value to either of them.  

This therefore stresses our view: such currents should not be seen as excludent or apart but 
always complementing each other. Both were and are important in the development of 
mathematical knowledge. 

Thus, in the Ph.D. thesis (Cf. Meneghetti 2001), we argued that it is necessary to equally 
consider both intuitive and logical aspects in the conception of mathematical knowledge, since 
history has shown that to give priority to one of them leads to failure. We also state that 
knowledge conception is not static but occurs in a dynamic process. 

Knowledge for us is built at several levels, taking the form of a spiral, and in each of these 
levels there should be an equilibrium between the intuitive66 and the logical. In such process, we 
understand that the intuitive rests on the logical, and vice-versa, in increasingly refined levels.  

After these considerations one question arises: how could we situate such proposal in the 
context of the new claims of mathematical philosophy? 

In order to clarify this point i started a study aiming at analyzing some philosophical 
conceptions on mathematical knowledge, which appeared after the beginning of the 20th century. 
in this analysis, i am concerned mainly about the role that logical and intuitive aspects play on the 
constitution of mathematical knowledge. from the last study it was possible to deduce the follow 
considerations: 

(i) While philosophical trends that prevailed in mathematics from 19th until the beginning of the 
20th century tried to reduce mathematical knowledge to a single aspect (either logical, intuitive or 
formal), nowadays the mathematics is seen as it really is, taking it as a part of human creation and, 
in this way subject to errors and corrections. This trend was observed in all the studied authors. It 
follows bellow some illustrative examples of those authors thinking.  

                                                     
64 His second and more widespread exposition on calculus, corresponding to investigations made during 

the previous twelve years, written around 1671, but only published in 1736. 
65 Edwards (1937). 
66 We understand for this term the intuition in a Kantian sense, as explained in note 37. 
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According to Hersh (1985) mathematics cannot be conceived as a science based on absolute 
truth because our real experience with mathematics presents very many uncertainties. He suggests 
that a more appropriate and convincing philosophy of mathematics should consider the meaning 
and the nature of mathematics. 

Lakatos (1985) considers that mathematics is not radically different from the natural sciences 
where knowledge is so obviously a posteriori and fallible. On the other hand mathematics is not 
also just an empiric science. He sees mathematics as a quasi-empirical science which begins when 
its subjects are still indeterminate and knowledge is fallible. The basic statements are a special set 
of theorems, observation sentences or experimental outcomes, and its rules of inferences might be 
less precisely formulated. In addition, he suggests that the theorems of informal mathematics can 
be potential falsifiers for formal theories. According to this author, if we insist that a formal theory 
is the formalization of some informal one then, the formal theory should “be refuted” if one of its 
theorems is negated by the corresponding theorem of the informal theory. 

Thom (1985) also thinks that mathematical knowledge is not absolute. He states that 
mathematical forms possess existence that is independent of the mind of whom considered them 
and different from the concrete existence in the external world, but nevertheless, such existence 
subtly and deeply is linked to this world. He defends that there is not any rigorous definition of 
rigor. A proof is accepted as rigorous if it obtains the endorsement of leading specialists of the 
time; therefore, it is a local rigor. 

For Grabiner (1985) mathematics grows in two ways: not only by successive increments, but 
also by occasional revolutions. Only if we accept the possibility of present error can we hope that 
the future will bring a fundamental improvement in our knowledge. 

Wilder (1985) tries to describe mathematics as an evolving cultural system. He believes that 
some of our philosophical perplexities can be answered by learning how mathematics changes, 
how it came to be what it is today, considering what it was in the past. 

So, for these philosophers mathematics ceases being seen as a science supported on absolute 
truth and begins to be conceived as fallible, corrigible, partial and incomplete knowledge.  

(ii) The experience, which had been left aside by the three philosophical currents of the 19th and 
beginning of the 20th centuries, came to be again recognized as important in the constitution of 
mathematical knowledge.  

Regarding this point we have, for example, Hersh (1985)’s statement sets that the possibility to 
correct errors is exactly given by confronting with experiences. 

When Lakatos(1985) proposed that a formal theory should be the formalization of some 
informal theory, he quoted the following statement from Weyle: 

[…] A truly realist mathematics should be conceivable, as a branch of the theoretical 
construction of the real world […]. 

There is also Thom´s (1985) view in which mathematical forms really possess an existence that is 
independent mind of whom considered them and different from the concrete existence of the 
external world, but nevertheless, such existence subtly and deeply links to this world. 

 (iii) In the conception of knowledge as fallible, the importance of the intuitive aspects is 
emphasized too. 

According to Hersh(1985) “intuitive reasoning” or “informal reasoning” is that reasoning in 
mathematics which depends on an implicit background of understanding, and which deals more 
concepts rather than symbols, as distinguished from calculation, which deals with symbols and can 
be mechanized. For him, in mathematics, the verification of a proof, for example, the verification 
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of an analytical algebraic proof, as it is really given by a mathematician, is in first place a part of 
the intuitive reasoning. Therefore, Hersh (1985) defends that we should accept the existence of 
versions of a “certain proof “ that could be verified in the intuitive level.  

In Lakatos’s (1985) theory the intuitive knowledge is important not to provide background, but 
to supply falsifiers. 

So, the considerations defended by Meneghetti (2001), that were presented here, get stronger 
when we analyze the recent claims of the philosophy of mathematics that, among another 
collaborations, recognize the importance of the empirical and intuitive aspects in the constitution 
of mathematical knowledge. 
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the intellect, its definition has forever challenged philosophers and artists alike. This multi-
media presentation invites you to ponder the meanings of beauty, examine the mathematics
behind things beautiful, and enjoy aspects of mathematics that delight students, teachers,
mathematicians, math educators, and lovers of mathematics.
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1 Introduction 

The history is a critical proof of the continuity of civilizations; were the patterns of mentality, 
myths, values, languages, and pedagogy- are issues for understanding and reflecting on the history. 
The history of human is a state of the relationship between the idea of the ancient culture and 
modern culture. It is more museum of the ancient civilizations. The history is an important 
communicator for knowledge and education. In all civilizations, mathematics is founded early 
either informally or formally. The history of mathematics (or mathematics) is an essential point to 
stop at the path of the philosophies and discoverers on the human history. Mathematics as a tool 
and a philosophy are critical points for understanding of nature of mathematics in history the 
mathematical knowledge, induction, deduction, continuity, and independent, in the history of 
mathematics, are ideas for reflecting on the development of mathematics. As an example, is the 
non- Euclidean geometry are a trend of continuity, or a trend of “ Math Free “?!  

The history of mathematics is a real story. It’s the story of language, culture and thought. In 
early civilizations; such as Egyptian, Babylonian and Greek, etc, mathematics was a state of 
knowledge of the society, that was concerned with the philosophy, thought and education of 
particular society. The mathematical fields as: numbers, geometries, functions, graphs, spaces, 
patterns, paradoxes, probability…. and theorems are a history of the human discoveries and 
mathematical patterns. These patterns were was as a mapping for communication of the nations 
and civilizations. In the article “ Towards Curriculum History ”, Goodson wrote:  

“Knowledge patterns are views as reflecting the status hierarchies of societies through the 
activities of the dominant groups within them.” (1985, p. 2) 

Mathematics in the history of civilizations defined multi-nations, since this relationship was 
interdependent. History of mathematics, in text and context, is a study of the stages of 
developments and values of ancient cultures as Egypt, Greek, Babylon, Chinese, …etc. The 
history of mathematics is viewed as a reflection of the value of academic institutions in ancient 
civilizations, such as “Alexandria Bibliotheca”, and their contributions for the future. The history 
of mathematics is of an approach for reflecting on the history of the paths of mathematical thought, 
informally and formally, mathematically and non-mathematical. 

In critical educational view, the history of mathematics is a critical concept and it was a 
significant issue related to the human history, knowledge and learning. It’s an issue of the culture, 
literacy and education of a society  

The History of mathematics is one of our most significant tools of reflection and creation. The 
history of mathematics is one the sources of cultural literacy. 

