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ESU 7 (2014)
Proceedings Presentation

Evelyne Barbin, Uffe Thomas Jankvist & Tinne Hoff Kjeldsen

University of Nantes, Aarhus University, University of Copenhagen

This ESU was the seventh European Summer University on the History and Epistemology
in Mathematics Education. The Summer University was held from 14th to 18th of July
2014 in the Danish School of Education, Aarhus University, Campus Emdrup in
Copenhagen (Denmark). The initiative of organizing a Summer University on the His-
tory and Epistemology in Mathematics Education belongs to the French Mathematics
Education community of the IREM in the early 1980s. From these meetings emerged
the organization of a Summer University on a European scale, as the European Summer
University (ESU) on the History and Epistemology in Mathematics Education, starting
in 1993. Since then, ESU was organized in 1996, 1999, 2004, 2007, 2010 and 2014 in
different places in Europe: Montpellier (France), Braga (Portugal), Louvain-la-Neuve
and Leuven (Belgium), Uppsala (Sweden), Prague (Czech Republic), Vienna (Austria)
and Copenhagen (Denmark). By now, it has been established into one of the main
international activities of the HPM Group (the International Study Group on the
Relations between the History and Pedagogy of Mathematics), which is an affiliate of the
International Commission on Mathematical Instruction. From 2010 onwards — the
Summer University is organized every four years, so that every two years at least one
major international meeting of the HPM Group will take place; namely, ESU and the
HPM Satellite Meeting of ICME.

The purpose of ESU is not only to stress the use of history and epistemology in
the teaching and learning of mathematics, in the sense of a technical tool for instruc-
tion, but also to reveal that mathematics should be conceived as a living science with
a long history and a vivid present. The main idea of the Summer University is three-
fold: i) to provide a school for working on a historical, epistemological and cultural
approach to mathematics and its teaching, with emphasis on actual implementation,
ii) to give the opportunity to mathematics teachers, educators and researchers to
share their teaching ideas and classroom experiences related to a historical perspec-
tive in teaching, and iii) to motivate further collaboration along these lines, among
teachers of mathematics and researchers on history and education of mathematics in
Europe and beyond. In accordance with this, the ESU is more a collection of inten-

sive courses than a conference for researchers. More specifically, it is a place where
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EVELYNE BARBIN, UFFE THOMAS JANKVIST & TINNE HOFF KJELDSEN

teachers and researchers meet and work together. It is also a place where beginners,
more experienced researchers and teachers present their teaching experiences to the
benefit of the participants and get constructive feedback from them. It refers to all
levels of education — from primary school, to tertiary education — including in-service
teachers’ training. The focus is preferably on work and conclusions based on actual
classroom experiments and/or produced teaching and learning materials.

These Proceedings collect papers or abstracts corresponding to all types of
activities included in the scientific programme of ESU 7: plenary lectures, panel
discussions, workshops based on didactical, pedagogical, historical and/or episte-
mological material, oral presentations and posters. This volume is divided into eight
sections, seven sections corresponding to each of the seven main themes of ESU 7,
and a section for posters:

1. Tools of history and epistemology, theoretical and/or conceptual frame-
works for integrating history in mathematics education;

2. Classroom experiments & teaching materials, considered from either
the cognitive or/and affective points of view; surveys of curricula and
textbooks;

3. Original sources in the classroom, and their educational effects;

b

History and epistemology as tools for an interdisciplinary approach in the
teaching and learning of mathematics and the sciences;

Cultures and mathematics;

Topics in the history of mathematics education;

History of mathematics in the Nordic countries;

® N oG

Posters

The reader of these Proceedings will find papers on most of the plenaries, workshops
and presentations given at ESU 7. There were two panel sessions: one on Technics
and technology in mathematics and mathematics education and one on The question of
evaluation and assessment of experiences with introducing history of mathematics in the
classroom. The reports from the panel discussions are found in the section for theme 1.

The number of participants to ESU 7 (2014) was 130 — a list of participants is
found at the end of the Proceedings. It is important to remark that they came from
many parts of the world, with many persons participating for the first time in a
meeting organised by the HPM group.

We thank the Danish School of Education and their staff for financial support and
help. A special thank is extended to Pernille Ussing-Nielsen and her staff of student
helpers for extremely professional organization before, during and after the meeting.
We also thank Taylor & Francis and Springer for supporting the conference.

Finally, we thank the members of the HPM Scientific Committee for the quality

of the programme and of the reviewing process of these Proceedings.
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THEME 1:

TOOLS OF HISTORY AND EPISTEMOLOGY,
THEORETICAL AND/OR CONCEPTUAL
FRAMEWORKS FOR INTEGRATING
HISTORY IN MATHEMATICS EDUCATION






Plenary Lecture

PHILOSOPHIES AND THEORIES BEHIND HISTORY AND
EDUCATION: THIRTY YEARS AFTER HANS FREUDENTHAL

Evelyne Barbin
IREM & Laboratoire Jean Leray, Université de Nantes

This paper goes back to a paper of the Dutch mathematician and philosopher Hans
Freudenthal. We analyse and develop two purposes of this paper of 1983: the idea to
not separate history and education in the reflection on mathematical education and
the notion of anti-didactical inversion where this idea is active. We will examine four
situations (1) Philosophy or theory behind History and Education (2) Didactics and
History of Mathematics (3) Philosophy and Theory behind using of History in
classrooms (4) Curricula, Didactics and History. We will continue with the notion of
anti-didactical inversion to examine two orders of knowledge: historical and
didactical orders. From this, we question the role of history of mathematics in the
reflection on the curricula in mathematics.

INTRODUCTION: THE PAPER OF HANS FREUNDENTHAL (1983)

In the ICM Conference of 1983, Freudenthal presented a paper, titled « The Implicit
Philosophy of Mathematics, History and Education ». He called “philosophy of
history” “what we can learn from the history of old mathematics for the sake of
teaching people [...], one philosophy behind both history and education, or if they are
two, that one is common to both” (Freudenthal, 1984, 1695). He stressed the relations
between history and education, but more, he did not want to separate them in his
reflection. He considered that the historical course could be used in teaching, but
“people who teach mathematics as a ready-made system prefer anti-didactical
inversion”. He also noticed about the use of history of mathematics for teaching: “In
fact we have not yet understood the past well enough to really give them [young
learners] this chance to recapitulate it [the historical learning process]” (Freudenthal,
1984, 1696). Indeed, the history of mathematics is not an easy subject if we want to
use it as a tool for teaching. In 1937, the historian of mathematics Gino Loria wrote:
“always I did my best to prove to my students [future teachers] that history of
mathematics is a very serious subject; which has to be studied very seriously” (Loria,
1937, 275). In a recent paper on the historical dimension in teaching, Niels Jahnke
stressed: "History of maths is difficult!" (Jahnke, 1994, 141).

Freudenthal asked the question of the existence of either a philosophy or a theory
behind history. For Imre Lakatos, “history without some theoretical ‘bias’ is
impossible” (Lakatos, 1970, 107), while for the historian Paul Veyne “history has
neither structure nor method and in advance it is certain that any theory in this domain
is still-born” (Veyne, 1971, 144). Lakatos and Veyne represent two opposite
conceptions, which do not lead to the same kind of history. In the first case, it is “a
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rational reconstruction of history” (Lakatos 1970), as Lakatos wrote, which explains
features or reinforces a theory. In the second case, the history tells “an intrigue” to
understand facts. Veyne criticized the introduction of theories or ready-made
frameworks to write history. | introduced the idea of an histoire dépaysante in a paper'
of 1991 (Barbin, 1991), where I quoted Veyne who wrote that “the event is difference
and the characteristic effort of the historian’s profession and what gives it its flavor
are well known: astonishment at the obvious” (Veyne, 1971, 7). A “rational history”
can be written with several kinds of theories: mathematics, didactics, sociology,
psychology, etc. In this paper we will meet some didactical theories: theory of
conceptions, realistic mathematics education, theory of beliefs and radical
constructivism.

In his paper, Freundenthal discussed the notion of anti-didactical inversion, which he
had written about in a book edited ten years before, Mathematics as an educational
task (1973), and later in Didactical phenomenology of mathematical structures
(1983). In this last book, opposing the mental objects to the mathematical concepts, he
wrote:

Children learn what is number, what are circles, what are adding, what is plotting a graph.
They grasp them as mental objects and carry them out as mental activities. It is a fact that
the concepts of number and circle, of adding and graphing are susceptible to more
precision and clarity than those of chair, food and health. Is this the reason why the
protagonists of concept attainment prefer to teach the number concept rather than
number, and, in general, concepts rather than mental objects and activities? Whatever the
reason may be, it is an example of what | called the anti-didactical inversion.
(Freudenthal, 1999, x)

Teaching a concept rather than a mental object is an anti-didactical inversion. Here,
this inversion reverses the convenient didactical order, which is the phenomenological
one. The question of the order of knowledge in general had been a constant concern in
mathematical teaching from the 17" century to the Reform of modern mathematics.

To examine philosophies or theories behind history and education, in each part of this
paper, we will compare two authors — historians, philosophers, teachers or researchers
in didactics — about history and didactics, use of history in classrooms, curricula and
history. These authors had been chosen, to focus on the teaching of curve, tangent and
function and the order of their knowledge. Many of them wrote on the methods of
tangents of the 17" century, so we begin by presenting original texts written by Pierre
de Fermat, René Descartes, Gilles de Roberval and Isaac Barrow.

METHODS ON TANGENTS IN THE 17" CENTURY

There exist propositions on tangents in Greek Antiquity, but the authors didn’t explain
how they found the result and they prove them by reductio ad absurdum. The
geometer of the 17" century researched direct methods to find the tangents: these are
called methods of invention.
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PHILOSOPHIES AND THEORIES BEHIND HISTORY AND EDUCATION: THIRTY YEARS AFTER ...

Fermat’s method

Fermat‘s method of tangents appeared in a text of 1636, entitled “Method for
maximum and minimum”, and is an application of this last method.

Let us consider, for example, the parabola with vertex D and diameter DC; let B be a
point on it which the line BE is to be drawn tangent to the parabola and intersecting the
diameter at E. We choose on the segment BE a point O where we draw the ordinate Ol;
we also construct the ordinate BC of the point B. We have then CD / CI > BC?/ OI?,
since the point O is exterior to the parabola. But BC?/ OI*> = CE?/ IE?, in view of the
similarity of the triangles. Hence CD / CI > CE?/ IE2.

Figure 1. Fermat’s tangent of a parabola

Now the point B is given, consequently the ordinate BC, consequently the point C, hence
also CD. Let CD = d be this given quantity. Put CE = a and CI = ¢; we obtain: d / (d — e)
> a’/ (a®+ e? — 2ae). Removing the fraction: da® + de? — 2 dae > da’ — ae. Let us then
adequate, following the precedent method; by taking out the common terms we find: de? —
2 dae = — a%," or, which the same, de? + a’e ~ 2 dae. Let us divide all terms by e: de + a
~ 2 da. On deleting de, there remains a? ~ 2 da, consequently a = 2d (Fermat, 1891, 122-

123).

Fermat considered a point B on a parabola, the tangent BE and he choose a point O on
this tangent. He knew the relations established by Apollonius to characterize the points
of a parabola. The point O is exterior to the parabola, so by similarity of triangles BCE
and OIE, he obtained the first inequality. He introduced letters and he transformed the
previous inequality by another one between algebraic  expressions.
Then he applied the rules of his method of maximum and minimum. Now the
inequality became what he called an adequation, He divided the two members by e
and then deleted e. So he obtained an adequation without e and transformed it in an
equation that gives the result: CD is equal to DE.

Descartes’method

In his Geometry of 1637, Descartes gave a method to find a normal CP to a curve.
The normal is the perpendicular to the tangent.

Let CE be the given curve, and let it be required to draw through C a straight line making
right angles with CP. Suppose the problem solved, and let the required line be CP.
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Produce CP to meet the straight line GA, to those points the points of CE are to be related.
Then, let MA = CB =y; and CM = BA = x. An equation can be found expressing the
relation between x and y. I let PC = s, PA = v, whence PM = v —y. Since PMC is a right
angle, we see that s, the square of the hypotenuse, is equal to s* = x? + v> — 2vy + y?, the
sum of the two squares. [...]

For example, if CE is an ellipse, we have x* = ry — (r/q) y. By means of these last two
equations, | can eliminate one of the two quantities x and y from the equation expressing
the relation between the points of the curve and those of the straight line GA. Eliminating
x* the resulting equation is y + (qry — 2qvy + qv’—qs?) / (q—r1). [...]

Figure 2. Descartes’ method of tangents

Observe that if the point P fulfils the required equations, the circle about P as centre and
passing through the point C will touch but not cut the curve CE [...]. It follows that the
value of x, and y, or any other such quantity, that is, will be two-fold in this equation, that
is the equation will have two equal roots. Furthermore, it is to be observed that when an
equation has two equal roots, it must be similar in form to the expression obtained by
multiplying by itself the difference between the supposed unknown guantity and a known
quantity equal to it [...]. This last step makes the two expressions correspond term by term.
For example, I say that the first equation found in the present discussion, [...] must be of
the same form as the expression obtained by making e =y and multiplying y — e by itself,
that is y> — 2ey + e = 0. We may then compare the two expressions term by term
(Descartes, 1925, 342-348).

Descartes introduced letters for the coordinates of the point C, for CP and PA. With
Pythagoras, he obtained a first equation. He took the example of an ellipse, for which
the equation has two parameters r and g. He eliminated x from the two equations and
obtained a new equation. Then he examined the situation where CP is the normal to
the curve. In this situation, the circle about P as centre and passing through the point
C will touch but not cut the curve CE. Thus, the last equation must have two equal
roots. Indeed this equation is satisfied for points both belonging to the curve and to the
circle. Then Descartes observed that when an equation has two equal roots, it must be
similar to certain expression. For the example, the equation has to be similar to an
equation that has two roots equal to e. By comparing the two equations term by term,
Descartes obtained the unknowns v and s, and so the position of the normal CP.
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Roberval’s method

Roberval invented his method around 1635, but his “Observations on the composition
of movements and on the means to find the tangents to curves” were edited in 1693.

Axiom or principle of invention. The direction of a movement of a point, which describes
a curve, is the tangent of the curve in each position of this point.

General rule. From the specific properties of the curved line (which you will be given)
examine the different movements, which the point describes where you wish to draw a
tangent: from all these movements compose one single movement, draw the direction of
that movement, and you will have the tangent to the curved line.

First example of the tangent to the parabola. It is clear by the above description that the
movement of E which describes the parabola is composed of the movements of two equal
straight lines, the one is the line AE, the other is the line HE on which it moves with the
same velocity than the point | in the line BA, which is the same than the one of the line
AE by construction, since always AE is equal to BI. Accordingly, since the direction of the
equal movements is known, that is along the given straight lines AE, HE, if you divide the
angle AEH in two [equal] parts by the line CE, [...] the line EC is the tangent (Roberval,
1693, 80-81).

Figure 3. Roberval’s tangent to the parabola

Roberval’s general rule to find tangents to a curve contains three steps: to examine the
different movements of the point describing the curve, to compose them in one single
movement and to draw the direction of this movement. Roberval’s first example is a
parabola. He knew the characteristic of the point of a parabola given by the equality of
the distances EA, of E to the focal A, and EH, of E to the perpendicular at the axis
passing by B. He concluded that the movement, which describes a parabola, is
composed of two movements, one in the direction of EA and the other one in the
direction of EH. Since the segments are equals, the bisector is the tangent.

Barrow’s method

Barrow introduced “indefinitely small” parts of tangent and curve in his Lectiones
geometricae of 1670:

Let AP, PM be two straight lines give, in position of which PM cuts a given curve in M,
and let MT be supposed to touch the curve at M, and to cut the straight line at T. "In order
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to find the length of the straight line PT, | set off an indefinitely small arc, MN of the
curve; then | draw NQ, NR parallel to MP, AP. I call MP =m, PT =t, MR = a, NR = ¢,
and other straight lines, determined by the special nature of the curve, useful for the
matter in hand, | also designate by name; also | compare MR, NR (and through them, MP,
PT) with one another by means of an equation obtained by calculation; meantime
observing the following rules.

I omit all terms containing a power of a and e. | reject all terms which do not contain a
and e. | substitute m for a and t for e. So PT is found and the tangent is obtained.

1. In the calculation, | omit all terms containing a power of a and e, or products of these
(for these terms have no value).

2. After the equation has been formed, | reject all terms consisting of letters denoting
known or determined quantities or terms which do not contain a or e (for these terms,
brought over to one side of the equation, will always be equal to zero).

3. | substitute m (or MP) for a, and t (or PT) for e. Hence at length the quantity of PT is
found (Barrow, 1670, 80-81)."

Figure 4. Barrow’s method

Barrow considered an indefinitely small arc MN of the curve. He associated letters to
the segments of the figure: NR is called e. He compared the sides MR and NR of the
triangle MNR to the sides MP, PT of the triangle MPT. Like in Fermat’s method we
have to observe rules. As NM is indefinitely small, he considered it as a straight line
and used similar triangles of the figure.

PHILOSOPHY OR THEORY BEHIND HISTORY AND EDUCATION

We begin by comparing two authors concerning the philosophy or theory behind
history. We then continue with two authors often quoted in research in didactics.

Histoire dépaysante against rational history

Léon Brunschvicg was a French philosopher who wrote a book on “the steps of the
mathematical philosophy” in 1912. Derek Whiteside was an English historian who
wrote a paper on the “patterns of mathematical thought” in 17" century in 1962.

Brunschvicg used the experience of history against a “pedagogical tradition of the
philosophy” and the “dogmatic systems”, he wanted to write the history of a
“collective acquisition of knowledge between incidents of the invention and forms of
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the discourse” (Brunschvicg, 1912, 459). Whereas Whiteside wrote “a study of the
particular mathematical forms which developed in the 17" century with emphasis on
their interconnections rather than on their philosophical aspects”, and wanted “to
isolate significant trends of development” (Whiteside, 1962, 179). The results are very
different, but we will compare them on two points only. Brunschvicg wrote a histoire
dépaysante, where he gave the words exactly used by the authors and long quotations
for Fermat and Descartes. It is also a history oriented on the research of differences.
Brunschvicg compared the mathematical materials used and the intentions of the
geometers, examined the disputes between them about the value of the methods.

Whiteside didn’t research differences, but similarities. Thus, he pointed to the “slight
differences of treatment required in the two approaches” of Fermat and Descartes. To
obtain this result, he translated the texts into the modern language of limits, which
leads to a none disorienting reading of the texts. He concluded his paper with a
continuous, recurrent and limited view of history: “ In fact — and in summary — what
was done in 17th century mathematics [...] was sufficient to provide rich pickings for
18th century mathematicians seeking a lead into the unknown” (Whiteside, 1962,
384).

Philosophy behind History and Education

Raymond Louis Wilder was an American mathematician interested by philosophy, he
wrote in 1972 a paper “History in the Mathematics Curriculum: Its Status, Quality,
and Function”, also Evolution of mathematical concepts (1969) and Mathematics as a
cultural system (1981). Gaston Bachelard was a French philosopher, he wrote many
books, and two has been translated into English: The formation of the scientific mind
(1938) and The new scientific spirit (1934).

In his paper of 1972, Wilder researched the necessary conditions to introduce history
of mathematics in curriculum and he wrote:

Actually, the standpoint from which | believe we should present the history of
mathematics is at an even higher level than mathematics. By this | mean, to take a broad
view of mathematics as a living, growing organism, which is continually undergoing
evolution; in short we should study it as a culture (Wilder, 1972, 483).

He described this evolution by giving the stages in evolution of geometry, of real
number system, aspects of reality, etc. He described the “forces of mathematical
evolution” like “environmental stress”, “hereditary stress”, etc. and he explained the
evolution inside these frameworks.

The purpose of Bachelard was not to establish a Curriculum, but he thought that
history of sciences could help students “to learn to invent™:

Teaching about the discoveries that have been made throughout the history of science is
an excellent way of combating the intellectual sloth that will slowly stifle our sense of
mental newness. If children are to learn to invent, it is desirable that they should be given
the feeling that they themselves could have made discoveries (Bachelard, 1991, 10).
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It is also meant to disorientate (dépayser) the teachers: “we must also disrupt the
habits of objective knowledge and make reason uneasy. This is indeed part of normal
pedagogical practice”(Bachelard, 1991, p.245). Bachelard stressed on the polemical
character of knowledge. For him, “scientific operation is always polemical; it either
confirms or denies a prior thesis, a pre-existing model, an observation protocol; [...] it
reconstructs first its own models and then reality” (Bachelard, 1984, 12-13).

His epistemology is inscribed in a negative philosophy, an open philosophy which
struggles against the tendency to systems, against positivism and empiricism, like we
read in his book Philosophy of no. It is an epistemology of the difference and of
rupture: “Specifying, rectifying, diversifying: these are dynamic ways of thinking that
escape from certainty and unity, and for which homogeneous systems present
obstacles rather than imparting momentum”(Bachelard, 1991, 27). It is both a
constructivist and historical epistemology, where Bachelard introduced the notions of
epistemological obstacle and rectification of knowledge, and stressed the role of
problems in the historical construction of the sciences.

DIDACTICS AND HISTORY OF MATHEMATICS

Maggy Schneider is a Belgium researcher in didactics. In her thesis of 1988, she
examined the difficulties of students to find the tangent from the calculus of the slope.
Michéle Artigue is a French researcher in didactics, who wrote in 1990 a paper on
relations between epistemology and didactics.

A question of order: comparing Fermat’s and Barrow’s methods for tangents

To explain the difficulties of students to obtain tangent from the calculus of the slope,
Schneider explained that for the students, the tangent is a “mental object” linked with
the idea of slope, while the infinitesimal calculus begins with the derivate number
(Schneider, 1988, 291-292). Thus, the phenomenological order goes from the notion
of tangent to the notion of slope, while the anti-didactical order (which is the scholarly
order) goes from the calculus of the slope to the tangent. It is a case of an anti-
didactical inversion. For Schneider, history helps to understand the difficulties of the
students by comparing Fermat’s and Barrow’s methods for tangents.

Figure 5. Fermat’s and Barrow figures of tangents
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She explained the difficulties by the fact that “the pupils seem nearer to Fermat”.
Indeed, Fermat doesn’t use the slope, while in the procedure of Barrow, the triangle
MNR gives the slope. Schneider didn’t use the Barrow’paper but a simple and short
explanation given by the historian Morris Kline (1972). So, she didn’t mention that the
geometer introduced “indefinitely small” parts of tangent and curve (see above). Thus,
she did not examine the relative questions: what is a curve for Fermat and Barrow? Or
for the students?

Nine conceptions on tangent of a curve

In her paper, Artigue re-situated “the trajectory of the notion of conception” in the
French didactical community in ten pages, with the purpose of grouping “in relevant
class for didactical analysis” the multitude of conceptions on a given object (Artigue,
1990, 265). For her, a historical analysis can show the diversity of the “points of
view” on the “object” of tangent. In consequence, she gave a catalogue of nine
conceptions on tangent and the names of the mathematicians associated which them.

For instance she wrote that for Euclid a straight line is tangent to a curve when having
a common point with the curve, we cannot lead any straight line between the curve
and the tangent at this point. Here, we recognize a result proven in the Elements for
the tangent of the circle, but it is not the definition of the tangent. She wrote also that
for Descartes, a straight line is tangent to a curve if it has a common point with the
curve and is perpendicular to the normal in this point. Here the question became to
know what is a normal for the geometer. She added that “this generalizes the notion of
tangent to a circle via the osculatory circle” and so Descartes finds the tangent of a
cycloid in Book Il of his Geometry (Artigue, 1990, 275). It is a very modern reading
of the original text, which causes confusion, since the Book Il treats only the algebraic
curves and so the cycloid cannot be there. For Roberval, Artigue wrote: “the tangent to
a curve in a point M is the vector velocity in M of a moving point describing a curve”.
The notion of vector velocity arrived only in the end of the 19" century, so the purpose
is not to render a comprehensive or disorienting history. The purpose is situated in the
field of the theory of didactics, and the researcher concluded that the notion of
“conception” corresponds to an “intermediary level in the operational effectiveness of
the didactical analysis”.

Nicolas Rouche, the director of the thesis of Schneider, followed Freudenthal when he
asked: what can we learn from educating the youth for understanding the past of
mankind? This idea is the contrary of the usual one, which is that we can learn from
the past for education. Bachelard is close to this when he remarked: “the idea of the
epistemological obstacle can be examined in the historical development of scientific
thought and also in educational practice” (Bachelard, 1991, 27). For them, the purpose
was not to separate history and education. On the contrary, by referring to the theory
of Yves Chevallard, Artigue separated epistemology and didactics:

Page 29



EVELYNE BARBIN

The student cannot be reduced to an epistemic subject or to a cognitive subject. His
behaviour is also and almost determined in priority by his status of didactical subject.
[The epistemological analysis] shows all that separates these two fields: the
epistemological one and the didactical one. This is this fact, which is at the centre of the
theory of Y. Chevallard already quoted (Artigue, 1990, 278).

HISTORY OF MATHEMATICS IN CLASSROOMS

Laurent Vivier is a French teacher, who wrote a paper in 2010, on “a theoretic
background on the notion of tangent in the secondary teaching” (Vivier, 2010), he
proposed to solve a problem on the teaching of tangent by the Descartes’ method on
tangents. Evgenios Avgerinos and Alexandra Skoufi are teachers in Rhodes. In a
paper of 2010 “On teaching and learning calculus using history of mathematics: a
historical approach of calculus”, they used the Fermat‘s method on tangents.

Descartes’ method in classroom: an adaptation

Laurent Vivier tried to solve one problem of teaching, which is how to introduce the
notion of tangent before the notion of derivative? It is a question on an anti-didactical
inversion since in the French Curriculum, the derivate calculus is presented before the
tangent and used to find tangents. He considered that a historical light would permit to
define an alternative teaching: thus, history is used against an anti-didactical inversion.
For this purpose, he compared Descartes and Fermat’s methods from the point of view
of a teaching approach. For him, Descartes’ method has the advantages to correspond
to a properly defined class of curves, to be an entirely algebraic method and to be
easily understood. He remarked that it could be adapted to find a straight line and not
a circle which is tangent to a curve. While, Fermat’s method permits us to find
tangents to algebraic curves easily, it has the disadvantages to be difficult to explain
and “it is already in analysis”. Moreover, Fermat didn’t give a class of curves for
which the method works.

Vivier adapted the Descartes’ method by intersecting the curve by a straight line, here
a parabola. We can note that Descartes used also this method in his correspondence.
He proposed a problem to his students where he considered a parabola y = x, a point
A with coordinates (a, a%) and the secants passing through A whose the equations are
y = k (x — a) + a’. The question is to find the tangent among the secants. Vivier
concluded his paper by this question: what is a curve?

Fermat’ s method in classroom: a rational re-construction

Avgerinos and Skoufi introduced the teaching of differential calculus inspired by the
principles of the theory of Realistic Mathematics Education of Koeno Gravemeijer,
which promotes real situations in teaching. They wrote:

Fermat discover how applies the [method of maximum and minimum] before in extrema
process of neighbouring points, using the mysterious E, for finding tangent line of a curve
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y = f(x). Let P (a, b) is a point of parabola and P’ a neighbouring point in curve with
coordinates (a + E, f (a + E)). If the P’ be found too much near the P then could one say
that the secant PP’ coincides with the tangent in the P (Avgerinos & Skoufi, 2010, 94)

The authors proposed a rational re-construction of Fermat’s method of tangent, where
they used coordinates and function symbolisms. Further, they used the slope of the
tangent, trigonometry and finally the notion of limit. It is not a histoire dépaysante, in
despite or because they had been disoriented by the “mysterious E” of the method.
They guided students to apply the method to the function f(x) = — x3. They considered
a point P of the curve with coordinates (x, y) and a neighbouring point P’ with
coordinates (x + E, f (x + E)), T the section of tangent with x-axis and TQ = c. The
students are asked to calculate the ratio f(x) / c, then “to set inside” E = 0 to find the
result. In this re-construction, the difference between a curve and a function is not
examined, nor the history of the concept of function.

In contrast to Avgerinos and Skoufi, Schneider used Fermat’s method to understand
the students (see above), because there is no slope in the procedure of Fermat. We
have two completely different readings of Fermat’s method. In the historical reading
of Schneider, the method is linked with the “mental object” tangent of the students. So
the students are nearer to Fermat, because for them the notion of slope is not
associated with the notion of tangent. In her study, the history comes against an anti-
didactical inversion because it permits to understand the difficulties of the pupils with
the order of the Curricula, which goes from the analysis to the slope. While the
modern interpretation of Avgerinos and Skoufi obeys and reinforces the anti-didactical
inversion.

CURRICULA, DIDACTICS AND HISTORY

Anna Sierpinska is a researcher in didactics who works on understanding. In one of
her first papers “On understanding the notion of function” of 1992, she wrote on the
relations between history and didactics. David Dennis is a researcher in mathematics
and science education, he wrote in 1995 a thesis on historical perspective for the
curriculum titled “Historical perspective for the Reform of Mathematics curriculum
geometric curves drawing devices and their role in the transition to an algebraic
description of functions”.

From « epistemological obstacles » to a theory of « beliefs »

The purpose of Sierpinska’ paper concerns the evaluation of teaching: “any evaluation
of a teaching design [...] has to be based on a framework that is external to it. We
must have some theory about understanding and about understanding functions
against which to construct or to evaluate our projects” (Sierpinska, 1992, 25). It
became a theoretical problem in scientific didactics. In her paper, she introduced a
notion of epistemological obstacle: “If once, we know in a new way, we contemplate
our old ways of knowing and what we see are things that prevented us from knowing
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in a new way. Some of these things may be qualified as epistemological obstacles”
(Sierpinska, 1992, 27). Her notion of obstacle is not the same as that of Bachelard,
because it is something to avoid, while for Bachelard the obstacles are normal
components in the process of knowing. She distinguished three levels to explain
obstacles: “attitudes, beliefs and convictions”, together with “schemes of thought” and
“technical levels”. Then she stressed the role of beliefs and schemes of thought, since,
as she explained, an obstacle will be overcome if we are able to stand back from our
beliefs or scheme of thought, if we see their consequences and are able to consider
other points of view.

To develop and reinforce her theory, Siepinska employed the history of mathematics.
She wrote that the first definitions of the concept of function presented it as an
algebraic expression. Below, we will see that the history is more complicated. Then
she gave some definitions of the concept of function, those of Johan Bernoulli,
Leonhard Euler (in his Introductio), Louis Lagrange and Augustin Louis Cauchy, to
conclude that mathematicians have always researched to describe relationships. For
her, curves are not interesting by themselves in history but they provided a context in
which analytic tools for describing relationships could be developed. She added that
Leibniz introduced his calculus and the first definition of function in the context of
analytical geometry and that it is in this context that he and Bernoulli coined the term
« Function » and came to formulate its first definition, but it is not exact as we will
see, since the context was geometrical only.

Sierpinska saw the geometric diagram of a function as an epistemological obstacle. As
she explained, students happen to identify functions with the geometric diagrams
sometimes used to represent them, some students view the diagrams in “synthetic and
concrete way”, other students have “a more analytic view of analytical representations
of functions” but “the line does not represent the relation” and “rather the line is
represented by the relation”. For her, the didactical order, which goes from function to
curve, is not questioned. Moreover, she thought that it is the historical order from
some definitions of the 18" century. The idea that this order would be an anti-
didactical inversion does not emerge.

On curves and functions: epistemological versus historical studies of concepts

In a part of the paper of 1992, titled “epistemological studies versus historical studies
of concepts”, Sierpinska wrote:

An epistemological study of a concept differs from its history. Histories of a mathematical
concept are usually presented as if the concept’s development followed a smooth curve
with positive gradient. Learning cannot be thus modelled. At greater cognitive depths
catastrophe occurs (Sierpinska, 1992, 58).

By these words, she separated history and education, contrary to Freudenthal. The
issue is that she did not criticize the few historical works that she read. Yet, as we
already saw, the history of mathematics depends on the historian. Probably, she read
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authors like Wilder but not others, like Brunschvicg. From this point of view, to come
back to the Leibniz’s texts themselves is interesting, as we have already seen.

Leibniz gave a first definition of function in a paper of 1694 “[On] constructions of a
curve from a property of its tangents”, but he used the word “function” in 1673 and in
1692 with the same meaning and about the same problem, the inverse problem of
tangents. The inverse problem of tangents is a geometrical problem, which consists to
find a curve when the tangents in each point are known.

Figure 6. Leibniz’s geometrical figure for the definition of function

In 1694, Leibniz wrote: “I call function a finite straight line exclusively determined
from straight lines drawn from a fixed point to a given point of the curve. Coordinates
CB, Cp, tangent CT, sub-tangent BT, normal CP are functions of the point” (Leibniz,
1989, 271). That means, that the context is not algebraic but geometrical. The calculus
was invented to solve problems on curves and not problems on functions. More
precisely, Leibniz introduced the notion of function to solve a difficult problem, which
is to find a curve tangent to a family of circles. For this purpose he used his calculus,
and two ways to characterize a curve, which are a differential equation or a series.
Twenty years later, Bernoulli gave another definition in a paper “On the
isoperimetrics” of 1718: “Definition. We called function a variable magnitude or
quantity composed in any manner of this variable magnitude x and of constants F x”.
He did not indicate the manner, but of course he did not only consider algebraic
polynomial equations. In his Introduction to Analysis of the Infinite of 1748, Euler
called function an analytical expression but he changed, after the controversy on the
vibrating strings, to define a function as a dependence between variables.

History against anti-didactical inversion

David Dennis applied the ideas of the “radical constructivism” of Jere Confrey, who
used epistemological arguments to critique standard historical descriptions of
mathematics and used history to describe, examine and legitimise students’
conceptions. Dennis saw history as a source of contexts and activities, his intention is
to use mathematical history “to create a broad and flexible notion of how language
evolved in response to activities and experience”. He knew and criticized the use of
history of mathematics by Sierpinska because she briefly describes a variety of
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historical conceptions of functions and gives some details from original sources, but as
he wrote, “her overall theory of history and its relations to education, remain
progressive-absolutist”. He added:

History is not seen by her as a source of conceptual diversity, but almost as a set of pitfalls
to be avoided or overcome. She suggests that some sense of history can be useful in
helping students to overcome these possible obstacles, but there is no indication that
student investigations within a given historical conception might offer valuable insights
that are obscured by modern conventions (Dennis, 1995, 27).

For him, the purpose of historical and investigations is quite different, in particular:

Historical discussions of the social and technological history of the scientific revolution
would connect such mathematical investigations directly with larger cultural issues, but
most importantly these investigations would provide students with more appropriate,
dynamic, geometric experience (Dennis, 1995, 200).

Dennis questioned the teaching of the concept of function: “a fundamental goal of
mathematics education is for students to develop an understanding of the concept of a
function. In mathematics classrooms curves are usually created from algebraic
equations or numerical data, and only rarely by physical or geometric actions”
(Dennis, 1995, p.198). Like Schneider, he asked that a pedagogical problem should be
linked with the curricula. He remarked that, even before algebraic equations are
found, one can often determine tangent lines, areas between curves, and arc lengths of
curves, all from an analysis of the actions which produced the curves. History shows
that, as we saw with the methods of tangents. Thus, his question concerns an anti-
didactical inversion and opposes an historical order of knowledge and to a didactical
order, which goes from function to curve. Thus, he was interested by curves
themselves. Here, history is used against an anti-didactical inversion and as a tool to
criticize Curricula:

What is governing our choice of curriculum? It would seem to be regulated by algebraic
convenience. Students are asked to consider many curves that | have never seen in daily
life, simply because their equations are tractable.

The role of functions as conceptual tools for the analysis of curve drawing actions
reverses the usual epistemic role that they play in current curriculum where functions are
used to create curves (Dennis, 1995, 175).

That means that, contrary to Chevallard’s theory, the cognitive subject can be more
important than the didactic subject. In his thesis, Dennis gave numerous and various
examples of construction of curves in history: curves are the heart of the learning of
analysis.
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ANTI-DIDACTICAL INVERSION: ON HISTORICAL AND DIDACTICAL
ORDERS

We come back to the anti-didactical inversions met until here. We saw that Schneider
considered the order from slope to tangent, Vivier the order from calculus to tangent
and Dennis the order from function to curve. All these inversions concern the order
between notion of function and notion of curve. The historical order goes from the
notion of curve to the notion of function, but between them there are constructions of
concepts of curve in the years 1630, which are strongly linked with the methods of
tangents (Barbin, 1996). Here | distinguish notion and concept in this manner: a
notion takes is meaning in relation with problems (to solve them) and a concept takes
its meaning in relation with concepts into a theory. For the curve, for instance, we can
speak about a notion of parabola as a way to solve the problem of the duplication of a
cube, but it appears as a concept in the Apollonius’ Conics.

Fermat and Barrow proposed a notion of curve in their works on tangents. Following
the dispute on tangents between Descartes and Fermat, the latter one felt obliged to
give “ a foundation” to his method (Barbin, 2015). He wrote in a paper titled “On the
same method”: “we suppose the tangent already found at a given point on the curve,
and we consider by adequality the specific property of the curve, not only on the curve
itself, but on the tangent to be found (Fermat, 1981, 141). As we saw, Barrow
consider that “an indefinitely small part of the tangent can be substituted for an
indefinitely small arc of the curve”. That means that in these two methods, a curve can
be considered as composed by parts of tangents. This notion of curve permits them to
give an account for the procedures of their methods.

Descartes gave two definitions of what he called a “geometric curve”. In the second
Book of his Geometry he characterized them by this way: “they can be conceived as
described by a continuous motion or by several successive motions, each motion being
completely determined by those which precede; for in this way an exact knowledge of
the magnitude of each is always obtainable” (Descartes, 1925, 316). But some lines
later, he added: “all points of those curves which we may call ‘geometric’ that is, those
which admit of precise and exact measurement, must bear a definite relation to all
points of a straight line, and that this relation must be expressed by means of a single
equation”. He did not prove that these two definitions, one in terms of motions and the
other in terms of equations, are equivalent. But he gave some examples, where he
defined a curve by motions and obtained an equation for the points of the curve.
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Figure 7. A Descartes’ curve defined by motions

In the first paper “Nova methodus” of 1684, where Leibniz introduced his calculus, he
explained that his method does not only concern curves associated to algebraic
equations, but also the others, what he called “transcendental curves”. He wrote:

It is clear that our method also covers transcendental curves — those that cannot be
reduced by algebraic computation, or have no particular degree — and thus holds in a most
general way without any particular conditions.

In its principle, to find a tangent consists of drawing a line that connects two points of the
curve at an infinitely small distance, or the continued side of a polygon with an infinitive
number of angles, which for me is equivalent to the curve.[...] We can always obtain the
value of dx : dy, the ratio of dx to dy, or the ratio of the required DX to the given XY [dx :
dy :: DX : XY] (Leibniz, 1989, 110-111).

Figure 8. The infinitesimal triangle in the Leibniz’s method

A curve can be considered as a polygon with an infinite number of infinitely small
sides. Leibniz used the similarity of the infinitesimal triangle, with slides dx and dy,
and the triangle XDY to establish the fundamental proportion of his calculus.

Descartes distinguished two kind of curves: the “geometric curves” described with
motions, where each motion is completely determined by the others, and the
“mechanic curves”, which are described by independent motions — like the spiral.
Moreover, he announced that the geometrical curves are expressed by algebraic
equations. Leibniz also distinguished two kinds of curves: the curves associated with
algebraic equations called “algebraic curves”, and the others, called “transcendental
curves”. Thus, the mechanic curves of Descartes are not the transcendental curves of
Leibniz, because Descartes always considered the curves as produced by motions,
while for Leibniz, all the curves had a “regular rule”: algebraic equation, differential
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equation or series. This distinction is important in a pedagogical context, but also in a
historical context, since Leibniz and Newton researched different ways to construct
curves, despite of their calculus (Bos, 1986, Knabloch, 2006). The concrete
production of curves enlarges the teaching to the studies of motions and optics, to
physic problems where the unknown is a curve (Barbin, 2006).

History shows the role of the methods of tangent in the construction of a concept of
curve, linked with a concept of tangent, into a theory. In Roberval, a curve is the
trajectory of a point in motion, the tangent is the direction of motion and the method is
cinematic. The concept of curve takes it’s meaning into a theory of the cinematic. In
Descartes, a curve is described by an equation, the tangent is obtained thanks to the
equation of a circle and the method is algebraic. The concept of curve takes it’s place
in algebra. In Leibniz’ infinitesimal method, a curve has to be conceived as a polygon
with infinitively small sides, the tangent is one of its sides and the method use
infinitesimal magnitudes. The new theory is the calculus of differences.

Conclusion: Curriculum and anti-didactical inversions

The historical order is not the order proposed in the Curricula, and we observe that
anti-didactical inversions is a subject of many works — some of them are examined in
this paper. But, accordingly with Freudenthal, a historical course would be used for
teaching. Vivier examined this possibility locally by adapting Descartes’ method, and
Dennis did more radically. But is it possible to use history of mathematics without
changing the Curricula? The answer given by Avgerinos and Skoufi consists in a re-
construction where the result is a hybridization, not necessarily comprehensive by
students and not more efficient than the classical calculus. As we saw also, history of
mathematics is used in didactics research, more often to evaluate or to reinforce
didactical theories than to construct a teaching method. In this kind of research,
history and education are separated, contrary to the Freudenthal’ s philosophy.

The question can be also asked in another manner: how teachers and researchers have
to advance in face of Curricula, which are producers of anti-didactical inversions?
Can history be used and adapted in any Curriculum? What will be the meaning of
these changes? What will be the results? Luis Radford is a researcher in science of
education who examined these questions in a paper of 1997, he wrote:

The way in which an ancient idea was forged may help us to find old meanings that,
through an adaptive didactic work, may probably be redesigned and made compatible
with modern curricula in the context of elaboration of teaching sequences [...] in order to
reconstruct accessible presentations [of history] for our students (Radford, 1997, 32)

The proposal would be to reconstruct history of mathematics, to render it compatible
with curriculum thanks to didactic works. With the examples given in this paper and
others, we can imagine the danger of a terrible anti-didactical inversion, which would
be the “didactical transposition” of history of mathematics. As Freudenthal wrote in
1986, Chevallard’s didactical transposition is “the expression of an anti-didactical
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conception” (Freudenthal, 1986, 327). But, another axis would be to consider history
of mathematics as a source to construct new Curriculum, introducing a most important
interdisciplinary and cultural part in teaching. Dennis asked what is governing our
choice of curriculum. We can add why should we prefer to see a student as a
“didactical subject” rather than as a “cognitive or epistemological subject”. Indeed, the
question of the order of knowledge is an important one in teaching, linked with
epistemological ideas of simplicity and generality, which concerns the comprehension
of students inside mathematics, but also in relations with other scientific fields.
Freudenthal’s paper has the virtue of stressing the role of history of mathematics to
examine the anti-didactical inversions but also to propose a reflection on the order of
knowledge in Curricula.

Acknowledgment. | thank Leo Rogers very much for his comments and his help to
write the paper in English.

NOTES

"It was an answer to the researcher in didactics Yves Chevallard, about two manners to make
history with “bare hands” or with “hands full”, full of didactical concepts.

" translated in Struik, D. J. (1969), p.259.
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The use of computer technology for teaching and learning of mathematics has several
consequences and does sometimes give rise to both controversies and
misunderstandings. We address these problems by both a philosophical and a
historical approach, investigating what it actually is that goes on when new
technologies enter mathematics as a discipline and mathematics education as a
societal practice. Our analysis suggests a focus on continuities in time and place in
the sense that it is necessary to understand the history of “tool use” in mathematics
and the various ways that scholastic and non-scholastic mathematical practices adopt
such tools. Furthermore we point to the strong interrelation between mathematics as
a body of knowledge, mathematical activity and the technologies used for
mathematical work. Finally we discuss how different theoretical lenses and
epistemological outsets give rise to different guidelines and conclusions regarding the
use of computer technology in mathematics education.

TECHNOLOGY IN MATHEMATICS EDUCATION; BEYOND PRO AND
CON

Despite 30 years of use in mathematics education and substantial research and
development activities, computer technology has not brought the positive changes
originally envisioned (Artigue, 2010, Hoyles, 2014). In this plenary panel discussion
we have allowed ourselves to take a helicopter view on the understandings of the uses
of technology and ask some of the big questions that become apparent. In a sense we
wish to understand why the use of technology in mathematics education can give rise
to such hopes and at the same time be considered as a major disappointment. The
panel should bring us further in an understanding of how to conceptualize the use of
computer technology in the teaching of mathematics, and illuminate the debate pro
and con the use of such technologies for teaching mathematics. In the panel we
address the following questions:

« How, and to what extent, does the use of computer technology in mathematical
activities change mathematical work processes, what mathematics is and how it
is understood and learned? More specifically:
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o la. How does the use of computer technology in mathematical activities
change mathematical work processes?

o 1b. How does the use of computer technology in mathematical activities
change what mathematics is?

o 1c. How does the use of computer technology in mathematical activities
change how mathematics is understood and learned?

« Is the use of computer technology in mathematics and mathematics education
best viewed as in continuity with or as a break away from the use of non-
computer technology?

« How can different theories describe doing and learning mathematics with
computer technology?

We have struggled to negotiate a version of the questions that can be embraced by all
of us. And we do suggest that any attempt to answer these questions will at least allow
a more fine-grained discussion of the reasons for bringing computer technology to the
mathematics classroom as well as an increased understanding of the resulting changes
to classroom practice.

UNDERSTANDING THE QUESTIONS

When we tried to answer the questions, we realized that all of the question could be
answered both from the perspectives of activities in education and from the
perspective of activities in mathematics (such as we have asked the second question).
However this leads to another unclarity — what is meant by in education and in
mathematics?

This unclarity invites us to consider mathematical practices in various settings. For
simplicity we will talk about educational settings and research settings. Furthermore
the educational setting refers both to students at different levels and to teachers of
mathematics. Of course aspects of vocational/work life, citizenship, and private life
also involves mathematics, but for the sake of simplicity we will address the questions
from three perspectives: researchers of mathematics, the mathematics student, and the
mathematics teacher. And hence our discussion speaks into the organization
suggested by table 1.

Mathematics Mathematics Mathematician
Student Teacher

How the use of computer technology in | Addressed in the section “technology and mathematical work
mathematical activities changes | processes”
mathematical work processes

How the use of computer technology in | Addressed in the section “technology and the nature of
mathematical activities changes what | mathematics”
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mathematics is

How the use of computer technology in

mathematical activities changes how

mathematicsis understood and learned?

Addressed in the section: “How is the use of computer

technology in mathematical activities changing how

mathematics is understood and learned”

Is the use of computer technology in
mathematics and mathematics education

Addressed in the section: “computers as continuity or rupture

in the development of mathematics”

best viewed as in continuity with or as a
break away from the use of non-computer
technology?

How can different theories describe doing | Addressed in the section: “how do different theories describe
and learning mathematics with computer

technology?

doing and learning mathematics with computer technology?”

Table 1: Matrix showing different approaches to the question of technology and
mathematics learning.

Finally the perspective that we take also affects our possible answers. The questions
mean different things if addressed from specific theoretical perspectives, and they
hence have different answers. In our panel debate we have addressed the questions
from cognitive, didactical and disciplinary perspectives. We will not fill out the entire
matrix from each perspective. Rather we will use the matrix as a guide to navigate
when several approaches address the same question. In the following we shall address
the questions one by one.

TECHNOLOGY AND MATHEMATICAL WORK PROCESSES

We address the question of technology for mathematical work process from the
perspective of students, teachers and researchers work processes.

Students’ mathematical work processes

In general, the use of computer technology promotes the emergence of new solving
techniques, which can facilitate many calculations to the students (Lagrange, 2005).

These instrumented techniques allow students to try many individual cases eventually
reaching generalizations; Trouche et al. (1998) (cited in Lagrange, 2005) showed for
example how some students obtained an expression of the n™ order derivative of (x* +
x + 1)¢", by reflecting on several particular cases using a calculator with CAS
(Computer Algebra System) capabilities.

The distribution of algebraic and arithmetic work to computer technologies does give
rise to some problems, certain tasks and topics (for instance trigonometric triangle
calculations) cannot be worked with by students in meaningful ways, and do not train
the algebraic skills they did in previous technological situations (Misfeldt, 2014).
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Computer technologies provide users with different representational resources and
new possibilities for using familiar forms of representation (Morgan, Mariotti &
Maffei, 2009). For example, students can quickly draw graphical representations of
mathematical objects, but they can also manipulate and explore these representations
dynamically. While the benefits of such resources seem intuitively clear, it should be
pointed out that there still lacks a proper understanding of external cognition and how
graphical representations work (Scafie & Rogers, 1996).

Finally computer technology can also modify mathematics students’ study processes.
Due to the omnipresence of the Internet and mobile devices, students can have
immediate and unlimited access to various sources of mathematical information.
Contemporary mathematics students rely on non-traditional sources of mathematics.
For instance, the study of van de Sande (2011) shows how mathematics students from
different regions of the world are turning to Internet-based open forums looking for
advice that could help them to solve their doubts related to their mathematical tasks.

Mathematics teachers’ work processes

The availability of computer technology affects the teachers' work in many respects.
For instance, mathematical tasks that the teacher can offer to her/his students could
become obsolete when the use of computer technology is allowed in the classroom
(Lagrange, 2005). A task that could be considered a challenging problem in a setting
where computer technology is not available can become a trivial exercise in a
technological-aided setting, in the sense that only applying a command or pressing a
button on the calculator could solve it. Thus the need for redesign of mathematical
tasks arises. It is necessary to rethink the mathematical activities in order to make
them more meaningful and challenging in a technology-aided environment.

Computer technology offers the possibility to enrich teachers’ instructional techniques.
The use of technology may promote the emergence of new teaching techniques; for
example, the work of Drijvers, Doorman, Boon, Reed & Gravemeijer (2010) provides
a taxonomy of various forms of work that can arise when teachers teach mathematics
with the aid of computational tools. Internet resources such as YouTube can make the
mathematical problems given to students more interesting by providing them with
realistic contexts in which these problems could be embedded (Stohlmann, 2012).

Technology can also help to expand teachers’ instructional spaces, i.e., teachers can
provide their students with mathematics instruction beyond the walls of the classroom.
There are for example mathematics teachers who video record their mathematics
lessons and make them available to their students so they can review the lesson in the
privacy of their home (see for example the concept of flipped classroom, Talbert,
2014; Tucker, 2012). On the other hand, the use of mobile technology can help
teachers to organize mathematical activities outside the classroom where students can
use elements of the real world to study mathematical objects and their properties, for
instance (Wijers, Jonker & Drijvers, 2010) report the use of a mathematical game
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based on the use of mobile devices and GPS technology, in which students draw
geometric shapes and explore their properties.

Teachers' work has been described within the documental approach focusing on the
interplay between various resources including computer technologies, that the teachers
use in preparation, conduction, and documentation of their teaching, and their actual
practice (Gueudet, Buteau, Mesa, & Misfeldt, 2014; Gueudet, Pepin, & Trouche,
2012). Despite the undeniable potential, integrating technology in the mathematics
classroom also raises several difficulties, and increased the complexity of teaching
mathematics (Tabach, 2013).

Mathematicians’ work processes

It is undeniable that the work processes of professional mathematicians benefit from
the calculation capabilities of computational tools to the point that it can be argued
that the introduction of computer technology in mathematics has changed mathematics
in several different ways. Four main points can be mentioned:

e Computers have made it easier to search, store and share information.

e Computers have opened the possibility of more powerful explorative
experimentation.

e Computers have made certain types of computationally heavy proofs possible.

e Computers, and associated complex and large data sets from various fields,
have changed what problems are considered interesting.

Hence computational tools support already existing work processes (such as
communicating, searching information etc.), allow mathematicians to conduct
experiments that could lead to the formulation of conjectures and new theorems that
can subsequently be demonstrated in a more formal way.

TECHNOLOGY AND THE NATURE OF MATHEMATICS

The use of tools has accompanied mathematical work processes throughout the history
of mathematics: ruler and compass, abacus, curve-drawers, perspectographs,
planimeters are examples of historical mathematical tools.

Such tools were used to support mathematical activities and at the same time they
contributed to and influenced the progress of mathematical knowledge.

As one example of this we can consider the abacus (this example is thoroughly
discussed in Bartolini-Bussi & Mariotti, 2008). The abacus can “easily” evoke to
experts the place-value notation of integer numbers, and indeed it is often used in
primary schools as a didactical aid, and it is still used in some countries in everyday
life.
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The first appearance of the Sumerian abacus dates back to the period 2700-2300 BC
(Selwyn, 2001). Anyway it took centuries to pass from the computation practice based
on the use of the abacus to the development of a “new” way to represent written
numbers (the place-value notation was originally developed by Indians and introduced
in Europe in the XIII century by Fibonacci; and it took centuries before it was widely
accepted).

“From an historical perspective, the positional system is not “embedded” but rather an
important yet unexpected “by-product” (and even a late one) of the century use of abaci in
computation”. (Bartolini-Bussi & Mariotti, 2008, p. 761).

This example illuminates the role that tools played and still play in the historical
development of mathematics. Tools help represent mathematical actions and objects,
create new representations, develop new forms of treatment of representations, and
give birth to new mathematical objects and new ways of thinking of mathematical
objects. The example also shows how complex this process can be and how
unexpected the results may be. The potential of representational, communicative, data-
storing and data-processing affordances of todays computer technology are strong and
hence we will describe below how computer technology is destined to impact the
development of mathematics in unforeseeable ways. Drawing on evolutionary
approaches to cognition, Kaput and Shaffer argue that “computational media are in the
process of creating a new, virtual culture based on the externalization of highly general
algorithmic processing that will in turn lead to profoundly new means of embodying,
enriching and organizing all aspects of human experience” (2002, p. 288), that is a
new stage of human cognitive development. In the next sections we will zoom in on
the effects that tools has on mathematics as a discipline, and see how it changes for
researchers and for teachers and students.

The researcher perspective

None of the changes in work processes of mathematicians described above are
philosophically innocent, since such changes in the work practice might lead to more
fundamental changes in the field of mathematics.

The fact that computers have made it easier to search, store and share information has
not only made the day-to-day work of mathematicians easier, but has also introduced
qualitatively new ways of conducting mathematical research. An illustrative example
is the On-Line Encyclopedia of Integer Sequences (OEIS.org) that by June 1, 2013,
had been cited in 2399 papers (according to
https://oeis.org/wiki/Works_Citing_OEIS). Thus, computer based tools for sharing
and searching information has provided a new ways for finding and exploring
mathematical theorems.

Explorative experiments are certainly not something new to mathematics. Gauss’
discovery of the prime number theorem which gives an estimate for the total number
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of primes less than a given number', could serve as a historical example (Goldstein
1973). However, the introduction of computers has given us new, powerful tools for
explorative experimentation (see e.g. Sgrensen 2010) and has led to a new recognition
of the experimental aspects of mathematical research, most notably with the birth of
the journal Experimental Mathematics, which is specifically devoted to increase the
awareness of the role played by experiments in mathematical discoveries (Epstein et.
al., 1992, current statement of the journal’s philosophy:
http://www.emis.de/journals/EM/expmath/philosophy.html). Consequently, it is fair to
say that the introduction of computers has led to an increase in both the awareness and
power of explorative experiments as a method for mathematical discovery.

The advent of computer assisted proofs such as the Appel and Haken’s 1976 proof of
the four colour theorem (Appel & Haken 1977a & b) has not only opened the
possibility of using computation heavy proofs, but has also led to the recognition that
mathematics can no longer be viewed as a priori knowledge (for discussion, see
Johansen & Misfeldt, n.d.). Other mathematicians have suggested more radical
reforms. Most notably, Doron Zeilberger has argued that mathematicians should not
invest energy in actually proving mathematical theorems. Instead they should focus
their work on transforming mathematical problems into a form, where computers can
attack them (e.g. Zeilberger 1999a, 1999b). Zeilberger furthermore has argued that the
introduction of computers should lead to a fundamental change in the mathematical
epistemology, where we accept a class of ‘almost-true’ theorems (Zeilberger, 1993).
These observations suggest that the introduction of computers in the mathematical
practice has led to pragmatic changes in the day-to-day work of the mathematicians,
as well as in the methodology and epistemology of mathematics.

The student and teacher perspective

The teaching of mathematics requires a shared conceptualisation of what is being
taught. Hence discussing what mathematics “is” in a technological society becomes
important in order to develop learning goals and curriculum. As we saw above, the
change in researchers’ practice caused by the use of computer technology has affected
mathematics as a discipline, and in the same way students’ and teachers’ use of
technology in the classroom affects what mathematics is for them.

Hence two types of change can be observed; development that results from the
practice of teaching and learning of mathematics in classroom settings and
development from the way mathematics is done in research and professional life,
affecting the target knowledge for teaching mathematics. As described in the previous

L If we let P(x) designate the total number of primes less than or equal to a given positive real
number x, the theorem more precisely states
P(z)

lim —) g
e z/In(x)
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chapter digital technology allows students and teachers to distribute calculations to
computational technology and to communicate more, and in different modalities.
Different educational systems address these changes and possibilities differently, but
potentially these technologies tone down the value of computational skills, and tone up
the ability to communicate and make meaning from diverse digital representations.

The effects from outside of the mathematics classroom come from many sources. We
have here discussed mathematical research, which is one obvious source for
conceptualising what mathematics is. However more such sources exist. The way
mathematics is used in professional life is affected by technology, and so is the
relevance of studying mathematics both in order to cope with various aspects of life
and in order to understand and participate in the democratic debate. Hence, all reasons
for studying mathematics (Niss, 1996) are somehow affected by technology. The
emerging goals for mathematics teaching as a result of technology is described in the
next section.

HOW IS THE USE OF COMPUTER TECHNOLOGY IN MATHEMATICAL
ACTIVITIES CHANGING HOW MATHEMATICS IS UNDERSTOOD AND
LEARNED

In the previous sections we have described how educational research around computer
technology, for example CAS and DGS (Dynamic Geometry Systems), have studied
the micro processes of learning mathematics with computers. These tools change
students’ mathematical work processes and hence affect their learning. We suggest
that the resulting changes can be described as questions of new goals, new didactical
problems, and new didactical potentials.

Since a number of mathematical work processes outside school is affected by
computational technology, it is natural to reconsider goals for schooling. Currently the
role of programming in the mathematics and science curriculum is discussed
(Caspersen & Nowack, 2011; Rushkoff, 2011; Wolfram, 2010), because of the
increased importance of programming in society. As a contrast long division is often
described as a mathematical process that, due to the widespread use of calculators, is
not necessary for lower secondary school pupils to master anymore. The discussion
however is more difficult than this. Although we might all agree that it is not really
important to be able to calculate the quotient of two 7-10 digit numbers fast and
efficient, it does not mean that it is not important to know how it is done. And if
students never do the actual process, then there is a risk that they might never learn
how to do it right (the same goes for the solution of equations, algebraic
simplifications and several other mathematical processes). Learning problems as a
result of blackboxing is well documented (Guin, Ruthven, & Trouche, 2005; Nabb,
2010). If students are consistently using a CAS to perform algebraic reductions and
solutions of equations, then it is less likely that they are able to perform such
calculations without the tool. This can affect learning because the student lose track of
the processes that is hidden by the tool (Jankvist & Misfeldt, 2015).
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The tools also offer a number of new potentials in terms of construction, inductive
reasoning and experimentation. The increased potential in diagrammatic reasoning has
for example been investigated in relation to DGS (Laborde, 2005; Mariotti, 2000).

COMPUTERS AS CONTINUITY OR RUPTURE IN THE PRACTICE OF
MATHEMATICS, AND MATHEMATICS EDUCATION

We will address the question of continuity vs. rupture through two different
frameworks: distributed cognition and the theory of semiotic mediation. The two
frameworks stress quite strongly the aspects of continuity between the use of computer
and non-computer technology in mathematics and mathematics education rather than
the aspects of rupture. Both perspectives consider computer and non-computer
technology as particular ‘artefacts’ designed by humans in order to produce intended
effects (Rabardel 1995, p. 49).

From the point of view of distributed cognition computers can be seen as epistemic
artefacts that allow cognitive tasks to be distributed and completed by epistemic
actions. Although the introduction of computers in mathematics has led to qualitative
changes in mathematical research, the use of epistemic artefacts is not at all new to
mathematics. On the contrary, throughout its history mathematics has been intimately
connected with the use of cognitive artefacts; we have always strived to create tools,
algorithms and representational systems that allow us to reduce the demands
mathematics poses on human cognition. The use of such artefacts can be traced back
to at least the Upper Paleolithic period where carved bones were allegedly used as
tallying sticks. Furthermore, studies of animals, human infants and isolated tribes have
shown that our ability to do mathematics without the aid of cognitive tools is very
limited. To put it roughly, we have the ability to do basic arithmetic with sets
containing less than five elements, and we are able to judge the size of large sets with
approximation (Feigenson, Dehaene & Spelke, 2004; see also Johansen 2010, p. 49
for discussion). We are however not able to judge, say, whether there is 10 or 11
elements in a set without the aid of a cognitive tool, such as a sequence of counting
words.

The theory of semiotic mediation considers the role of computer technology in
fostering mathematics learning process focusing on the commonalities between
computer and non-computer technology, stressing how they contribute not only to the
accomplishment of mathematical tasks, but also to the individuals’ construction of
mathematical knowledge. Computer, ruler and compass, abacus, and curve-drawers
(just to mention some materials often used in schools) are artefacts conceived and
designed to be used according to certain modalities in order to solve tasks. In this
sense, artefacts embody people’s collective experiences, and modes of acting,
thinking, and communicating; i.e. they embody collective social knowledge and
experience (Stetsenko, 2004) which “assures” the correct functioning of the artefact.
And for this very reason artefacts can be viewed as “bearers of historically deposited
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knowledge from the cognitive activity of previous generations” (Radford, 2008, p.
224).

Through the use of an artefact for accomplishing a task, the individual has in a sense
access to the historically and culturally established knowledge embodied in it. In fact
the process of using an artefact for accomplishing a task involves two components
having opposite orientations. On the one hand, the process is oriented towards the
objects of the action: the artefact is a means to transform the object; on the other hand
it is oriented towards the individual, it permits the individual’s consciousness-raising
of the object itself of the artefact-mediated action (Rabardel, 1995). The use of an
artefact even structures the individual’s action and thinking, drives his attention and
perception. This means that artefacts not only serve to facilitate already existing
mental  processes, they also transform them (Cole &  Wertsch,
http://www.massey.ac.nz/~alock/virtual/colevyg.htm).

The didactical potential of the artefact is related to the mediation oriented towards the
individual. The use of an artefact for accomplishing a task may trigger the students’
development of personal meanings concerning the object of the artefact-mediated
action, that are potentially coherent with historically established mathematical
meanings. In educational settings this process is not spontaneous but mediated by the
teacher (Bartolini-Bussi & Mariotti 2008, Maracci & Mariotti, 2013).

Summing up, this general perspective contributes to understand the role that artefacts
may play in the mathematical research, teaching and learning process, illuminating the
aspects of continuity between computer and non-computer technology. Even if the use
of computer technology is bringing undeniable shifts in work processes of students,
teachers and researchers of mathematics, there are still aspects of continuity between
computer technology and non-computer technology and between their use and roles in
mathematics education. The use of computers in mathematics is an extension of a
practice that goes back a long time.

HOW DO DIFFERENT THEORIES DESCRIBE DOING AND LEARNING
MATHEMATICS WITH COMPUTER TECHNOLOGY?

So far we have mainly focused on interactional theories such as distributed cognition
and the theory of semiotic mediation. Such theories provide an important starting
point for developing our understanding of the use of computers in mathematical
practice. However, theoretical constructs have different centres of gravity proposing
different issues and problems. Being aware that the complexity of the issue at stake
requires us to view the problem from different angles, we are left with the question of
how to approach the issue of comparing theoretical perspectives.

Mediating concepts and questions

We can seek inspiration in two European research projects TELMA and ReMath. In
these projects one of the aims was to investigate the role of theoretical frameworks in
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the design and in the analysis of the educational use of computers for mathematics
education. With this focus these projects investigated how different theories drive the
design and analysis in different ways. Hence theoretical constructs studying
mathematics education can be compared through specific attention on three
interrelated poles (Cerulli et al. 2006):

1. aset of features/characteristics of the tool;
2. a specific educational goal; and

3. a set of modalities of employing the tool in a teaching/learning process with
respect to the chosen educational goal

Different theories contribute differently to analyse these poles and their relationship,
some theories are more sensitive to issues related to one pole and leave the others in
the shadow. For instance, when considering the educational goals that can be pursued
through the use of artefacts, one can (or not) focus on epistemological issues
concerning specific mathematical contents or practices, express the educational goals
in terms of cognitive processes possibly considering specific cognitive difficulties,
address the process of construction of knowledge as a social or an individual process,
be concerned about institutional expectations, and so on.

Let us examine three theoretical approaches in that respect. The instrumental approach
(Rabardel 1995, Guin & Trouche 1999) raises the crucial importance of considering
the process through which students develop the “utilization schema” of an
“instrument”. That draws the attention on the pragmatic/operational side of the
knowledge developed by students, involving both knowledge of the artefact and
mathematical knowledge. The theory of semiotic mediation (Bartolini Bussi &
Mariotti, 2008) explicitly raise the epistemological issue of the relationship between
the meanings which individuals autonomously develop when using an artefact and the
culturally established mathematical meanings, and addresses it through a semiotic
lens. The anthropological theory of didactics (Chevallard, 1992), on its side, explicitly
address the question of the institutional expectations and of the compatibility of the
forms and contents of the activity mediated by the artefact and those valued by the
educational institutions.

The above summary is not meant to compare or evaluate the three mentioned theories,
but simply to point out that different theories offer specific theoretical tools, which
inevitably can address only part of the complexity of mathematics teaching and
learning with artefacts. Analogously, we could attach several dimensions even to the
other poles of the construct of didactical functionality: the features of an artefact, and
their modalities of use.

What we have sketched above is in fact the so-called Concern Methodological Tool
(elaborated within the TELMA project, Artigue et al, 2009, and refined in the ReMath
project, Artigue et al.2006, Mariotti et al. 2007) which is meant to express (some of)
the main different dimensions and sensitivities through which different theories
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contribute to conceptualize the features of the tool, the educational goal which can be
pursued through the use of these feature, and the modalities of employing the tool in a
teaching/learning process with respect to the chosen educational goal (Artigue et al.,
2009).

INTERCONNECTED CHANGING PRACTICES

To conclude this discussion of how we should conceptualize the use of computer
technologies in mathematics education, we have suggested that the influence should
be studied with different theoretical lenses (interactional, cognitive, curricular) and
different focus points. One important focus point is the actual artefacts (e.g. a
computer algebra system) used by students, teachers and mathematicians, as well as
the direct influence that such artefacts has on practices. And as we have shown,
different practices are influenced in different ways. If we return to our initial
questions, we have addressed how the use of computer technology change
mathematical work and learning. We have done so by looking at mathematics as an
essentially tool-driven practice. This has given us the insights that the use of tools is a
necessary part of the mathematical practice and that the introduction of new tools is a
common event both in mathematics research and in education. New tools act as
drivers for the development of mathematical research. From this perspective the
introduction of computers is not a special event but is in continuity with the
development and practice of mathematics. The introduction of new cognitive tools
however, change the cognitive landscape and consequently force us to reconsider what
mathematical tasks we consider important and worth learning and what problems and
learning situations we should design in order to teach these tasks in a meaningful way.
The problem of blackboxing described above, illustrates this process well. If a new
cognitive tool, such as a CAS-system, effectively hides the intermediate steps in a task
and turns the task into the use of a simple solve function we should ask whether the
task is worth teaching anymore, and if it is, we should also ask how to do that in a
meaningful way.

The question of whether we should view computer technology in mathematics (and
mathematics education) as in continuity with or as a break away from the use of non-
computer technology is almost answered by our approach to the first question.
Considering mathematics as essentially a tool driven practice, puts the tool in the
centre of the activity and almost forces the continuity perspective. If we say that the
tools that people use have always significantly affected mathematics, and that these
tools always have changed over time, then computational tools are just a natural and
continuous development. However, we are able to see some accelerated changes in
mathematical practices as a consequence of computer technology. These changes
relate to the practices of both teachers, students and researchers of mathematics, as
described in the paper.

The observation that our view of mathematics as a tool driven practice, at least to
some extent, forces a view of computer technology and mathematics that are in
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continuity with other tool uses in mathematics, does give some insights to the last
question. A different conception of mathematics, for instance a realist one,
considering tools as mere means to obtain pure mathematical insights, could legitimate
other answers to our questions, and hence prescribe other reasonable views and
practices on the use of computer technology in mathematics education. We have seen
that different theoretical lenses construct the use of tools in mathematics education
differently, and that these theoretical lenses can be compared by how they construct
the tool, the learning goal and the modes of using the tool (Cerulli et al. 2006).
However, we should also be aware that philosophical construction of what
mathematics is, what technology is, and what education is, can play a role for how the
questions put up in this panel will be answered.
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INTRODUCTION

The question of Evaluation and Assessment that we were asked to consider contains
many different aspects of general beliefs and principles, of personal didactic and
pedagogic decisions, and of internal freedoms and external constraints. The use of
history of mathematics in education and teaching of mathematics also concerns the
broad cultural aspects of our subject surveyed by Alan Bishop (1988). Areas not
considered explicitly in this short report are questions of equity and social justice, of
race and gender, which are the concern of all sensitive educators.

This report is intended first to survey the contexts, options, possibilities, and
situations surrounding the problems of assessment and evaluation, and to offer a
number of questions that we all have to consider when we plan a course, and before
we make an assessment of our students’ work.

These aspects were considered by the panel members, and since each of us work in
different contexts, our work situations and observations can be found in the
statements at the end of this report.

Leo Rogers
EVALUATION AND ASSESSMENT: CLARIFYING THE TERMS

It is clear that the words Evaluation and Assessment are found in different contexts
and have slightly different meanings in different languages, and these meanings are
often confused.

The word Test is also used to mean some kind of assessment, and has its own
particular contexts and intentions.

In UK English we use all three words:

a) Evaluation is about objects, ideas, entities, and beliefs. It indicates what it is about
the subject matter, namely the history of mathematics, its use in education, and often
about some mathematics, that we value.
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Our values derive from our own philosophy of mathematics and of history of
mathematics, and are inherent in any beliefs, principles or practices we hold when
teaching students, or designing their assessment.

b) Assessment is about estimating quantity, or agreeing a ‘measure’, or finding out
what students ‘know’ in some way and is generally qualified as:

i) Formative Assessment (sometimes called Continuous Assessment) which is about
observing changes over time in relatively short-term periodic checks on a student’s
progress, like in-class discussions, weekly tests of facts, or short essays or projects.

These are often used to explore students’ understanding of a concept or to check on
whether our own teaching has been effective.

ii) Summative Assessment is the traditional assessment taken at the end of a student’s
course, like a test at the end of a semester or end of year examinations.

¢) Test: usually means a single short summative assessment.

It could be argued that if we have used formative assessments during a course or
semester, then we have enough information, and we do not need to ask the student to
perform a summative assessment at the end of the period.

There is also the possibility of applying these aspects of evaluation and assessment in
the context of assisting an individual to reflect upon their own progress as ‘self-
assessment’ as noted below (Ipsative assessment).

BASIC QUESTIONS: BACKGROUND CONTEXTS AND PRINCIPLES TO
CONSIDER

Value judgements govern answers to all these questions that can be considered and
debated with colleagues.

e \Why Assess? Deciding on effects or outcomes we expect or seek.

e What to Assess? Becoming aware of and deciding on what we are looking for.

e How to Assess? Selecting the method we regard as being more ‘truthful’ or
“fair’ for different kinds of valued knowledge.

e How to Interpret? Making sense of observations, measurements and
impressions gathered by whatever means we employ and explaining,
appreciating and attaching meaning to ‘raw’ data.

e How to Manage the data? As expressed in words, numbers, statements,
student profiles, personal interviews, etc.

e How to Respond? Expressing and communicating appropriate response
sensitively to individuals and communities.