Why is the history of mathematics “ problematic”? 
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In critical views, philosophical, historical, epistemological and educational, the history of 
mathematics is a complex (or multi-disciplinary) field and it has multi- faces within the history of 
human thought. There are several issues or investigations and questions about the history of 
mathematics such as: 

(1) How do we view mathematics in history? 
(2) Why is the history of mathematics viewed as a critical issue in human thought? 
(3)Is the history of mathematics is a singular project? Is it multi- projects? And if so, are these 

projects are comprehensive ? 
(4) Do mathematical discoveries reflect [ a history ] or [ the history ] of human mathematics? 
(5) Why is the history of mathematics a project accepted mathematically? 
(6) What are the parts that are“ unknowing “or” lost” in the history of mathematics? 

2 The traditional vision of the history of mathematics 

Research has presented traditional features of the history of mathematics as historical materials 
about the era of the greatest development of mathematics. Examples are mathematical patterns 
within civilizations, names of mathematicians, the origination of mathematical ideas, patterns of 
translations, etc. The contributions of the history of mathematics according to academic 
philosophers, geographic fields, and achievements – were presented as classical courses on the 
subject. 

Is there a special methodology for re-reflecting on the history of mathematics?

There are five factors, which affected our conception of the history of mathematics. They are: 
Vision

The common view of most educationists is that Math and History of Math are different. The 
point of view is that mathematics is a product or content, while the history of mathematics is a 
story or literary text. The discourse of math is a state of reasoning and rigor while the discourse of 
history of math is a state of cultural literary.  

Reviews  
During the past decades, most educationists and mathematicians were dealing with the history 

of mathematics as a linear survey. Examples are reviews of “ The Egyptian Number System”, 
“The ancient Babylon Number System”, “The Greek Mathematics “. These reviews do not go 
beyond a “ C. V. “ of ancient civilizations, although there are new critical views of the context.” 
Boorstin “wrote: “ Herodotus and Thucydides were not followed by other Greek historians of their 
stature. Historical inquiry in the modern sense, the search for the way it really was, simply to 
amplify knowledge of the past, did not have appeal to the Greek in their great age.” (Boorstin, 
1983, p. 565).The issue is that the history of science is crowded by the literature of history of 
science. 

Knowing
The emphasis was on history in general without opening the history. In particular, opening the 

history is an epistemological process. It is the knowledge of the views and standards of 
civilizations. The opening of the history of mathematics helps us to reflection on how the 
civilization was viewed itself and other. Examples: how did the Greek focused on other 
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civilizations, what is Herodotus’ view of Egypt?, what is the European philosophers’ view of Al-
Kindi and Al –khowarizmi? Boorstin wrote: 

“Herodotus planned a survey of the geography and ways of life of non –Greek peoples. 
Traveling through Asia Minor, the Aegean Island, Egypt, Syria and Phoenicia.., he focused on the 
urban centers.” (Boorstin, 1993, p.564).  

Literacy  
The emphasis was on the “biographic history “as a resource for education and survey and 

appreciation, and not on how we learn from history makers. 
Communication  

The understanding of the history of mathematics as events concerned with the past but not 
related to the present or future. Such as: the emphasis was on the ancient mathematical languages 
for “ Comparative Representations and Symbols “, and not on we communicate with developing of 
the” mathematics as a language “. 

Then: What is the approach?? 

Content

Historical

Reason

Scientific

Internal

Context External

Text

Figure 1. A perspective of the history of mathematics 

Figure 1 presents an organizer for opening and reflecting the history of mathematics in context. 
The organizer presents “ 4” perspectives: 

(1) The Reason – Content Perspective  
(2) The Historical – Scientific Perspective  
(3) The Text – Context Perspective  
(4) The Internal – External Perspective  

(1) The reason- content perspective

Archimedes  Gaber ibn Hayan 
Greek Mathematics Arab Mathematics

The philosophies and researchers, as Zaki Mahmoud, thought that the human thought was based 
on the idea of “homogeneity” which is that concerned with “The intuition of reason”. The original 
idea is how reason becomes active. The objects of content are different according to the different 
nations. This view reflects a critical point. Although there are variation or differences between the 
Greek and Arabian school of thought on propositions that concerned “ constant and variable “, 
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there are homogeny between them that was originally founded on the Aristotle’s school of 
thought. This common framework reflected how ancient Greek mathematics was translated into 
Arabic civilization and understand, see (Mahmoud, 1985).

The mathematical language is an essential factor for the communication of civilizations, since 
analogical intuitions and essential understandings are mappings to communication. Therefore, the 
awareness of the differences between modernist ideas, mathematicians’ ideas and the history of 
mathematics is a significant epistemological process which is considered as ‘ reconstruction ‘. The 
significant reason, here, is a process of re-creation for communication.  

(2) The historical – scientific perspective:

The history of mathematics between the historical discourse (or historical methodology )and the 
scientific discourse (epistemology) is a critical states or problematic. In both history and science 
(as math), there are ideas, the concepts, cognitive structures and knowledge structures that 
combine with processes such as understanding, interpretation, evaluation, realization and 
awareness. The critical question, here, is: should the study of the history of mathematics be moved 
to pure historical reasoning or to pure(scientific) mathematical reasoning, or both? 

The history of mathematics is a special issue in the history of science. It was originally founded 
on the intuitions, induction and logical reasoning combed with modes of meaning, languages, 
literature and dispositions. Therefore, we need a coherent approach, were the historical view 
(historical sense / understanding) combine with the mathematical view (intuitive / logical 
reasoning) as a whole. This is based on as Beane’s view of “a coherent curriculum”: “a coherent 
curriculum is one the hold together, that makes sense as a whole; its parts, whatever they are, are 
unified and connected by that sense of the whole.” (cited in Erickson,1998, p. 44). In this 
framework, the historical intuition of historical material of axiomatic systems of Euclid’s, as an 
example, becomes has significant. Communication with the original mathematical 
thinking,Pythagorean Theorem as an example, and reflecting on the historical proofs and 
mathematical meanings in multi- cultures, are an approach to historical- mathematical reasoning. 

(3) The text – context perspective

Both of text and context was played essential roles in drawing mathematics patterns in history. The 
mathematical text, in history, was concerned with issues such as (1) the development of the 
statements and original meaning and the translation from fabric language to recent language i.e. 
“literature of mathematics” (2) the processes related to the his-mathematical text as interpretation, 
historical reasoning/ understanding, examinations and hermeneutics. One of the conceptions being 
discussed in the field is beliefs and understandings about “the origin of Greece civilization” and 
the hermeneutics about it.” Hassan thinks that the Greek civilization was influenced with the 
ancient Egyptian civilization in many fields such as “the science of surveying the earth” (Hassan, 
2001). Therefore, the relationship between these civilizations was interdependent. 

The linguistic structures, literacy, beliefs, stories and particular values are significant factors for 
understanding mathematics as a history, an art and a structure. In investigation of “his-
mathematical text, the processes of hermeneutics and the historical cycle of related to it are critical 
epistemological issues. I believe that his- mathematical text was originally based on the ancient 
scholars’ literature in libraries like Alexandria bibliotheca, and Aristotle’s library. On the 
hermeneutics concept related to text, Davis wrote: “With regard to its modern use, hermeneutics 
was originally a discipline of biblical interpretation, the goal of which was to excavate the truth of 
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the sacred text. This task demanded not jest an ability to translate or comprehend particular words, 
but a talent to locate the writings historically and contextually” (Davis, 1996, p. 19). 

  
(4) The internal–external perspective: 

What is the nature of mathematics historically? How was mathematics originally developed? 
What is nature of the mathematics knowledge? 

And what is the human perspective about of Math? What are the patterns of interpretations 
about mathematical representations? What are subjective / objective judgments about the history 
of mathematics? How can we view the history of mathematics in multi- cultures? What is the 
importance of distinguishes between internal and external judgments about the history of 
mathematics. 