¢ Inall contexts Feedback for those being assessed is important.
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NORM REFERENCING AND CRITERION REFERENCING

Humanities and Social sciences generally use qualitative assessment methods
whereas the ‘Exact’ sciences, like Mathematics and Physics tend to use quantitative
assessment methods. However, with History of Mathematics we have to select what
is appropriate; our work involves Essays and Projects as well as solving
Mathematical Problems and following Calculations, so both Qualitative and
Quantitative methods depend on the kinds of questions asked about the material
being studied.

Norm Referencing

The essential characteristic of norm-referencing is that students are awarded their
grades on the basis of their ranking within a particular group. This involves fitting a
ranked list of students’ ‘raw scores’ to a pre-determined distribution for awarding
grades. Usually, grades are spread to fit a ‘bell curve’ (a normal distribution), either
by qualitative judgements or by statistical techniques of varying complexity.

Norm-referencing is based on the assumption that an approximately similar range of
performance can be expected for any student group.

Criterion-referencing, as the name implies, involves determining a student’s grade
by comparing their achievements with clearly stated criteria for learning outcomes
and clearly stated standards for particular levels of performance.

Unlike norm-referencing, there is no pre-determined grade distribution and a
student’s grade is not influenced by the performance of other students. Theoretically,
all students within a particular group could receive very high (or very low) grades
depending solely on the levels of individuals’ performances against the established
criteria. The goal of criterion-referencing is to report student achievement against
objective reference points that are independent of the group being assessed.

Ipsative assessment. (Self - assessment)

In this mode of assessment, a person's performance is compared with their own
earlier performance, to determine whether any improvement has been made, or any
‘added value' brought about. Such assessment might involve setting a learner pre-
course, or post-course assessment or keeping track of how a student's average
percentage mark or overall grade changes as they progress through an entire course.
In all cases, however, the benchmark against which any change in performance is
measured is the person's own previous performance - not the performance of other
people. (Andrade & Valtcheva 2009)

Small Groups or Individual Students, and Peer-Assessment

Clearly, small groups of students will not fit into a formal pattern as implied above,
and judgements on individuals may be made on the experience (often over a number
of years) of the assessor. However, in such cases, more than one examiner, or an
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external moderator is usually involved. Topping (1998) shows that Peer Assessment
is “of adequate reliability and validity in a wide variety of applications.”

Once a decision about the type of assessment has been made, the actual tools - the
test, the essay, the project or report (be it quantitative or qualitative) may be applied.

THE VALIDITY - RELIABILITY SPECTRUM

Validity (or truthfulness)

A valid assessment is one that measures what it is intended to measure. The
assessment tools must be appropriate — for example a practical skill cannot be
measured solely by a written test.

On the other hand, for a statement to be valid, it depends on personal, idiosyncratic,
discursive, cultural, individual, and affective factors. Hence judgements about valid
statements are very difficult, often subjective and raise questions about extension
over time and space:

» Can assessment be extended over time and in different situations?
» Can predicting future results and behaviours become more robust?
» Can an individual retain a particular ability whilst maintaining the disposition
to act in the same way over time?
Reliability (or consistency)

For a result to be reliable it needs to be objectively measureable, testable, appropriate,
and repeatable. A reliable result is necessarily restricted to a narrow range of results.
This is the scientific ideal. Even so, reliability involves the expectations of students
and teachers, individual predispositions and attitudes, experiences and personalities,
qualities of experience, and conceptions of abstract entities.

It is well known that two people can witness the same thing (a result, a process, or
entity) but disagree about its meaning or significance. In our own experience we can
find a wide variation in marks in test papers or essays, over time, and between
individual assessors.

Our Problem is to seek a path between these two concepts, to balance the nomothetic
demands of the (quantitative) mark scheme against the idiographic uniqueness of the
(qualitative) student response.

(Educational Studies in Mathematics, 2001; Smith et. al. 1996).
FRAMEWORKS, TAXONOMIES AND TEMPLATES FOR ASSESS-MENT

Bloom et al. (1956) published a taxonomy developed for educational assessment. It
was originally designed for application to all school subjects, and provided
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definitions for each of the six major categories in the cognitive domain. The
categories were Knowledge, Comprehension, Application, Analysis, Synthesis, and
Evaluation.

At the time there were a number of mathematics educators who adapted it to their
own views of assessment of mathematics, and many in mathematics education have
shown it particularly ill-fitting for use in mathematics (Kilpatrick 1993). Later, a
taxonomy of objectives for the affective domain was published (Kratwohl, 1964)
which dealt with beliefs, attitudes and emotions as representing increased levels of
affective involvement, with consequent decreased levels of cognitive involvement,
increasing levels of intensity of response, and decreasing levels of stability of
response. (Krathwohl, 2002, Evans, et.al. 2006, Hannula 2012.) Recent versions of
Bloom’s Taxonomy offer Characterising, Organising, Valueing, Responding, and
Receiving as the main affective domain categories.

The Range of Affective Aspects

Beliefs Attitudes Emotions

<% >

Stability Intensity
Values Mood

(Krathwohl 1964, 2002)

Richard Skemp’s (1976) paper on Instrumental and Relational understanding had a
significant impact on teachers’ views about learning mathematics and influenced
much research on assessing mathematical thinking processes rather than the
production of results.

Generally, variations of Bloom’s Taxonomy fail to identify levels of learning as
opposed to designing different types of question (Freeman and Lewis 1998), and that
its hierarchical nature is flawed, as certain levels in it may be considered
interdependent (Anderson and Sosniak 1994, Kadijevi¢, 2002). However, the most
important difficulty with using taxonomies relates to the classification process itself,
specifically:

(@) It is difficult to put certain questions into just one category. More involved
questions can include routine aspects and procedural calculations as part of the
solution process.

(b) It is difficult to know what skills and thinking are employed by individual students

to answer a question. For example, when asked to prove a theorem, a student may
learn a proof by rote and reproduce it from memory; or understand the principles and
associated concepts and definitions, and use these to independently develop a proof
when assessed.
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(Darlington, 2013).
Competency-Based Learning and Assessment

In this category system we define a set of competencies (criteria), about what
students should know and be able to do, and develop valid, reliable assessments for
them. Similar to the taxonomy above, it defines a set of objectives that, however well
intentioned, is open to the same problems, and we still have to make choices about
what criteria are important and what ideas or principles we value in a given context.
Some versions of this approach allow students to take examinations more than once
and obtain feedback, so that they finally qualify when they have met all the criteria. A
typical competency based situation is the assessment of teacher training which relies
on cognitive skills, effective performance, affective rapport, and qualitative
judgments.

ABILITY THINKING AND ‘LEVELS’ OF ABILITY
Ability thinking

e isingrained in our educational systems.

e is an entity that determines ‘how much’ or ‘how fast’ an individual can learn

o describes similar levels of attainment; hence students with assumed similar
ability are taught together

e leads to the common practice of grouping / setting / streaming in school
environments

¢ influences interactions between teachers and learners and between learners
themselves

e is the dominant discourse for teachers, pupils, parents, policy makers,
curriculum planners, test writers. etc.

o we all use levels of ability — so it is ‘obviously true’!

Ability it is never consistently defined and only understood in the sense that A is
‘better’ (in some particular skill, or group of skills) than B.

THE SCHOOL, COLLEGE, CURRICULUM, AND THE EDUCATIONAL
SYSTEM

We find ourselves working inside a local educational system, in a particular
institutional social context and choose to abide by its rules of governance. The
situation imposes constraints which may limit our choices of teaching material and
methods, but it could also offer affordances (Gibson 1977) namely, possibilities of
choice, development, and action.

Guidelines, Constraints and the Curriculum itself are often politically motivated to
some degree or other. We may follow the guidelines and test the constraints of the
system, and explore the nature of the school or college curriculum; its opportunities
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and affordances which include regulations about assessment and evaluation methods.
(Gresalfi, Barnes & Cross, 2012)

Our Pupils’ or Students’ age or position in the learning programme will
determine the approach we have to the situation.

8 - 10 (Primary School)

10 - 18 (Middle and Secondary Schools)

16 - 20 * (High School and College)

20+ University students and Teachers’ Professional Development

Curriculum Control
What we are able to achieve is subject to different kinds of control

(@) Professional control (what is valued) this concerns the content and nature of the
subject matter; of children, pupils and students; of teaching and learning and
understanding.

(b) Political control (what is ideologically desirable) justification of content — and
methodology — system constraints and affordances ...

These controls depend on the philosophy (ideology) of both Administrators.
Educators and Teachers. (Ernest, 1989, 1991; Furinghetti & Pehkonen 2002;
Andrews, Paul 2007; Drew & Hannafin 2011).

Clarifying our Objectives and Alternatives

e For including the use of History of Mathematics as an element of mathematics
courses at different levels

e For teaching the history of mathematics as a separate course.

¢ For choosing appropriate assessment methods

¢ For evaluating the process of ‘use and assessment’

Range, Suitability and Significance of Historical Materials

The materials we use with our students can create a diversity of mathematical
experiences, including cultural contexts and historical awareness. However, we have
to be aware of the different possibilities of assessment modes available, and make our
own judgments about their use.

(Ball, et. al. 1998)
e Physical materials: Original texts, documents, engravings, memorials,
manuscripts, letters, diagrams,
o Historical ‘events’: Births, deaths, social-economic events, publications, and

similar well-substantiated dates. How important is it to remember the date of
an event?
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e Historical ‘facts’ and ‘problems’: Theorems, propositions, conjectures,
arguments, calculations, explanations, and improvements or refutations of
these.

e Interpretations, Influences, and comparison of different accounts (past and
present) — primary sources and secondary sources; ‘history’ books and
translations of original texts.

e Cultural contexts: explores links between the cultural-historical dimension of
mathematical practices and an individual’s likely mathematical thinking.

All of these aspects have different values, qualities and affordances when used with
different groups of students. Choosing an appropriate system for assessment will not
only allow us to encourage the well-grounded and vigorous development of our
students but also,

“.... investigating the process of how knowledge grows through researching
historical materials themselves, and through evidence of the growth of mathematical
ideas, and using this material either directly or indirectly in the classroom, reaches

for similar understandings and operationally valid results as ‘main-stream’
educational theory.” (Rogers (2014: 120).

STATEMENTS FROM PANEL MEMBERS
Janet Heine Barnett
Colorado State University, Pueblo.

I teach at a Mid-size Regional State University and | teach Undergraduate
mathematics majors; mostly upper division courses, and Prospective teachers -
mostly at both lower and upper secondary school. Guidelines for history of
mathematics CBMS (2012) suggests:

For middle grades: A history of mathematics course can provide middle grades
teachers with an understanding of the background and historical development of
many topics in middle grades.

For high school: The history of mathematics can either be woven into existing
mathematics courses or be presented in a mathematics course of its own. .....

“It is particularly useful for prospective high school teachers to work with primary
sources. Working with primary sources gives practice in listening to ““wrong" ideas.
Primary documents show how hard some ideas have been, for example, the
difficulties that Victorian mathematicians had with negative and complex numbers
helps prospective teachers appreciate how hard these ideas can be for students who
encounter them for the first time. Finally, primary documents exhibit older techniques,
and so give an appreciation of how mathematics was done and how mathematical
ideas could have developed.”
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I use history of mathematics in my teaching with Guided Reading Modules based on
Original Historical Sources: (Barnett et.al. 2014)

“Learning Mathematics and Computer Science via Primary Historical Sources”

This involves joint work with colleagues at New Mexico State University Funded by
US National Science Foundation with 33 existing modules available at
www.cs.nmsu.edu/historical-projects

The typical Structure of a Primary Source Project (PSP) contains:

Historical and biographical background

Excerpt(s) from original source(s)

A project narrative to guide student reading of excerpt(s)
Student tasks based on excerpt(s)

Concluding Comments / Epilogue

The primary goal is to support student learning of core material in contemporary
undergraduate courses using classroom assessment of student learning of
mathematics using:

Reading and Study Guides (Including classroom Preparation and Reading exercises);
Written Homework Sets; Observations of Class Group Work and Contributions to
Whole Class Discussions; Written Exams, including Comprehensive Final Student

Interviews.

Additional Goals: Motivate and support development of a deeper level understanding
that reaches beyond basic content objectives

ASSESSMENT will include student comments on benefits of learning from original
sources, and a theoretical perspective uses (Sfard (2008/2010)

There are Plans for a new project: “Evaluation with research” a component of a new
NSF grant proposal (pending). Project Evaluator: Kathy Clark, Florida State
University.

Ysette Weiss-Pidstrygach
Mathematical Institute, Johannes Gutenberg-University of Mainz. DE.

A Community of Practice

| teach courses in mathematics education for Mathematics student teachers for the
gymnasium at the university of Mainz (Germany). There exist different forms of
assessment and evaluations, like tests, oral examination, essays, coursework, seminar
papers, presentations and homework assignments. But it seems that the biggest
impact on self-concept and self-esteem of the Mathematics student teachers as future
mathematics teachers are the written maths examinations. Today's students were
brought up in a school system with normative approaches to human development.
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They had to produce a required output in situations that are created and determined
by others. A different approach is taken in the process of value creation in a
community of practice (Wenger et al, 2002). The development of a community of
practice starts with a university course in mathematics education. The use of
historical and cultural perspectives in university mathematics education can support
the development of self-esteem and maturity. It can bring together students with
similar interests. In (Weiss-Pidstrygach & Kaenders, 2015) we present the concept of
a seminar on the analysis of mathematical school textbooks and of learning contexts
based on the consideration of historical excerpts. Such a seminar can become a
starting point for a community of practice of student teachers, mathematics educators,
historians, mathematicians, mathematics teachers and school textbook authors with
the potential to develop social recognition and personal appreciation of the individual
interests and talents of its members and their joint activities. We choose to work on
historical excerpts in mathematical school textbooks, because for teacher students this
topic is strongly related to their future practice: In Germany, there are a handful of
schoolbook series that are used extensively in school. At present, most of them have
historical insertions. Since the historical references that we deal with in the seminar
stem from books that teachers use in their daily teaching, they constitute a link of this
activity with the practice.

In countries where textbooks are not used in the classroom, the concept of the
seminar can be adapted to other learning aids with historical references.

Weiss-Pidstrygach, Y., & Kaenders, R. Using historical School book excerpts for the
education of mature mathematics teachers. In Proceedings of CERME 9, 4"-8"
February 2015.

Wenger, E., McDermott, R.A. & Snyder, W. (2002). Cultivating communities of
practice: A guide to managing knowledge. Harvard Business Press.

Frederic Metin
Ecole Supérieure du Professorat et de I'Education, Université de Bourgogne.

I am a mathematics teacher trainer at the School of Education of the University of
Burgundy in Dijon, and my major tasks are:

e to give literary students the opportunity of improving their skills in basic
mathematics;

e to prepare students to take the competitive exam which will make them civil
servants;

¢ then to train them into the construction of their own professional style

But in the various classes | teach, History of Mathematics is a minor subject, but can
be the core of some courses, with for instance a special training session on how to use
original texts in the classroom at middle school and high school levels.
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Nevertheless I use History of Mathematics for both enlightening student’s knowledge
in mathematics and putting some distance between them and this knowledge, plus
linking this knowledge to other disciplines. Of course the question of assessment is a
difficult one: why? How? And does it even make sense to assess the historical aspects
of a course on mathematics?

For example, when you try to make sense of recreational problems contained in a
manuscript course of geometry from a 17" century Jesuit college, what kind of the
way do you have to make sure the students understood the contents and methods? A
simple answer will be: give them items 1 and 2 as exercises and hide item 3, that you
will keep for the special moment of assessment. The ideal original texts are the ones
where the methods are obscurely described, not well explained or even not mentioned.
The natural assessment will be the simple explanation of the mathematics in the text.

Take practical geometry: studying the usual theorems in their unusual but ‘useful
uses’ of the past will provide a kind of depaysement which makes assessment obvious,
or obviously irrelevant: you just check the understanding of the underlying
mathematical thinking, but you might rather reconstruct it. To avoid the trap, you can
ask unusual (for me) question as ‘is that approximation accurate?’ or ‘what is your
opinion about the notations?’ or even ‘how do you feel about the text?” The problem
then is that there is no unique and impersonal answer, and you thus have to accept
different points of view, which is quite unfamiliar in assessing mathematics.

David Guillemette
Université du Québec a Montréal.

From my part, I’'ll concentrate on experiences lived with my students that are pre-
service secondary school teachers. Aiming at “disorientation” with the reading of
original texts, I’ll try to explain our account, to underline our perspective of
disorientation argument and to say few words about the problematic of assessment in
this context.

In my thesis, | manage to describe the experience of disorientation of my students
involved in the reading of original texts. When adopting a phenomenological stance,
major themes emerge from the analysis. Two of them are the experience of otherness
and empathy.

Students are saying that they are trying very hard to understand the mathematics
depicted in original texts. They show great difficulties concerning language, notation,
implicit argument, style, definitions, interpretations, typography, etc. Literally, they
“suffer the texts”. For now, in this context, I see the reading of original sources as a
‘hermeneutic extreme sport’ ... and without helmet. The experience of otherness
seems brutal, from a cognitive and affective point of view, it sometimes includes
shocks and violence.
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From Levinas, I learned that violence is a “thematisation of the Other”, a reification
of the Other, a way to make the Other a Mine, and that to understand something is to
control it, make violence to it. | saw few acts of violence during my experimentation,
for instance, someone said: “Fermat was doing this or that”.

That’s why otherness is linked with empathy. Again with Levinas, and also with
Bakhtine, empathy could be heard as an effort of a non-violent relation with the Other,
in this case, a way of keeping alive the subjectivity of the authors, keeping it fragile
and mysterious. The question is how to accompany the students in this ordeal, in this
hardship experience of otherness? How to maintain an empathic relation with the
authors? | try to address these questions from a fundamental pedagogical point of
view.

From these bases, the question of assessment in this context is for me a question of
affectivity and a question of being-with-others. If assessment should support students,
what are the actions that could support empathy? (Bakhtin, 1981, Levinas, 1985,
2010, 2011)

Discussion among the audience and the panel

There was a general discussion between the audience and the panel members
clarifying points of view and contexts. Most of the audience concentrated on the
university training of teachers and history in the context of teaching mathematics at
this level.

However, the situation in the secondary school and some secondary teachers were
present, and the following points were made by Ewa Lakoma on behalf of the
situation in secondary education

Concering Secondary Education.

Ewa Lakoma
Institute of Mathematics, Military University of Technology.

In Poland there is a system of education: 6+3+3, starting with children at 7 years old.
After each step of education there is outer examination, the same for the whole
population of students at this level in Poland, leaded by the Central Examination
Board [1, 2].

In fact students, when learning, are also preparing to sit these examinations. After the
second stage (gymnasium) the examination opens the door to the Lycee. After the
third stage the 'matura examination' is the entrance examination for the universities.

When we look at the textbooks that were presented in 2000 in the ICMI book of
Fauvel and van Maanen (eds.), we can notice that many of these examples still exist
in current textbooks but now they are treated rather as additional material for
students. Sets of exercises preparing students for the exams are the most important.
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Currently, in school practice, the history of mathematics is often present as
mathematical projects, that students develop individually or in a small team and
present to a classroom audience. They have to find some information on the Internet
and then usually they prepare a multi-media presentation. What is most important
from the point of view of assessment in this activity is the level of invention of
students, their social -competences, the level of using IT, the history of mathematics
is an illustration of these activities. But it is also often evident that students are really
interested in old historical materials, mathematical examples, and their solutions.
They sometimes really learn something new in mathematics.

In the education system, the result of the final examination after a given level decides
on a position for the student at the next higher level. Current school practice is that
the history of mathematics is placed mainly in the context of better preparation of
students for these examinations and has its value when it appears among questions
and tasks in the examination.

An example of such a situation was found in the test after the first phase of education
for 12 years old pupils in 2011.
Example 1 - the "historical' context in the examination

The text to consider was the famous anecdote about the young pupil Karl Gauss
whose teacher gave pupils the task of adding all the numbers from 1 to 40.

In the text there is also a presentation of the reasoning of Gauss.
Just below the text there is some short information:

Karl Gauss (1777-1855) - German scholar, mathematician, astronomer, physicist;
obtained the title of Doctor at the age of 22. In 1807 was a Professor. One of the
greatest mathematicians of the world.

And after that text there were eight multiple-choice exam questions (to select one
correct answer among four statements): six questions consider the situation in the
classroom from the point of view of the teacher, for example:

After checking the notebook the teacher realized that they needed to:
A. move Karl to the next class; B. call his parents ;C. to develop his talent.

D. teach him 'a lesson '. - and the last two questions were supposed to be
'mathematical:

When was this lesson? (i.e. How old was Gauss?)

A At the turn of the seventeenth and eighteenth centuries.
B. In the second half of the eighteenth century.

C. In the late eighteenth and early nineteenth century.

D. In the first half of the nineteenth century.
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and
How old was Gauss, when he became a professor? A. 22, B. 30, C. 48, D. 78

We can pose many important questions such as:
Is this really considering historical material in a way that we prefer?
Was it really about the history of mathematics?

What is the conclusion from results of these ‘mathematical’ questions?

Example 2:
The History of mathematics as a theme for lessons in the Polish language

Surprisingly, the oldest book for geometry written in Polish by Stanislaw Solski, was
titled: The Polish Geometrist, (1683), and has been known by using it at historical
lessons in the Baroque Palace of the King Jan 111 Sobieski in Vilanov, Warsaw.

Students are able to attend at the historical lesson (real or virtual) and are able to read
some pages of this book. The intention is linguistic - to recognise some old Polish
words, but from the point of mathematics this is very important book, because in it
we can find the creation of Polish names for the most fundamental mathematical
notions.

CONCLUSIONS

As long as the history of mathematics is absent from the examination tasks, the status
of considering historical materials will be still seen as 'an appendix' to the main
stream of ‘common’ examination tasks.

For both teachers and students the use and consideration of historical materials must
be clearly justified (otherwise teachers will claim there is 'no time' to consider it)

It is a good idea to integrate areas of the history, language, culture and mathematics
in order to place some historical original materials to consider, but it needs
considerable cooperation between teachers of different subject areas. '

In any case, the history of mathematics is interesting for students and valuable from
the point of view of their cognitive development.

The most important problem is how to profit from the short time between the
examinations whose results decide the future career of young people.

This contribution points to the importance of the history of mathematics in our
cultural education, and the problems about raising the awareness of history without
trivialising the subject within the traditional structure of a formal examination.

This also reflects on the problems raised by the members of the panel above who, in
university contexts have much more freedom to choose their mode of assessment.
Clearly, what can be done in school depends upon the significant external constraints
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of the system, and wherever possible, the mode of assessment needs to be appropriate
for the level of sophistication of the students.
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CURVES IN HISTORY AND IN TEACHING OF MATHEMATICS:
PROBLEMS, MEANINGS, CLASSIFICATIONS

Evelyne Barbin
Université de Nantes

In mathematical teaching nowadays curves appear as graphs of functions. They
have more or less become an exercise of applications of calculus, and their place is
less and less important. So the interest for curves disappeared for students and for
teachers in secondary schools and also in universities.

But in history of mathematics, from Greek geometry to mathematics of today,
curves play an important role. We can learn many things from history. The first
point is that curves are not only a pedagogical object to judge the competencies of
students: they were invented to solve problems of geometry, optics, etc.
Another point was to examine how the curves can be drawn, produced or
constructed, and we find many possibilities given by mathematicians of the past.
Last point but not the least was to classify the curves. The purpose of the
workshop is to examine some historical steps in the long history of curves, and the
goal is to reintroduce curves in teaching as a rich, interesting, open subject. We will
examine the possibility to create an European Team of teachers and researchers
working together to progress on this subject.

Texts taken from Geminus of Rhodes (1% century), the Mathematical Collection
of Pappus of Alexandria (3" century), the Commentaries of Eutocius of Escalon
(6™ century), the Geometry of Descartes (1637), papers of Van Schooten (1654)
and Leibniz (1693), the Introduction to the Infinitesimal Analysis of Euler (1748),
papers of Peaucellier (1868), and (Kempe (1877), the Mechanisms for the
Generation of curves of Artobolevsky (1964).
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In this paper we introduce the concept of cognitive artefact and show how such
artefacts are used in mathematical activities. By analysing different instances of
artefact use we argue that our use of cognitive artefacts can lead to (at least) three
different types of qualitative shifts in our mathematical capacity. Cognitive artefacts
may allow: 1) expansions of practices in otherwise impossible ways, 2) extensions of
mathematical domain, and 3) creative mediation of different mathematical areas. We
argue that the use of cognitive artefacts — and in 2) and 3) — the choice in artefacts
influence the development and content matter of mathematics. Our analysis of the
role played by cognitive artefacts shows that mathematics is essentially a tool driven
practice. We close the paper by discussing consequences of this realization for
the choices we face concerning the introduction of CAS-tools in mathematics
education.

INTRODUCTION

The computer has made its entry into mathematics teaching and learning — which
has created heated debates with very strong opinions for and against. This paper is
not a part of this debate, at least not directly. We are not addressing the
advantages and disadvantages of computer assisted teaching and learning of
mathematics — as a matter of fact, we are not discussing computers at all. Rather,
we take this debate as an opportunity to shift the focus from the computer as
such to the use of tools in mathematics in general, to move beyond the
“good”/”bad” discussion of computers and instead ask: What can we learn about
mathematics if we view mathematics as a tool-driven practice in research and in
every-day (or practical) mathematics?

The concept of cognitive artefacts has drawn a lot of attention in
contemporary cognitive science (see Heersmink 2013 for an overview and Hoyles
& Noss 2009 for some educational implications), and in this paper we are using this
concept to explore how tools affect the development of mathematics. In the
following we introduce the concept of cognitive artefacts, and we use it to
analyse four concrete pieces or episodes in ancient and modern mathematics in
order to explore and pinpoint different ways in which mathematics can be viewed as
driven by tools. We identify three kinds of qualitative shifts in these pieces of
mathematics that are due to the use of such tools. We will close the paper by
discussing what implications the perspective offered by the concept of cognitive
artefacts could have on mathematics education.
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WHAT ARE COGNITIVE ARTEFACTS?

A cognitive artefact is a human made object that is used to aid, improve or enhance
human cognition (cf. Hutchins, 2001, p. 126). Typical examples of cognitive artefacts
include shopping lists, calendars, address books and GPS navigation devices. Such
tools allow us to think better, more reliably or with less effort (cf. Kirsh & Maglio,
1994). They do so not by enhancing our mental capacity, but rather by changing the
cognitive landscape and offer new and cognitively less expensive ways of solving a
given task.

In parts of the literature cognitive artefacts are exclusively associated with physical
objects (e.g. Hutchins, 2001), while other theorists operate with a more inclusive
definition where conceptual artefacts such as procedures, rules and certain concepts
are also accepted as cognitive artefacts (e.g. Norman, 1993, p. 4). In this paper we will
use the concept in this last more inclusive sense. This choice is motivated by several
observations. Firstly, as also noticed by Norman, algorithms and rules of thump are
clearly human creations, they are artefacts, and they can in some cases play the same
role in human cognition as physical cognitive artefacts, i.e. they aid, improve or
enhance our thinking. Secondly, in many — if not most — cases the physical device
taken in isolation is not enough to accomplish the given cognitive task. You will also
need to know certain algorithms or rules for operating the device. Thus it is natural to
include the conceptual artefacts in the totality of resources needed in order to
accomplish the task. Lastly, in some cases the physical part of the artefact can even be
internalised. The alphabet for instance can be seen as a cognitive artefact that is used
to reduce the cost of search operations; if the books in the library were not
alphabetized it would be much harder to find the one you need. However, whether you
carry a piece of paper with the alphabet written down or have memorized the alphabet
is not important. In both cases you use the same artefact.

In the following we will describe how cognitive artefacts are used in mathematics and
identify three different ways in which artefacts have led to qualitative shifts in
our ability to perform mathematical cognition.

EXPANDING THE GIVEN

The first claim we wish to make in this paper is that mathematics is essentially a tool-
driven activity. Over the last two decades cognitive science has shown that
humans and several other species of animals have an inborn ability to solve tasks
we would describe as mathematics. In short, we can do basic arithmetic on sets
with less than four elements, and we can judge the approximate size of larger sets
(Feigenson et.al. 2004; see also Johansen 2010, pp. 49 for discussion). Our inborn
abilities however do not allow us to do anything more than that. So if we want to
find out what 5+6 is or judge whether a set contains 9 or 10 elements, we have to
use qualitatively different cognitive abilities and strategies (NUfiez 2009).
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The limits of our inborn abilities were effectively demonstrated in a study on members
of the Amazonian Piraha tribe (Frank, Everett, Fedorenko, & Gibson 2008). This tribe
is especially interesting in this context because their language does not contain number
words, and consequently the Pirahd does not have access to the technology of
counting. In the study a subject was shown a small nhumber of objects and was asked
to match the sample by placing a similar number of objects on a table. In test
conditions where the sample was hidden the performance of the subjects decreased as
the size of the sample increased; with a sample size of four objects most subjects were
able to match the sample correctly, but with a sample size of ten objects most subjects
would fail the test. In a follow-up study similar results were obtained with participants
from Boston who were deprived the ability to count (Frank, Fedorenko & Gibson
2008).

Tests such as these show that normal adult humans cannot perform simple tasks such
as matching a hidden sample of ten objects without cognitive support. We simply have
to use some kind of tool in order to solve this task. One of the tools that can be used in
this respect is counting. Counting involves a large amount of highly complex cognitive
mechanisms, such as the ability to group objects in certain ways, but first and
foremost it involves a counting sequence, such as the sequence of words “one”, “two”,
“three” etc. In our analysis a counting sequence is a clear example of a conceptual

cognitive artefact.

From a mathematical point of view the example might be banal, but there is a more
general lesson to be learned from it. Our ability to think — also mathematically — is
determined by the cognitive context we are positioned in, that is: by the cognitive
artefacts and other cognitive support available to us. An Amazonian Indian cannot
suddenly begin to count, even if she wants to and even though she has the cognitive
hardware (S0 to speak) needed in order to do so. It is simply not within her cognitive
reach. The introduction of counting thus constitutes a radical change in our cognitive
landscape. With access to counting we can perform tasks that are impossible for us to
do without. Counting allow us to expand our inborn ability to handle the size of sets
with digital precision. Without counting (or similar techniques) we can handle sets
with 1 to 4 elements, but with counting we can handle larger sets with the same degree
of precision.

A similar story can be told about basic arithmetic. We seem to have an inborn ability
to do addition and subtraction, but only on small sets. With the introduction of the
proper cognitive artefacts these abilities can be expanded so as to be applicable to sets
of arbitrary size. In this case the proper artefacts could be conceptual artefacts such as
rules and algorithms or tables of basic products, but also physical artefacts such as the
abacus, counting boards or representational systems that allow basic calculations to be
performed (see e.g. Menninger 1992, pp. 299 and Johansen & Misfeldt 2015 for
examples and analysis). It is not our ambition at this place to provide historical
analysis or account for the genealogy of counting or arithmetic. The fact that we use
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tools is not due to historical contingencies. It is due to the cognitive conditions we face
as human beings; without cognitive support our mathematical abilities are extremely
limited. The kind of tools and cognitive artefacts we use is however a result of
historical development and below we will provide historical case studies illustrating
the importance of such developments.

CHOICE MATTERS

In this section we will expand our analysis by showing some of the roles cognitive
artefacts play in academic mathematics and by illustrating why the choice of cognitive
artefact matters.

We will begin by looking at Proposition 18 from Book V in Euclid’s The Elements.
The proposition is stated and explained in the following way:

Proposition 18
If magnitudes be proportional separando, they will also be proportional componendo.

Let AE, EB, CF, FD be magnitudes proportional separando, so that, as AE is to EB, so is
CF to FD; | say that they will also be proportional componendo, that is, as AB is to BE, so
is CD to FD (Heath, 2006, p. 427).

Even with this explanation it might be difficult to understand the exact content of the
theorem. In Heath’s translation the reader is offered cognitive support in form of the
following diagram (here, slightly simplified):

Figure 1: Diagram representing Euclid V.18

In fact, there are diagrams (or rather: figures) like this on almost every page of
Heath’s translation. This is puzzling in the sense that Euclid carefully describes
all of the needed constructions in the text. So why has Heath included the figures
in the book? They add nothing to the content of the text and thus seem completely
superfluous.

In order to answer this we must turn to the cognitive role such visual
representations play. Of course we could read the text and imagine the
appropriate figure in our mind’s eye. It would however take a considerable effort —
even in simple cases such as the above. Our short-term memory is very limited and
not completely reliable, so from a cognitive point of view it makes sense to off-load
some of the cognitive work to a material object, in this case: a figure drawn on
paper. The figure is in other words a highly specialised cognitive artefact. To
introduce a more precise concept, we can say that in this case the artefact has an
anchoring role for our cognition (Hutchins 2005).
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The conceptual structure we need to build in order to understand the content of
Euclid’s theorem is anchored in the physical drawing. The anchor keeps the general
structure stable and allow us to focus on and manipulate local parts of the structure;
we can for instance imagine what would happen if we moved the point E or we could
add new elements to the drawing (as Euclid actually does in the proof of the theorem).
In this case the anchor seems to be a fairly natural depiction of the content it anchors;
it simply represents magnitudes as line segments.

We will not go through the details of the proof here and the reader does not need to
understand it in details, but we will nevertheless include the proof in full in order for
the reader to form an impression of the cognitive workload it would take to actually
understand and read the proof. In other words, we want to prove a point, not a
theorem. This being said, the proof goes like this:

For, if CD be not to DF as AB to BE, then, as AB is to BE, so will CD be either to some
magnitude less than DF or to a greater. First, let it be in that ratio to a less magnitude
DG. Then, since, as AB is to BE, so is CD to DG, they are magnitudes proportional
componendo, so that they will also be proportional separando. Therefore, as AE is to EB,
so is CF to FD. But also, by hypothesis, as AE is to EB, so is CF to FD. Therefore also, as
CG is to GD, so is CF to FD. But the first CG is greater than the third CF; therefore the
second GD is also greater than the fourth FD. But it is also less: which is impossible.
Therefore as AB is to BE so is not CD to a less magnitude than FD. Similarly we can
prove that neither is it in that ratio to a greater: it is therefore in that ratio to FD itself.
Therefore, etc. (Heath 2006, p. 427).

As we can see, even with the cognitive support offered by the diagram in figure 1, it
would take a considerably effort to follow the proof. As it is, Heath gives us a hint to
another way to attack the problem. He translates the problem to algebraic symbols. In

this representation the theorem states that if %:3 then aT”’:%, Once the
theorem is stated in this way, its proof is no more than a simple calculation:
a_c
b d
21-%4
d
a b c d
—_—t—=—4+—
b b d d
a+b c+d
b d

Here, we use another cognitive artefact; abstract symbols. Contrary to the Euclidian
proof we do not need to consider the content of the operations we perform. We just
need to know a few fully formal rules that tell us how we are — and how we are not —
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allowed to operate on the symbols. In other words, the artefact allows us to externalise
the problem and solve it as a series of physical actions.

This example shows that different artefacts have different affordances. A diagram
such as figure 1 offers a qualitatively different type of cognitive support than algebraic
symbols, and tasks that might be difficult to perform using only the figure might be
relatively easy to perform when using algebraic symbols (and vice versa). Thus,
cognitive artefacts are not just cognitive artefacts. Different artefacts shape the
cognitive landscape in different ways, and for that reason it matters what type of
artefacts one have access to. What one can do — and maybe even what one can think —
is determined by the cognitive artefacts one has access to.

ARTEFACTS AND THE DEVELOPMENT OF MATHEMATICS

We should keep in mind that cognitive artefacts are artefacts; they were not
always around, but were developed by humans. Furthermore, as we argued in
the second section, cognitive artefacts are necessary in order to do more than
rudimentary mathematics. However, with the example analysed in the previous
section it can also be asked whether the introduction of new cognitive artefacts
into the mathematical practice can change the cognitive landscape in such a way that
it not only allows us to expand our given abilities or to do something well-known
more easily, but also allows us to perform qualitatively new tasks. In other words:
Can the introduction of new cognitive artefacts lead to qualitative changes in the
content matter of mathematics?

In this section we will discuss the possible connection between the development
of new cognitive artefacts and developments of mathematics by analysing two
cases: Cardano’s introduction of complex numbers [I] and Minkowski’s use
of n-dimensional lattices. The first case involves relatively simple mathematics
and is relatively distant in time, whereas the second case involves advanced
mathematics and describes a relatively recent development.

Cardano and the complex numbers

In Ars Magna (1545) Cardano considered several problems of the type: Divide a
given number into two parts such that the product of the parts is equal to
another given number. In one of the cases he considered how to divide ten into two
parts such that their product is 40 (Cardano 2007, p. 219). This type of problems
has been known since antiquity and in Euclid’s The Elements we have an
algorithm that makes it possible to construct solutions geometrically in special
cases (Proposition V1.28). The Euclidian algorithm however can only be applied if
the square of half of the given number is greater than or equal to the given
product (this is explicitly stated as a condition to the theorem (Heath, 2006, p.
518)). In this case the square of half the number is 25 and the given product is
40, so the condition is not fulfilled, and Cardano began his treatment by stating
that “it is clear that this case is impossible” (Cardano 2007, p. 219). Nevertheless,
Cardano pressed on and applies the Euclidian
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algorithm (or a version hereof). He constructs the square of half of the given line and
represented the result geometrically, as seen in figure 2.

Figure 2: Drawing from Cardano (redrawn). The given line is represented
as the line segment AB

As the next step the algorithm requires us to subtract the given area from the square of
the given line and to find the square root of the result. In this case we will have to
subtract 40 from 25 and construct the square root of the resultant area. This cannot be
done geometrically — hence the condition in Euclid’s proposition. Cardano responded
to this problem by abandoning the geometric interpretation and representation of the
situation. He simply replaced the geometric representation with abstract algebraic
symbols, and then carried through with the rest of the steps in the algorithm
interpreted not as geometric constructions, but as algebraic operations. This led him to
the conclusion that the problem has the solutions 5++/-15 and 5-+/-15, as the sum
of these numbers are 10 while their product is 40 [2].

Solutions such as those found by Cardano cannot be found or even seen as long as one
is using an algorithm based on a geometric interpretation of the situation. One cannot
represent negative areas geometrically and hence from a geometrical point of view it
does not make sense to subtract a larger area from a smaller one or to construct the
square root of the resultant (negative) area. From an algebraic point of view the
situation is different. With the proper representational system in place one can
represent the square root of -15 just as well as one can represent the square root of 15
(although we might not be able to evaluate the former or understand it as a
constructable geometric object, as Cardano was well aware. It was merely ink on
paper, so to speak). In other words, the algebraic symbols used by Cardano allowed
him to anchor and thus introduce and operate on a class of objects (square roots of
negative numbers) that could not be anchored in the traditional geometrical
representations. So in this case the development of a particular cognitive artefact
(algebraic symbols) allowed a qualitative shift in the content of the
mathematics Cardano was able to develop and work with (c.f. De Cruz & De Smedt
2013).

Minkowski lattice — An artefact in geometry of numbers?

Our final example is an episode in the history of modern mathematics regarding
the German mathematician Hermann Minkowski’s development of geometry of
numbers and the concept of a general convex body. Before we enter into the
mathematical
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details, we introduce a methodological triangle (figure 3) [3] that displays the relation
between the historian, the materials/historical artefacts and the historical actors.

The perspective of the historian

/ Tools™,
/" Artefacts ™
/ Theories \
/ Experience
/" Theoretical constructs ™,

The material/artefacts The perspective of the actor(s)

Figure 3: Methodological triangle

Reliability and validity of historical analyses depend on the relation between these
three i.e. the relation between the perspective of the historian (from which
perspective(s) is the historian writing his/her history?), the perspective of the historical
actors (what were/was their intentions at the time?) and what material/artefacts does
the historian have access to. In the following we will use Kjeldsen’s (2008, 2009)
historical analyses of Minkowski’s development of the concept of a general convex
body to pinpoint yet another way in which mathematics can be considered to be tool-
driven. The relations in the methodological triangle and the validation of the historical
analyses with respect to our agenda in this paper will be unfolded and discussed as we
move along.

The idea of a general convex body was crystalized and constructed in the period 1887-
1897. Two instances have been found: 1) Hermann Brunn’s theses at Munich
University from 1887 in which he introduced and investigated what we today will
think of as general convex bodies in two and three dimensions. 2) Hermann
Minkowski’s work on positive definite quadratic forms that led to his development of
geometry of numbers and the beginning of a theory for general convex bodies in the
period 1887-1897. The short introductions to the history of convex analysis and
geometry that can be found in textbooks and some historical accounts (see e.g.
(Bonnesen and Fenchel 1934; Klee 1963; Gruber 1993)), are mostly written from the
perspective of the present status and practice of the theory of convexity that is, from
the conceptualization of modern mathematicians. In Kjeldsen’s analysis there is a
change of perspective from what we can call timeless “sameness” or from the
universality of mathematics which the above mentioned historical accounts are written
from, to the situatedness, to the local development of mathematics, to the practices of
Brunn and Minkowski, a perspective where attention is paid to the tools and
techniques they used, to their intensions and to unintended consequences of their
work. She moves into Brunn’s and Minkowski’s “workshops” (with their tools,
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techniques, objects and their theories) through their manuscripts, their institutional
affiliations and their mathematical cultures. She uses the historiographical tool of
epistemic configuration (Rheinberger 1997; Epple 2004) in her historical analyses.
Among other things, she argues that Minkowski’s construction of the concept of a
general convex body appeared as an unintended consequence of his work on positive
definite quadratic forms.

Hermann Brunn introduced what he named “ovals” and “egg forms” in his thesis
written in 1887 at the University of Munich. He defined an oval as a closed plane
curve that has two and only two points in common with every intersecting straight line
in the plane, and a full oval as an oval together with its inner points. Egg surfaces and
egg bodies were defined as the corresponding objects in space. A mathematician of
today will recognize these objects as convex sets in two and three dimensions. For
Brunn they were what we could coin quasi-empirical objects whose mathematical
properties such as curvature, area, volume and cross sections were unknown. The
visual and intuitive, the quasi empirical status of Brunn’s objects, were essential for
his mathematical practice. He had very strong opinions about the methodology of
geometry as he wrote in his thesis:

I was not entirely satisfied with the geometry of that time which strongly stuck to laws
that could be presented as equations quickly leading from simple to frizzy figures that
have no connection to common human interests. I tried to treat plain geometrical forms in
general definitions. In doing so | leaned primarily on the elementary geometry that
Hermann Miiller, an impressive character with outstanding teaching talent, had taught me
in the Gymnasium, and I drew on Jakob Steiner for stimulation. (Brunn, 1887)

Brunn’s mathematical objects can be seen as developing from artefacts from our
material world — artefacts which Brunn turned into quasi empirical mathematical
objects. In the discussion we will compare Brunn’s objects with Minkowski’s and
discuss the role of their objects in the development of mathematics.

David Hilbert wrote in memory of his friend and colleague Hermann Minkowski
(1864-1909) that Minkowski’s geometrical proof of the so-called minimum theorem
for positive definite quadratic forms was “a pearl of the Minkowskian art of
invention” (Hilbert 1909). Besides being a very intuitive proof and providing a better
upper bound for the minimum, Minkowski’s work with the geometrical proof of the
minimum theorem led to a new discipline in mathematics, geometry of numbers, it led
to the idea of a general convex body hereby launching the beginning of the modern
theory of convexity, and it led to the generalization of the concept of a straight line
through Minkowski’s introduction of what he called radial distance (which we today
would call an abstract notion of a metric). A key object in these developments is the
concept of a lattice which Minkowski used in his investigations of the minimum
problem for positive definite quadratic forms in n variables. In the following we will
explain the role of the lattice in Minkowski’s work in order to discuss if and if so in
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what sense the lattice can be seen as a cognitive artefact and how these developments
of Minkowski’s in modern mathematics can be said to be driven by this tool.

A positive definite quadratic form f in n variables has the following form:
fX) = @ Xn Xk, X = (X1, X2, . Xn), @k = an
where ay are real numbers.

The minimum problem for such forms is to: Find the minimum value of the quadratic
form for integer values of the variables — not all zero.

Minkowski was inspired by Gauss and Dirichlet who had outlined and shown how
positive definite quadratic forms in two and three variables, respectively, could be
represented geometrically.

Following Gauss, we let
f: axx+ 2bxy + cyy

be a positive definite quadratic form in two variables. In a rectangular coordinate
system, the level curves of such a form will form ellipses. Gauss (1863, p. 188-196)
outlined how such a form can be associated with a lattice that is built up of congruent
parallelograms through a coordinate transformation (see figure 4).

Figure 4: The lattice

The angle ¢ between the coordinate axes in the lattice is determined by cos ¢ = b/\ac.
The points (x\a , y\c) for integral values of x and y are called lattice points. They
form the vertices of the parallelograms. In this coordinate system the quadratic form
measures the distance from lattice points to the origin for integral values of the
variables:

f (x,y) = (distance from the lattice point (xva , y\c) to the origin)®
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In this geometrical representation the minimum problem becomes the problem of
finding the smallest distance between two points in the lattice. Minkowski reached an
upper bound for the minimum for forms of three variables through geometrical
reasoning in his probationary lecture for the habilitation in 1887. The technique he
used was to place spheres with the smallest distance in the lattice as diameter around
lattice points. Since the spheres will not overlap and they do not fill out the volume of
the standard parallelotopes, he could deduce the following inequality:

Vsp <Vpar
el

M < kD”

par

Hereby he reached an upper bound for the minimum M of the quadratic form that
depends solely on the determinant D of the form and the dimension. In 1891 he
published a proof for the n-dimensional case.

Minkowski developed what he called Geometry of Numbers as a general theory of
which positive definite quadratic forms could be treated geometrically. He realized
that the essential property was not the ellipsoid shape of the level curves for positive
definite quadratic forms but what we today will call the convexity property of these
bodies. In a talk from 1891 Minkowski introduced the 3-dimensional lattice, not as a
representation of a positive definite quadratic form in three variables, but as a
collection of points with integer coordinates in space with orthogonal coordinates. In
the lattice, he considered what he called a very general category of bodies that
consists: “of all those bodies that have the origin as middle point, and whose boundary
towards the outside is nowhere concave.” (Minkowski 1891). By then he had realized
that it does not have to be a positive definite quadratic form that measures the distance
in the lattice. It can be any body belonging to this category of bodies. The lattice had
changed function from being a geometrical representation of a positive definite
quadratic form to function as scaffolding for investigating the general categories of
bodies mentioned above. A scaffolding which Minkowski began to investigate within
the context of geometry of numbers that he was developing.

In a talk from 1893 he presented his ideas in more details. He introduced what he
called the radial distance S(ab) between two points, where S is positive if a and b are
not equal to one another, otherwise S is zero. He also defined what he called the
corresponding “Eichkérper” which consists of all the points u which radial distance to
the origin is less than or equal to one: S(ou) < 1 (we would call this the unit ball). He
emphasized that:

If moreover S(ac) < S(ab) + S(bc) for arbitrary points a, b, ¢ the radial distance is called
“einhellig”. Its “Eichkorper” then has the property that whenever two points u and v
belong to the “Eichkorper” then the whole line segment uv will also belong to the
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“Eichkdrper”. On the other hand every nowhere concave body, which has the origin as an
inner point, is the “Eichkorper” of a certain “einhellig” radial distance. (Minkowski 1911,
vol I, p. 272-273)

Today we would recognize a radial distance that fulfills the triangular inequality and is
reciprocal as a metric that also induces a norm.

Minkowski formulated his famous lattice point theorem in the talk: If ~J >2° where J
is the volume of the Eichkdrper, then the Eichkdrper contains additional lattice points.
Minkowski’s lattice point theorem connects the volume of a body with certain
geometrical properties with points with integer coordinates. In his book Geometry of
Numbers, he developed his theory for bodies in n-dimensional space.

In the course of Minkowski’s research the lattice changed epistemic function from
being a representation of positive definite quadratic forms, to become of interests in
itself when Minkowski began to investigate the lattice and its corresponding bodies, to
function as a tool — a scaffolding. Viewing the mathematical practice of Minkowski in
this research episode from this particular perspective of mathematics as a tool driven
enterprise, we can see that the lattice played a major role as a cognitive artefact, a tool
that caused a qualitative shift in the research on the minimum problem for positive
definite quadratic forms, in at least two ways:

» It provided the structure in which the “very general category of bodies” could be
considered (Minkowski’s talk from 1891).

It functioned as a link between integer coordinates and the seize (volume) of the
convex body.

We will finish this example by further exploring how the cognitive artefact of the
lattice in this concrete episode of mathematical research enhanced our mathematical
thinking, in what sense it led to a qualitative shift in our ability to perform
mathematical cognition.

Brunn’s egg-forms and ovals are quasi empirical mathematical objects which he
investigated and proved theorems about by using the method and technique from
synthetic geometry. In the preface or introduction to text books about convexity we
can often read that general convex bodies were first investigated by Brunn and then
further explored and extended by Minkowski (see e.g. (Bonnesen and Fenchel 1934;
Klee 1963; Gruber 1993)). These short accounts of the development of the theory of
convexity are written from the perspective of the modern theory, from the
conceptualization of the writer, who focuses on the similarity of the bodies
investigated by Brunn and Minkowski respectively. This is in the tradition of modern
writings in mathematics where mathematical objects are presented as timeless entities
(cf. Epple 2011).

If we change perspective from considering mathematical objects as timeless entities
and instead focus on the situatedness in the actual production of mathematics, we have
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two trajectories of research emanating from each local context with a concrete
mathematical practice. This is illustrated in figure 5.

Figure 5: The figure is adapted from Kjeldsen (2014)

There were two local contexts, Brunn’s and Minkowski’s, having each a concrete
mathematical practice that was very different from one another. Minkowski and
Brunn worked independently of each other and only became aware of each other’s
work after they both had developed and formulated their ideas. They met around 1893,
and realized that they were both working on bodies with nowhere concave boundaries
(see Kjeldsen 2009).

In order to explore this “sameness” or timelessness of mathematical entities from a
historical perspective of mathematics we can play with the question whether Brunn,
working with ovals and egg-bodies, within his mathematical workshop or “lab”, could
have reached the results of Minkowski, as illustrated by the stipulated trajectory in
figure 6.

Figure 6: The figure is adapted from Kjeldsen (2014)

However, as our historical analysis of the concrete episodes of Brunn’s and
Minkowski’s work with ovals and egg-bodies and positive definite quadratic forms,
radial distance and “eichkdrper”, respectively, from the perspective of Brunn’s and
Minkowski’s mathematical practices has shown, Minkowski’s lattice point theorem
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could not have been developed within Brunn’s mathematical workshop. There is
nothing in Brunn’s practice in this episode that connected the volume of his egg-
bodies with points in space with integer coordinates. Brunn could not have asked the
question of the lattice point theorem, as illustrated in figure 7.

Figure 7: The figure is adapted from Kjeldsen (2014)

The content of concrete episodes of mathematical research, and the questions asked in
such episodes depend on the objects and techniques (lattice, geometrical
representation of quadratic forms vs quasi empirical egg forms, synthetic geometry)
that are available and present for the mathematician in the particular research
situation. Mathematicians’ ability to think mathematically is determined by the
cognitive context they are positioned in, that is: by the cognitive artefacts and other
cognitive support available to them.

The lattice played a significant role in Minkowski’s work. If we look at the dynamics
of the knowledge production, we can see that in the beginning of the research episode,
the lattice functioned as a representation for positive definite quadratic forms that
made it possible for Minkowski to use the method of analytic geometry to work on the
minimum problem. The lattice then became the object of investigation which led to
Minkowski’s introduction of the radial distance and the “Eichkérper”. The lattice was
the connecting link between the geometry of the nowhere concave bodies and
arithmetic through the points with integer coordinates in the Euclidean coordinate
system in n-dimensional space. In this sense, the lattice functioned as a cognitive
artefact, a tool that drove the development of geometry of numbers. It caused a
qualitative shift in the development of Minkowski’s work on positive
definite quadratic forms.

DISCUSSION

Through our four examples we have explored how cognitive artefacts are used
in mathematics and we have identified three different ways in which artefacts have
led to qualitative shifts in our ability to perform mathematical cognition: 1) as an
expansion of the given (counting), 2) as an extension of what one can work and
manipulate with

Page 92



MATHEMATICS AS A TOOL-DRIVEN PRACTICE: THE USE OF MATERIAL AND CONCEPTUAL ...

(the square roots of negative numbers), and 3) as a scaffolding mediator between
different mathematical areas (the lattice). The analyses show that cognitive artefacts
are not just cognitive artefacts. Different artefacts shape the cognitive landscape in
different ways, and for that reason it matters what type of artefacts we have access to.
Our ability to think — also mathematically — is determined by the cognitive context we
are positioned in, that is: by the cognitive artefacts and other cognitive support
available to us.

In the introduction we alluded to the debate about the use of computers in the teaching
of mathematics. We took this debate as an opportunity to shift the focus from the
computer as such to the use of tools in mathematics in general, to move beyond the
“g0od”/”bad” discussion of computers and instead ask: What can we learn about
mathematics if we view mathematics as a tool-driven practice in research and in
every-day (or practical) mathematics? We complete the loop by returning to the
educational perspective. Today almost everybody in the Western world is intimately
connected with smartphones, laptops, tablets and other devices that offer powerful
computational support. This has radically changed the cognitive landscape we are
situated within. We have to recognise this change and take informed decisions about
what consequences it should have for our mathematical practice. At the outset, doing
long division with smartphone is no less mathematical than doing it using an abacus or
Hindu-Arabic numerals. In all the cases, students will be using cognitive artefacts. As
we have shown in our analyses of our historical cases, the different artefacts have
different affordances. They shape the cognitive landscape in different ways, and for
that reason it matters what type of artefacts our students have access to. What they can
do is determined by the cognitive artefacts they have access to. Our decisions
concerning which artefacts to use and (more importantly) which to teach our students
to use, should depend on an analysis of these affordances as compared to our need.

NOTES

1. We are indebted to Professor Jesper Lutzen, University of Copenhagen, for bringing this case to
our attention. Liitzen presented his own treatment in a talk given at the Second Joint International
Meeting of the Israel Mathematical Union and the American Mathematical Society, IMU-AMS in
Tel Aviv, Israel, June 16-19, 2014.

2. It should be noted that Cardano used a slightly different representation. In his original manuscript
the modern symbols + and — are represented as “p” and “m” respectively, and f is represented as
“R2”. Thus in total his two solutions are stated as: 5 p:R2:m:15 and 5 m:R2:m:15 (Struik 1969,
p.68).

3. Presented by Kjeldsen in the talk “Whose History? Minkowski's development of geometry of
numbers and the concept of convex sets”, held at at Second Joint International Meeting of the Israel
Mathematical Union and the American Mathematical Society, IMU-AMS in Tel Aviv, Israel, June
16-19, 2014.
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Workshop

PERSONALISED LEARNING ENVIRONMENT AND THE
HISTORY OF MATHEMATICS IN THE LEARNING OF
MATHEMATICS

Caroline Kuhn & Snezana Lawrence
Bath Spa University

The proposed talk will describe the project, which aims to design and implement
a personalized learning environment built around contextual historical material for
the learning of mathematics. On the one hand, the project seeks to understand
the principles that connect the personalized learning and digital technology, both as
ways of providing individual input and collaborative learning at a distance; on the
other hand it seeks to examine the role that history of mathematics may have in
such a learning environment.

The talk will therefore concentrate on three aspects:

1. It will survey the existing and historical examples of personalized
learning environments which use the history of mathematics as a
contextual tool for the learning of mathematics

2. It will question the hows and whys on using the history of mathematics to
underpin the epistemological aspect of mathematics education in digital
environments

3. It will question whether the original sources, widely available on the Internet,
can contribute to creating an authentic personalized learning environment,
which rests on original research in mathematics.

The talk will be illustrated by the examples of personalized learning environments
in mathematics that use some aspects of the history of mathematics already existing
in the digital world. It will attempt to propose a brief explanations for
creating a personalized learning environment, which has at its core the historical
context of the development of mathematical sciences. Whilst the project is a
recent collaboration between two authors, and empirical studies of the
students’ preferences in the learning of mathematics in digital environments is
not abundant, we will aim to produce results of our initial data.
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Workshop

TEACHING THE MATHEMATICAL SCIENCES IN FRANCE AND
GERMANY DURING THE 18" CENTURY: THE CASE STUDY
OF NEGATIVE NUMBERS

Sara Confalonieri & Desirée Kroger
Bergische Universitat Wuppertal

In the following, we provide the analysis of a particular case study in the
mathematical teaching of the 18™ century: how negative numbers were introduced to
students, justified, and used in practice. We focus on a small selection of French and
German textbooks, paying particular attention to their didactic approaches. Our
main aim is to point out the similarities and differences between these presentations.

INTRODUCTION

During the 18" century, a question of concern in mathematical teaching was how
negative numbers had to be interpreted, either within arithmetic or algebra (for
further reading, see Schubring 2005). In the past, there had already been attempts for
interpretations. Common explanations were possessions and debts, and
guantities moving along in opposed directions. There are three German sources that
give us an insight into the contemporary discussion and the associated problems
with negative numbers. To these belong first Gedanken (ber den
gegenwartigen Zustand der Mathematik (1789) by Johann Andreas Christian
Michelsen (1749-1797), second Versuch das Studium der Mathematik durch
Erlauterung einiger Grundbegriffe und durch zweckmaRBigere Methoden zu
erleichtern (1805, published anonymously) by Franz Spaun (1753-1826), third
the reaction on Spaun’s writing, namely Ueber Newtons, Eulers, Kastners und
Konsorten Pfuschereien in der Mathematik (1807) by Karl Christian von Langsdorf
(1757-1834). Spaun criticized among other things that the meaning of the plus
and minus operators have a double meaning; first representing the arithmetic
operations of addition and subtraction, second as algebraic symbols for positive and
negative numbers (cf. Spaun 1805, p. 7 and p. 18). This aspect concerning the
opposed numbers caused difficulties for contemporaries. Spaun also spoke against
the usage of the expression “negative” in order to denote negative numbers (cf.
Spaun 1805, p. 7). In contrast, Langsdorf argued that this expression was a
convention for mathematicians and could be used for negative numbers (cf.
Langsdorf 1807, p. 12).

We consider a small selection of French and German textbooks from this period. In
order to identify the selection, the following criteria had been taken into account.
Firstly, we limited to textbooks written in a national language, namely French
or German, during the 18" century. Secondly, we searched for textbooks that
were written with a teaching purpose for higher education. Thirdly, we considered
only the ones that were meant to provide a complete presentation of the
mathematical sciences.! Afterwards, among this first raw selection, we chose
some of the most
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renowned and used textbook, according to primary and secondary sources. In
particular, for the French part, we deal with Bélidor's (1725), La Caille's (1741),
Camus' (1749), Bézout's (1764, 1770), and Bossut's (1771). For the German part, we
analyse Wolff's (1775) and Kastner's works. We also choose the textbook by Euler
for the German case, but for the ease of the workshop in an English edition (1822).
The first and original edition was written in German and published in 1770.

With our case study, we wanted to take a look at different approaches to negative
numbers, and especially at their justifications, in the small selection of textbooks.
After a brief presentation of the German and French circumstances (educational
system, institutional conditions, position of mathematics, textbooks and their authors,
...), we invited the participants to work in teams on the different sources. At the end
of the workshop, every team presented their results. The aim was to show the
differences among the various approaches to negative numbers at that time, also in
comparison with the developments that lead to nowadays approaches. In order to
make the study on the sources easier for the participants and to guarantee comparable
results, we proposed the following questions for the analysis of the sources:

»  Definition: Is there a definition of negative numbers? If yes, where is it in the
textbook? Are there examples to explain the definition? If yes, what are they?

»  Terminology: Which expressions are used?

»  Are there interpretative models for negative numbers?

* Are there also non-mathematical remarks (philosophical, historical,...)? Is
the difference between plus and minus once as arithmetic operators, once as
algebraic symbols clear?

*  Applications: How are negative numbers used in calculations? (subtraction,
multiplication in algebra, quadratic equations)

»  According to your experience, are there parallels or differences to nowadays
approaches?

e Other impressions

This workshop was based on parts of the results that we got in the context of the
project “Traditionen der schriftlichen Mathematikvermittlung im 18. Jahrhundert in
Deutschland und Frankreich”, financed by the Deutsche Forschungsgemeinschaft
(DFG) at the Bergische Universitat in Wuppertal. The final aim of this project is to
establish a comparison between the German and French textbooks that were used
during the 18" century to teach mathematical sciences in higher education. Therefore,
we take into account many case studies, including the one at issue. Eventually, we
hope to manage to analyze the emergence of traditions in teaching mathematics in
this period, and also to retrace their possible origins in the textbooks written in Latin,
especially by the Jesuits. To this purpose, we are moreover working on a
comprehensive database, based on the software developed by another DFG project,
the “Personendaten-Repositorium”, at the Berlin-Brandenburgische Akademie der
Wissenschaften.
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FRANCE

All the French authors that we are taking into account delayed the treatment of
negative numbers until the algebra part. Bélidor's approach is in this respect peculiar
since he did not deal with elementary arithmetic at all, so that negative numbers are
explained right at the beginning of his Nouveau cours de mathématiques (Book I).
Indeed, he took for granted that his readers were acquainted with calculations with
integer and fractional numbers and started, after having stated some basic geometrical
definitions (without examples), with calculations with “algebraical quantities”, that is
with letters that are used as signs to point at non-defined numbers. Bélidor
maintained that, when an algebraic quantity is preceded by no sign, that is, neither by
+ nor by —, he always supposed that it has the sign + and called it “positive quantity”.
On the other hand, the quantities that are preceded by the sign — are called “negative”
(cf. Bélidor 1725, p. 11). He provided +ab = ab and —ab as examples, where he used
to denote the algebraical quantity ab referring to the extremes a, b of a geometrical
segment. Bélidor provided some interpretative models for negative numbers. First, he
interpreted them as possessions and debts (cf. Bélidor 1725, p. 14). Later, he stressed
that negative quantities are not “less real” than the positive ones. Indeed, they are
opposite quantities, which means that they have contrary effects in calculations (cf.
Bélidor 1725, p. 18 and p. 80). Bélidor never clearly stated the difference between
plus and minus. Sometimes he used them as arithmetic operators, sometimes as
algebraic signs. He suggested both viewpoints (cf. respectively Bélidor 1725, p. 8 and
pp. 12-13 and Bélidor 1725, p. 14 and p. 18), but he never critically compared them.
Negative quantities appear at first while dealing with the algebraical subtraction,
where a “—b” stands alone. This means that there the “~” denotes the fact that “b” is
negative, and it is not an operation. Many other examples, for instance the results of
the multiplication (-8abc)(-5bcd) and of the multiplication (a—b)(a—b), can be found
in the paragraph on algebraical multiplication. In this passage, Bélidor argued that, if
the multiplicand has the sign + (respectively -), the multiplication is made by
addition (respectively subtraction) of the same algebraical quantity. A classical
example concerns the so-called rule of signs, namely when one or more negative
multiplicands are involved. The most interesting examples, however, are to be
searched for in the treatment of quadratic equations (cf. Bélidor 1725, pp. 158-166).
Indeed, here he provided no general method for solving them, but rather a collection
of solved examples. While commenting some of these, Bélidor affirmed that a
negative root is to be considered a solution of the problem as well as and with the
same degree of trustworthiness as a positive one. Again, he states that negative roots
give a solution “in the sense that we intended”, meaning that when one finds a
negative solution he only has to adapt his interpretation, for instance in terms of
debts. Finally, he remarked that the algebraic values are true and reasoned, even if
sometimes it seems they don't have a meaning since they are far from what we had
imagined.

In contrast, La Caille, as all the other authors that we are taking into account, firstly
dealt with arithmetic, then with algebra in his Lecons élémentaires de mathématiques.
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Again, as in all other works, only in the algebra part do the negative numbers occur.
For La Caille algebra is a kind of arithmetic which is more general, faster, briefer,
simpler, and that can be applied. Among its preliminary notions, he passed from the
definition of “algebraic quantity” quite immediately to the one of “polynomial”
(namely, an algebraic quantity that contains more than one term). Here we can find
the only definition that can be assimilated to negative numbers: La Caille explained
that there are two kinds of terms, the positive ones and the negative ones. These last
are always preceded by the sign —, the other by the sign + (cf. La Caille 1741-1750,
Vol. 1, p. 62). He only gave the example +p—g-rr+x-y, where no term stands alone
with a “=". La Caille interpreted negative numbers as “opposite” quantities and he
justified this term in the following way. Indeed, he explained that —3a is the same
quantity a taken three times, as for +3a, the only difference being that it is taken in
the contrary direction. Apart from this and the usual signs rule for multiplication, it is
hard to find some other concrete examples. But obviously La Caille is compelled to
deal with negative numbers in solving quadratic equations. While giving the general
solving method with the quadratic formula, La Caille repeatedly remarked that a
solution can be negative (cf. La Caille 1741-1750, Vol. 1, pp. 130-135). He even
mentioned that square roots of negative numbers can appear. To this purpose, he
limited to explain that it is impossible to find a quantity that, being multiplied with
itself, gives a negative product, but to this he added no judgment of value. When the
problem that leads to an equation with a negative solution is interpreted in “real” life
(for instance, when we search for the number of travelers), a negative solution only
points to the fact that also this negative number (for instance, —6) satisfies the
equation (cf. La Caille 1741-1750, Vol. 1, p. 135). La Caille also added that “of
course” only the positive solution is the one that we were searching for. Further on,
La Caille remarked that, when the result of a calculation gives a negative value for
the unknown, this means that one has to take this unknown in the opposite direction
compared to the one that they considered at the beginning (cf. La Caille 1741-1750,
Vol. 1, p. 291).

In Camus' Cours negative numbers do not appear. Indeed, it only reaches an
elementary level. As all the other French authors, Camus considered only positive
numbers in the arithmetic, and algebra is not included at all in the table of contents.

Bézout's treatment of negative numbers in his Cours de mathématiques is highly
detailed. We take into account the textbook for the navy since, concerning the topic
of negative numbers, the differences from the textbook for the artillery are minor.
Bézout gave the definition at the beginning of the algebra volume: as usual, the
quantities which are preceded by the symbol + are positive, while the ones that are
preceded by the symbol — are negative (cf. Bézout 1764-1769, Vol. 3, p. 9). No
example is given at first, but then Bézout devotes a whole paragraph to the topic (cf.
Bézout 1764-1769, Vol. 3, Réflexions sur les quantités positives et les quantités
négatives, pp. 78-84). Among the French authors of our selection, he is the only one
that explicitly discusses the distinction of + and — as operations and as properties of
quantities. Bézout had already dealt in the usual way with + and — as addition and
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subtraction in the preceding paragraphs of the arithmetic and algebra parts dedicated
to these topics. In this paragraph, he focused on + and — as “the way of being of
quantities, one in regard to the others”. On the one hand, Bézout legitimated the
negative quantities by means of the usual interpretative models, while, on the other
hand, he weakened the ontological status of these quantities according to the
following arguments. The discussion begins by observing that one quantity can be
considered from two opposed viewpoints, and the analogies concerning possessions
and debts, and opposite directions on a line are offered to the readers. In this
theoretical part (since no examples are provided), Bézout stressed that the negative
guantities are as much real as the positive ones except that they have a completely
opposite “meaning” in calculations: indeed, negative quantities have properties
opposite to the positive quantities, or they behave in an opposite way. On the other
hand, when it comes to the applications (in particular in quadratic equations), Bézout
provides a conceptual frame to let the students deal with negative numbers. His
strategy is to weaken the rights of negative quantities to appear in the solution of a
problem. Indeed, Bézout stated that each negative quantity points at a false
assumption in the statement of the problem but, at the same time, it also points at its
correction, since it would be enough to take the assumed quantity with the opposite
symbol.

Finally, Bossut starts the discussion in the algebra volume of his Cours de
mathématiques by defining, among others, the symbols + and — as operations. The
first negative quantity —b appears before the definition. According to Bossut, negative
and positive quantities are of a same kind, but they are opposite regarding “their way
of being” (cf. Bossut 1772-1775, Vol. 2, p. 10). He instantiated this definition with
two examples from real life which provide as many interpretations. They boil down
as usual to possessions and debts and to considering the opposite direction on a line.
In the main, Bossut's textbook shows a lot of similarities with Bézout's one and, in
the practice, for instance while dealing with quadratic equations, negative solutions
are accepted without reserves. At this point, Bossut did not even need to extensively
justify the negative solution. Referring to a numerical equation with a positive and a
negative solution, Bossut briefly mentions that both solve the equation (cf. Bossut
1772-1775, Vol. 2, p. 189). His justification is the algebraic calculation in which he
simply substituted the two solutions in the equation at issue. In the collection of
examples that follows, when the equation derives from a problem with an
interpretation in real life, the negative solution (if there is one) is also briefly
interpreted as the opposite of the positive one (to gather or to loose water).

GERMANY

Wolff explained the negative numbers within the algebra chapter in the fourth
volume of his Anfangs=Griunde, namely for solving equations. Wolff did not use
the terms “positive”, “negative”, or “opposed” quantities, but described these
quantities as money, debts, and lack (cf. Wolff 1775, Vol. 4, p. 1557).
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Késtner is the first author who gave a concrete definition on opposed quantities
within the arithmetic chapter at the beginning of his Anfangsgrinde. Euler treated
these numbers in his textbook on algebra. Késtner gave a definition of the opposed
quantities:

Opposed quantities are called quantities from the same kind, which are considered under
such conditions that one of them reduces the other one. For instance assets and debts,
moving forward and backward. One of these quantities, no matter which one, is called
positive or affirmative; the opposed quantity negative or negating (Kastner 1800, p. 71).2

Euler defined negative numbers:

All these numbers, whether positive or negative, have the known appellation of whole
numbers, or integers, which consequently are either greater or less than nothing (Euler
1822, p. 5).

Euler proceeded the definition of negative numbers by attribution to a concrete
number range, namely the integers. In Euler’s definition, there is another aspect
which is quite interesting. This concerns the expression “less than nothing”. In the
18™ century, an unanswered question was the interpretation of negative numbers.
From a philosophical point of view, it is very difficult to label negative numbers as
“less than nothing”, because they are real objects, for instance debts. Therefore,
Késtner saw the need to explain the expression “less than nothing” in his textbook
(cf. Kastner 1800, pp. 72-74). He stated that one must distinguish between an
“absolute nothing” and a “relative nothing”. Concerning to the negative numbers, one
must choose the meaning of the relative nothing, because a negative number or
quantity can only exist because of its opposed (positive) quantity. It is wrong to
denote a number negative in an absolute meaning. Euler equated “nothing” with the
number “zero” and, with the help of a number line, showed the positive and negative
numbers (cf. Euler 1822, p. 5).

During this time, Kastner's definition of the concept of negative numbers was well
accepted to be precise. Kastner devoted a whole paragraph (8 95) to the nature of
negative numbers. He impressed with his remarks on the nature of negative numbers
and the issue of “less than nothing” even the philosopher Immanuel Kant (1724-
1804), who wrote about negative numbers in his work Versuch den Begriff der
negativen Grofien in die Weltweisheit einzufiihren (1763).

Wolff explained the negative quantities in order to solve algebraic equations. But we
cannot find a lot of examples with references to everyday life. Késtner introduced the
negative numbers in a practical way. At the beginning, there are some examples with
reference to everyday life. Then you can find “questions” which are used to explain
the four basic operations with negative numbers. Kastner uses concrete numbers
instead of letters as we can find in Wolff’s algebra chapter. Also Euler uses concrete
numbers for his explanation of negative numbers. While Wolff only mentions
“quantities”, Kastner once and Euler several times speak of “numbers”. Another
observation is that Wolff treats the negative numbers subordinated, while this topic is
an independent one in the textbooks by Késtner and Euler.
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For the German part, there was a common notion of the interpretation of negative
numbers, namely as debts. This is the same as in earlier times (see introduction). Also
nowadays this example is very popular and often used for the explanation of negative
numbers.