These questions are linear cognition organizers to the analysis of the internal – external 
perspective. However, I believe that “internal” perspective relates to the commonsense of the 
mathematical mentality of math scholars and community, while the “external” perspective is 
concerned with the existence of mathematics as products (the objects such as: Concepts, Ideas, 
Relations, Symbols) in cultural pedagogies. We see recordings of math thought as efforts, 
reasoning and cultural patterns  

I believe that mathematical thought for all mathematicians or civilizations (such as: 
Archimedes, Euclid, Gauss, Hilbert and Omar khayyam..) produced “ an important history” which 
is mathematics. Then, the his-mathematical process; internally and externally, should embody our 
“ re- understanding and re- reflecting “ of schema of mathematics as history and the history of 
mathematics as math by the use of epistemological / mathematical approaches. The issue is not 
mathematics because math is free and creative. 

The issue is also not analysis of ‘internal’ or the analysis of ‘external’, but it is an issue of 
mentality and common sense or ‘Making sense, extending sense and the view / different vie’. 
Fixed (or hard) approaches to interpreting the history of mathematics are not open to views for 
new reflection, new sense and new values. History of mathematics is ‘the whole’ of the history of 
mathematics. The issue is how our sense of the history of mathematics could be achieved. The 
awareness of the critical views of the history of mathematics is basis to the common sense. The 
awareness of the challenges in ancient civilizations and the new challenges of math education are 
basis to the integrating our sense of the history of mathematics. 

 
 

3 A model for the study of the history of mathematics 
 
If we are to reflect and study the subject of history of mathematics, knowledge of the story of the 
history of mathematical concepts and ideas and mathematical mentality in the history, at several 
levels, is essential approach. Davis identified five mentalities in the emergence of mathematics 
according the terms: (1) oral, (2) pre-formal, (3) formal, (4) hyper-formal, and (5) post – formal 
(Davis, 1996, p. 59). 

As methodology focus on perception of background of the mathematical thought and the 
communication of civilizations, there are four levels to study of the history of mathematics, as the 
following: 

(1) Critical mathematical concept level: this the level focus on the mathematical concepts and 
ideas which historically related with historical text and philosophies. The historical aspects related 
to selected concepts such as number, space, time, function, probability, measurement Euclidian 
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plane, parallel are prominent. These concepts are “the essence of mathematics”; therefore the 
mathematical representations and symbols historically are an approach for understanding and 
reflection. 

(2) Systems and disciplines level: this the level focus on: the foundations of mathematical 
systems, axiomatic development, the classifications, limitations, planes, and processes and 
properties over time. The essential points here are the free developments and applications. I think 
that the relationship between the historical aspects of classical axioms and the contemporary issues 
is essential. They are often regarded as critical view. 

(3) Civilization (Intra-nation) level: This the level focus on how mathematics has been 
historically concerned with civilization: the philosophy, the contributions, the language, the tools, 
the powers, the discoverers and the applications. The differences are significant but the special 
mathematics and investigations are essential issues. The national mathematics standards and 
aspects could help researches by identifying clearly the original concepts of mathematics of each 
civilization. The quality of the thought and environment that was support “the mathematics” are 
essential issues. The history of mathematics, here, is viewed as representing the culture of nations 
by the range of vales and language, interests and ideas. 

(4) Communication and interrelationships level (Inter-nations): This level focus on the 
patterns, goals and processes of the communication between civilizations, mathematically. 
Development of mathematics influences view of the nations of mathematics and the development 
of communicating societies. The Babylonian scheme of time, Aristotle’s concept of line, Euclid’s 
geometry, Alexandria, algebra of Al-khowarizmi – are examples on communicating nations. 

4 The history of mathematics in the math classroom  

The history of mathematics is related to many aspects of mathematics curriculum.  
At the elementary levels, the history of mathematics can occupy a central place as an 

“informal” environment for developing mathematical literacy of all children. When the children 
use “patterns of language”, such as reading, listening, writing and talk, about the visual / spatial 
and written materials and the powerful patterns which related to “a historical object”, they can be 
communicated of this object. A representation of any historical – mathematical object needs 
represented itself as “historical value” and it needs extending their communication about it. 

Reflection of examples such as: Egyptian numeration system, a patterns and symmetries of a 
picture of the ancient Egyptian art, the formula of “Archimedes” of area of a sphere and a concept 
of Zero in the history of mathematics – are a windows to how children see “ mathematics “ in the 
historical context. 

The mathematical models such as “ function”, “equation” and “inequality” which related to the 
history of mathematics are “a mathematical structures” to doing mathematics by modeling. 
students will seeing that these the models are an integral part of their modern culture. 

The “Fibonacci Numbers” and “Pascal’s Triangle” are a powerful approach for learning of 
algebraic reasoning by the language of patterns. The development of deductive proof and 
reasoning, geometrically and algebraic, occupied an essential place in the history of mathematics. 
They will be remained a basic standard of mathematics education. Menelaus’ Theorem and Ceva’s 
Theorem are “deductive environment” to developing of geometric – algebraic reasoning as a 
coherent mathematical reasoning. 
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Number theory, as a mathematical field, related historically with names and conjectures of the 
mathematicians such as Pythagoras, Euclid, Diophantus, Fermat and Goldbach (Billstein et al., 
1984). In classroom math, number theory is a representation of reflecting of the problem solving in 
the history of mathematics. 
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ABSTRACT 
The paper follows the development of the famous engineer, applied mathematician and empirist philosopher 
Richard von Mises (1883-1953) from his time as a pupil at the elitist “Akademisches Gymnasium” in 
Vienna through his studies at the Vienna Technische Hochschule (1901-1905) up to his time as a successful, 
yet unorthodox academic teacher in applied mathematics in Berlin (1920-1933). His textbook on 
philosophical positivism is examined with respect to insights about mathematics education. Some remarks 
about von Mises the man, in his concern for students conclude the paper. 

1 Introduction 

This paper is about some connections between an individual biography in mathematics and general 
tendencies in mathematical education. The person in the centre is going to be the engineer, 
mathematician, positivist philosopher and literary man1 Richard von Mises. He has become well-
known for his results in probability, statistics, elasticity and air-foil theory. His versatility 
influenced also his positions in mathematics education especially with respect to the place of 
applied mathematics and rigour in teaching. Also here, von Mises’ deep-rooted “non-conformism” 
(as described elsewhere in more detail)2 made for some rather unexpected positions, but many of 
his opinions were constants which could be observed during the entire life of this un-orthodox 
personality. 

The following paper describes three aspects of von Mises’ relation to mathematics education, 
connected to different periods of his life: the pupil and student in Vienna until 1905, the leader of 
the famous school of applied mathematics in Berlin in the 1920s, and the philosopher in his book 
on positivism of 1939, the first textbook in the field. Finally some documentary evidence on von 
Mises, the man, in his relation to students is provided. 

2 Von Mises in Vienna: mathematical talent as a pupil,  
    unorthodox training as a student 

The family home since 1890 was in Vienna, where Richard went to school and studied mechanical 
engineering at the Technical University until 1905. He had an elder brother, Ludwig (1881-1973), 
who later became an economist of international reputation, his doctrine being, however, rather 
separated from mathematical theories (Rothbard, 1988). 

                                                     
1 He became a specialist on the Austrian poet Rainer Maria Rilke, a point that cannot be discussed here 

in detail. 
2 See (Siegmund-Schultze, 2004). There and in (Siegmund-Schultze, 2001) one finds biographical 

details which cannot be provided here. 
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Both boys had some peculiar traits of character in common, a certain elitist, “aristocratic” 
attitude and emotional adherence to the old Austrian monarchy, although that adherence seems to 
have crumbled at least with Richard during his life. The brothers von Mises had to suffer at times 
under antisemitic discrimination (Siegmund-Schultze, 2003). There outsider-status was re-inforced 
by repeated emigrations which entailed repeated struggle for recognition in new environments. 