In his book, Euler clearly points out the difference between arithmetic operations and
algebraic symbols of plus and minus. First, he explains the arithmetic operations.
After that, he introduces plus and minus as algebraic symbols serving as description
of positive and negative numbers. Kastner and Wolff did not make this difference
clear. This was a problem which Spaun criticized in his writing (see above).

By making reference to the German textbooks, we can see the development
concerning the treatment of the negative numbers during the 18™ century. This topic
was detached from its treatment in the context of algebraic equations. Negative
numbers became an independent part, either within the arithmetic or in the algebra
chapter. This comes along with the fact that the authors gave a concrete definition of
opposed quantities. In order to illustrate negative numbers, Késtner gave a lot of
examples from everyday life (like assets and debts). Euler defined the negative
numbers as part of the integers and illustrated them at the number line.

CONCLUSION AND SOME RESULTS

There are some interesting observations regarding the treatment of the negative
quantities in the considered French and German textbooks. In French textbooks,
negative numbers are treated within the algebra part, which is not always the case in
Germany. While at the beginning of the 18" century Wolff treated the negative
numbers within the algebra part, there is a shift in the course of the years. In the
middle of the 18" century, Késtner explained negative numbers at the beginning of
his Anfangsgriinde within the arithmetic part. Although Euler treated the negative
numbers in his textbook on algebra, he labeled negative numbers explicitly as
“numbers”. Also in Ké&stner’s textbook we can find once the terminology “number”
instead of quantities. On the contrary, the “number”-terminology is never used by the
French authors.

There are commonly accepted interpretations of negative numbers, such as
possessions and debts, and opposite directions, which are widely employed in both
French and German textbooks. Overall, the difference between plus and minus
sometimes as operations and sometimes as algebraic properties of quantities is not
explicitly addressed; it is completely missing in La Caille since there negative
numbers are only defined in the context of polynomials.

The development in France shows a clash of differing epistemological conceptions,
which spanned from complete acceptance of negative numbers as solutions of
problems (especially when those are originally formulated with no references to real
life) to no acceptance (that is, the hypotheses of the problem should be reformulated),
passing by a limited acceptance (that is, provided that one can stick to these negative
numbers an interpretation to reconnect them with reality).
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For the German part we can state that negative numbers were not only regarded as
possible solutions in algebraic equations any more. Opposed numbers became an
independent topic within arithmetic. This development shows that negative numbers
were generally accepted.
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NOTES

1 Whatever “complete” means depends not only on each single author, but also on the time
span. Indeed, there were some shifts in the 18" century in Germany concerning the framework of
the mathematical sciences.

2 Translated by Desirée Kroger. Original quote in K&stner 1800, p. 71: “Entgegengesetzte
Grossen heissen Grdssen von einer Art, die unter solchen Bedingungen betrachtet werden, da die
eine die andere vermindert. Z.E. Vermdgen und Schulden, VVorwartsgehen und Rickwartsgehen.
Eine von diesen Grdssen, welche man will, heisst man positiv oder bejahend, die ihr
entgegengesetzte negativ oder verneinend*.
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Workshop

APPROACHING CONIC SECTIONS WITH MATHEMATICAL
MACHINES AT SECONDARY SCHOOL

Michela Maschietto
University of Modena e Reggio Emilia

In secondary and tertiary educations, students study conic sections mainly
as algebraic objects with a graphical representation. They rarely meet conic
sections from a synthetic point of view. In addition, the origin of conics - as curves
obtained by cutting a cone with a plane - has become a sort of “simple story” to
introduce them, but this is not always picked up by the teachers during the lessons. In
Italy, the recent reform of secondary school education requests to develop a synthetic
approach to geometry.

This workshop aims to discuss the main steps of a teaching experiment focusing
on the introduction of conic sections at secondary school level (16-17 years-old
students) following the methodology of mathematics laboratory with mathematical
machines (Maschietto & Martignone 2008, Maschietto & Bartolini 2011). In
this teaching experiment the historical dimension is very important, because each
mathematical machine has a strong link with the history of mathematics (Bartolini
Bussi, 2005). In particular, we have considered mathematical machines with
tightened threads and articulated antiparallelograms (described in Van Schooten’s
books), big models of cones cut by a plan representing Apollonius’s theory
and big models showing Dandelin’s theorem (all are available at the Laboratory of
Mathematical Machines in Modena, www.mmlab.unimore).

The workshop is organised in steps as follow:

1. Introduction to mathematics laboratory with mathematical machines and to the
context of the teaching experiment;

2. Working group on the analysis of worksheets for students concerning a first

mathematical machine;

Collective discussion;

Working group on a second mathematical machine;

Collective discussion and historical perspective;

Working group on a third mathematical machine;

Presentation of the final step of the teaching experiment.

Participants: secondary school teacher, researchers.
Age of students involving in the teaching experiment: 16-17 years.

Materials for the participants: worksheets, historical texts, outline of the teaching
experiments, mathematical machines.

No ok w
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Workshop
TOOLS AND PROCEDURES FOR USING HISTORICAL
MATERIALS IN THE CLASSROOM.

Leo Rogers
University of Oxford

This workshop was based on some ideas in my paper (Rogers 2011) where |
developed the principles of using concept maps of ‘significant’ items pertaining to
the history of mathematics and building a narrative of relevant heritage content
(Grattan-Guinness 2004) from where we can develop particular orientations relevant
to specific classroom contexts. (Rogers 2011: 7-13)

A number of examples were presented from workshops used with teachers and
secondary pupils (ages 11-18) where problems adapted from historical contexts were
offered for criticism to participants. The main objective of the workshop was to
discuss the manner in which these problems or others like them may be introduced in
the classroom fo foster the pupil’s own epistemological process in building up their
personal mathematical knowledge.

Colleagues attending this workshop who have used historical material with students
were invited to bring their own examples of classroom problems for discussion.

A particular focus was the research-based evidence for attending to the ideas of Ratio
and Proportion, Spatial and Geometrical Reasoning, Introduction to Functions and
the Development of Algorithms and Algebraic notation. (Watson, Jones & Prat
2013)

Some questions to consider about affordances (Gibson 1997, Heft 2003) and
constraints were offered when using historical materials as classroom problems:

e Can this material be used (or adapted) with pupils at any age

o What mathematics (if any) do pupils need to know in order to address the
problem

What kinds of problem-situations is this material designed to raise

What is its potential for developing conceptual knowledge

Does it have relevance for building a knowledge of mathematics as a science
Do the ideas involved appear in different areas and at different levels of
mathematics

Does this material encourage mathematical communication

¢ Does this material encourage teachers’ own reflection processes

About 25 colleagues attended, and a useful and provocative discussion ensued. |
thank those colleagues for their contributions and encouragement.
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TEACHER TRAINING IN THE HISTORY OF MATHEMATICS

Fatima Romero Vallhonesta?, Maria Rosa Massa Esteve?, lolanda Guevara Casanova’,
Carles Puig-Pla® & Antoni Roca-Rosell*

“Universitat Politécnica de Catalunya, "Departament d’Ensenyament de la Generalitat
de Catalunya & Departament de Didactica de les Matematiques i les Ciéncies
Experimentals de la UAB

The History of Mathematics could be a powerful tool for Mathematics teachers to
improve their teaching, by offering to students a variety of ways to achieve
mathematical concepts successfully. The Catalan Mathematics curriculum for
secondary schools, published in June 2007, contains notions of the historical genesis
of relevant mathematical subjects within the syllabus. However, there is no indication
to develop the content associated with these subjects. We have designed a course for
pre-service teachers of Mathematics with the aim of providing them with the
knowledge needed to use historical materials in their classrooms. This contribution
aims to analyze the implementation of these historical Mathematics activities.

INTRODUCTION [1]

By means of original sources and significant texts, it is possible to learn from the past
and teach Mathematics through a historical and cultural approach (Fauvel & Maanen,
2000; Katz, & Tzanakis, 2011). Knowledge of the History of Mathematics provides
teachers with an understanding of the foundations and the nature of Mathematics, and
with a capacity for a better understanding of how and why the different branches of
Mathematics have taken shape as well as their connection with other disciplines
(Jankvist, 2009).

In fact, the History of Mathematics is a very useful tool to help in the comprehension
of mathematical ideas and concepts (Dematte, 2010). It is also a very effective tool to
help in the understanding of Mathematics as a useful, dynamic, humane,
interdisciplinary and heuristic science.

On the one hand, the History of Mathematics can be used as an implicit resource in
the design of activities to adapt some standard concepts to the teaching syllabus, to
choose context, and to prepare problems and auxiliary sources.

On the other hand, the History of Mathematics can also be used in an explicit way to
direct and propose research works at baccalaureate level using historical material, to
design and impart elective subjects involving the History of Mathematics using ICT,
to hold workshops, centenaries and conferences using historical subjects, and to use
significant historical texts in order that students understand better mathematical
concepts.
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We have designed a course for teachers of Mathematics with the aim of providing
them with the knowledge needed to use historical materials in their classrooms. In
addition, the use of these historical materials allows the teacher to use a different
approach in which at the start of the class the teacher sets the students a text to read
and helps them to interpret it, by giving them some guidelines and questions to
answer. The fact of having to locate the texts in their historical context also
encourages an interdisciplinary approach and helps the students to understand
Mathematics as a discipline which is linked to other disciplines. We supply the
teachers with original sources on which the knowledge of mathematics in the past is
based. They have to work with these sources, which consist of reading and
interpreting a selection of classical mathematical texts as well as learning how to
locate and use historical literature or historical online resources. The task of teachers
also involves the recognition of the most significant changes in the discipline of
Mathematics; those which have influenced its structure and classification; its methods;
its fundamental concepts and its relation to other sciences. Some materials have also
been chosen to emphasize the socio-cultural relations of mathematics with politics,
religion, philosophy and culture in a given period, and most importantly to encourage
teachers to reflect on the development of mathematical thought and the
transformations of natural philosophy (Pestre, 1995). The final project is drawn up by
teachers themselves and consists of designing an activity for the students based on the
material with which they have worked throughout the course.

In this paper we present three of the activities carried out in the course:

1. Using Chinese problems and procedures from an ancient classical book for
teaching Mathematics.

2. Introducing the quadratic equation using historical methods

3. Algebra and geometry in the Mathematics classroom

Most of these activities have been tried out in secondary schools and intended to
inspire teachers to create their own activities. The criteria for selecting the specific
texts consist of their relationship with the historical contexts in the Catalan curriculum
(Catalunya. Decret 143/2007).

USING CHINESE PROBLEMS AND PROCEDURES FROM AN ANCIENT
CLASSICAL BOOK FOR TEACHING MATHEMATICS

For the following activities we use Chinese problems and procedures from The Nine
Chapters for teaching mathematics.

The Nine Chapters and the historical context

Ancient mathematical texts were compiled during the Qin dynasty (221-206 BC) and
Han dynasty (206 BC-AD 220). The most influential of all Chinese mathematical
books, The Nine Chapters, was probably compiled in early Han dynasty (Dauben,
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2007, 227). The purpose of this practical manual of mathematics consisting of 246
problems was to provide methods to be used in solving everyday problems of
engineering; surveying, trade, and also taxation (Lam, 1994). Scholars believe that
The Nine Chapters has been the most important mathematical source in China for the
past 2000 years, comparable in significance to Euclid's Elements in Western Culture.
Along the centuries, some scholars made copious commentaries on the book to explain
the implied mathematical concepts. Among those commentators are Liu Hui (ca. 220-
280), one of the greatest mathematicians of ancient China and Li Chunfeng (602-670),
an outstanding astronomer and mathematician.

As the name suggests, the book contains nine chapters, and we focus on Chapter 9
“Gougu” (or base and height), which deals with problems for solving right triangles,
involving the Gougu procedure, the principle known in Western Culture as the
Pythagorean Theorem.

Activities carried out by pupils of secondary education

We have proposed a sequence of activities carried out by pupils of secondary
education, based on the problems in Chapter 9 of The Nine Chapters. The activities
are designed according to the fundamental figures described by Liu Hui (263) and Li
Chunfeng (656) in their commentaries on the classical text, analysed in the bilingual
translation by Chemla & Shuchun (2005, 703-745) and following the suggestions
about their pedagogic value by Siu Man-Keung (2000, 159-166).

In general, The Nine Chapters is organized as follows: first there is the classical text,
dealing with the problem statement with specific numerical data; secondly, the
questions; thirdly, the answers, then a brief description of the procedure to find the
solution; then the commentaries by Liu Hui and Li Chunfeng, which provide the
algorithms needed to solve the problems, and finally the explanations of how the
algorithms work.

Going to the beginning of Chapter 9: The title Gougu, which means base (gou) and
height (gu), has a subtitle, “Solving height and depth, width and length”. The chapter
contains 24 problems on right triangles. Problems 1-12 (Chemla & Shuchun, 2005,
703-721) deal with the base and height procedure, and problems 13-24 deal with
similar triangles (Chemla & Shuchun, 2005, 723-745). The following problems are
related to situations in a real context where the initial geometric assumptions appear.

At the beginning of Chapter 9, the classical text states “Base (gou) and height (gu)
procedure”, but later Lui Hui adds the following:

“The shorter side is called the base (gou), the longest side the height (gu) joining the
corners with each another is called the hypotenuse (xian)” (Chemla & Shuchun, 2005,
705).

The classical text states the Gougu theorem like an algorithm:
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“If each is multiplied by itself and the results, once added, are divided by the square root
extraction, the result is the hypotenuse” (Chemla & Shuchun, 2005, 705).

and later Lui Hui gives a geometrical proof :

“The shorter leg multiplied by itself is the vermilion square, and the longer leg multiplied
by itself is the blue-green square. Let them be moved about so as to patch each other, each
according to its type. Because the differences are completed, there is no instability.
Together they form the area of the square on the hypotenuse; extracting the square root
gives the hypotenuse” (Chemla & Shuchun, 2005, 705).

Figure 1: Gougu theorem

We propose an activity for the students in which they try to obtain a similar proof for
themselves. In order to prove that “the area of the square on side c is the sum of the
areas of the squares on the sides a and 5, they need to construct a square whose side
is equal the hypotenuse from 2 squares of sides a and b, respectively. Then to prove
the theorem, they have only to cut and paste figures.

The instructions for students could consist of the following: a) cut any two squares; b)
place the small square inside the large square so that the two have a common vertex
and base; c) draw the triangle on the side of the small square base and the height of
the larger square; d) cut a third square of a side equal to the hypotenuse of the right
triangle €) draw below the triangle and draw three squares obtained where appropriate
(see Figure 2).

a b&c d

Figure 2: The steps of the student’s instructions
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Figure 3 below shows the work by one student:

Figure 3: A student’s production (14-15 years old)

Then, to prove the theorem (the largest area of the square is the sum of the areas of
two other squares) it is only a matter of cutting and pasting (see Figure 4).

%

(¥

Figure 4: A student’s production

Another activity we propose is based on problem 5, following the commentaries by
Lui Hui. The wording is as follows:

“Suppose we have a tree of 2 zhang as height and 3 chi as a perimeter. A climbing plant
that grows from its base surrounds the tree seven times before reaching the top. One asks
how long the climbing plant is” (Chemla & Shuchun, 2005, 709).

From the commentaries we can deduce that if we: a) roll up a sheet of paper forming
a cylinder, simulating the trunk of the tree; b) draw the climbing plant around it; c)
expand the sheet, we will obtain the solution, which is related to the Gougu theorem,
as may be seen in Figure 5. Simply by adding seven times the hypotenuse, we will
obtain the answer.

Figure 5: A student’s production of problem 5

We also propose many interesting activities on the course by using special figures that
the ancient Chinese employed to infer relationships between measures of the sides of
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the triangle, and sums and differences between them. They considered three
geometrical figures, called “the fundamental figures”, which helped them to solve
problems with right triangles in a geometrical way, that is, with “visual aids”.

The following table (Figure 6) shows these three fundamental figures and the
relationships between their different measures to solve problems of right triangles:

Figure 6: The three fundamental figures and their relationships

These activities were conducted in the same way as the ancient Chinese, who in the
absence of algebraic symbolism solved problems with reasoning based on geometry,
and were very well accepted by the students. They were able to make sense of the
rules of formal algebra, remarking that: "Now | understand it. These operations with
letters are like the calculations we are doing with the figures!"

INTRODUCING THE QUADRATIC EQUATION USING HISTORICAL
METHODS

In the following activities, we propose to solve equations using the al-Khwarizmi
method (by completing squares); students can benefit from visual reasoning that
combines algebra (in current notation) and geometry (Katz & Barton, 2007, 185-201).

Abu Ja'far Muhammad ibn Musa al-Khwarizmi (ca. 780-850)

His name indicates that he may have come from Khwarezm (Khiva), then in Greater
Khorasan, which occupied the Eastern part of the Greater Iran, now the Xorazm
Province in Uzbekistan.

He was a mathematician, astronomer and geographer during the Abbasid Empire, and
a scholar at the House of Wisdom in Baghdad.

"The Compendious Book on Calculation by Completion and Balancing” (Kitab al-
Mukhtasar fi hisab al-jabr wa’l-muqgdabala (ca. 813) ALsally pall Glua paidall) was
the most famous and important of all of al-Khwarizmi 's works (Djebbar, 2005, 211;
Toomer, 2008).
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In Renaissance Europe, he was considered one of the inventors of algebra, although it
is now known that his work was based on older Indian or Greek sources.

The treatise Hisab al-jabr wa’l-muqabala (ca. 813)

The book was translated into Latin by Robert of Chester (Segovia, 1145) as Liber
algebrae et almucabala, hence "algebra", and also by Gerard of Cremona (ca. 1170).
A unique Arabic copy of manuscript from 1342 is kept at the Bodleian Library in
Oxford, and was translated into English in 1831 by Frederic Rosen.

Figure 7. The text and diagrams in the Rosen edition (Rosen, 1831, 322/16)

We chose the text and the diagrams from the Rosen edition (see Figure 7) to design
the activities for solving quadratic equations with visual reasoning (Rosen, 1831).

In the text, the author provided an exhaustive account of solving polynomial equations
up to the second degree, and also discussed the fundamental methods of "reduction”
and "balancing", which refers to the transposition of terms from one side of an
equation to the other side, that is, the elimination of equal terms on both sides of the
equation.

Al-Khwarizmi wanted to give his readers general rules for all kinds of equations and
not just how to solve specific examples. His rules for solving linear and quadratic
equations began by reducing the equation to one of six standard forms.

We will use the case: “a Square and ten Roots are equal to thirty-nine Dirhems”, to
design the activities. Al-Khwarizmi stated as follows (see Figure 8):

“We proceed from the quadrate AB, which represents the square. It is our next
business to add to it the ten roots of the same. We halve for this purpose the ten, so
that it becomes five, and construct two quadrangles on two sides of the quadrate AB,
namely, G and D, the length of each of them being five, as the moiety [half] of ten
roots, whilst the breadth of each is equal to a side of the quadrate AB. Then a
quadrate remains opposite the corner of the quadrate AB. This is equal to five
multiplied by five: this five being half of the number of the roots, which we have
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added to each of the two sides of the first quadrate. Thus we know that the first
quadrate, which is the square, and the two quadrangles on its sides, which are the ten
roots, make together thirty-nine. In order to complete the great quadrate, there wants
only a square of five multiplied by five, or twenty-five. This we add to thirty-nine in
order to complete the great square SH. The sum is sixty-four. We extract its root,
eight, which is one of the sides of the great quadrangle. By subtracting from this the
same quantity, which we have before added, namely five, we obtain three as the
remainder. This is the side of the quadrangle AB, which represents the square; it is
the root of this square, and the square itself is nine.”(Rosen, 1831, 15-16).

Figure 8. Geometrical justification by al-Khwarizmi (Rosen, 1831, 16)
We begin the activity by solving incomplete equations
a) The algebraic procedure

We use some sessions to solve incomplete equations with algebraic procedures,
reduction and balancing. Students know how to solve linear equations and we apply
this procedure to incomplete second-degree equations.

b) The geometrical procedure

We devote some sessions to the geometrical visualization of x* and, step by step, we
introduce students to solving the second degree incomplete equations geometrically.
They have to understand x and x* as the measure of the sides of the squares, and their
areas, respectively (see Figure 9).

Figure 9: The geometrical interpretation of the incomplete equation 3x* =12

When students have discovered how to solve this kind of incomplete equation, we ask
them to write equations knowing their solutions: For example:

Xx=3—=>x°=9, 2x°=18, ...
x=0and 3 >x?=3x, 2x° = 6¥, . ..

We solve equations like: ax* = ¢, and ax® = bx
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Now we introduce the resolution of complete quadratic equations. The first example
was the same as that by al-Khwarizmi: x* + 10x = 39 (Figure 10).

Figure 10: Is it possible to transform this rectangle of area 39 into a square?

As in the al-Khwarizmi procedure, we guide students to its solution with this idea (see
Figure 11).

39

? 7

Figure 11: The diagrams in the sequence of activities

We also work with negative numbers, although al-Khwarizmi only worked with
positive numbers.

64

Students know that 64 has two square roots, 8 and -8, and then we can obtain two
solutions of the equation, the geometricalonex=3and -8=x+5 x = -13 (see
Figure 12, when they solve x*+6x=40)

Figure 12: Some students’ productions (14-15 years old) with x* + 6x = 40
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By introducing the resolution of quadratic equations by completing squares throughout
one school year, then waiting until the next course to introduce the resolution by using
the usual formula, yielded to two relevant results about student learning. On the one
hand, they discovered that the problems they were studying originated in ancient times
and different cultures, while on the other they also realized that algebraic formulas
could make more sense when interpreted in a geometrical manner.

ALGEBRA AND GEOMETRY IN THE MATHEMATICS CLASSROOM

This part consists of activities containing singular geometric constructions used for
solving the quadratic equation in the seventeenth century. These analyses linking
algebra to geometry provide students with a richer view of Mathematics and improve
the teaching and learning processes. Thus, the reflection on these geometric
constructions of algebraic expressions historical helps to develop the analytic and
synthetic thought of students.

Indeed, the study of the origins of polynomials and their associated equations gives us
a history of the geometric construction of the solution of the quadratic equation with
instructive and suggestive passages for students, whether at high school or college
degree level. We focus on the process of algebraization of mathematics, which took
place from the late sixteenth century to the early eighteenth century (Mancosu, 1996,
84-91). This was mainly the result of the introduction of algebraic procedures for
solving geometrical problems.

First geometrical justifications

In his treatise Kitab al-Mukhtasar fi hisab al-jabr wa’l-mugabala (ca. 813),
Mohammed Ben Musa Al-Khwarizmi (ca. 780-850) describes different kinds of
equations using rhetorical explanations, and without symbols. His geometrical
justifications of the solutions of equations are given by squares and rectangles, as we
have shown in the previous activity. Later, when Leonardo de Pisa (1170-1240)
(known as Fibonacci) expresses these Arabic rules in his Liber Abaci (1202), he uses
“radix” to represent the “thing” or unknown quantity (also called “res” by other
authors) and the word “census” to represent the square power. This rhetorical
language continued to be used in several algebraic works in the early Italian
Renaissance, such as Summa de Arithmetica, Geometria, Proportioni e Proportionalita
(1494) by Luca Pacioli (1445-1514), Ars Magna Sive de Regulis Algebraicis (1545)
by Girolamo Cardano (1501-1576) and Quesiti et Invenzioni Diversa (1546) by
Niccolo Tartaglia (1500-1557). All these writers used geometric squares, rectangles,
and cubes to represent or justify algebraic manipulations (Stedall, 2011, 1-49).

One of the firsts to question these geometrical justifications was Pedro Nunes or
NUfez (1502-1578) in his book Libro de algebra en arithmética y geometria (1567).
After showing the classic geometrical justifications by completing squares, he claims:
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“While these demonstrations of the last three rules are very clear, by saying that in the
demonstration of the first rule it is presupposed that a censo with the things of whatever
number can equal any number, number being what we have defined at the beginning of
this book, the adversary will be able to state that this presupposition is not true. Therefore,
it will be necessary to demonstrate it.” (NUfiez, 1567, fo. 14r).

After this statement, Nufiez proceeds to introduce new geometrical constructions of
the solutions to the quadratic equation. Although Nufiez was a pioneer in introducing
new geometrical constructions, the more singular ones will occur later, as we analyse
in an activity implemented in the classroom described below.

Geometrical justifications in the seventeenth century

The publication in 1591 of In Artem Analyticen Isagoge by Francois Viéte (1540-
1603) constituted a step forward in the development of a symbolic language. Viéte
used symbols to represent both known and unknown quantities and was thus able to
investigate equations in a completely general form (ax*+bx=c). He introduced a new
analytical method for solving problems in the context of Greek analysis. This algebraic
method of analysis allowed problems of any magnitude to be dealt with, and his
symbolic language was the tool he used to develop this program. Viéete showed the
usefulness of algebraic procedures for solving equations in arithmetic, geometry and
trigonometry (Bos, 2001, 145-154). He solved equations geometrically using the
Euclidean idea of proportion: proportions can be converted into equations by setting
the product of the medians equal to the product of the extremes. In 1593, Viete
published Effectionum Geometricarum canonica recensio, in which he geometrically
constructed the solutions of second-and fourth-degree equations. Later, in 1646, F. A.
Schooten edited this book in Viete’s Opera Mathematica. We have used this edition
to design the activity for the classroom. Viéte claims:

“Proposition XII Given the mean of three proportional magnitudes and the difference
between the extremes, find the extremes. [This involves] the geometrical solution of a
square affected by a [plane based on a] root [A> + BA = D?]. Let FD be the mean of three
proportionals [= D] and let GF be the difference between the extremes [= B]. The
extremes are to be found. Let GF and FD stand at right angles and let GF be cut in half at
A. Describe a circle around the centre A at the distance AD and extend AG and AF to the
circumference at the points B and C. | say that what was to be done has been done, for the
extremes are found to be BF [A + B ] and FC [=A], between which FD [=D] is the mean
proportional. Moreover, BF and FC differ by FG, since AF and AG are equal by
construction and AC and AB are also equal by construction. Thus, subtracting the equals
AG and AF from the equals AB and AC, there remain the equals BG and FC. GF, in
addition, is the difference between BF and BG or FC, as was to be demonstrated.” (Viéte,
1646, 234).
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Figure 13: Viéte’s construction of three proportional (Viéte, 1646, 234)

He sets up the equation A? +BA = D? by means of a proportion, which can be
expressed in modern notation as (A + B) : D =D : A. Viéte’s geometric construction of
the lines A, B, D satisfying this equality is set out in Figure 13. Viéte draws FD =
D and GF = B, making a right angle, and divides B by half AF = B/2. He
describes a circle whose radius is equal to AC, which we can identify with the
hypotenuse of the triangle formed by B/2 and D, AD = AC=[(B/2)* + D?]*. The
solutions are then the segments FC = AC - AF and BF = BA + AF, which take BA =
AC = radius (Massa, 2008, 295).

In the classroom, after finishing the lesson of quadratic equation, we carry out
an activity taking into account these geometrical constructions in order to highlight
the algebraic solution of the quadratic equation from another perspective. The
procedure is as follows: after describing historical context, including Nufiez’s
quotation, and analysing Viéte’s geometrical construction, the teacher could pose
the students some questions to clarify the ideas.

1) Reproduce Viéte’s geometrical construction and give an explanation of
the procedure. 2) Could this geometrical construction be used for any quadratic
equation?Give reasons. 3) What about negative solutions? 4) How are the
Pythagorean and the altitude Theorem used? Explain their relationship to the
solution of the equation. 5) What is the main difference between this geometrical
construction and the classical construction by completing squares?

After analysing and discussing students’ answers, the teacher continues by presenting
a new historical text with another geometrical construction. Indeed, as Viete's
work came to prominence at the beginning of the seventeenth century,
mathematicians began to consider the utility of algebraic procedures for solving all
kinds of problems. Thus, the other singular example is the geometrical
construction in a quadratic equation found in the influential work La Géométrie
(1637) by René Descartes (1596-1650). Descartes begins Book | by developing an
algebra of segments and shows how to add, multiply, divide segments, and
calculate the square root of segments with geometrical constructions (Bos, 2001,
293-305). Next, Descartes shows how a quadratic equation may be solved
geometrically (see Figure 14):
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“For example, if I have z° =az +bb, | construct a right triangle NLM with one side LM,
equal to b, the square root of the known quantity b?, and the other side, LN equal to % a,
that is, to half the other known quantity which was multiplied by z, which I assumed to be
the unknown line. Then prolonging MN, the hypotenuse of this triangle, to O, so that NO
is equal to NL, the whole line OM is the required line z.” (Descartes, 1637, 302-303).

Figure 14: Geometrical construction (Descartes, 1637, 302)

In the classroom, after drawing and analysing Descartes’ geometrical construction, we
could hold a discussion with the students. It is important to point out that symbolic
formula appears explicitly in Descartes’ work. His geometrical construction
corresponds to the construction of an unknown line in terms of some given lines;
hence, the solution of the equation is given by the sum of a line and a square root,
which has been aobtained using the Pythagorean Theorem. However, Descartes ignores
the second root, which is negative, and he did not quote that this geometrical
construction could be justified by Euclid 111, 36, where the power of a point is proved
with respect to a circle.

The questions posed to students are similar to those by Viéte. Moreover, students may
also reflect on the meaning of both constructions. The differences from Viéte are
relevant because Descartes explicitly writes in the margin “how to solve” the equation,
while Viéte, by contrast, solves a geometric problem with a geometric figure in which
a proportion is identified with an equation. Another relevant subject to consider with
the students is the analytical and/or synthetic approach used in each construction.

Other possible questions: What geometrical reasoning did the author use? What is the
role of the Pythagorean Theorem in solving the equation of second degree? What
relation is there between this geometrical construction and the algebraic solution of the
second degree equation?

All these questions enable teachers to consider the solution of quadratic equations
from a geometrical point of view, as well as prompting thought about the
relation between algebra and geometry through history.

SOME REMARKS

These kinds of activities are very rich in terms of competency-based learning,
since they allow students to apply their knowledge in different situations rather
than to
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reproduce exactly what they have learned. In addition, they help students to appreciate
the contribution of different cultures to knowledge, which is especially important in
classrooms today, where students often come from different countries and cultures.

The design of these activities also allows different levels of development and in some
cases the distribution of tasks among students according to their individual skills.

The activities, based on the analysis of historical texts connected to the curriculum,
contribute to improving the students' overall formation by giving them additional
knowledge of the social and scientific context of the periods involved. Students
achieve a vision of Mathematics not as a final product but as a science that has been
developed on the basis of trying to answer the questions that mankind has been asking
throughout history about the world around us.

All these activities devote an important part to geometry, which is a standard in the
syllabus that students should improve, as recommended in the results of PISA
assessment.

Geometry has a great visual and aesthetic value and offers a beautiful way of
understanding the world. The elegance of its constructions and proofs makes it a part
of Mathematics that is very suitable for developing the standard process of reasoning
and proof of the students.

In addition, geometrical proofs have a great potential for relating geometry and
algebra; that is to say, establishing connections between figures and formulas;
geometric constructions and calculations.

NOTES
1. This research is included in the project: HAR2013-44643-R.
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Workshop
HISTORICAL MATHEMATICAL MODELS IN TEACHER
EDUCATION - WORKSHOP ON THE DEVELOPMENT OF
QUESTIONS AND CRITICAL QUESTIONING

Ysette Weiss-Pidstrygach
Johannes Gutenberg-University Mainz

We present the conception and design of a seminar in the master’s programme of
mathematics education. The seminar starts with students’ personal experiences
relating to mathematical experiments, models and visualisations of mathematical
objects, followed by a historical excursion around historical collections of
mathematical models. On the basis of that, students undertake project work on
models of drawing instruments and simple curves in historical, socio-cultural or
mathematical contexts.

INTRODUCTION

The paper deals with a workshop held in the afternoon of the last day of the 7th
European Summer University on History and Epistemology in Mathematics
Education at Aarhus University, Campus Copenhagen. In spite of the time of the
event, the workshop was well attended and met the interests of mathematics
educators with various backgrounds. Our aim is to give the participants a memory of
the event and to outline the concept and design of a seminar, which uses history as a
tool to awaken awareness and understanding of individual development and societal
change in a mathematical context. We use a comparative view on the everyday world
and its past to disturb widespread routines, approaching development from an output-
orientated perspective and in normative terms.

THE MAIN MOTIVATION FOR THE CONCEPT AND DESIGN OF THE
SEMINAR

The aim of the presented seminar concept is to deal with normative perspectives,
evaluative assessments and output-orientated categorizations of our students on
education and development. Since the so-called PISA shock, the German education
system has undergone subtly comprehensive restructuring, the concept of "Bildung"
(usually translated as education) being replaced by the notion of “Ausbildung”
(training). At least since Klafki (1994, 2000) formal education approaches in German
educational sciences are believed to have been overcome. However current
educational policy and real school life tells a different story. Global testing, outcome-
oriented learning, competence-based redesigning of curricula and measuring and
evaluating by educational standards led to a predominance of normative approaches
to learning and development (Jahnke & Meyerhdfer, 2007).

Page 129



YSETTE WEISS-PIDSTRYGACH

Historical processes allow us to caricature such models of development. The
reduction of complex relations and causal dependencies to input-output mechanisms
can be taken in a cultural-historical context ad absurdum.

The gradual economisation of the educational system during the last decade also has
implications on language, approaches to problems as well as on the knowledge
relevant to action, prognosis and orientation of our student mathematics teachers.

Assessments of the capabilities of our students show that they master the
reproduction of information and texts very well. They work hard on the perfection of
presentational skills. Their strengths also include the use of modern media to access
information and pattern recognition skills. Their weaknesses lie in their conceptual
understanding.

Volker Ladenthin’s description of contemporary student problems confirms our
experience:

“Students are barely able to use abstractions. One has to speak in examples - and they
will be happy to discuss on the level of examples. However, generalization and
transfer of expertise hardly succeed. To transmit the statements of ancient authors
(Aristotle) in contemporary parlance fails less due to fragmentary historical
knowledge as to the lack of transferability. Textual analysis is done very vaguely and
always very generally (“Comenius says that school is good for the people™).
Syntheses is created additively and is by no means nuanced. Judgments are linear
(not multi-perspective)” (Ladenthin, 2014, p. 17).

Based on this situation, the focus of the seminar is not on a historical outline of
historical models and collections (as in Barbeau & Taylor, 2009) or the use of
historical mathematical models and instruments in the classroom (e.g. Shell-Gellasch,
2007) but on the development of individual questions giving rise to a different
contextualisation of mathematical artefacts and instruments, including the historical.

We use the notation model because it is used in connection with historical collections
of mathematical artefacts, visualisations and instruments present in many European
older universities. During the last decade the German research society DFG
supported activities aimed at the involvement of historical scientific collections in
research, teaching and the popularisation of science [1]. Perhaps that is why presently
one can find in many mathematical and physics institutes expositions of historical
models with the mentioned decorative purposes. We are aware that the notation
model may cause irritation because of its very different use in the context of
modelling. The abundant use of pictures and descriptions of activities involving the
models as an object or tool should however prevent misunderstanding.

To avoid questions leading to formal reconstructions we start with our students’
personal experiences with collections of mathematical models, such as visualisations,
instruments and artefacts.

It seems to be useful to divide the individual school experiences of the participants
with mathematical models into experiences as pupils, and experiences as
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mathematicians or as teachers. An excursion to a “hands-on” museum with
mathematical models, for instance, raises quite different questions for the visitor, the
tutor and the organiser.

FROM LEARNING MATERIALS TO HANDS-ON EXHIBITION
Contemporary student mathematics teachers can have varied experiences with
mathematical models. Reform pedagogy is an important topic in educational studies.
Frobel (Klafki, 1964), Pestalozzi (Pestalozzi & Klafki, 1997), Kerschensteiner
(Kerschensteiner, 2011) and Dewey (Dewey, 2007) represent sense perception and
activity orientation in mathematics education and their approaches are part of the
curriculum in educational science. Depending on the interests of the student group
and their background, one could begin with a pedagogical-philosophical orientated
introduction into reform pedagogy, starting with the 19™ century or with an
introduction closer to mathematics - for example, with Treutlein’s collection of
mathematical models (Wiener, Teubner, 1912).

For both lines of discovery learning we can use the students’ personal experiences
with mathematical models.

Learning materials like the
mathematical box (Mathekoffer)
or sets of platonic solids or
experimental instruments are
part of the inventory of most
schools and are hence discussed
in courses in mathematics
education.

Fig 1: examples of working materials for mathematical lessons

A good possibility of having a common experience to build on comes with
participation or even the development and organisation of a hands-on mathematical
exhibition (Fig.2). Good occasions are events like the open days of mathematics
departments, projects with local schools and museums and joint activities in teacher
training.

Before the introduction of the
Bachelor-Master system and its
rigid credit-course system it was
easier to implement activities and
introduce new topics and fit
seminars and courses into
mathematics education.

Fig 2: Some examples of hands-on activities and materials
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An even better option for the development of a common practice in preparation of
our seminar on collections of historical models is to base it on another university
course with practical elements; we will give an example of such a course in
connection with the description of our workshop.

Nevertheless, before the introduction of the Bachelor-Master system and its
rigid credit-course system it was far easier to introduce new topics and to develop
fitting seminars and courses.

THE SEMINAR CONCEPTION CONCERNING CONTENT AND
STRUCTURE

The development and production of mathematical models were already in use in the
19" century and early 20" century for the training of student mathematics teachers.
Nowadays, this is an episode in the history of European science. The use of historical
mathematical models and their digital images in the study, the teaching and
development of mathematics allow for the relation of historical, technical,
educational and information technology aspects to each other.

The workshop introduced an approach that can be used to design and produce
learning materials for a seminar in university education of student mathematics
teachers. There is a variety of literature with historical and pedagogical perspectives
on the development of mathematical models, which constitutes the content
framework for the historical research undertaken by the participants in the seminar
(for instance, Bussi et al. 2010). The students actively take part in the process of
material choice and organisation of the seminar. The format of the seminar supports
responsible learning with initiative, learning by discovery and situational learning.
However, it seems to take some time and effort to get used to it.

The participants conduct the study of historical mathematical models in the seminar
by three types of contextualization. They are in particular:
1. Mathematical models as a historical artefact,

2. Historical mathematical models as a source of study and as a visualization of
historical mathematical contents,

3. Mathematical models as a source of inspiration for experimentation, varying
and developing new models and visualizations.

The study of the first perspective — historical mathematical models from a socio-
cultural perspective — could include aspects such as:
» Teacher training before, during and after the German Meraner Reform,

+ Intuition and perception of mathematics in the context of educational values
and norms,

» Mathematical models in the context of the discussion between pure and applied
mathematics,

« Historical mathematical models and patriotic education.
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The second and the third perspectives focus on the mathematics behind the models
and on visualisations of mathematical concepts. We introduce an additional structure
through the goals of the related mathematical activities (figure 3). The concrete
choice of specific models depends on the mathematical preparation of the participants
in the seminar. A first attempt to organize such a seminar has been made by David
Rowe, Oliver Labs and myself representing the history of mathematics, mathematics
and computer science and mathematics education. The prerequisites for the students
consisted of the main basic courses in pure and applied maths, courses in educational
studies (pedagogy, psychology) and introductory courses in the historical and cultural
roots of mathematics as well as seminars in maths education. Some of the students
attended reading courses and seminars in selected topics regarding the history of
mathematics.

In this first seminar, we restricted ourselves to historical models, mechanical
instruments and drawing tools related to plane curves. The individual models were
assigned to the themes:

+ Selected static models,
» Selected kinematic models,
+ Selected models closely related to school curricula.

For development of new
mathematical concepts

Mathematical models

as a tool
For the understanding For the teaching
of known mathematical of known mathematical
concepts concepts

Fig 3: Perspectives on mathematical models as a tool, examples from the historical
collection of mathematical models of the university Géttingen [2] und the university
Halle [3].

Understanding the background of most models of the Brill and Schilling collection
[4] (Polo-Blanco, 2007) is a very challenging mathematical task for students.
However, the visual and tactile access when working with visualizations and real
models fosters this understanding. This takes place in the realm of the third
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contextualization while dealing with the illustrated mathematics and the development
of further illustrations. The concept of the seminar allows for the possibility of
discussing different themes concerning elementary mathematics, the history of
mathematics, mathematical teaching methodology and computer algebra.

From our experiences with the first seminar of this type, it seems useful to plan a
prior reading course, making students familiar with the conceptual foundations of
using the history of mathematics as a tool and as a goal, as well as with the
corresponding concrete examples of classroom practice from different countries and
time periods (Jankvist, 2009. Fauvel & Maanen, 2000).

OUTLINE OF THE WORKSHOP

The workshop started with a short presentation of the concept of the seminar. As an
example of a collection of historical mathematical models we chose the Gottinger
Sammlung historischer mathematischer Modelle, which is a historical collection of
historical mathematical models closely connected with the name and activities of
Felix Klein (Rowe, 2013).

Fig 4: Some examples of historical and modern mathematical models

This collection is available digitally (http://www.uni-
math.gwdg.de/modellsammlung/). Moreover, during the last year in the framework
of a project at the Georg-August University Gottingen to introduce historical
collections into teaching, the collection of historical mathematical models became
subject of several teaching activities in the study of mathematics as well as in
didactics. The topic of mathematical models is highly suited for pushing students to
formulate their own research questions. After a short introduction to the background
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of the participants in the workshop, we started with a short presentation of the
Gottinger historical collection of mathematical models. In order to illustrate the
pedagogical method central to the seminar, the participants were invited to formulate
research questions related to the models they would like to study. Most participants
wanted to understand more of the mathematics visualised by the models.

In the university seminar the situation was quite different. Most students wanted to
know about the materials of the models and their durability, the form of activities
using the models as tools (group work, individual work), the order and delivery
times, the quantities in production and the prices of the models compared to other
products. There were also approaches to studying the mathematical models as
artworks and as a source of inspiration for artists.

The contextualisation of the models by the university students was much more social-
cultural than the Copenhagen workshop.

One of the strengths of the university seminar was the team teaching and the
interdisciplinary approach of the teaching staff. Depending on the type of questions
raised by the students, they could consult either the historian of mathematics, or the
specialist in algebraic curves and surfaces and their visualisations or those of the
maths educator. For students interested in understanding more about the
mathematical background of models of algebraic curves, there were possibilities to
write a master’s thesis on this topic and to study and develop digital images of the
models and digital visualisations (figure 4).

For a workshop with participants of varying mathematical backgrounds, the historical
models of algebraic surfaces were, however, too complex to illustrate different
contextualisations.

The models that were presented were not part of the Brill and Schilling collection for
university education but were models from the Treutlein Catalogue, i.e. models for
use in schools.
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Fig 5: Samples from Treutlein’s Catalogue (Wiener & Teubner, 1912)

The second exercise of the workshop sought to get the participants into the spirit of
German school practices of the early 20" century. The participants were asked

1. To choose from the Treutlein’s Catalogue a series of models from a chapter
with geometrical flat models (fig. 5),

2. Following the pictures from the Catalogue to produce models from cardboard,
3. To give a short lesson plan on the basis of activities with the cardboard models,
4. To formulate corresponding tasks and exercises with the models.
The main implicit goal of this group-work was to develop a contextualisation of the
chosen school model, which is related to individual activities and routines. The latter
are the basis for formulating meaningful research questions on the subject of

historical collections of (industrially produced) mathematical models for classroom
activities.

Another reason to choose rather simple geometrical models from the collection is
Treutlein’s accompanying geometry textbook (Treutlein, 1911). The historical school
textbook gives the possibility of contrasting contemporary and historical
mathematical activities — modern lesson planning and problem solving with given
(historical tools) and the intended activities with the same tools.

The corresponding tasks during the workshop were:
* Find in Treutlein’s geometry book tasks to your crafted model.
» Compare the task with your modern versions.
* Give a formulation of a task, which could be Treutlein’s.

The first part of the workshop was rounded off with a comparison of the treatment of
Pythagorean Theorem in Treutlein’s textbook with a modern mathematical school
textbook which uses very similar puzzles for the proof.
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The first part finished with a discussion of questions inspired by the making of
models:

+ In the historical context
+ Inthe modern context.

Inspired by the use of models:
» From the perspective of students
» From the perspective of teachers
» From the perspective of authors.

The second part of the workshop dealt with the independent development of
visualisations, models and experiments as teaching tools.

It started with a presentation of contemporary self-crafted experiments and
visualisations for primary school and high school students. The presented hands-on
exhibition for primary school students was a project we did in Géttingen for an
annual urban science week. The project was organised by mathematics educators and
students of the mathematics department of university Gottingen, it started in 2003 and
continues to the present. In this hands-on exhibition students worked as tutors and
accompanied experiments which they had developed on their own as part of a
seminar in mathematics education (Fig.6). The activity initiated the development of
similar school exhibitions in various primary schools through to a regular after school
maths club [5].

Fig 6: Experiments and models in the framework of a hands-on exhibition of
mathematical experiments organized and developed for primary school students

The presented models and visualisations for high school students were results of the
student work of our seminar on historical models. As we have already explained, due
to the mathematical preparation of our students, we restricted ourselves to mostly

Page 137




YSETTE WEISS-PIDSTRYGACH

simple plane curves. The mathematical themes of the seminar and related course
works were:

» Models related to problems of Apollonius

« Drawing instruments

» Cycloids

+ Involute and Evolute

+ Curvature

* Quadrics

« Curves in space

Fig 7: Models, experiments and digital visualisations produced by students in the
framework of the seminar

The students were encouraged to visualise the studied mathematical objects, to create
models, to develop experiments and to support digital visualisations and experiments.
They had the possibility of attending an associated computer algebra course. Some of
the produced visualisations and models of studied mathematics are shown in Fig.7.
Similarly to the first part of the workshop, the aim of the introduction was to
contextualise the making of models and visualisations by personal experiences and
motives. The participants were asked to formulate historical, socio-cultural and
mathematically motivated research questions based on their own interests and
experiences. Because of the very different backgrounds of the participants it would
have been more productive to choose only one instrument and discuss it from various
perspectives. Most of the questions had to do with the mathematical background and
questions of where to find relevant elementary written mathematical sources. The last
task for the participants was to make their own models from paper, cardboard,
coloured pencils or crayons, scissors, and binding material such as yarn or twine. For
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guidance, one could use the Internet, student assignments or real instruments like a
pantograph.

IN RETROSPECT

After the workshop, | was asked for more material concerning the seminar, like
literature, instructions for model constructions and applications for the digital
experiments.

To present and illustrate the concept of an activity aimed at raising questions and not
giving answers was harder than | expected. An adverse impact was the seating
arrangements — one group on a very long small table. Working in small groups
presenting the results of group discussions with an overhead projector (as is done in
student seminars) would have given the workshop more structure in form of “answers
in questions”.

I am especially grateful to Jan van Maanen for his enriching comments during the
discussion and his inspiring enthusiasm at the production of cardboard and twin
models.

NOTES
1. http://www.dfg.de/foerderung/info_wissenschaft/2010/info_wissenschaft 10 2
6/index.html

http://modellsammlung.uni-goettingen.de/gq
http://did2.mathematik.uni-halle.de/modell/index.php
https://archive.org/details/catalogmathematiOOschiuoft

a > wp

http://www.gs-friedland.de/index.php?article id=41
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Our presentation is focused on the design of a favourable environment for teachers
willing to develop disciplinary or interdisciplinary reflections based on the study of a
particular kind of historical sources, that we call "series of problems". In the first
part we briefly explain the meaning of this notion and we outline the contents and
purpose of a research project focused on their comparative study. We then describe
how this project is associated with a professional teacher training session also
conceived as a research seminar. In the third part we explain how we intend to
reorganise the project into a collaborative edition of a sourcebook about series of
problems. We finally explain the main principles of a workshop associated with this
editorial enterprise that will permit the development of original reflections and
pedagogical projects around the texts that will be selected for the sourcebook.

"SERIES OF PROBLEMS AT THE CROSSROAD OF CULTURES": THE
FIRST STAGE OF A RESEARCH PROJECT (2011-14)

The research project entitled “Series of problems at the crossroad of cultures” has
been developed within the "HASTEC labex™, a cluster of several Parisian
research laboratories [1]. It gathers around 15 researchers, including master and PhD
students, from various disciplines: history, epistemology and anthropology of
sciences and of literature, history of texts, cultural history, and educational studies.
The purpose of this interdisciplinary project is to study a genre of historical
texts called "series of problems”. Many (though not all) of these texts can be
identified as having, partially or in totality, mathematical contents.

We use the term "series of problems" to interpret historical texts having the form of a
collection of questions and answers. This interpretation relies on the basic
hypothesis that these texts follow, either globally of locally, some kind of principle
of ordering. The term “problem™ has to be understood here in a very broad sense,
as referring to any kind of verbal challenge: this includes, therefore,
mathematical or scientific problems in the usual sense, but also riddles (enigmata)
or questions, in general any kind of practical, pedagogical or intellectual "task". As
for the term "answers”, it also refers to a wide range of possibilities, from a
"solution™ (in the case of mathematical problems) to quotation of authorities (in the
case of questions in natural philosophy) or poems (in the case of literary riddles).
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The main originality of this research project, then, consists in focusing not on
individual ‘problems’ but on the principles, the characteristics and the possible
roles of their collection in a certain order. The second keypoint is that this order or
"principle of ordering" is not necessarily understood in the same way in each
case. In other words, the confrontation and progressive clarification of the
various ways, in which this ordering should be understood, is one of the basic goals
in this interdisciplinarly project.

A famous example of sources entering the generic category of "collection of questions
and answers" and dating back to antiquity are the (pseudo) Aristotelian problemata, a
series of questions falsely attributed to Aristotle and proposing a wide range of
intellectual and philosophical challenges [2]. Another example, which is the research
subject of one of us, is a corpus related to a Hungarian tradition of mathematics
education from the second half of the 20" century: mainly textbooks and teachers
handbooks, partly inspired by philosophical texts and by books popularising
mathematics, like Rozsa Péter’s “Playing with infinity”. In these texts, ordered series
of problems play an essential role, as well as a dialogical form of presentation. In this
case, divers principles of ordering can be observed, for example the variation of
mathematically similar
problems in different contexts,
in order to guide the reader
towards progressive levels of

Ancient Mesopotamian
Corpus (GC)

Heronian and pseudo-
heranian metrological

Racorpus (BY)

Parts of the Polatine
Anthalogy and of

generalisation (Gosztonyi Deipnosophisteis(Au B) = « Playing with
2015) :lg‘!g‘tlvkgle’.. Peter
h I Id b Diophantus's TEXTS / i
Many other examples could be Arithmetica :
f : e corpuses e

mentioned of course. Synoptic
figure 1 gives an idea of the
variety of texts and periods
covered by the researchers
participating in the project [3],
and still many more could be
added when considering other
periods of cultural areas.

(JP)
Med|eval texts
on metrology and
measurerment (M

17th cent coll. of
disputationes {UK)

Medieval Byzantine
Quadrivia [1C, NNV
—

-
Medieval texts
of algebra (10) f

2

Renaissance arithmetics
+ algebraic treatises (GC)

Medevial encyclopedia
texts In the form of

Questions and Answers,
MA and Renalssance (IV

Fig.1: the range of historical texts studied in
the project (see note 3 for the abbreviations).

These texts are highly
interesting research objects in several respects. Let us first insist on their interest for
historical and anthropological studies. Some of these series, in their form and contents,
have a long ranging history: this is, for example, the case of the pseudo-Aristotelian
problemata, the tradition of which extends to the Middle Ages, during which they
were eventually adapted, through reordering and adaptation, into a form of
encyclopaedic knowledge (Ventura 2008). Some of them have crossed the boundaries
of cultures, like Diophantus' series of arithmetical problems: originated in Greek in a
coherent treatise, they have been transmitted to Byzantine and Arabic Middle Ages,
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before they were translated and adapted in the Renaissance periods and inspired a host
of new treatises- often by way of reordering and transforming Diophantus's problems.
Thus the study of the re-appropriation and re-ordering of such texts contributes to the
understanding of their long-lasting character.

At the same time, even in the case when they are based on a long-lasting heritage, they
are never organised the same way and represent an intriguing object for cultural
studies: thus, Rdzsa Péter’s literary text can be seen as an initiation to mathematics for
a wide audience, but also as a reflection of the philosophical, educational and literary
concerns of a whole milieu of writers, mathematicians, educators and philosophers to
whom R. Péter alludes in her book (Gosztonyi 2015). In this case, part of the book is
based on problems structured in a sophisticated way, this ordering having much to do
with the concerns in question. The pseudo-Aristotelian problemata, which cannot
positively be attributed to Aristotle himself, still reflect the spirit and atmosphere of
the peripatetic school. As for Diophantus' Arithmetica, it contains strong allusions to
the background of ancient rhetoric, most notably the emphasis on the notion of
invention. The latter is in turn related to the progressivity of his problems, which is
meant to develop the reader's capacity for invention (Bernard 2011, Bernard and
Christianidis, 2012). In general, these texts often pose difficult questions of
interpretation: even when the intention behind their constitution is made explicit, it is
not always obvious how to make it correspond to the actual structure of the text. Thus,
looking into their partial or global "seriality" is one way (among others) to construct
this interpretation and face this difficulty.

The third interest of such objects is the historiographical issues raised by their
classification. For example, several of these series have been categorised by historians
in a way that is open to dispute - in particular, while there are sometimes clues to the
fact that they served didactic or pedagogical roles, in other case the positive evidence
for this is lacking or, when it exists, is easily misinterpreted [4].

Finally, series of problems often represent a challenge for historical research, because
in some cases (esp. in the medieval period), historical inventories of them are lacking,
and many sources that fall under this category are still unedited or understudied. When
an inventory is possible and expected, the criteria for building these inventories and
comparing the elements of the retained corpus are also open to discussions: should the
text be characterized through the contents; through the list of the statements of
problems; or through the list of solutions? Finally, even in the case of the study of
single series of problems, the criteria that make clear the organisation and ordering of
the problems or questions have to be made clear and studied carefully, because this
analytical choice has deep consequences on the interpretation of "seriality".

All in all, the primitive aim of the project has been, and still is, to improve the
comparative study of these objects, not only across different ages and geographical
locations, but also by taking advantage of the variety of approaches and fields
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represented in the research group. This variety of approaches focused on the one same
object is one way to understand the notion of "crossroad of cultures™: as the crossroad
of intellectual approaches. Another way to understand this notion is to think about it in
terms of the variety of "cultures"”, including intellectual and professional cultures and
techniques, beyond differences of language and values, that are needed to understand
"series of problems". We want to check the fundamental hypothesis that, given their
complexity, taking into account several of these cultures and not only one or two of
them, might bring a better historical understanding of their structure, role and relative
stability in time.

Beyond their interest for historical studies, the second reason to pay attention to these
objects is the fact that their study can still inspire new reflection by teachers of today
working in various disciplines, or in interdisciplinarity. This is why the development
of the project was very soon associated with a training session, as we shall now see.

THE ORGANIZATION AND CONCEPTION OF TRAINING SESSIONS
AROUND SERIES OF PROBLEMS

Series of problems can challenge the interest of teachers for several reasons. Some of
them are related to the general issues usually treated in HPM meetings: as examples of
historical sources among others, they are liable to inspire pedagogical activities and
reflections on mathematics in relation to the cultural context or more specifically to the
interest of reading mathematics into ancient and unfamiliar texts. Also, they are
potentially interesting for interdisciplinary activities: on the level of contents, the
problems contained in these texts do not all concern mathematics; on the level of their
interpretation, series of problems are akin to a genre of texts, that is to an interpretative
tool used in literary studies.

More specifically, though, teachers may find reasons for taking interest in this
literature, that are related to the pedagogical issue of teaching through problems. By
studying series of problems and reflecting on questions about the order of problems,
one can take into account not only the resolution of isolated problems but also
structured systems of problems as well as the intellectual processes consisting in
putting them in order. At an even deeper level, there is also an issue about the image
and conception of knowledge which is reflected through its organisation in this serial
structure.

To discuss concretely such questions, we have organized three training sessions until
now (2012-15). They have been proposed to a mixed audience of teachers of
mathematics, literature and history in French secondary schools, as well as to students
in the human sciences through HASTEC and the associated master or doctoral
structures [5]. The double purpose is (a) to offer an interesting incentive for
professional development, for teachers willing to enrich their culture and knowledge,
and their reflection on the teaching through problems or enigmas; and (b) to propose
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them simultaneously an insight into research questions about the historical sources
taken as a support and point of departure of such reflections [6].

The session had each time a standard format: three days of meeting amounting to six
sessions of 3 hours each. The first session is meant to expose the purpose and contents
of the training, with a special emphasis on the ambivalence of the sessions, which can
be seen as stages in an ongoing research seminar, and as opportunities to discuss
professional issues. Then each of the other five sessions is based on the study of a
particular corpus of series of problems, and consists in the presentation of their
historical context on the one hand, and the collective reading of a collection of selected
excerpts on the other. In principle, enough time must also be left each time for
discussions with the participants on the contents of the proposed text and of its
interpretation, but also on professional issues aroused by this experience of reading
and understanding of ancient sources.

Let us insist here on the organisational aspects of theses sessions that make them a
kind of concrete crossroad between professional and research inquiries. The first way
to favour this mixture of perspectives has been already mentioned: the researchers
(including students) who were called to constitute and present a collection of selected
texts for discussion with the participants, were also invited to organise these excerpts
according to one leading research question they had in mind. This presentation is
basically meant to give an idea of the underlying research issues. For example, one of
us took the opportunity of the 2013-14 session to explain the questions he had in mind
about the progressivity of Diophantus's problems in his Arithmetica: having elaborated
a first model of study of this progressivity (Bernard and Christianidis 2012) his
purpose is now to improve this interpretative model through closer attention to the
language used by Diophantus for the statements of his problems and the
corresponding solutions (Bernard forthcoming).

Even more concretely, it very soon appeared that one way to explain the research
guestions was not only to explain it through a traditional kind of talk giving elements
of theoretical references or historical context, but also to make it palpable through the
organisation of the chosen texts. Following on the example of Diophantus's text, we
were for example led to propose a translation of its problems so as to get the reading
experience as close as possible to what it was in antiquity: an experience of
mentalizing texts that were written in manuscripts in a "continuous" way (with no or
little separation between words and sentences) through aloud reading and verbalization
(anagnosis). This way of preparing and presenting the text was meant to make clear
and palpable the repetitiveness which is characteristic of ancient texts. It can then be
explained by taking into account the concrete conditions in which reading and
learning occurred in antiquity. Interestingly enough, this issue met very quickly the
concerns of mathematics teachers who are developing ways to help the reading of
sentences, in which algebraic symbols appear that are liable to be replaced by
numerical values [7].
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The other way, through which the participants were invited to participate in research
inquiries and, at the same time, to question their own professional practice of
concerns, is more traditional: it consists in explaining, from the outset, the origins and
reasons of the session - especially the fact that it is related to a research project. At this
stage the purpose is to organise a first discussion, aiming at "matching" the
expectations of participants, with the purpose of the session. From this discussion
generally emerge several questions and issues that participants have in mind
consciously or not. Here are some examples of questions that typically emerged from
such preliminary discussions: how to structure one's teaching through problems and
for what purpose? How can one introduce a cultural context when discussing
traditional problems? What use can be made of problems stemming from, or present
in, various cultural traditions and cultures, especially in view of teaching mathematics
in multicultural classes? How the same problems were formulated in various periods
and languages, and what advantage can be drawn from this variety? The game, then,
is to recall as systematically as possible these issues in the course of the various
reading sessions. From this point of view, these sessions can be then regarded as a
permanent anamnesis (recollection) of these key issues. This concretely calls for the
presence of a moderator who should see his role as essentially maieutic, that is, as
'recollecting' the previously discussed questions. This means that to make bridges
between them, reformulating them in the light of new contents, adding content,
awakening new reactions and discussions, is for them the main challenge.

The limits of these procedures are, of course, time. While there is of course no limit of
time for preparing a set of 'interesting’ excerpts to study and read, there are obvious
constraints on the time that can be devoted to open discussions in the framework of
reading sessions, most of which are spent on discovering the presented material and
on going beyond the usual first "shock" of meeting new and unfamiliar texts.
Combining the presentation of the cultural context, open discussions and the reading
of texts is a real difficulty. We thus naturally came to the idea that we should associate
with these sessions a more intensive workshop. This idea also came from the recent
transformation of the underlying research project, which is now turning into a reading
seminar associated to an editorial project.

THE PROJECT OF A COLLABORATIVE "SOURCEBOOK"" ON SERIES
OF PROBLEMS

Before we come to explain how we are conceiving this associated workshop, the first
edition of which began in 2014-15, we must explain the new direction the "series of
problems™ research project is taking, toward a reading seminar aimed at the
publication of a sourcebook for the subject.

After a first 'seminal' period of three years that is now concluding with a first
collective publication (to appear in 2015), the "series of problems” project is
progressively taking a new turn. Since most of the participants are now willing to have
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a reading seminar in which excerpts of various series of problems would be examined
and discussed "from close experience”, the basic idea is that this seminar would be
ultimately focused on the publication of a sourcebook consisting of a collection of
discussions and annotations of these excerpts.

In its traditional form for history of science, a sourcebook essentially proposes
historical and epistemological commentaries on the chosen texts. In our project, this
would constitute the first layer of the expected commentaries. But, based on a previous
experience of a similar editorial project associated with an experience of collective
reading of the chosen materiel by teachers (Bernard et alii, 2010), the originality of
this sourcebook would be to add a second layer of commentaries. This second layer
would account for the lessons drawn from concrete experience of "actual encounters"
between these texts, and with teachers concerns with specific professional issues. The
key idea underlying these second commentaries is reflected in the beautiful narrative
that Augustine proposes of this conversion, in a well-known episode of his
Confessions (VIII, 29): some texts achieve an actual meaning for their readers,
through the identification of its contents with the actual experiences and thoughts of
the reader. These commentaries, then, would illustrate possible values actually given
to these ancient texts by modern readers, especially teachers.

When considered on the level of research questions, the two layers of commentaries
correspond to two basic kinds of issues and purposes. The first layer is oriented on
historical and epistemological research on the texts themselves: the leading purpose is
then to restore the adequate historical and cultural context in which the chosen excerpt
might or should be understood, the reasons for choosing the excerpt and to provide
elements of interpretation based on actual research, which includes bibliographical
references giving an access to deeper readings. The leading questions, then, are those
exposed in the first part of the present paper. The second layer is explicitly or not,
related to the issues in educational research about learning and teaching through
problems that have been evoked in the previous part. From this second point of view,
the key issues are the meaning of "teaching through problems"; the role of seriality
when building problems is considered not as an isolated activity but as building
collections of them with a definite idea in mind, whatever it is.

Concretely, the first layer of commentaries is naturally obtained through the existence
of the reading seminar called for by the participants of the project, as mentioned
above. The second layer requires a slightly different kind of context and framework:
for this, the workshop to which we alluded above, in relation to the training session on
series of problems, seems an adequate answer.

ORGANIZING WORKSHOPS FOR PROFESSIONAL DEVELOPMENT
INSPIRED BY HISTORICAL "SERIES OF PROBLEMS"™

The basic aim of the workshop in question, then, is to serve as a "companion" both to
the training sessions and the project of the sourcebook we discussed above [8]. As for
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the participants, the idea basically follows the principle of the IREM workshops [9]:
researchers and teachers at various levels (primary, secondary or university) are
invited to participate, provided they have some connection with the associated
research project. This open framework is wholly consistent with the purpose of mixing
various research and professional perspectives in one and the same framework. For
teachers, it should offer the right context for professional development, that is, an
opportunity to reflect about their own teaching on the basis of the historical material
discussed within the project.

As compared to traditional IREM groups in France, our workshop has the particularity
to welcome teachers of literature and history, who might be interested by in this
material. Moreover, it is in principle open to students of the newly introduced Master’s
curriculum for all professions related to teaching and education (MEEF). In other
words, it could become a place for meetings not only between researchers and
teachers, but also between beginning and qualified teachers, and between teachers
from different disciplines.

Just as we did above for the training session, we would like here to highlight how we
conceived the organisation of the workshop, so as to fulfil its basic objectives. The
same problems of conception mentioned above in relation to the training session, exist
with this workshop in terms of organising a coherent dialogue between research
perspectives and questions related to the development of professional skills. At the
present moment, it is too early to draw conclusions from this nascent experience; we
will limit ourselves to discussing the initial framework we considered for it, and the
possible perspectives.

Our first idea is both traditional for an IREM-type workshop and an original
development to our conception of the training session. Any IREM group has for its
basic purpose the production of resources for mathematical teaching. Just in the same
way, we thus propose that the participants develop a project that might evolve in as a
possible resource for other colleagues: this might be for example an article, an
academic work (a Master’s thesis for example), a website, or a booklet on a definite
subject, etc.

It is important to leave significant freedom in terms of the potential nature and
contents of the resource they propose to build. As for the kind of project, it might
evolve into personal reflections on “series of problems” as cultural, historical, literary
objects, in a typically interdisciplinary perspective. This might also consist in
reflections on the ways of constructing a teaching process based on problems, these
reflections being inspired by the examples seen during the training session. This might
be the construction and experimenting with teaching scenarios based on series of
problems.

In order to leave place for the development of this diversity, and to define the projects
which are the better adapted to the interests, competences and possibilities of each
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participants, we asked them, at the initial stage, to express some rationale, emotion or
desire, that they could develop later into a more definite project. In other words, the
first issue is not to define a project but to explore its roots, that is, the reasons for
building a project. This notion has much to do with the Augustinian idea of
"encounter with a text" underlined above.

For example, two colleagues already signalled their interest in the material that one of
us proposed during the training session, in the form of translated excerpts from the
Hungarian mathematics textbooks from the 1970s. What attracted their attention to
this material was the fact, that part of the textbook took the form of fictive dialogues
between pupils sharing their experiences and questions related to concrete problem-
situations. [10] The discussion showed, that the reasons for being attracted to this idea
were related to their own attempts to structure their teaching through the use of actual
dialogues. More than this we cannot say at the present stage: we do not know yet,
what use they made of dialogues and in what sense they understand this use. This
might ultimately appear very different from the intentions that underlie the Hungarian
texts; what counts at this stage, is that they began to identify the reasons for studying
from close examination of these manuals, in relation to this particular professional
experience.

The second leading idea is to leave time and freedom for the progressive development
of the project. Time is again an obvious constraint: the participants, most often than
not, do not have enough time and availability for developing a complete project with
compelling deadlines in a short span of time. They certainly need a challenge, but not
deadlines that would be incompatible with their professional activity. One of the main
reasons to leave open the type of work and the support chosen is to make sure that the
complexity, length and support of the project does correspond to the time constraints
of the participants, and most of all that its nature and contents fit the initial desire
analysed in the first place.

Ultimately, our hope and purpose is to build the concrete basis for the elaboration of
the "teaching" commentaries we alluded to above: if the work led within this
framework develops in the right way, it should ultimately be possible to build a
synthesis making for each text the best out of various reading experiences.

CONCLUSIONS AND PERSPECTIVES

Our initial incentive for presenting this nascent work in the Copenhagen conference
was to take the opportunity of an international conference in order to check whether
this project could be developed on a more European level. One purely potential reason
for thinking about this kind of development is that we belong to two different
countries, France and Hungary: thus, while the present project is developed in France
and more precisely in Paris, one could imagine in the future some ‘satellite’
development in Hungary, or in general in other countries.
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One strong objection to such development is the language: at present, most (though
not all) of the texts developed within the project, or discussed in the training sessions,
were presented in French and for a French-speaking audience [11]. Thus, as usual,
bringing the project at a European level would mean overcoming language barriers. It
also implies difficulties in terms of finding locally enough experts available for
participating in interdisciplinary discussions, not only with other specialists, but also
with teachers.

In spite of this, it remains interesting to reflect about the potentials for delocalization.
Given the principle of the workshop described above, there is nothing to prevent
several similar groups develop in various locales, even within France for example.
Indeed, what really counts is the availability of the texts studied, translated and
eventually edited within (and thanks to) the project; and the possibility of inviting
participants in the projects to local meetings. The development of such 'satellites' thus
need time, patience and reflection.
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In this work, we present a teaching proposal about history of matrices. Our goal is to
create conflictive situations in which students are encouraged to reflect upon their
metadiscursive rules related to matrices, comparing them with those present in some
historical writings. We have been based in the historical interpretation of Frédéric
Brechenmacher and in Sfard’s theory of Thinking as Communicating. The conceptual
framework for using history in the teaching of mathematics was inspired by some
works of Tinne Hoff Kjeldsen. We elaborated two teaching modules approaching two
episodes of the history of matrices; the first has as protagonist the mathematician J.
J. Sylvester and the second one has A. Cayley as protagonist. We discuss some of the
results obtained in a pilot study in which the material was tested.

INTRODUCTION

Almost all Linear Algebra courses in Brazil, as well as the textbooks most often used,
start with the concept of matrix as a stand-alone mathematical object. The definition is
stated without reference to any problem in which the notion appears, immediately after
the operations are introduced and their properties deduced in an abstract manner [1].
This sequence is thus seen as a goal in itself, no matter if it would be richer to develop
further discussions about the nature or the origin of matrices and their operations.

As a consequence, when we ask students having finished their Linear Algebra courses
why matrix multiplication is defined as the dot product between the rows of the first
matrix and the columns of the second matrix, they generally cannot answer. The
following quote shows the answer an school Mathematics teacher gave to this question
(part of a questionnaire given at the beginning of our pilot study).

Question: Imagine that a student asks you the following question during a class on
matrices: “Why we have to multiply rows with columns in the matrix multiplication?”
What would you answer?

Answer: | would say that he should accept it as a truth. Unfortunately, this would be my
answer. I wouldn’t consider saying anything else.

The aim of our research is to create “conflictive situations” in which students are
encouraged to reflect upon the rules that define their actions when dealing with
matrices (metadiscursive rules), after comparing them with the rules that appear in
some historical writings. The notion of conflictive situation is inspired by what Sfard
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calls commognitive conflict and the notion of metadiscursive rule is used here in the
sense proposed by Sfard’s theory of thinking as communicating (Sfard, 2008).

In the next section we explain the conceptual framework used in the research, largely
inspired in the works of Tinne Hoff Kjeldsen (Kjeldsen, 2011; Kjeldsen & Blomhgj
2012; Kjeldsen & Petersen, 2014). These references made it possible to combine the
historical approach we perceived as relevant to our goal with methodologies from the
field of Mathematics Education.

Using historical sources about matrices, we developed teaching proposals in order to
analyze the context of problems in which matrices appeared as a useful definition, so
making it clear that this notion was not proposed immediately as a mathematical
object. The historical work on matrices will be discussed in the third section of this
paper.

Frédéric Brechenmacher (2006) is another important reference, who showed that the
notion of matrix emerged and developed associated with concepts such as
determinants, linear transformations and quadratic forms, to cite a few. Unlike the
order in which these concepts appear in a Linear Algebra course nowadays, in history
the notion of matrix was one of the last to appear. Moreover, the history of matrices
shows that they come to light as a representation and their constitution as a
mathematical object occurred along different mathematical practices. As
Brechenmacher observed, the notion of matrix changed over time through different
identities assigned to it within these mathematical practices.

The fourth section presents the pilot study carried out in the first semester of 2014
and we close the article with some initial conclusions.

CONCEPTUAL FRAMEWORK

Kjeldsen (2011) proposed a theoretical argument to integrate history in
mathematics teaching based on Sfard’s theory of mathematics as a discourse.
According to Sfard (2008), mathematics is a well-defined form of communication
or a type of discourse governed by certain rules. In this perspective, learning
mathematics requires to take part in the mathematical discourse. In Sfard’s words,
it is necessary even for one’s understanding of mathematics, since learning a
mathematical discourse is “becoming able to have mathematical communication not
only with others, but also with oneself” (Sfard, 2007, p. 575).

The rules that control the discourse are divided into two types: object-level rules
and metadiscursive rules. The first concerns “narratives about regularities in the
behavior of objects of the discourse” and the second one concerns “patterns in the
activity of the discursants trying to produce and substantiate object-level
narratives” (Sfard, 2008, p. 201).