Both boys went to the elitist “Akademische Gymnasium” in Vienna. Among the four 
mathematical assignments for the final written exam (“matura”), which Richard von Mises took in 
1901 where three geometrical and one arithmetical. I quote two of them:3

First a geometrical one: 

“3. The centre of a circle of radius r coincides with the vertex of a parabola, the focus of which 
is on the circle’s peripheri. One looks for the angle between the radii towards the two points of 
intersection and for the length of the common chord.” (Jahresbericht, 1901, p. 11) 

The only arithmetical assignment was: 

“4.One puts a certain capital in a bank which gives 3.5% interest and withdraws at the end of 
each following year the double of the simple interest of the original capital. How long is it 
possible to do that?” (Jahresbericht 1901, p. 11) 

This type of rather elementary assignment does not allow much of a conclusion with respect to 
Richard von Mises’ preparation for higher mathematical studies. Not unexpectedly though, he got 
usually the highest marks (“vorzüglich”) in this subject, while Ludwig got on average a 
“befriedigend”, the third best character. 

Richard and Ludwig were not the only pupils at the Akademische Gymnasium, who later 
became rather well-known. Later physicists Paul Ehrenfest (1880-1933) and Erwin Schrödinger 
(1887-1961) were students at about the same time. Lise Meitner (1878-1968) finished the 
“matura” at the Gymnasium together with Richard von Mises in 1901, but as an external 
participant in the exam, because it was a school exclusively for boys. 

That nevertheless neither Ehrenfest nor Richard von Mises are mentioned in (Winter, 1996) the 
history of the Vienna Akademisches Gymnasium is easy to understand. For the scientifically 
uneducated readership of that kind of school histories neither of the two acquired enough fame to 
be included. Erwin Schrödinger however (Schrödingers cat!) and Lise Meitner (due to the atom 
fission and growing sensibility to women in science) and also Richard von Mises’ brother Ludwig, 
the economist, are mentioned. The theories and fates of these three are obviously easier to 
communicate to the public. 

One might ask the following hypothetical historical question: Given the fact that the brothers 
Richard and Ludwig would tend in very different directions both scientifically and politically, and 
given the fact that the use or rejection of mathematics seems to be a clear marker of their 
differences - which role did mathematics, or unequal talent in the field rather, or discussions 
between the two on mathematics play in their youth? This question seems particularly important 
since many of the biographical facts in Richard von Mises’s life point to a close emotional relation 
to the Austrian monarchy and to a rather conservative, elitist education: how have mathematics, 
technology, and art been able to change or complement that world-view, while von Mises’s 
brother Ludwig obviously remained a conservative? 

                                                     
3 Jahresbericht 1901, p.11. Thanks go to W. Siegel (Akademisches Gymnasium) who provided copies of 

that “Jahresbericht” and the certificates of Ludwig and Richard von Mises. 
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At the Technische Hochschule (TH) in Vienna von Mises received an unusually broad 
education both as an engineer and as a mathematician (1901-1905). His first publication - still 
being a student - belonged to geometry (1905). 

Von Mises’ “non-conformism” with respect to scientific training revealed itself particularly in 
his very active and deliberate effort during semester breaks to get additional practical training in 
the industry, which the TH Vienna could not offer. 

When von Mises finally obtained his doctoral degree for engineering at the TH in 1908, based 
on publication on crank mechanisms which had appeared already in 1906, the review alludes to 
overly concise and apodictic formulations in the paper, which may well have slowed down the 
graduation process itself: 

“The manner in which the candidate uses his abilities cannot be approved. The submission of a 
paper of 45 printed pages, written in the style of a revelation is an immodest demand on the 
referee, which cannot be expected to find out by himself the details and considerations which 
lie behind the argument.” (Siegmund-Schultze, 2001, p. 23). 

3 Von Mises as leader of the school of applied mathematics  
   at Berlin University (1920-1933) 
Von Mises - although his famous institute for applied mathematics came to be erected in Berlin - 
considered himself to be the true successor to the Göttingen mathematician Felix Klein (1849-
1925), the great reformer of German mathematics of one generation before. Von Mises devoted 
Klein an article on his 75th birthday in 1924. On his part, also Klein held von Mises in high 
esteem.  

Von Mises was critical, at times contemptuous, of those “pure” mathematicians who - as he 
wrote 1927 in a polemical discussion with another applied mathematician, Göttingen’s Richard 
Courant, “belong to the overwhelming majority of our university professors who declare with 
more or less pride, at least however with full justification that they are unable to perform the 
smallest numerical calculation or geometrical construction.” (Mises, 1927) 

Similar to Klein, who among other things had promoted the study of women in mathematics, 
von Mises fought for a new social notion of a university teacher in mathematics. He supported the 
awarding of the venia legendi (teaching permit) for applied mathematics to Hilda Geiringer (1893-
1973), his future wife, and he organized mathematical practica for the students and supported the 
value of teaching as opposed to the reigning ideal of pure and result-oriented mathematics 
(Siegmund-Schultze 1993). 

But also at that point of his career, von Mises did not support stereotypes, which is shown by 
the following episode. Around 1924 mathematics professors at German universities protested 
loudly against plans on the part of the Prussian government, to reduce mathematics teaching at 
high-schools from 4 to 3 hours a week in favour of humanistic subjects (“kulturkundliche 
Fächer”), such as German, philosophy, and history. The mathematicians considered mathematics 
to be a part of general education on an equal footing with the named subjects and saw their own 
field as one of the main prerequisites to understand the modern, technically based culture. Mises 
found that teaching mathematics as such does not guarantee greater understanding for technology: 

For the consideration of elements of technical education in high-schools, which has been 
demanded by engineers for quite some time, the kulturkundliche Fächer would probably be the 
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best place. It is an illusion to believe that more teaching in mathematics enables the pupil to 
better understand contemporary technical accomplishments (Mises, 1924, p. 447). 

4 Von Mises as a positivist philosopher on mathematics
    education  
As Jews, von Mises and Geiringer had to leave Berlin in 1933. From his exile in Turkey (Istanbul) 
von Mises published in German the first text-book on logical positivism in 1939. The book was 
translated into English in 1951, but it exerted only limited influence, partly due to the political 
conditions of war and emigration. Of particular interest in the book are von Mises’ reflections on 
the role of his philosophical hero Ernst Mach (1838-1916) in the development of physics and 
philosophy, but also on Mach’s limitations with respect to mathematics. Von Mises’ brother 
Ludwig said: “I disagreed with that book from the first sentence until the last.” (Rothbard, 1988, p. 
79) 

With one exception (see below) von Mises does not discuss in his book (Mises, 1951) problems 
of individual cognitive development, child psychology, or pedagogy. He stresses instead the 
borders and the “connectibility” of the different sciences, including the humanities. As an adherent 
to logical positivism von Mises was particularly interested in the critique of language. 
Emphasizing the differences between natural and scientific languages and the similarities in the 
processes to acquire them, von Mises follows Nietzsche’s dictum, which he apparently interprets 
both in the phylogenetic and ontogenetic sense:  

It is originally language which works at the formation of concepts, at later times it is science.” 
(Mises, 1951, p. 21) 

In this context von Mises emphasizes the gradual increase in methodical consciousness in learning 
and in research and says, for example: 

One is quite justified in saying that he who has not learned at least one foreign language under 
conditions other than those of childhood is hardly prepared for any kind of scientific 
research.”(Mises, 1951, p. 21) 

As a professional mathematician the philosopher von Mises was, of course, convinced of the 
general epistemological importance of mathematical and logical thinking in that development of 
science and its language. And he discusses mathematics as a backbone to the sciences throughout 
his text-book on positivism. Mathematics in this sense is to him both philosophy and pedagogical 
task. 

There is one exception in his book, where von Mises does, in fact, go into the teaching of 
mathematics as well, and even in a rather unexpected manner. We quote from the paragraph which 
is entitled High-school axiomatics:

There have been frequent objections to the so-called axiomatic method of instructing the 
beginner.... In general, such a discussion has been critized as ‘too formal’, appealing too little 
to intuition and thus ‘apart from life’. These are clearly considerations of pedagogic nature, 
with which we need not concern ourselves here. Our critique is directed from the purely logical 
point of view.” (Mises, 1951, p. 104) 

Thus von Mises would stress the purely logical side of the subjects beeing taught although he was 
a leading applied mathematician who knew the value of geometrical intuition and of practical 
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exercises in the teaching of mathematics. Although von Mises was aware of the importance of 
examples for application in the teaching process and although he struggled in other contexts 
against a notion of probability built on pure mathematical concepts from the theory of sets and 
measure theory, von Mises did not on principal grounds oppose the teaching of “axiomatics” at 
high-schools. 