In the mathematical discourse, object-level rules relate to the properties
of mathematical objects. Examples include: (1) in Euclidean geometry, the
interior

Page 154



REFLECTING ON META-DISCURSIVE RULES THROUGH EPISODES FROM THE HISTORY OF ...

angles of a triangle always add up to 180°, and (2) in algebra, ab = ba, where a and
b are real numbers.

The metadiscursive rules (or metarules) concern the actions of the discussants. They
are usually implicit in the discourse and manifest themselves when one judges, for
example, if a particular description can be regarded as a definition or if a proof can
be accepted as correct.

Metarules govern “when to do what and how to do it” (Sfard, 2008, p. 208). So, they
affect the way in which participants of a discourse interpret its content. Learning of
mathematics is thus the developing of appropriate metarules. On the other hand, as
these rules are contingent and tacit (Sfard, 2008, p. 203, 206), participants do not
observe them in a conscious and natural way. For this reason, it is unlikely that
participants can learn metarules by themselves.

The term metarule in Sfard’s approach is quite broad, including, for example, norms,
values, and goals. It can also be used to designate repetitive patterns in different
activities.

(...) it is possible to talk about the metarules regulating participation (e.g., raising hands
before speaking, working in groups), or metarules characterizing participants’ intentions
(e.g., genuinely engaging in mathematical activity versus acting to please the teacher), or
the metarules regulating the object-level rules of mathematics (e.g., using the metaphor of
motion to compute limits, using graphs to realize functions). (Gligler, 2013, p. 441)

In what concerns our particular subject of research, Kjeldsen argued that history of
mathematics plays a fundamental role in order to “illuminate metadiscursive rules”.
These kind of rules are historically established and they may thus be treated as the
object-level of a historical discourse. In this way, metadiscursive rules stop being tacit
and can be made explicit objects of reflection (Kjeldsen, 2011).

The idea is then to promote situations in which students are encouraged to investigate
the development of mathematical practices through historical sources and to
understand the vision mathematicians had about their own practices. An approach of
this kind can help the students to grasp how mathematicians conceived their objects of
study and how they formulated their mathematical statements. Doing so, students can
have contact with discourses governed by metarules that are different from the modern
ones and different from their own metarules:

(...) the historical texts can play the role as “interlocutors”, as discussants acting
according to metarules that are different than the ones that govern the discourse of our
days mathematics and (maybe) of the students. (Kjeldsen, 2011, p. 52)

In the present research, we developed teaching and learning situations with the aim to
clarify the metarules found in mathematical texts from the past, so the participants can
compare them with their own metarules. The use of historical sources can thus lead to
the situation that Sfard calls commognitive conflict, defined as “a situation in which

Page 155



ALINE BERNARDES & TATIANA ROQUE

communication is hindered by the fact that different discursants are acting according
to different metarules” (Sfard, 2007, p. 576).

Guided by such a theoretical argument, Kjeldsen and Petersen (2014) implemented, in
a Danish high school, an experimental course on the history of the function concept.
In addition to using Sfard’s theory of thinking as communicating, the course was also
designed by using a multiple perspective approach to history (Kjeldsen, 2011) and the
theories related to concept image, concept definition (Tall & Vinner, 1981) and
concept formation (in the sense of Sfard, as cited in Kjeldsen & Petersen, 2014, p.
32). The researchers used extracts from primary sources written by Euler (1748) and
Dirichlet (1837) in order to explore two metarules:

o General validity of analysis. This rule assumes that results, rules, techniques,
and statements of analysis are generally valid.

o Generality of the variable. This rule states that a variable in a function can take
on all values.

These two metarules were dominant in the analysis of 18™ century and Euler assumed
both of them in the definition of a function he presented in 1748. His definition
considered a function of a variable quantity as an analytical expression composed in
any manner from that variable quantity and numbers or constant quantities (Kjeldsen
& Petersen, 2014, p. 37).

Afterwards, the students get in touch with Dirichlet’s definition, which departs from
metarules that are different from the ones Euler assumed. In this last case, a variable
quantity was used to propose a definition of a function as a relation of dependence
between variables, which is not necessarily given by one same law in the whole
interval; and not thought of as relations that can be expressed by mathematical
operations (Kjeldsen & Petersen, 2014, p. 37).

The goal is to make the conflict to emerge between the different metarules found in
the historical texts, and also between these metarules and their own. Although our
research is much inspired by Kjeldsen’s theoretical argument it concerns a different
mathematical subject. We prepared two teaching modules focusing on episodes in the
history of matrices and selected three metarules we found appropriate to provoke a
conflict about the way matrices were and are conceived. In the next section, we
explain the historical content and the metarules that have been selected.

HISTORICAL PRACTICES ON MATRICES AND SOME OF ITS
METARULES

Two research episodes about matrices were analyzed in order to investigate the
different roles that the notion of matrix acquired within two practices developed in the
1850s by the mathematicians James Joseph Sylvester and Arthur Cayley (Bernardes,
2012). The historical discussion of these works is based on the interpretation
suggested by Frédéric Brechenmacher (Bechenmacher, 2006).

Page 156



REFLECTING ON META-DISCURSIVE RULES THROUGH EPISODES FROM THE HISTORY OF ...

Sylvester introduced the word “matrix” in his research about the classification of the
types of contacts between two conics. In this context, matrices were conceived as a
means of representation. This role changes in Cayley’s research. In the memoir
published in 1858 (Cayley, 1858), matrices offered a new language in which known
problems could be treated differently and new problems could be proposed. Moreover,
Cayley established the rules for operations with matrices.

In 1850 the British mathematician James Joseph Sylvester published a memoir in The
Cambridge and Dublin Mathematical Journal, (Sylvester, 1850a) addressing one
problem of a geometric nature: the classification of the types of contact between two
conics. The term “contact” was used to denote an intersection point in which the two
conics are tangent to each other.

The main mathematical tool used by Sylvester in order to solve the contact problem
was the notion of determinant. However, he did not compute determinants of matrices,
this last notion was introduced later.

In order to classify the type of contact between two conics, Sylvester analyzed the
multiplicity of the roots of the equation det(U +V)=0, U and V being

homogeneous quadratic equations in three variables that represent the conics. To let it
clear:

U :ax® +by® +cz? +2a'xy+2b'xz+2c'yz=0
Viox® + By’ +yz2° +2a' xy+2[' xz+2y'yz=0,

and the coefficients are real numbers. The equality det(U + V) =0 yields a cubic
polynomial equation [2].

In the articles concerning the contact problem [3], Sylvester computed determinants of
(homogeneous) polynomials functions. This was a recurrent procedure in his practice
and sometimes he also used auxiliary tables, in which the entries were functions of the
coefficients of the conic-defining equations.

The analysis of these works motivated us to identify a metarule underlying Sylvester's
practice: determinants were tools computed from functions (homogeneous
polynomials) and were useful in the investigation of properties of curves and
surfaces.

We can note immediately a huge difference between this metarule and ours, since
nowadays in linear algebra determinants are defined by means of (square) matrices
and seen as a property depending on these mathematical objects.

Returning to Sylvester’s practice, analyzing the multiplicity of the roots of the
equation det(U + V') = 0 was not sufficient to classify all four kinds of contact. In
the case of multiplicity two or three, there are two kinds of contact, as illustrated by
the examples in Figures 1 and 2.
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Figure 1: Simple (left) and diploidal (right) contact.

Figure 2: Proximal (left) and confluent (right) contact.

The types of contacts may be distinguished by studying the multiplicity of the
intersection points in which the conics are tangent (the black dots in Figures 1 and 2).
In the situation of a simple contact, there is one double intersection point (Figure 1,
left); in a diploidal contact, there are two double intersection points (Figure 1, right),
in a proximal contact, there is one triple intersection point (Figure 2, left); and in a
confluent contact, there is one quadruple intersection point (Figure 2, right).

So, in order to solve the contact problem, Sylvester introduced the notion of minor
determinants and developed a technique consisting of extracting systems of minor
determinants from the complete determinant.

The term “matrix” was introduced in this context and with the goal of generalizing a
property of minor determinants.

(...) we must commence, not with a square, but with an oblong arrangement of terms
consisting, suppose, of m lines and n columns. This will not in itself represent a
determinant, but is, as it were, a Matrix out of which we may form various systems of
determinants by fixing upon a number p and selecting at will p lines and p columns, the
square corresponding to which we may be termed determinants of the pth order.
(Sylvester, 1850b, p. 369)

In this quote Sylvester makes explicit his understanding of a matrix as a source of
minor determinants, concisely called by Brechenmacher as “mére de mineurs” (2006,
p. 15). This understanding was reinforced in another article:
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I have in previous papers defined a “Matrix” as a rectangular array of terms, out of which
different systems of determinants may be engendered, as from the womb of a common
parent (...). (Sylvester, 1851b, p. 302)

We thus propose there is a second metarule concerning matrices that underlies these
works of Sylvester: matrix is a mother of minors. This metadiscursive rule is
expressed in Sylvester’s idea of a matrix as a representation from which systems of
minor determinants can be generated. Before stating the next metarule that guided our
work, we need to describe briefly another actor who was important in this research.

Eight years after the introduction of a matrix by Sylvester, his friend Arthur Cayley
published a memoir in which he defined the matrix operations and stated their
properties (Cayley, 1858). According to Cayley, matrices arise naturally from “an
abbreviated notation” for linear systems. Consequently, he defined matrix operations
from similar operations possible to be accomplished with linear systems.

In the first page of the article, Cayley makes an analogy of matrices with simple
quantities (numbers):

(...) It will be seen that matrices (attending only to those of the same order) comport
themselves as single quantities; they may added, multiplied or compounded together (...).
(Cayley, 1858, p.17)

This analogy pushed him to consider a certain type of matrix as a simple quantity:
(m, 0, 0)
m=|0, m, O],
|10, 0, m]

The matrix on the right-hand side is said to be the single quantity m considered as
involving the matrix unity. (Cayley, 1858, p. 20, italics in the original)

Cayley developed a practice of computation with matrices based on a dual
interpretation of a matrix: either as a system of numbers and as a number
(Brechenmacher, 2006, p. 20). This duality is expressed in the statement of his
“remarkable theorem”, announced in the first page of the memoir:

21. The general theorem before referred to will be best understood by a complete
development of a particular case. Imagine a matrix

M=(a, b),
e d
and form the determinant
a—-M, b
c, d-M

the developed expression of this determinant is
M? —(a+d)M*+(ad —bc)M° .

(...) and substituting these values the determinant becomes equal to the matrix zero, (...).
(Cayley, 1858, p. 23)
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Cayley explains afterwards that:
(@a-M, b )=(a b) — M@ 0)
lc. d-M| e, d| o, 1

is the “original matrix, decreased by the same matrix considered as a simple quantity
involving the matrix unity” (Cayley, 1858, p. 24).

Relying on his dual interpretation about what a matrix is in Cayley’s works, we state a
third metarule: dual interpretation of a matrix. A matrix was interpreted either as a
system of numbers or as a number.

The three metarules that we have defined were explored in two teaching modules in
which we presented, in an abbreviated manner, the works of Sylvester and Cayley.
Original excerpts are used as much as possible, but sometimes we inserted text to
make the links between parts of the text that we chose as the most relevant to our goal.
We describe in the next section how these teaching modules were tested in a pilot
study.

THE PILOT STUDY

We carried out an experiment in a pilot study with the goal of testing the teaching
modules. We offered a mini-course for six volunteers called “Different roles of the
notion of matrix in two episodes of the history of matrices”. The mini-course was
taught by the first author of this paper and the meetings took place on two Saturdays,
lasting about five hours each.

The mini-course students were school Mathematics teachers, ranging from 6™ to 12"
grades (corresponding to students aged 11 through 17). He time of experience of the
teachers varied from 3 to 12 years, and they were all taking a Linear Algebra graduate
course as part of the requirements of a professional master’s degree in Mathematics,
offered for teachers currently teaching in the public system. In the quotes bellow, the
participants will be identified by the letters M, T, Fa, Fe and J. During the meetings,
they worked in groups in order to answer the historical activities proposed in the two
teaching modules. Our data sources were: 1) audio recordings of the groups’
discussions; 2) written answers to the activities; 3) a summary in written form
explaining what they learned in each module; 4) two questionnaires, one filled before
the first meeting and the other after the final meeting.

The goal of the first questionnaire (Figure 3) was to understand the profile of the
participants and to get a glimpse of how they were learning matrices in their Linear
Algebra course.

1. From what institution did you earn your Bachelor’s degree? When did you finish it?
2. How long have you worked as a Mathematics teacher?
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3. Tell us about the Linear Algebra courses you took, at both undergraduate and graduate
levels: How was the subject taught? Did you enjoy it? How hard was it?

4. Tell us about the teaching of matrices in the Linear Algebra courses mentioned above:
Were matrices the first topic taught? Did it make sense to you to learn about matrices
and their operations and properties?

5. Imagine that a student asks you the following question during a class on matrices:
“Why do we have to multiply rows with columns in the matrix multiplication?” What
would you answer?

6. Have you ever had a course in History of Mathematics?

7. Do you think it is important to learn about the history of Mathematics?

8. Do you think that mathematical notions change over time? Explain your position.

Figure 3: Questionnaire answered by the participants before the first meeting.

Based on the answers, we conclude that matrices were taught using the approach we
mentioned in the introduction. Nobody answered properly the Question 5, about the
definition of matrix multiplication. It seems that most of the teachers themselves did
not know the reason for the rule:
I would say that matrix multiplication is defined in that way. Each element of the matrix is
determined through the inner product of a line by a column [...] I would try to convince
them that this theory is grounded in a higher Mathematics [...] (Participant Fa, first
questionnaire)

Two participants had not studied history of mathematics in the university, but this was
neither a pre-requisite for the mini-course, nor did it prove to be a problem. In the last
question (Question 8), two participants expressed their opinion saying that
mathematical notions do not change over time but they admitted that something can
change as, for instance, the way we teach the concepts, our views, etc.

The notions did not change much over time, but they are no longer addressed in a
mechanical way. Context plays an increasingly important role and the topics become
closer to everyday life. (Participant J, first questionnaire)

In the questionnaire given at the end of the mini-course we asked them to write a short
essay expressing their views and opinions about the study.

The teaching modules
Two teaching modules were elaborated with the following learning objectives:

i. Making participants reflect on their own metadiscursive rules when the matrix
notion is at stake, by comparing them with the ones we observed in the
historical writings, and

ii. Developing historical awareness about the meanings attributed to the matrix by
Sylvester and Cayley.
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It was not our goal to use the history of mathematics to introduce the concept of
matrix or to teach linear algebra. We selected students who had already taken a first
course in linear algebra and had learned about matrices.

The first teaching module was entitled “How matrices appeared in the study of conics
by Sylvester”. We introduced the geometric context in which the term matrix was
proposed by Sylvester and explained how he solved the problem of the classification
of types of contacts between two conics using determinants.

Some concepts from projective geometry were necessary, like homogeneous
coordinates, projective points, projective lines, and projective conics. After
introducing these notions, we presented a summary of the practice developed by
Sylvester in order to solve the problem of contacts.

In the end, the students had to discuss historical questions in groups. The goal of this
first block of activities was to raise a discussion among the students concerning the
metarules we defined and, hence, to promote a reflection about their own metarules
related to matrices. We list the activities proposed in this first module in Figure 4.

1. What is the main concept used in Sylvester’s practice? Summarize how Sylvester
classified the types of contacts between two conics U and V.

2. Describe the difference between how Sylvester used determinants and how we use it
today.

3. Explain what a first minor determinant is according to the definition presented by
Sylvester in Extract I. What is a second minor determinant? Finally, what is a minor
determinant of order r?

4. Why Sylvester had to introduce the minor determinants?

5. Based on Extracts Il and IlI, explain what a matrix was and what the role of this notion
to Sylvester was.

6. Compare the definition of matrix presented by Sylvester in Extract Il to the definition
that is used nowadays. Write at least one similarity and at least one difference.

7. According to the text and Extract Il, answer why or for what purpose Sylvester
introduced the term matrix.

Figure 4: Activities proposed in the first teaching module.

The second teaching module was entitled “Cayley and the symbolic calculus with
matrices”. We started by giving a translation of one part of the 1858 memoir. In a
second session, historical activities were proposed in order to give the opportunity for
the students to reflect about the metarules.
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Partial results: Discussion about metarules

The metarules selected in the historical works were explored in the teaching modules
through specific questions. An explanation about the way Sylvester solved the
problem of contacts, as well extracts of his articles and selected parts of Cayley’s
memoir were essential to support the discussion. As Kjeldsen (2011) affirms,
concerning historical texts, the primary sources played the role of “interlocutors” or
“discussants” acting according to certain metarules — different from our own. In the
next paragraphs, we present excerpts of discussions that emerged from the metarules
extracted from the works of Sylvester and Cayley.

Sylvester’s conception of a matrix as the mother of minor determinants caused a bit
strangeness in the participants. The transcript below is part of a dialogue that a group
had when discussing the role of the matrices in Sylvester’s work:

M: From the womb of a common parent (reading Extract Ill) (astonishment) Jesus!
(laughs) [...] I think he sees it, then. In fact, the matrix is a way to organize determinants.
So [...] the main thing is not the matrix, it is the determinant.

M: Sylvester, he just thought in squares before. Only after he saw it was not exactly like
this, right?

T: I think he saw that there (matrix) should [...] solve a system.

M: Yeah, after he formed the matrix. Then he did the opposite. Indeed, the matrix for him
was a way to keep information. The main information: determinant. (Group discussion,
first meeting)

The speech of participant M shows a conflict with the conception of a matrix as a
representation, from which the minor determinants could be generated, or in other
words, as a source to keep information about determinants. This idea places the
determinant as the main object and emphasizes the order of development of these
concepts. This contrasts with the understanding of the participant M. For him, the
notion of matrices come first and then the notion of determinants (defined and
computed by means of matrices).

All participants read and discussed the initial pages of Cayley’s memoir (translated
from English to Portuguese) together. From this activity, they became acquainted with
Cayley’s motivation to introduce matrix operations. In particular, they realized the
origin of matrix multiplication as a composition of linear transformations.

The quote below, taken from one report, shows that some participants noticed the
association of matrices with linear systems made by Cayley. This was important in the
way the operations (matrix addition, matrix multiplication by a number and matrix
multiplication) were defined.

Motivated by a simpler representation of sets of linear equations, it comes to light
naturally the notion of matrices. The difference [between Cayley’s matrix description and
the modern definition of matrices] is in Cayley's double interpretation of the matrix,
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sometimes he sees matrices like numbers. (Requested report from participants Fe, M, and
J)
The issue that gave rise to the commentary above was the difference between the
description of matrix presented in Cayley’s memoir and the modern definition. The
trio of participants F, M, and J realized that the dual interpretation of matrices
determines the difference between Cayley’s conception of a matrix and their own.

When requested to judge if Cayley’s proof furnished for the “remarkable theorem”
would be accepted as correct today, the participants F, M, and J expressed their
metarule, which they saw as being in accordance with the mathematical community.

The “remarkable theorem” states that any matrix satisfies an algebraic equation of its
own order. In the proof, Cayley wrote the following determinant:

a—-M, b
c, d-M/
where M is the following matrix:
M =(a, b),
e d

The quote below shows the response of F, M, and J to the question about the validity
of the proof:

As this proof is constructed to the particular case of matrix order 2, it would not be
accepted today since that, in order to prove a theorem, you should use order “n”.
(Requested report from participants Fe, M, and J).

The participants argued that the proof should be made for matrices of order n. They
expressed a metarule that is in accordance with the mathematical community. On the
other hand, it seemed to not bother them that Cayley considered a symbolic
computation involving a matrix M and numbers (the elements on the diagonal). Cayley
justified his argument using the dual interpretation of the matrix either as a number or
as a system of numbers, but his proof would not be accepted in the mathematical
community today.

INITIAL CONCLUSIONS

Our purpose in this work was to use primary and secondary sources about the history
of matrices in order to encourage participants in a pilot study to reflect upon their own
metarules related to matrices, comparing these rules with those found in the historical
writings. In this sense, we intended to create conflictive situations, in a sense similar
to that of commognitive conflicts that Sfard proposes. Two teaching modules were
developed based on two episodes in the history of matrices. They were implemented in
a pilot study with six school Mathematics teachers.

The analysis of the results shows that during the discussions about the metarules
appearing in the sources, the participants problematized their own metarules. The
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historical sources, treated through specific activities, made the participants elucidate
the metarules they had in mind, thus confirming Kjeldsen’s theoretical argument
emphasizing the role of history as a strategy to make metarules become explicit and to
convert them in objects of reflection (Kjeldsen, 2011).

The goal to develop historical awareness was reached in particular cases. One example
is the observation that Sylvester used determinants before matrices were introduced,
which made the participants notice the difference between the order in which matrices
and determinants are presented today and the historical order in which these notions
were developed. In addition, the study of Cayley’s memoir of 1858 showed some
motivations for defining matrix operations, in particular, the special way to define
matrix multiplication.

The reflections on metarules also provided a perspective for the participants to reflect
on the basic curriculum, regarding the topics of matrices, determinants and linear
systems. They even discussed the ways in which matrices are treated at a basic level.
One participant observed that:

It was very interesting to know that the concept of matrix came from very different ideas
of what is taught in schools today. What, moreover, allows us to take a more critical look
at the math curriculum in high schools. (Participant Fa, final questionnaire)

We will continue this research by implementing additional activities and analyzing the
discourses of participants while reflecting about their own metarules. The history of
mathematics has proven to be an interesting way to create an environment for the
participants to perceive the metarules they use and that they consider as being the right
way to do mathematics.

NOTES

1. There are some different approaches. Stormowski (2008) proposed the teaching of matrices from
the linear transformations in basic education. Cabral and Goldfeld (2012) presented matrices
together with the topics systems of linear equations and linear transformations in their textbook for
linear algebra courses.

2. For details, see Brechenmacher (2006).

3. Sylvester’s research episode about the problem of the types of contacts between two conics was
based on four articles (Sylvester 1850a, 1850b, 1851a, 1851b).
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Inspired by the simplicity of the fangcheng method, for solving linear systems of
equations, presented on the Chinese ancient mathematics book “The Nine Chapters
on the Mathematical Art”, we decided to test the viability of a Portuguese ten years
old child understand, reproduce and apply the method. We created a task,
transposing didactically that method, to be presented to the child. By research
design, the child solved the task in parts, outside the classroom and without relation
with his classes. The analysis of the collected data allows us to affirm that this young
child was able to use and apply this method in an a-didactical situation.

INTRODUTION

Mathematics has developed with humanity throughout the ages and in different
spaces. It can be seen that within all civilizations have emerged manifestations of
mathematical nature. Looking to the framework that exists today about the
mathematics developed by some of the ancient civilizations is possible to infer about
the mathematical knowledge of ancient civilizations of Mesopotamia, India, Egypt
and China (Katz, 1998/2010, p. 4).

The ancient Chinese mathematics can be understood as an independent mathematics
that was configured as a distinct area of knowledge and which was perpetuated over
generations through writing (Martzloff, 1987/1997, pp. 3-13). This mathematics has
remained virtually unknown to the Western world until the second half of the
nineteenth century.

Swetz (1988, p.8; 1994, p.2) argues that the history of mathematics in general, and
the history of ancient Chinese mathematics in particular, can provide many fruitful
and challenging problems from the pedagogical point of view.

The use of history of mathematics as educational resource has been the focus of
several academic studies in recent times. The available literature presents several
favorable arguments to the integration of history of mathematics in mathematics
education, arguing that the teaching of mathematics can be enriched through this
integration (Jankvist, 2009a). Tzanakis et al. (2002) point out that these
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improvements can be significant in the learning of mathematics, in the development
of views on the nature of mathematics, in the affinity of students with mathematics
and in the social and cultural aspects of mathematics. The history of mathematics can
be seen as a storehouse of issues, situations, problems and examples that may
contribute to the diversification of didactic resources and consequently student
engagement.

Despite favorable arguments to integrate the history of mathematics, there are few
empirical studies on this true integration into mathematic teaching (Jankvist, 2009b,
2011).

Focusing on ancient Chinese mathematics, the opinion of Leng (2006) is consistent
with the previous argument, when he says that the ancient Chinese mathematics has
been the focus of many studies in a historical perspective, but a little has been done to
investigate the role that mathematics could have on teaching and learning
mathematics.

The fangcheng, an example of ancient Chinese mathematical method, is presented in
the 8th chapter of The Nine Chapters on the Mathematical Art and is used to solve
problems which now could be associated to a linear system of equations. It uses
tables of numbers and elementary arithmetic operations between the numbers in the
columns of these tables.

In his book, Martzloff (1987/1997, pp. 249-258) presented a description of this
method. He starts with a problem, presented in The Nine Chapters on the
Mathematical Art, which could be associated to the linear system of equations below

3X+2y+2=39

2x+3y+2=34.

X+2y+32=26

Problem solving using the fangcheng method involves the distribution of the numbers
that arise in the problem by columns. After identifying the first condition of the
problem, the distribution of these numbers is made in the rightmost column. Then,
it’s made the distribution of the numbers of second condition in the left column of the
first and so on. In ancient China it was used counting rods (Martzloff, 1987/1997,
p.210) in the resolution of such problems. The original representation of the problem
would be as shown in fig.1:

=L =l =
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Fig. 1 — Representation of the problem using counting rods (in Martzloff, 1987/1997, p.
253)

The application of the fangcheng method produces the following sequence of tables
using Arabic numeration (see Fig.2), resulting from elementary arithmetic operations
on the columns, and allows us to find the solution of the problem.

1 2 3 1 & 3 1 3 3 3 [ 3 [ [ 3
2 3 2 2 8 2 2 7 2 [ 5 2 4 5 2
3 1 1 3 3 1 3 2 1 9 1 1 8 1 1
26 34 38 26 102 39 26 63 39 78 24 38 38 24 39
o 0 3 0 o 3 0 o 3 o 0 3 0 0 3
20 5 2 15 5 2 10 5 2 5 5 2 0 5 2
40 1 1 39 1 1 38 1 1 37 1 1 3 1 1
195 24 39 171 24 39 147 24 39 123 24 39 g 24 39

Fig. 2 — Application of the fangcheng method to the previous system (in Martzloff,
1987/1997, p. 254)

In Portugal, linear systems of equations play an important role in the articulation of
concepts from the domains of algebra and geometry. In Mathematics for Basic
Education the content linear systems with two equations and two unknowns is taught
to students with about thirteen, in 8" grade (Ministério da Educacéo e Ciéncia
[MEC], 2013). This topic also arises in Mathematics for Secondary Education in the
11™ grade, (Ministério da Educagdo - Departamento do Ensino Secundario [ME-
DES], 2002) taught to students with about sixteen.

The method of Gaussian elimination for solving linear systems of equations is usually
taught to students from eighteen, in Higher Education, in the first year of many
courses.

We believe that fangcheng method is simplest than Gaussian elimination method
because, as far as we know, that method doesn’t uses algebra symbolism. Unlike this,
it uses the context of the problem and arithmetic relations. Comparing the simplicity
of fangcheng method with the Gauss elimination method we wonder if this method
could be used, with advantages, by younger students. We ask ourselves if it is
possible that a ten years child understands and appropriates the fangcheng method to
solve linear systems of equations.

METHODOLOGY

To understand how a young child would react to a task on the fangcheng method, we
designed an exploratory case study (Yin, 2009). We made the didactic transposition
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(Brosseau, 1986) of this method and we created a task partitioned in three parts, with
increasing level of complexity and abstraction (Stein, 1998). We emphasize that to
use the history of mathematics in teaching and learning is fundamental to adjust it in
order to be understood by the students. We had this fact in mind. We decided to apply
it to a young child in three different moments. At the 1% and 2™ parts of the task, one
of the researchers acted like mediator/teacher and interacted with the child urging
dialogues where the child was able to verbalize his thoughts and the procedures used
in solving the problems proposed. In the 3" part of the task problems were provide
through a website created for the purpose, and the child solved them autonomously,
without any intervention of the researchers and, from the point of view of the child,
the situation was not connected with the previous task.

The child, Gabriel [2], was picked occasionally. He is known by researchers, had 10
years old and he had just finished the primary school, had good marks and talent to
mathematics. He didn't know yet unknowns/variables or equations and systems of
equations much less.

We did the video recording of the application of the task and all productions of
Gabriel were filed. After the implementation of the three parts of the task we
interviewed the boy.

THE FANGCHENG TASK: PRESENTATION AND DISCUSSION

We start presenting the task to Gabriel on the 28" October of 2013 and we completed
de implementation of the task on 10™ December of 2013.

First part of the task

The first part of the task was presented and discussed in Potentialities on the Western
Education of the Ancient Chinese Method to Solve Linear Systems of Equations
(Costa, Alves & Guerra, 2014). It is synthetized in this subsection.

The first problem (see Fig.3) was designed to be the motivation for introducing the
ancient Chinese method.

Gabriel didn’t know linear systems, as we said before. He managed to find a solution
by using other strategies. Nevertheless he showed some insecurity in solving the
problem. After this, one of us presented the fangcheng method to Gabriel.
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Fig. 3 - Statement of the first already solved problem presented to Gabriel that could
be associated with the resolution of a linear system with two equations and two
unknowns (translated to English) (Costa et al, 2014)

During this presentation of fangcheng method to Gabriel, we considered more
appropriate didactically maintain the orientation of writing with which he was
accustomed (from left to right), we used only non-negative integers and we illustrate
the problem data with pictures alluding to the statement. After this initial motivation,
we presented a new (but similar) problem (see Fig.4) to Gabriel and suggested him to

solve it.

Fig. 4 - Statement of the second problem presented to Gabriel, similar to the 1% one,
which could be associated with the resolution of a linear system with two equations
and two unknowns (Costa et al, 2014)
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Gabriel’s resolution is presented in Fig. 5.
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Fig. 5 — Gabriel’s resolution of the problem presented on Fig.3 (Costa et al, 2014)
After presenting these tables (see Fig.5), Gabriel wrote (in Portuguese):

5 boxes of red marbles = 20 marbles;

Red box has 20:5 = 4 marbles;

12 blue boxes + 3 red boxes = 48;

12 blue boxes + 12 red marbles = 48;

12 blue boxes = 36 marbles;

Each blue box has 3 marbles

Following we made it more difficult. This time we presented a problem with three
unknowns and, following the same strategy, we present a resolution of this problem
using the same method (see Fig.6).

Fig. 6 - Resolution of a part of the problem that could be associated with the resolution
of a linear system with three equations and three unknowns, presented to Gabriel
(Costa et al, 2014)

After this, we suggest to Gabriel to solve a problem (see Fig.7), also with three
unknowns.
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Fig. 7 - Statement of the 3" problem presented to Gabriel, which could be associated
with the resolution of a linear system with three equations and three unknowns (Costa

et al, 2014)
Fig.8 shows the resolution made by Gabriel.

‘.,g&f‘l ( 6

Fig. 8 — Gabriel’s resolution of the problem presented in Fig.6 (Costa et al, 2014)
After presenting these tables (see Fig.8), Gabriel wrote (in Portuguese):

1 box of green marbles = 2 green marbles;
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2 red boxes + 1 green boxes = 6;
2 red boxes + 2 green marbles = 6;
2 red boxes = 4;
1 red boxes = 4:2 = 2 red marbles;
1 blue box + 1 red box + 1 green box = 6;
1 blue box= 2 blue marbles.
Second part of the task

The second part of the task was applied on 5th of December of 2013. In this second
part we proposed to the child more formal statements (see Fig. 9), without pictures
and therefore demanding higher degree of abstraction; however the registration tables
were kept in the statement. Some images alluding to the study variables were
replaced by letters (variables).

Robert wants to offer a bouquet of flowers to his mother on her birthday. He visited 3 flower
shops.

The first shop had 1 bouquet of roses, 2 bouguets of tulips and 3 bouguets of daisies. Altogether,
in this shop, there were 11 flowers.

The second shop had 1 bouguet of roses, 3 bouquets of tulips and 2 bouquets of daisies. There
were 13 flowers.

The third shop had 1 bouquet of roses, 1 bouguet of tulips and 1 houguet of daisies. Altogether,
in this shop, there were 6 flowers.

It is known that bouquets of roses have all the same number of roses, the bouquets of tulips
have all the same number of tulips and the bouquets of daisies all have the same number of
daisies.

Can you find cut how many flowers were in a bouquet of roses, in a bouguet of tulips and in a
bouguet of daisies?

Fig. 9 - Statement of the 4™ problem presented to Gabriel, which could be associated
with the resolution of a linear system with three equations and three unknowns
(translated to English)

Gabriel solved the problem doing the calculations presented in Fig. 10.

Fig. 10 — Gabriel's resolution of the 4™ problem presented in Fig.8
After presenting these tables (see Fig. 10), Gabriel wrote (in Portuguese):
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1 bouquets of daisies = 1 daisy;
1 bouquets of tulips = 3 tulips;
1 bouquets of roses = 2 roses.

At that moment, it seemed that Gabriel understood and knew how to apply the
algorithm associated with the fangcheng method. But we needed to verify if the
method was learned and appropriated by him as a mental tool. For that purpose, we
have carefully drafted an a-didactical situation to investigate if he
mobilizes autonomously his knowledge in a different context.

Third part of the task

In creating this a-didactical situation we careful that, from the perspective of Gabriel,
the situation was not connected with any of the above tasks and the
problem presented could not be easily recognizable as likely to be solved through
the ancient Chinese method.

The strategy we found took advantage of the Gabriel's beliefs in the existence of
Santa Claus and his elves (with the consent of the child's parents).

A website (available at http://duendematematico.wix.com/concurso-natal-2013) has
been created on the Internet, where a Mathematical EIf was presenting a competition
for children aged between ten and twelve.

To participate, children had to solve three problems and send, by uploading on
the contest website, the resolution of the problems and the video recording of
task execution.

The three problems presented were similar but, only one problem (the second
one) could be solved by the ancient Chinese method.

We applied the third part of the task on 10" of December of 2013. Gabriel
starts solving the Mathematical Elf's task applying knowledge gained at school or at
home. When he saw the statement of the problem (see Fig. 11) which could be solved
by the fangcheng method he didn’t hesitate and immediately began to draw tables
and put numbers on them.

Today I decorate 3 Christmas trees of different sizes.

I used 1 box of red balls, 2 boxes of golden balls and 3 boxes of silver balls to decorate the
biggest one. This tree was decorated with a total of 21 balls.

I used 1 box of red balls, 2 boxes of golden balls and 2 boxes of silver balls to decorate the
middle one. This tree was adorned with a total of 17 balls.

1 used 1 box of red balls, 1 box of golden ball and 1 box of silver balls to decorate the
smallest one. This tree was adorned with a total of 10 balls.

It is known that each box of each type has the same number of balls. How many balls has
each box?

Fig. 11 — Statement of the second problem of the Mathematical EIf’s task. This was the
only one, in the contest, that could be solved by the method under consideration.

In a few minutes Gabriel wrote his answer (see Fig. 12).
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. 28

Fig. 12 — Gabriel’s resolution of the second problem of the Mathematical EIf’s contest
After presenting these tables (see Fig. 12), Gabriel wrote (in Portuguese):

1 box of silver balls = 4 balls;
1 box of red balls = 3 balls;
1 box of golden balls = 10-7=3 balls.

Afterwards, we interviewed the boy during 65 minutes. First we want him to explain
his thinking, comparing it with his productions. In the second phase, it was required
to him to solve problems with a higher degree of complexity, seeking to establish if
the child is able to progress to more complex resolutions.

Focusing on the task of Mathematical EIf (a-didactic situation):
Researcher: How did you find out that you could use the Chinese method?
Gabriel compares the statements of the problems of the various tasks and concludes:

Gabriel: Because | thought so ... Today | decorated three Christmas trees... | think I
remember something ... | thought this was familiar. | thought a bit and |
remembered that the problem of the flowers began the same way.

Apparently Gabriel did not use the algorithm that has been taught and preferred to
follow the resolution that seemed more appropriate and faster, since it facilitated the
calculations.

Researcher: Gabriel, you used a method that is not exactly the same method you used in
the other two tasks.