How can this seeming paradox be explained? I find two reasons. First, of course, von Mises is 
talking here as a philosopher, interested in the logical structure of science and mathematics. But, 
more importantly, von Mises points to the fact that those criticism of axiomatics in mathematics 
teaching is “made from a point of view quite different from ours” (Mises, 1951, p. 104). 

In which respect different?  
Talking for the moment as a philosopher, in von Mises’ mind there exists a way of teaching 

axiomatics which is even worse than being just “too formal”, because it does not make its logical 
preconditions explicit: 

No proposition that presupposes complicated experiences and appeals to a necessarily vague 
use of colloquial language can be fit to serve as the starting point of a rigorously systematized 
branch of science.” (Mises, 1951, p. 104) 

Von Mises gives as an example for the unexplained use of logical relations the following: 

In such a sentence as: the whole is larger than any of his parts, even the meanings of the words 
themselves are rather obscure. The statement presupposes that the student to whom it is 
addressed is, from his everyday language experience, acquainted with the two relations, part to 
whole and larger to smaller. The axiom asserts that these two relations, in a certain sense, are in 
each instance simultaneously present or not present. (Mises, 1951, p. 104) 

By pointing to examples for applications where the relation “part to whole” is defined but the 
“question of bigger and smaller breaks down” (von Mises mentions here the example “sound sleep 
as a part of one’s well being,” but could of course have pointed to mathematical examples from the 
theory of sets as well) Mises argues for a clarification of the relative meaning of the two logical 
relations and comes to the conclusion: 

The formulation of axioms found in high-school textbooks, being based on uncertain and 
imprecise customs of language and therefore unsuited for unambiguous conclusions, is a 
failure.”(Mises, 1951, p. 104) 

Thus the applied mathematician von Mises, speaking as a philosopher, makes the plea for rigour 
also in mathematical teaching. Not unexpectedly, von Mises finds a way to declare Ernst Mach “a 
forerunner of modern axiomatics” in this sense, because he had clarified the foundations of 
mechanics (Mises, 1951, p. 112). However, one would perhaps go a little bit too far interpreting 
that chapter in von Mises’ text book on logical positivism to be an early plea (1939/51) for “new 
maths” in mathematics teaching. 

5 Von Mises, the man, in his concern for students and in  
    introspection 
In the opinion of many of von Mises’ students his lecturing was even better than his writing. The 
lectures were well prepared, enormously clear and well rounded, giving a full view of the field. He 
said once “I am unable to say something what listeners do not understand” (Geiringer, 1959). 
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Some unpublished reflections about Richard von Mises’ teaching style, were given by the 
emigrant from Nazi Germany, the noted English algebraist Walter Ledermann (born 1911), in a 
letter to this author, dated 29. December 1997:  

I was greatly impressed by Richard von Mises, and I attended several of his lecture courses in 
Berlin between 1928 and 1933. Each lecture was carefully prepared and was delivered in an 
elegant - one might say aristocratic - style. I liked his Viennese accent and occasional use of 
Austrian words like “Einser” for “Eins”. Von Mises had a neat and legible handwriting. But his 
writing on blackboard was small; for he tried to avoid having to clear the board so as to save 
his dark suit from being stained with chalk. His assistant would meet the Professor outside the 
classroom after the end of the lecture and brush off any offending specks. 
 I attended von Mises’ brilliant course on ‘Wahrscheinlichkeitsrechnung’ in the summer of 
1931 when his treatise on this topic was being published. As you know, there was some 
criticism about his definition of probability; but his exposition was so lucid and had the stamp 
of authority which left no doubt in our minds about the validity of his work. 
 After passing the Staatsexamen in November 1933 I vigorously explored all avenues that 
would help me to leave Germany. I had heard that von Mises had accepted an appointment at 
Istambul; so I took the unusual and rather bold step of telephoning him at his home and ask 
whether he would accept me as a research student in Istambul and, indeed, whether one can 
obtain a Ph.D. there. His crisp reply was typical: ‘Natürlich kann man dort promovieren - man 
kann überall promovieren.’ Fortunately the project was dropped, because soon after this 
conversation, I was awarded the scholarship for St. Andrews in Scotland. 

Von Mises’ “typical reply” to Ledermann betrays something about his often rather rude and sharp 
personality. But his personal interest in and concern for the careers of his students was indubitable. 
He was the head of the students welfare committee at Berlin University in many years during the 
1920 (Mises, 1925). When another student in Berlin, Lothar Collatz (1910-1990), asked him for 
help, von Mises gave him important advice for future mathematical work even one day before his 
own enforced departure for Istanbul. Collatz, who became a leading numerical analyst later on 
described that situation in the following words (letter to this author dated 10. November 1987, 
translation from German): 

Prof.Dr.Richard von Mises had indicated in his excellent, very clear and stimulating lectures on 
practical analysis that it would be desirable to develop more exact difference methods. [...] In 
November 1933 I took the state exam (Staatsexamensprüfung) and was examined one day 
before his departure. On the same day he gave me advice for my future work in a one hour talk. 
[...] I did not meet him again until after the war. 

Finally, what did the man, Richard von Mises, who stimulated the work of others to such 
considerable extent, think of himself and his talents? Von Mises’ widow H. Geiringer said on him 
in 1959: 

Personally, he did not think too much on the introspective question whether he was gifted and 
to what extent. He did not try to compare himself with others and to determine his own ‘place’. 
When I once - or often - expressed the very modest opinion I had on myself he said: ‘Such 
considerations make little sense,... the type of information we have on ourselves is so different 
from all we know about others that the conclusions can’t have significance.’ (Geiringer, 1959) 
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While von Mises was a very rational man and powerful intellect instinct played a very great role. 
To Geiringer he said: “Wait. Do nothing. You will feel what has to be done. “Ausreifen” lassen! 
There is no hurry.” (Geiringer, 1959) 
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ABSTRACT 
The Hong Kong new mathematics syllabus for secondary schools (Secondary 1–5) developed by the 
Curriculum Development Council was published in 1999, and has been implemented since 2001. Indirect 
encouragement of incorporating history into learning and teaching has been discerned in this new syllabus. 
For instance, “appreciate that mathematics is a dynamic field with its roots in many cultures” (CDC 1999, 
p.5) has been included in the attitude domain of the aims and objectives. There are also more concrete 
examples, such as: “appreciate the past attempts to approximate values such as ”; “recognize and 
appreciate different proofs of Pythagoras’ Theorem including those in Ancient China”; … so on, which 
cannot be found in the old syllabuses.  

This paper serves to support this Hong Kong change of recognizing the significance of history of 
mathematics in education. In order to develop a theoretically sound proposal, this paper first examines the 
ideas and experience of mathematics educators in different countries by making reference to the 1998 
International Commission on Mathematics Instruction (ICMI) study on history in mathematics education 
reported by Fauvel and Maanen (2000). Second, by introducing and adopting Egan’s (1988a, 1988b, 1990, 
1992, 1997) original and innovative theory about the development of educated mind and five kinds of 
understanding, the author then proposes a curriculum planning and instructional design framework for 
frontline mathematics teachers to incorporate history in their classroom teaching. In order to convince 
teachers the practicability and feasibility of his theoretical proposal, an example of instructional design will 
be developed with concrete suggestions to inspire students to “appreciate the dynamic element of 
mathematics knowledge through studying the story of the first crisis of mathematics” (CDC, 1999, p. 37). 
Finally, this paper concludes by revisiting and reflecting on the old but fundamental question: “Why study 
mathematics?”. 

1 Introduction 

The Hong Kong new mathematics syllabus for secondary schools (Secondary 1–5) developed by 
the Curriculum Development Council was published in 1999, and has been implemented since 
2001. Although the value and use of history of mathematics has not been stated explicitly and 
expressively in this new syllabus, indirect encouragement of incorporating history into learning 
and teaching has been discerned. For instance, “appreciate that mathematics is a dynamic field 
with its roots in many cultures” (CDC, 1999, p. 5) has been included in the attitude domain of the 
aims and objectives. There are also more concrete examples, such as: “appreciate the past attempts 
to approximate values such as ”; “investigate, appreciate and observe the patterns of various 
number sequences such as polygonal numbers, arithmetic and geometric sequences, Fibonacci 
sequence etc.”; “appreciate the past attempts in constructing some special regular polygons with 
minimal tools at hand”; “discuss past attempts in constructing some special regular polygons such 
as 17-sided regular polygons”; “recognize and appreciate different proofs of Pythagoras’ Theorem 
including those in Ancient China”; “appreciate the dynamic element of mathematics knowledge 
through studying the story of the first crisis of mathematics”; “investigate and compare the 
approaches behind in proving Pythagoras’ Theorem in different cultures” (CDC, 1999, pp. 16-37). 
The author grants these short citations great significance in the history of secondary school 
mathematics curriculum development in Hong Kong because no similar statement has been be 
found in all other old syllabuses.  
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This first step to value and encourage use of history of mathematics at documentary level since 
1999 does not imply that there is no earlier attempt at implementation level in Hong Kong, though 
usually initiated by a minority group of teachers and mathematics educators only. For instance, in 
1978, Professor Siu Man Keung published a book in Chinese to encourage students to study 
mathematics by referring to the history of mathematics (Siu, 1978). In the pilot survey study on the 
use of history of mathematics in mathematics education conducted by Mr. Lit Chi Kai in 1996, 
results showed that most of the teachers recognized the importance and usefulness of history of 
mathematics at rhetoric level. In reality, many of them found it difficult to implement at classroom 
level because of the tight and rigid teaching schedule, high examination pressure and the lack of 
good and convenient teaching materials (Lit, 1996). Lit (1996) argued that the root this 
contradictory and problematic situation stems from the tendency of many Hong Kong teachers to 
embrace a narrow and instrumental view of the significance of history of mathematics in 
education: history of mathematics is only one of the many motivational tools for mathematics 
teaching. The author strongly agrees with his argument.  

This paper serves to provide an alternative view about the significance of history of 
mathematics in education for Hong Kong teachers. In order to develop a theoretically sound 
proposal, this paper will first examine the opinions and experience of mathematics educators from 
different countries. It will then bring in educational ideas from a curriculum theorist – Kieran 
Egan. His theory of educated mind and five kinds of understanding will be studied. In order to 
convince teachers the practicability and feasibility of his theoretical proposal, an example of 
instructional design will be developed with concrete suggestions to inspire students to “appreciate 
the dynamic element of mathematics knowledge through studying the story of the first crisis of 
mathematics” (CDC 1999, p. 37). Finally, this paper will conclude by revisiting and reflecting on 
the old but fundamental question: “Why study mathematics?”. 

2 Beyond storytelling: International experience on
   integrating history of mathematics in the classroom 

An International Commission on Mathematics Instruction (ICMI) study on history in mathematics 
education was conducted in 1998. And it was edited and reported by Fauvel and Maanen (2000) in 
the book History in Mathematics Education: The ICMI Study. This is by far the most 
comprehensive, extensive and rigorous publication in the field. Topics like “History of 
mathematics in curricula and schoolbooks”, “Philosophical, multicultural and interdisciplinary 
issues”, “History of mathematics for trainee teachers”, “History formation and student 
understanding of mathematics”, etc., had been studied and reported thoroughly with the 
collaborative efforts of many mathematicians, historians and mathematics educators from many 
different countries. Among these issues or questions, “Why should history of mathematics be 
integrated in mathematics education?” and “How may history of mathematics be integrated in 
mathematics education?” are the two most frequently asked questions by frontline teachers. In 
order to answer these two questions, an analytical survey was conducted by a research team led by 
Constantinos Tzanakis and Abraham Arcavi. Their research findings were reported in Chapter 7 of 
the book. 

With reference to the “Why” question, they identified five main types of supporting arguments: 
(1) the learning of mathematics; (2) the development of views of the nature of mathematics and 
mathematical activity; (3) the didactical background of teachers and their pedagogical repertoire; 
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(4) the affective predisposition towards mathematics; and (5) the appreciation of mathematics as a 
cultural-human endeavour (Tzanakis and Arcavi et. al. 2000, p. 203). In order to answer the how 
question, they distinguished three different but complementary ways of doing the integration: (1) 
learning history, by the provision of direct historical information; (2) learning mathematics topics, 
by following a teaching and learning approach inspired by history; and (3) developing deeper 
awareness, both of mathematics itself and of the social cultural contexts in which mathematics has 
been done (Tzanakis and Arcavi et. al., 2000, p. 208). Finally, their book chapter reported a wide 
range of ideas and examples of classroom implementation: (1) historical snippets; (2) research 
projects based on history texts; (3) primary sources; (4) worksheets; (5) historical packages; (6) 
taking advantage of errors, alternative conceptions, change of perspective, revision of implicit 
assumptions, intuitive arguments; (7) historical problems; (8) mechanical instruments; (9) 
experiential mathematical activities; (10) plays; (11) films and other visual means; (12) outdoors 
experience; and (13) the World Wide Web (Tzanakis and Arcavi et. al. 2000, p. 214).  

On the one hand, the author is strongly inspired by the ideas, models and examples provided by 
this chapter. On the other hand, this paper wants to provide an alternative framework, which 
consists of more theoretical elements from the field of Curriculum Study. This alternative 
proposed is not an attempt to replace the valuable work of Tzanakis and Arcavi et. al.. Rather, by 
following the path of these scholars, the author tries to propose a curriculum framework in order to 
answer the “Why” and “How” questions with more theoretical rigour and vigour from the 
perspective of curriculum design. In other words, this paper attempts to supplement and 
complement their work.  

In the following two sections, Egan’s (1988a, 1988b, 1990, 1992, 1997) theory of educated 
mind and five kinds of understanding: Somatic, Mythic, Romantic, Philosophic, and Ironic will be 
introduced. In order to illustrate the usefulness of his curriculum planning and instructional design 
framework for frontline mathematics teachers, an instructional design for the first crisis of 
mathematics will be provided to demonstrate the practicability and feasibility of this alternative 
proposal. 

3 Beyond storytelling: Theory of educated mind and five   
   kinds of understanding 

Development of educated mind  
Egan’s (1988a, 1988b, 1990, 1992, 1997) sophisticated framework about the development of 
educated mind and different kinds of understanding is original and innovative. His basic idea is 
that there are five distinctive strands or layers of our understanding: Somatic, Mythic, Romantic, 
Philosophic, and Ironic. They are generated by different mediating tools – such as language or 
literacy – which shape our perception of the world.  

His theory suggests that our initial understanding is Somatic. Each other kind of understanding 
results from the development of particular intellectual tools that we acquire from the societies we 
grow up in. Working with ‘tool’ of oral language leads to the Mythic understanding with new 
perspective on the world and experience, and new style of sense making. The Romantic layer is a 
little more complicated. It has been identified not simply with the ‘tool’ of alphabetic literacy, but 
with a cluster of further, related social and cultural developments in ancient Greece. The 
Philosophic understanding is shaped by an even more diffuse ‘tool’. It requires not only a 
sophisticated language and literacy, but also a particular kind of communication to support and 
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sustain it. Finally, Ironic understanding is an implication of self-conscious reflection about the 
language one uses. In general, critical periods for the development of Somatic, Mythic, Romantic, 
Philosophic and Ironic understanding are: below two and a half, two and a half to eight, eight to 
fifteen, fifteen to twenty one, and beyond twenty one respectively. 

These kinds of understanding are not neat and discrete categories. They do not represent 
irreconcilable features in the mind of their users. They are more like different perspectives than 
different mentalities, by means of which particular features of the world and experience are 
brought into focus and prominence. Furthermore, each kind of understanding does not fade away 
and would not be replaced by the next, but rather each properly coalesces in significant degree 
with its predecessor.  

Since they have developed in evolution and cultural history in a particular sequence and 
coalesced to a large extent as each successive kind has emerged. Therefore, Egan (1997) argues 
that “education can best be conceived as the individual’s acquiring each of these kinds of 
understanding as fully as possible in the sequence in which each developed historically” (p.4). 
Thus, his theory of educational development is based on a new recapitulation theory. The 
following introduction of his theory draws heavily from his recently published book in 1997, The
Educated Mind: How Cognitive Tools Shape Our Understanding, which is recommended by 
Howard Gardner as the best introduction of his important body of work. 

Somatic understanding 
Egan espouses an embodied philosophy by suggesting that our body is the most fundamental 
mediating tool that shapes our understanding. Somatic understanding “refers to the understanding 
of the world that is possible for human beings given the kind of body we have” (p.5). Sequentially, 
it precedes the Mythic, Romantic, Philosophic and Ironic understanding. But it does not fade away 
or to be replaced by language development and other kinds of understanding. Rather, it remains 
with us throughout our lives and continues to develop within other kinds of understanding, maybe 
with some modification. Egan is not alone with his embodied philosophy. The recently published 
book, Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Though, written 
by George Lakoff and Mark Johnson in 1999, may provide some general support to his ideas. 
Taking mathematics education into focus, Where Mathematics Come From: How the Embodied 
Mind Brings Mathematics into Being, written by George Lakoff and Rafael Nuñez in 2000 and 
Goodbye Descartes: The End of Logic and the Search for a New Cosmology of the Mind, written 
by Keith Delvin in 1997, are two important books for the elaboration of an embodied philosophy 
of mathematics. 

Mythic understanding 
The two great epic poems of ancient Greece, Iliad and Odyssey, traditionally attributed to Homer, 
are good examples of the features of Mythic understanding. Binary structuring is one of the 
characteristics of Mythic understanding. Male/female, culture/nature, rational/emotional, 
self/other, figure/ground and Chinese Yin/Yang are some of the examples. Another feature is 
fantasy. “Young children, apparently universally, delight in fantasy stories full of talking clothed 
rabbits, bears, or other animals, also dislocated from anything familiar in their everyday waking 
experience” (p.44). Other features include abstract thinking, metaphor, rhythm and narrative and 
images. According to Egan, these features are inevitable consequences of oral-language 
development, whether in oral societies throughout the world and throughout history or by children 
throughout the world as they grow into language-using environments.  
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Romantic understanding 
Egan suggests that Romantic understanding is a distinctive kind of understanding supported by an 
alphabetic literacy. An early and quite clear expression of Romantic understanding is found in the 
Histories of Herodotus, when written literacy was becoming integrated into ancient Greek social 
life since 600BC. “The Histories reads like an ancient Guinness Book of Records, crammed with 
stories about the brave and noble, descriptions of the exotic and bizarre, and expressions of 
wonder at amazing achievements and huge and strange buildings. The kind of understanding it 
displays is not easily sustained without writing.” (p.83). The developments were not simply in the 
new kinds of texts being produced in ancient Greece, but were somehow in the kind of thinking 
went into writing and reading such texts, or listening to such texts being read or performed. For 
instance, Homer’s historical account is primarily loyal to poetic criteria rather than to describing 
precisely what happened. But Herodotus provided a new kind of narrative. It is “a compromise 
between the poet’s desire to evoke an emotional response and the rational desire to describe the 
world as it really is. … Herodotus’s rational inquiry mixes elements of poetry or myth and 
elements of science; its is post-oral but prescientific or pretheoretic” (p.95). The followings are 
some characteristics of Romantic understanding: 1. The limits of reality, the extremes of 
experience, the context of our lives; 2. Transcendence within reality; 3. Humanized knowledge; 
and 4. Romantic rationality. And the central defining features of Romantic understanding is the 
mixture of the mythic with the rational. 

Philosophic understanding 
Philosophic understanding requires not only a sophisticated language and literacy, but also a 
particular kind of communication that in turn requires particular kinds of communities and 
institutions to support and sustain it. Its central feature is systematic theoretical thinking and an 
insistent in the search and expression of the Truth. This kind of understanding is called 
Philosophic “primarily because it was developed in the program that Plato and Aristotle refined 
and bequeathed to the world with such an intimidating weight of intellectual authority” (p.105). 
The two main directions of Plato’s and Aristotle’s promotion of philosophic thinking are its 
intense and systematic development and its claim to provide a privileged view of reality and an 
exclusive path to truth. And the followings are some characteristics of Philosophic understanding: 
1. The craving for generality; 2. From transcendent players to social agents; 3. The lure of 
certainty; 4. General schemes and anomalies; and 5. The flexibility of theory. 

Using historical narrative for illustration again, unlike the ‘romantic’ history of Herodotus, 
Thucydides’ writings about the Peloponnesian War between Athens and Sparta focused on 
establishing a more general truth beyond the particulars. 

Thucydides’ aim was not to record the great and wonderful deeds that should be remembered, 
except insofar as this was incidental to preventing the whole war from ‘sliding over into myth’ 
as the Trojan war had, left to Homer, or into a romantic, audience-gratifying entertainment, as 
the Persian wars had at the hands of Herodotus. Both historians had failed to recognize the 
proper aim of history, which was to establish the truth, not just about a particular war, but about 
war in general. Thucydides seemed to believe that war was like a disease, and as we can trace 
the symptoms and course of a disease, like the Hippocratic writers on medicine, so we can 
establish how war occurs in human affairs. … Like Hippocratic medical researchers, 
Thucydides clearly has a nascent scientific ambition – the discovery of a ‘general law’ 
determining the course of human affairs.” (p.109) 
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In the Western rational metanarrative, the kind of thinking promoted by Plato and Aristotle is seen 
as an inevitable progress from its predecessors. But Egan argues that Philosophic understanding is 
only one of an indeterminate set of possible implications of language and literacy development.  

“It is a kind of thinking that did not gain in other ancient civilizations the dominance it won in 
Greece. That is to say, there is no ‘natural progression’ in this direction; the reasons for its 
development have to be sought in the particularities of ancient Greek society and in the aggressive 
progressive program of a particular group of intellectually talented people. Certain individual 
imaginations grasped in this direction with tools that gained a hold on something, and they 
worked energetically to elaborate both the tools and the understanding of the world those tools 
generated.” (p.105). 

According to Egan, Pythagorean community, community of Hippocratic and Plato’s academic 
community are good examples of these intellectual groups.  

Ironic understanding 
“All generalizations are false” and "The true teacher defends his pupils against his own personal 
influence” are two good examples of Irony.  

[I]rony involves more than a perverse disguise of what might be better stated literally. … It 
leads to a discussion of the kind of understanding that results from the breakdown or decay of 
general schemes. … It leads to the accumulating reflexiveness of language and consciousness 
and the ramifying consequences of this reflexiveness in modernism and postmodernism. It 
leads to Socrates, whom Thrasymachus irritatedly accused of habitual irony (Republic, I.336). 
(p.137-8) 

Although Ironic understanding may be identified in the twentieth century when many Western 
intellectuals recognized that our language could not be adequate for grasping reality and truth. 
Again, its acceptance of contingency at the heart of things is not a uniquely modern stance.  

It is a persistent theme of the Western intellectual tradition, dryly announced near the beginning 
of that tradition in Heraclitus’s claim that ‘The cosmos, at best, is like a rubbish heap scattered 
at random’ (Diels, fragment 124). And the epitome of irony is expressed in what Vlastos calls 
‘Socrates’ renunciation of epistemic certainty’ (1991, p. 4) (pp.138-9) 

4 History of mathematics for the young educated minds:  
   The first crisis of mathematics 

‘The first crisis of mathematics’ in the new Hong Kong mathematics syllabus
“[A]ppreciate the dynamic element of mathematics knowledge through studying the story of the 
first crisis of mathematics” (CDC, 1999, p. 24) as a new objective in the Hong Kong syllabus, 
appears in the ‘Pythagoras Theorem Unit’ which is a part of the ‘Measures, Shape and Space 
Dimension’ for Key Stage 3 (S1 to S3) students. This objective does have its relevant connection 
with other objectives in other learning dimensions, though not explicitly stated in the syllabus. For 
instance, “extend the concepts of numbers to rational and irrational numbers” at Key Stage 3 (S1 
to S3) and “understand the real number system” at Key Stage 4 (S4 to S5) are two related learning 
targets within the ‘Number and Algebra Dimension’. This reflects the important role of ‘The First 
Crisis of Mathematics’ can play in the syllabus.  
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From the perspective of curriculum design, this topic can also have significant contribution for 
different domains of learning objectives: “to induce children to understand and grasp the 
knowledge of the directed numbers and the real number system” in the ‘Knowledge Domain’; “to 
develop the skills and capabilities in basic computations in real numbers and symbols” in the ‘Skill 
Domain; and “appreciate that mathematics is a dynamic field with its roots in many cultures” in 
the ‘Attitude Domain’ (CDC 1999, pp.4-5).  

In the new syllabus, there is a ‘Teaching Suggestions’ chapter proposing some general 
curriculum strategies for the whole syllabus and specific teaching strategies for individual 
dimensions and topics. Unfortunately, no specific teaching suggestion has been proposed for this 
newly introduced topics – ‘The First Crisis of Mathematics’. The author believes that quite many 
Hong Kong teachers may find it an extremely difficult topic to teach without internal or external 
support. By adopting Egan’s (1988a, 1988b, 1990, 1992, 1997) theory and his curriculum 
planning and instructional design framework, the author attempts to suggest some ideas and 
concrete examples for frontline mathematics teachers. This proposal tries to serve three purposes. 
First, the author wants to show that ‘The First Crisis of Mathematics’ is an interesting topic to 
teach. By making reference to the author’s suggestion, it is believed that most teachers can design 
their own interesting and effective lessons. Second, the author attempts to demonstrate the 
practicability and feasibility of Egan’s theoretical framework by this example. Last but not the 
least, the author argues that history of mathematics is not only important for mathematics teaching 
and learning, it is also necessary for educating young minds.  

Mythic and romantic experience 
According to Egan (1997), Pythagorean community is one of the good examples of intellectual 
groups accountable for the advent of Philosophic understanding in ancient Greek. But this 
community does hold many mythical beliefs and have many mystical rituals. Therefore, the author 
suggests teachers to collect and present some of these historical snippets to enrich students’ 
Mythic understanding. Of course, students may also be encouraged to gather their own snippets. 
Useful and interesting snippets include: Pythagoras was firmly convinced that he was the 
reincarnated soul of Euphorbus, a Trojan hero; Pythagoreans believed that all souls, including 
those of animals, transmigrated to other bodies after death, and therefore they are strict vegetarian; 
their most important tenet is ‘All is Number’; their mystical symbol is a number-shape, the 
pentagram or five-pointed star; … so on (Seife, 2000, pp. 26-27).  

Teachers should not stop at mythic snippets because young minds in secondary school need to 
be further cultivated with Romantic understanding too. Although concrete experience and reality 
are the bases of Romantic understanding, one of its major characteristics is the transcendence 
within reality, which can be achieved by investigating the limits of reality and exploring the 
extremes of experience. The focus of the story should then be shifted to the ideas of ‘Ratio’ and 
‘Golden Ratio’. Although numbers and shapes are generated from experience and reality, to 
Pythagoreans, the connection between shapes and numbers is deep and mystical. Music is another 
concrete and beautiful experience. To Pythagoreans, playing music is a mathematical act because 
of the monochord ratio. And ratio does not only govern music, but also all other types of beauty, 
such as physical beautify and mathematical beautify. This philosophy of interchangeability of 
music, mathematics and nature generates their Pythagorean model of the planets; their ‘All is 
Number’ tenet; their discovery of the Golden Ratio; and their use of pentagram as the most sacred 
symbol of the Pythagorean brotherhood. 
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With regard to classroom implementation, teachers may choose to start the topic by citing the 
Bible: “In the beginning, there was the ratio, and the ratio was with God, and the ratio was God” – 
John 1.1. After doing some basic exercises on ratio as revision, teachers may show the popular 
1959 animated short film, Donald in Mathmagic Land produced by Walt Disney to bring out the 
Pythagoreans’ romantic ideas. To follow up, teachers may then design some classroom and bring-
home activities for students to have a better understanding of Pythagoreans’ Mythic and Romantic 
ideas. 

Theoretical thinking and the irony of rationality 
As mentioned before, one central feature of Philosophic understanding is systematic theoretical 
thinking and an insistent in the search and expression of the truth. In order to introduce the abstract 
theoretical thinking of Pythagoreans to the young minds with only nascent Philosophic 
understanding, teachers are advised to adopt the spiral approach of curriculum design. More 
intuitive approach with less theoretical rigor should be adopted for Key Stage 3 (S1 to S3) students 
in order to introduce the theoretical ideas of the harmony of monochord and the orderly 
Pythagorean model of the planets. Intuitive ideas of number line and rational number, and the 
geometric construction of ‘Golden Rectangle’ may also be introduced.  

As students become more mature with Somatic, Mythic, Romantic and Philosophic 
understanding at Key Stage 4 (S4 to S5), they may then be encouraged to find the value of golden 
ratio from the ‘Golden Rectangle’, with peer and teacher support if necessary. They may also be 
inspired to develop a deeper geometric understanding of the construction of golden rectangle. For 
more talented students, teachers may give them enrichment materials for the investigation of 
golden ratio in pentagram or exploration of the relation between golden ratio and Fibonacci 
Sequence. Well-designed worksheets may be the most useful teaching materials for these 
activities. 

In order to introduce the ‘The First Crisis of Mathematics’ to the young minds with nascent 
Philosophic and Ironic understanding, play can be designed to let student re-experience the 
difficult situation of the Pythagoreans and the famous mathematical proof in history. Student 
actors and actresses, with adequately developed Somatic, Mythic and Romantic understanding, 
should be able to act as Pythagoreans and demonstrate their brotherhood. One of these students 
may re-act the astonishment and frustration when discovering the proof of the incommensurability 
or irrationality of the square’s diagonal. Other student Pythagoreans should help the audience 
experience the importance of keeping this secret. ‘Golden ratio is not a ratio’ is another piece of 
secret which destroys the basis of the Pythagorean ratio-universe. Finally, the play may be ended 
with the irony of the ‘irrational’ murder of Hippasus of Metapontum, because of his betrayal act of 
letting the ‘rational’ secret out. After this play of human tragedy of Pythagoreans’ search for truth 
and certainty, teachers may focus on cultivating the young minds with Philosophic understanding 
by the detailed examination of one of the first mathematical proofs in history: the 
incommensurability of the square’s diagonal. Follow up activities may included: the examination 
of the sentence ‘golden ratio is not a ratio’; the revised idea of number line and real number 
system; … so on.  
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5 “Why Study Mathematics?” revisited 

As mentioned before, beyond documentary level, many Hong Kong teachers found it difficult to 
incorporate history of mathematics into their mathematics teaching at classroom level. The author 
agrees with Lit’s (1996) observation that besides practical obstacles, there may also be ideational 
objections if teachers are still embracing a narrow and instrumental view on history of 
mathematics and mathematics education.  

The valuable work of Tzanakis and Arcavi et. al. (2000) has already established many strong 
arguments against the philosophical and practical objections to the classroom use of history of 
mathematics. This paper tries to supplement and complement their work by introducing an 
alternative proposal1. By maintaining that “education can best be conceived as the individual’s 
acquiring each of these (five) kinds of understanding as fully as possible” (Egan 1997, p.4), 
mathematics teachers can then recognize the origins and problems of their narrow disembodied 
theory of rationality and logical thinking, which is hard, calculative and dehumanized. They can 
then embrace a humanistic as well as academic mathematics curriculum which should offer history 
of mathematics a key role to play. 
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1 This alternative proposal may also be useful for the analysis of “philosophical, multicultural and 

interdisciplinary issues”. But such investigation can only be done in another paper. 
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