Gabriel: I invented a little.
Researcher: Why? Why did you change the method?

Gabriel: Because | think this method is easier than the Chinese method. It is more
appropriate.
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Researcher: Why is it more appropriate?

Gabriel: Because it's easier. I don’t need to do many calculations. It's faster.
Researcher: How did you know that the method you used is correct?
Gabriel: I didn’t know. I had my heart beating so fast!...

Researcher: And when did your heart stopped beating so fast?

Gabriel: When | started to check the problem ... When | verified that the results were
correct.

Researcher: Do you think that this modified method works?

Gabriel: I think it works ... at all. I think that it always works...
Trying to analyse perception of Gabriel about the creation of fangcheng, the
researchers were surprised. In order to answer, Gabriel associates the method to the
greats of Western mathematics, like Euclid or Pythagoras, and takes them to another

part of the world and a different culture, showing his vision of the universality of
mathematics.

Researcher: How do you think that Chinese people discovered this method? How do you
think they would thought?

Gabriel: It must have been a Pythagoras of China.
Researcher: A Pythagoras of China?

Gabriel: Yes, a Chinese Pythagoras! Or a Chinese Euclid or still a Maurits Cornelis
Escher!

Researcher: In your opinion do you think kids in your age could learn this method in
school?

Gabriel: Hmm... I don’t know.

Researcher: But, in your opinion, we could teach this method in maths classes for kids of
your age?

Gabriel: Yes, if they are interested in learning it.
At the end of the interview the researcher suggested another problem, about “Cakes
and chocolates”, to Gabriel. This time the statement was formal and without images.

The problem proposed could be associated with the resolution of a linear system with
four equations and four unknowns however this didn’t seem to bother Gabriel. Fig.
13 shows Gabriel’s resolution.
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Fig. 13 — Gabriel’s resolution of the problem “Cakes and Chocolates” that could be
associated with the resolution of a linear system with four equations and four
unknowns

Gabriel concluded (in Portuguese):
1 box of bonbons of white chocolate= 1 bonbon
1 box of bonbons of milk chocolate= 1 bonbon
1 box of bonbons with hazelnuts= 1 bonbon
1 box of bonbons of dark chocolate= 2 bonbons

We hope that with the description of the fangcheng task and with the Gabriel’s productions
and comments at the interview, have reflected the way a ten years Portuguese boy sees the
ancestral Chinese method for solving linear systems of equations.

CONCLUSIONS AND FINAL REMARKS

We consider that this experimental study design was adequate to the
research question: Would a ten years old child understands and appropriates the
fangcheng method to solve linear systems of equations? This exploratory case study
is part of a wider investigation involving the construction and implementation of
tasks based on ancestral Chinese mathematics.

From what has been presented it seems appropriate to present the initial findings of
this study.

Gabriel, a ten years old boy, solves linear systems of two, three and four
equations with two, three and four unknowns, respectively, using the fangcheng
method. It should however be noted that some didactical transposition was
performed in order to use only non-negative integers and to adapt the method to
the occidental way of writing. We also highlight that Gabriel likes math and math
challenges, which is not the standard in Portugal.

There are evidences that the fangcheng method had become part of the
child's knowledge; meaning that Gabriel would be able to replicate it in similar
situations and foremost use it in a-didactical situations.

This study shows that it is possible to learn the fangcheng method much earlier
than in the first university year, as usually occurs in Portugal with the
Gaussian elimination method.
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This leads us to think that some curricular adjustments on this subject may occur,
notably in the way we teach and when to teach.

We also think that this experimental case study illustrates the ideas of Swetz (1988,
1994) about the potential of the history of ancient Chinese mathematics from the
pedagogical point of view. In this example it can be used to contribute to the
development of pre-algebra contents, such us linear systems of equations, unknowns
and matrices.

It seems to us that the case presented by us is also in the same line of thinking of the
ideas of Jankvist (2011) when he says that by conducting empirical researches we can
determine the true impact that the integration of history has in mathematics
education. These empirical researches allow us to reassert theoretical conjectures and
give new ideas for future lines of research.

From the articulation of these ideas with the feedback received during the oral
presentation of this work we accept the future challenges to investigate how an
ordinary class of 10 years old students would react of to this fangcheng task and how
will Gabriel react to the introduction of algebra concepts.

NOTES

1. This work is funded by FCT/MEC through national funds (PIDDAC) and co-financed by FEDER
through the COMPETE - competitiveness operational factors program under the project PEST-
C/CED/UI0194/2013

2. Thanks are due to Gabriel who accepted patient and happily all our math challenges.
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Oral Presentation
A LOOK AT OTTO TOEPLITZ’S (1927)

“THE PROBLEM OF UNIVERSITY INFINITESIMAL CALCULUS
COURSES AND THEIR DEMARCATION FROM INFINITESIMAL
CALCULUS IN HIGH SCHOOLS™*

Michael N. Fried® & Hans Niels Jahnke”
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This paper discusses Otto Toeplitz’s 1927 paper “The problem of university
infinitesimal calculus courses and their demarcation from infinitesimal calculus in
high schools.” The “genetic approach” presented in Toeplitz’s paper is still of
interest to mathematics educators who wish to use the history of mathematics in their
teaching, for it suggests a rationale for studying history that does not trivialize
history of mathematics and shows how history of mathematics can supply not only
content for mathematics teaching but also, as Toeplitz is at pains to emphasize, a
guide for examining pedagogical problems. At the same time, as we shall discuss in
our paper, an attentive reading of Toeplitz’s paper brings out tensions and
assumptions about mathematics, history of mathematics and historiography.

TOEPLITZ’S LIFE IN MATHEMATICS, HISTORY OF MATHEMATICS,
AND MATHEMATICS TEACHING

Before starting our examination of the paper which is our focus in this paper, we
ought to have some sense of who its author, Otto Toeplitz, was as an intellectual and
educational figure. Toeplitz was born in Breslau, Germany (now, Wroctaw, Poland)
in 1881 and died in Jerusalem in 1940. His doctoral dissertation, Uber Systeme von
Formen, deren Funktionaldeterminante identisch verschwindet (On Systems of Forms
whose Functional Determinant Vanishes Identically) was written under the direction
of Jacob Rosanes and Friedrich Otto Rudolf Sturm at the University of Breslau in
1905. The following year, Toeplitz left Breslau and went to Gottingen. Heinrich
Behnke (1963, p.2), describes that move as one from “a quiet provincial town to a
gleaming metropolis” — an apt expression, for Géttingen at that time was blessed with
the luminary presence of Klein, Hilbert, and Minkowski. Soon, Behnke tells us,
Toeplitz was included among the students of Hilbert’s inner circle. Toeplitz’s doctoral
dissertation had already touched on topics related to systems of bilinear and quadratic
forms, but with Hilbert Toeplitz’s interests in this direction crystalized and became the
work on infinite linear, bilinear and quadratic forms and infinite matrices for which he
is known. After he left Gottingen, he went to Kiel in 1913 and then to Bonn in 1928.
Throughout, however, he continued the work on linear operators on infinite
dimensional spaces which had been his general focus in Gottingen.
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Toeplitz’s mathematical accomplishments are not our main concern here though. What
interests us is his involvement in the history of mathematics. Still, it is important to
know that he was a mathematician of the first rank, for his identity as a proponent of
the history of mathematics was bound together with his identity as mathematician
(and, as we shall see, as teacher of mathematics). Indeed, Abraham Robinson remarks
that Toeplitz “...held that only a mathematician of stature is qualified to be a historian
of mathematics” (Robinson, 1970, p. 428). That said, it cannot be claimed that his
work in the history of mathematics as such was remarkable, at least relative to his
deep mathematical work; however, he had, by all accounts, a profound interest in the
history of mathematics, and he made efforts to promote its study. For example,
together with Otto Neugebauer and Julius Stenzel he established Quellen und Studien
zur Geschichte der Mathematik (Sources and Studies in the History of Mathematics)
in 1929. It was for this journal that Toeplitz first received the papers which later
became Jacob Klein’s famous Greek Mathematical Thought and Origins of Algebra.?
Toeplitz’s enthusiasm for those papers mirrored his particular interest in the
relationship between Greek thought and Greek mathematics (Robinson, 1970): “He
was a classical scholar able to read Greek texts and he knew his Plato just as well as
his Gauss and Weierstrass” (Born, 1940, p.617). The breadth of Toeplitz’ scientific
interests is also reflected in the good relations he cultivated with the philosopher and
psychiatrist Karl Jaspers. Indeed, Jaspers dedicated his 1923 book “Die Idee der
Universitit” (“The idea of the university”) to Toeplitz.”

Jasper’s decision to dedicate his book on education to Toeplitz is pertinent to our
story. For it was in his role as an educator that Toeplitz’s interest in the history of
mathematics was decisive. Toeplitz’s father was a school teacher, and teaching was
of great importance to Toeplitz. It is not by chance then that Behnke entitled his
tribute to Toeplitz mentioned above, “Der Mensch und der Lehrer” (“The Man and
Teacher”). In the early 1930’s Toeplitz and Behnke initiated yearly “meetings for
cultivating the relations between university and high school” (“Tagungen zur Pflege
des Zusammenhangs von Universitit und hoherer Schule) (Schubring, 2008;
Hartmann 2009, pp. 186-195) and they jointly founded the education oriented journal
“Mathematische und physikalische Semesterberichte” (“semester reports on
mathematics and physics”) in 1932 (Hartmann 2009, 199-209). Toeplitz published
articles on mathematics education in nearly every issue of the Semesterberichte. A
study of these interesting papers is still outstanding and would be a rewarding task.’

THE 1927 PAPER AND THE GENETIC APPROACH

In discussing Toeplitz’s intellectual life we have emphasized the three streams of
mathematics, history of mathematics, and teaching. These three streams came
together in what he called the “genetic method” for the teaching. It is beyond the scope
of this paper to examine what records may exist of Toeplitz’s actual teaching in
Gottingen, Kiel or Bonn, but it is clear that he did to some degree introduce the genetic
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method into the classroom and that he had intended to write a textbook based on it.
This Toeplitz’s former student Gottfried Kéthe tells us, adding that,

He worked on [the method] for many years, pursuing intensive historical studies of the
development of infinitesimal calculus. In his lectures he constantly tried out new
approaches, discussing the several parts with his students and searching always for new
formulations (Toeplitz, 1963, p.xii)

Kothe edited Toeplitz’s lectures and in 1949, after Toeplitz’s death, published the
textbook that Toeplitz never finished as Die Entwicklung der Infinitesimalrechnung:
Eine Einleitung in die Infinitesimalrechnung nach der genetischen Methode, vol.1
(another volume was intended). This was later republished in English as The
Calculus: A Genetic Approach (Toeplitz 1963) in 1963. The book, however, did not
present the idea of the genetic method, its rationale and overall strategy. That was set
out in the 1927 paper which is our focus here, “Das Problem der
Universitatsvorlesungen Gber Infinitesimalrechnung und ihrer Abgrenzung gegeniiber
der Infinitesimalrechnung an den hoheren Schulen” (Toeplitz, 1927).

In this paper, which was the published version of an address Toeplitz delivered at a
meeting of the German Mathematical Society held in Dusseldorf in 1926, Toeplitz
clearly wanted to be understood as solving a specifically educational problem, that of
designing an introductory course in calculus for beginning university students. Thus
the “The problem of university infinitesimal calculus courses and their demarcation
from infinitesimal calculus in high schools,” mentions neither history nor the genetic
approach which is based on history and which is the centerpiece of the address.

The educational problems he wishes to solve are in truth not immediately related to
history. He defines these problems in terms of three basic dilemmas, or “moments.”
The first is contending with two existing schools of thought as to what the guiding
principle should be regarding such a course. One school of thought maintains that
beginning university students should have an introduction to the calculus that is exact
and rigorous, the other, that the course should be intuitive and approachable. Neither
“path” (Richtung) alone is completely satisfying, but nor is a hybrid which takes a
little from each; they are, Toeplitz says, unbridgeable (untiberbriickbar).

The second moment is closely related to the first, in some ways, it is a version of the
first. It is the tension between two aims of an introductory course in calculus, one
being that students acquire necessary tools and concepts in order to ground further
work in mathematics and science, and the other, that students acquire a taste for the
subject. The latter is particularly important to Toeplitz. He wants students to
appreciate how mathematics can be exciting and beautiful. Yet, particularly in the case
of calculus, it is all too easy, he believes, to destroy any pleasure of the subject by a
tendency to teach mere rules and formulas. He also stresses in this connection that he
wants to reach students who are capable of studying mathematics seriously, but who
are not necessarily mathematical-types.
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The third moment shows, in a more immediate way, Toeplitz’s concern with the
intellectual character of students. The difficulty here is that there are two different
groups of students who are likely to take a first course in calculus. One group comes
from the science-oriented Oberrealschule and the other from the humanist Gymnasia,
and each is problematic in its own way. One can easily guess the advantages of the
Oberrealschule students and the disadvantages of the Gymnasium students, but
Toeplitz is also astute enough to recognize that the latter have something to offer and
not all is well with the former. As we remarked above, Toeplitz himself had a firm
humanist training, so he could well appreciate the value of an education obtained at
the Gymnasia. The problem with the Oberrealschule students is precisely what others
might see as an advantage, namely, their greater exposure to the technical side of
calculus. Toeplitz points out that this too often and too easily prevents them from
seeing that there is more to know, that knowing some techniques of calculus is not the
same as knowing calculus. These are the greater challenge for Toeplitz.

It is in this last moment that students’ previous high school education comes under
consideration in a concrete and pointed way. This was not by chance. Toeplitz had
very much in mind a set of reforms in German high school education involving the
incorporation of the infinitesimal calculus into the mathematical syllabus of the
gymnasia. Bringing the infinitesimal calculus into the gymnasium was the most
important project among Felix Klein’s educational initiatives, and in 1925
infinitesimal analysis finally became part of the official syllabus at Prussian
Gynmasia.® This was just one year before Toeplitz’s address, which is why Toeplitz,
unable to hide his objections, refers to the teaching of calculus to high school students
with a discernable edge, calling it a fait accompli. But so it was, and, therefore, it
became part of the overall difficulty in setting up a first year calculus course at the
university level.

Toeplitz suggestion is that all three moments and difficulties they identify can be
addressed if one gives proper attention to the history of mathematics: if one takes the
development of mathematical ideas as a guide for teaching, he claims, not only will
the drama of that development be revealed to students but also the logic and
interconnection of mathematical ideas themselves. This is the core of Toeplitz’s
“genetic method.” However, there are two ways the method can actually be taken up.
Toeplitz calls these the “direct genetic method” and the “indirect genetic method.”

The “direct method” uses the historical development of mathematical ideas to inform
the presentation of ideas in the classroom — it is a way of teaching. It answers the first
moment, for example, not by bridging the divide between rigor and intuition but by
providing a third alternative: the student arrives at mathematical ideas by following the
same slow and gentle ascent by which the ideas themselves were arrived at
historically. In other words, he does want to present rigorous ideas in a softened
intuitive fashion, or to use intuitive notions as a springboard for jumping to rigorous
formulations, but, rather, to allow the rigorous ideas to unfold for the students
according to the very same gradual process that they themselves unfolded and, by
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doing so, not only bring the rigorous ideas into the classroom but also to show in a
natural way why those ideas slowly became clear and necessary.

The “indirect method” is a way to analyze problems of teaching and difficulties in
learning rather than a way of teaching itself: it is, as Toeplitz puts it, “...the elucidation
of didactic difficulties, ...didactic diagnosis and therapy on the basis of historical
analyses, where these historical analyses serve only to turn one’s attention in the right
direction.” The qualification at the end is crucial: the application of the “indirect
method” does not necessarily mean that history itself must be brought into the
classroom. In the guise of the “indirect method,” history takes on a role that might be
compared to the psychology of learning: teachers use it to guide their teaching
strategies and decision-making, but it is not what they teach their classes. Thus,
Toeplitz argues, from the historical claim that knowledge of the definite integral was
possessed by the Greeks or, at any rate, predated other ideas from the calculus, the
study of the calculus for modern students ought to begin with the definite integral.

Toeplitz maintained that his “genetic method” was not unprecedented.” Felix Klein,
he recalls, adopted the biogenetic law in his teaching already in 1911. In fact, this
direction in Klein’s thinking was evident more than a decade and a half earlier. In
1895, Klein delivered a talk at a public session of the Gottingen Royal Association of
the Sciences on the “Arithmetization of Mathematics” (Klein 1895). At the end of his
talk, Klein remarked about the teaching of mathematics. He said that, in his view, a
paradoxical situation exists whereby teachers at gymnasia tend to stress “Anschauung”
too much while professors at universities do so too little. More to the point, university
professors put “Anschauung” aside completely whenever possible. Klein argued that
at least the elementary courses meant to introduce the beginner to higher mathematics
should take “Anschauung” as a starting point, “...since on a small scale the learner
always passes naturally through the same development which has been passed
through by science on a large scale”. (“wird doch der Lernende naturgemif im
kleinen immer denselben Entwicklungsgang durchlaufen, den die Wissenschaft im
groflen gegangen ist“). Although Klein did not use the term “biogenetic law”
explicitly, Klein’s intention was obvious to Alfred Pringsheim (1850-1941). Thus,
when he spoke at the German Mathematical Society in 1897, Pringsheim asked
whether it is “suitable to transfer Hackel’s principle of the concurrence between
phylogenesis and ontogenesis in such an unrestricted way to teaching” (Pringsheim
1897, p. 74) as Klein had done in his talk of 1895. After a lengthy discussion
involving mostly non-mathematical examples, Pringsheim concluded that “the
principle referred to by Herr Klein as a principle of teaching [i.e. the biogenetic law]
appears to be anything but conclusive and at least needs an examination from case to
case” (Pringsheim 1897, p.75). With that, Pringsheim stated his own principle,
namely “Every individual passes essentially through the same development as science
itself as long as he is not shown a better way” (loc. cit.). It was to continue these
discussions that Klein and Pringsheim were invited to give lectures on the issue of the
university courses for beginners at the meeting of the following year 1898. Toeplitz
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refers precisely to these lectures right at the start of 1927 paper, forming a rhetorical if
not real context for his own ideas.

THE BIOGENTIC LAW AND THE SCIENTIFIC APPROACH TO
TEACHING WITH HISTORY

Even though Klein did not mention the biogenetic law by name in 1895, he was
clearly an adherent to the doctrine and referred to it explicitly in the first decade of the
century, when Toeplitz would have known him at Gottingen. In the appendix to his
Elementary Mathematics from an Advanced Standpoint (Klein, 1908/1939), a book
meant for mathematics teachers, Klein states the law and its implications in a way that
shows why Toeplitz should find it so enticing as a principle for his own pedagogical
strategy:

From the standpoint of mathematical pedagogy, we must of course protest against putting
such abstract and difficult things before the pupils too early [he is referring to the theory
of sets]. In order to give precise expression to my own view on this point, | should like to
bring forward the biogenetic fundamental law (das biogenetische Grundgesetz),
according to which the individual in his development goes through, in an abridged series,
all the stages in the development of the species. Such thoughts have become today part
and parcel of the general culture of everybody. Now, | think that instruction in
mathematics, as well as in everything else, should follow this law, at least in general.
Taking into account the native ability of youth, instruction should guide it slowly to
higher things, and finally to abstract formulations; and in doing this it should follow the
same road along which the human race has striven from its naive original state to higher
forms of knowledge. It is necessary to formulate this principle frequently, for there are
always people who, after the fashion of the mediaeval scholastics, begin their instruction
with the most general ideas, defending this method as the "only scientific one." And yet
this justification is based on anything but truth. To instruct scientifically can only mean
to induce the person to think scientifically, but by no means to confront him, from the
beginning, with cold, scientifically polished systematics.

An essential obstacle to the spreading of such a natural and truly scientific method of
instruction is the lack of historical knowledge which so often makes itself felt. In order to
combat this, | have made a point of introducing historical remarks into my presentation.
(p.268).

Klein’s favorable view of the biogenetic law should not be viewed as eccentricity on
his part, nor for that matter on the part of Toeplitz. The biogenetic law had a strong
presence in their time and long history preceding it® In biology itself, it was
popularized by Ernst von Haeckel (1834-1919) and was generally identified with him,
as in the quotation above from Pringsheim’s 1897 talk. It is fairly clear, moreover,
that it is Haeckel’s formulation of the rule that “ontogeny recapitulates phylogeny,”
that the development of the individual organism follows the development of the
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species, which Klein and Toeplitz refer to as the biogenetic law. Haeckel of course did
not invent the law; complete and consistent statements of it can be found already in
the early part of the 19" century (see Gould, 1977 and Mayr, 1994 for critical
accounts). And there were variations of the law, ranging from more respectable forms
in which the individual development merely paralleled species development to less
respectable forms in which the latter actually caused the former. But what is centrally
important is the biogenetic law was, even when rejected, viewed as a scientific matter
and a serious scientific hypothesis.

Alongside the “scientific” biogenetic law was a cultural version of the same idea,
namely, that the intellectual development an individual person follows that of
civilization. This of course had educational implications and was often taken up of
educational theorists and practitioners. Thus, for example, in Froebel’s 1826 The
Education of Man we read, “Every human being who is attentive to his own
development may thus recognize and study in himself the history of the development
of the race to the point it may have reached, or to any fixed point” (Froebel, 2005,
p.40). This view was held also by the followers of the influential Friedrich Herbart
(1776-1841) such as Tuiskon Ziller (1817-1883) who called it the Kulturstufentheorie,
or the cultural epoch theory (see Gould, 1977, pp.149ff). More importantly for us,
Florian Cajori (1859-1930), the Swiss-American educator and historian of
mathematics, refers again to the law as it comes down through educational thinkers in
his History of Elementary Mathematics with Hints on Methods of Teaching (Cajori,
1896).Cajori opens the preface of that work with a quotation from Herbert Spencer in
which the genetic principle is stated:

“The education of the child must accord both in mode and arrangement with the
education of mankind as considered historically; or, in other words, the genesis of
knowledge in the individual must follow the same course as the genesis of knowledge in
the race” [Cajori quoting Spencer]

Cajori then uses this to justify his own use of history of mathematics for mathematics
teaching:

If this principle, held also by Pestalozzi and Froebel, be correct, then it would seem as if
the knowledge of the history of a science must be an effectual aid in teaching that science.
Be this doctrine true or false, certainly the experience of many instructors establishes the
importance of mathematical history in teaching (p.v).

Toeplitz, curiously enough, never refers to the “cultural epoch theory” or any other of
these educational versions of the “biogenetic law.” One might speculate that, unlike
the “biogenetic law,” Toeplitz might have found these other theories were somehow
unscientific. Whether or not Toeplitz accepted the “biogenetic law” in the literal way
Haeckel framed it, the scientific status of the “biogenetic law” would certainly provide
his own genetic approach with a firm basis as Felix Klein seemed to think regarding
his own pedagogic method — for Klein, recall, referred to his approach, in the passage
quoted above, “a natural and truly scientific method of instruction.” This “scientific”
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or “natural” rationale for the genetic approach, this historical oriented method of
teaching mathematics, would also imply a view of history itself as something natural,
like biology. Seeing history in this way would, implicitly, allow him to approach turns
in history as developments that could be rationally reconstructed on solid ground
without resorting to a kind of logical axiomatic structure.

It is surprising then that Toeplitz does not embrace this view of history with
conviction and, rather, denies that what he is doing has anything at all to do with
history. He says (p.94) that a historian must write down everything that happens,
good or bad, while he is interested in only what has successfully entered into
mathematics. He tells us that his is not a course in history: “Nothing could be further
from me than to lecture about the history of infinitesimal calculus: | myself ran away
from such a course when | was a student. It is not about history, but about the genesis
of problems, facts, and proofs, about the decisive turning points within that genesis”
[emphasis in the original].

But can Toeplitz really separate history from this genesis of problems, fact, and
proofs? The very reason why taking the genesis of problems, facts, and proofs into
account should help students is that it is natural, fitting to the students’ own ways of
learning. Is it not for this reason that Toeplitz uses the medical language of “diagnosis
and therapy” in describing how historical analysis is supposed to benefit teaching?
But this is only possible if historical ideas are themselves somehow natural, just as
diagnosis and therapy presuppose certain biological facts. The distinction Toeplitz
makes between history of mathematics and the genesis of mathematical ideas and
techniques is ultimately therefore an artificial one. Indeed, Toeplitz does not hesitate
to make historical pronouncements as if they were indisputable facts — that “The
Greeks discovered the definite integral” (p.96), that “The Dedekind cut is essentially
in Euclid’s fifth book” (p.97), that “Barrow possessed differential and integral
calculus in its entirety” (p.98).

The problematic separation between history and genesis presents itself with even more
force when once realizes that Toeplitz makes what are really historical claims on the
basis of his genetic approach, even while he denies it. Thus, having argued that the
relationship between the definite integral on the one side and the differential calculus
and indefinite integral on the other is what needs to be highlighted in the calculus
course, he says, “You see clearly here the difference between genesis and history.
Historians place the bitter priority quarrel between Newton and Leibniz in the
foreground of the historical development of the differential calculus; from the genetic
perspective, completely different moments form the central focus.” But even if these
judgments of what should or should not be in the foreground are based on history via
the “indirect genetic approach,” they must, nevertheless, have some status as history.
One cannot just dismiss the issue by saying one judgment is for history and the other
for education: parallelism is a symmetric relation.
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So although he purports to be taking up purely educational questions, Toeplitz finds
himself unavoidably, though perhaps unwittingly, adopting historical and
historiographical positions — positions that, reflexively, are also perspectives on the
historical character of mathematics itself. The jury may still be out on whether this is
a result of Toeplitz’s own idiosyncratic way of thinking or built into the genetic
method itself; however, for anyone today who wishes to use the genetic method in
teaching, the question whether what we see in Toeplitz is in fact an ineluctable
tendency of the genetic approach must be confronted. For even if one intends only to
adopt the genetic method in the form of “history as a tool,” one may be forced to adopt
the method in the form of “history as a goal” (Jankvist, 2009), but not the history that
one intended.

In general, the ways historiography of mathematics and teaching of mathematics, even
without an immediate concern for history, may be deeply entangled should, in our
view, be given much greater attention both in historical and educational research. For
the latter, the issue is particularly important since the introduction of history of
mathematics into mathematics teaching is taken up all too often in a purely
instrumental fashion with little cognizance given to what it means to look at
mathematics historically in the first place.’ Typically, it is not asked, for example,
whether the ends mathematics education aims towards are necessarily in harmony
with those pursued by the history of mathematics. Of course if the genetic principle,
as Toeplitz understood it, were unproblematic then such questions would lose their
force; but, if not — and if one is guided by the needs of teaching modern mathematics
— then one would have to confront the difficulties of anachronism and its inevitable
distortions of history.

NOTES

! This paper has been adapted from the introduction to our translation of Toeplitz’s 1927 paper
soon to appear in Science in Context (Volume 28) under the title, “Otto Toeplitz’s ‘The problem of
university courses on infinitesimal calculus and their demarcation from infinitesimal calculus in
high schools’ (1927).” Permission to use the latter was kindly given by Cambridge University Press
who owns its copyright.

2 In this regard, his relationship to the history of mathematics was similar to what one of us has
called the relationship of a “privileged observer,” that is, where modern mathematical knowledge is
thought to provide special power in interpreting the past (see Fried, 2013)

®Klein (1968) mentions Toeplitz’s historical work in two separate footnotes (notes 68 and 99).

* As for this, Uri Toeplitz, Otto Toeplitz’s son, wrote in his autobiography that “In 1923, Karl
Jaspers wrote a book, Die Idee der Universitét, and dedicated it to my father. This demonstrates
that even in Kiel father was no one-sided mathematician” (quoted in Purkert, 2012, p.111). Both
Toeplitz and Behnke exchanged letters with Jaspers. These letters are analyzed in (Hartmann 2009,
pp. 36-40).
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® In 1938, on account of pressures of the Nazi government Toeplitz’ name was removed from the
title page of the “Semesterberichte” and in 1939 its last issue appeared. After the war, however,
Behnke revived the Journal, and it still appears and is popular under the name of “Mathematische
Semesterrichte”.

® This itself has a background, for there was a long period of coexistence of algebraic analysis,
based on Euler’s Introductio in analysin infinitorum, and modern infinitesimal analysis in Prussian
school mathematics, as discussed in Biermann & Jahnke (2013).

" Toepltiz does not have in mind here the “genetic method” to which Hilbert refers in, for example,
his 1900 Uber den Zahlbegriff (English translation, On the Concept of Number, in Ewald, 1996,
pp.1089-1095). For Hilbert, the “genetic method” is an approach to defining numbers and other
mathematical ideas in terms of more primitive concepts born in basic intuitions, for example,
defining the real numbers in terms of a nexus moving through the natural numbers, integers, and
rational numbers (see Corry, 1997, pp.125-130 and Ferreir6s, 2007, pp. 218-222 for more about the
“genetic method” in Hilbert’s discussions about the foundations of arithmetic). That said, like the
“genetic method” in Toeplitz’s sense, the “genetic method” in Hilbert’s sense stood in opposition to
the axiomatic method, and, at the very end of Toeplitz’s paper, Toeplitz emphasizes the difference
between his “genetic method” and “Hilbert’s foundational studies.” If Toeplitz had in mind here
works such as Hilbert’s Uber den Zahlbegriff, then he may have been contrasting his approach not
only to Hilbert’s formal ideas but also to Hilbert’s notion of “genetic method.” However, there is
not enough evidence to make any firm claim in this connection.).

8 A deep and thorough account of the genetic idea in mathematics education is Schubring (1978).
As for the biogenetic law in biology itself, with its further ramifications, see Gould (1977).

% Both Jahnke and Fried have independently considered these questions in the context of
mathematics education. See, for example, Jahnke (2000) and Fried (2001)
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A CONCEPTUAL AND METHODOLOGICAL FRAMEWORK
ANCHORED IN SOCIOCULTURAL APPROACHES IN
MATHEMATICS EDUCATION FOR THE INVESTIGATION OF
DEPAYSEMENT EPISTEMOLOGIQUE

David Guillemette
University of Ottawa

Since the mid 90s, the dépaysement épistémologique has been a recurring concept in
literature regarding the use of history in mathematics education (Barbin, 1997, 2006;
Jahnke et al., 2000). My research project's goal is to describe the
dépaysement épistémologique experienced by a group of six pre-service secondary
teachers who took part of seven historical texts’ reading activities. Data were
collected during video recordings, individual interviews and a group interview. |
will focus here on how a conceptual framework anchored in sociocultural
approaches in maths education (Radford, 2011, 2013), as well as a methodological
framework articulated with dialogic perspective (Bakhtin, 1977, 1929/1998),
helped me obtain descriptive elements of the dépaysement épistémologique
experience.

THE CONTEXT

For decades, many researchers have explored the contributions of history
of mathematics in teacher education. In parallel, the presence of mathematics history
has established itself considerably in curricula around the world. An
attempt to “humanize” mathematics is increasingly present in the curricula of
mathematics worldwide (Barbin, 2006; Fasanelli et al., 2000).

In the Quebec province in Canada for instance, the Ministry of Education even
now prescribes the use of mathematics history in the classroom. The curriculum
(both at primary and secondary level) highlights the importance for students to
recognize the contribution of mathematics to science, technology and culture on
societies and individuals. Cultural and historical elements form an integral part
of the program implementation. This insertion of cultural references in
teaching is new and characteristic of this program (Charbonneau, 2006).

These requirements concerning the presence of history in the mathematics classroom,
however, raise many questions as teachers and their ability to conduct such activities
and mobilize the historical aspects in their teachings. For over 20 years, the presence
of mathematics history teachers in training environments has increased
substantially in many countries. However, despite the various objectives
associated with it, this presence, implicit or explicit, take the form of specific
initiatives for each institution. Thus, the objectives and the means employed are not
subject to a widely established consensus and the status of history in mathematics
teachers’ training does not yet seem clearly defined (see Schubring et al., 2000).
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From the research side, several discourses emphasize on the positive contribution of
the study of the history of mathematics, particularly in teacher education. In this
context, a recurring concept is that of dépaysement épistémologique (Barbin, 1997,
2006; Jahnke et al, 2000). In this regard, researchers are saying that the history of
mathematics “astonishes” and “troubles” our everyday customs on the discipline and
highlights its cultural-historical dimension. This important experience of
dépaysement épistémologique could bring a critical look at the fundamentally social
and cultural roots aspect of mathematics.

Overall, this dépaysement épistémologique emphasize the historicity of mathematical
objects with the astonishment of the learner facing a posture, a framework, a process
or a particular argument, far from those of today. In this context, the history of
mathematics is a source of encounters whose catalytic effect pushes the learner to
guestion a naive vision of the discipline and its objects, a vision in which they
transcend eras and cultures keeping shape and immutable sense. Introducing the
history of mathematics replaces the usual by the different, it makes the familiar
unusual. As it occurs when someone is in a foreign context, after an initial phase of
confusion, there are recovery attempts, a search and reconstruction of meaning.

These considerations about the dépaysement épistémologique, however, have not yet
been the subject of systematic researches that truly give voice to the actors in training
environments (Guillemette, 2011; Siu, 2007). Thus, | ask for my research two broad
questions: “How does this dépaysment épistémologique appear and how is it
manifested during training activities based on reading historical texts?” and “How
does it go with the development of the ‘becoming a teacher’ of students?”.

HISTORY OF MATHEMATICS AND MATHEMATICS TEACHER’S
TRAINING

My focus on these questions began with socio-cultural theories. From this
perspective, new discourses have recently emerged in favour of the introduction of
mathematics history in the teacher training program. From this point of view,
mathematics history is a special place where it is possible to overcome the
particularity of our own understanding of mathematical objects, which is limited to
our own personal experiences and the sociocultural context in which we live this
understanding. In other words, history of mathematics “provides tools for dialogue
with other understandings [...] with those who preceded us” (Radford, Furinghetti &
Katz, 2007, p. 109). It provides opportunities for meetings with ways of doing and
being radically different in mathematics, ways that are historically or culturally
distant from us. It is important to understand that this perspective is not carrying
individuals and personal self-centred and self-sufficient discourse of empowerment
and opportunities, but it is carrying the opportunity for students to explore with others
new ways of being-in-mathematics and open the space of possibilities for
mathematical activities that occur in classrooms.

This discourse on the potential of the history of mathematics is part of a redefinition
of the teaching-learning put forward by an emerging theory in mathematics
education: the theory of objectification (Radford, 2007, 2011, 2013).
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ON THE THEORY OF OBJECTIFICATION

Inspired by Vygotsky's perspective, theory of objectification is a contemporary
sociocultural theory of teaching and learning mathematics. It calls for a non-mentalist
conception of thought. Both sensitive and historical, thinking is considered here as “a
mediated reflection of the world in accordance with the mode of activity of
individuals” (Radford, 2011, p. 4, my translation), that is to say, mediated by the

bodies, signs, artefacts and cultural meanings.

In this context, mathematical knowledge is perceived as “movement”. Knowledge is
abstract and is a “set of ingrown historically and culturally process that is constituted
of reflection and action” (Radford, 2013, p. 10). It is constantly changing, constantly
moving. It shows itself and makes sense only through men activity, taking inevitably
the trace of this cultural and historical activity.

This apparition of knowledge in the activity suggests that it is not owned nor
constructed by the learner, but rather frequented. It is then expected that learners
“meet” the knowledge in the classroom. Also, as we will discuss, learners can
transform this knowledge, and see themselves transformed by it.

On one hand, it is a process of objectification because it is made of acts of meaning
that emphasize the appearance of something that revealed itself. On the other hand, it
is a process of subjectification because consciousness is also changing during
learning. Thus, learning also means becoming, that is to say, the creation of a unique
and particular self. They are two inextricable dimensions of learning maths.

In such context, it is now impossible to consider the class as a neutral space in which
learners act according to general and invariable mechanisms of adaptation. Indeed,
the classroom activity, which is centered on social interaction, does not fulfil an
adaptive, facilitative or catalytic function, but is “consubstantial to learning”
(Radford, 2011, p. 10, my translation). In other words, learning mathematics is not
just learning how “to do mathematics”, but learning ways of “being-in-mathematics”.
Mathematical activity, as a cultural form, is a particular way of “being-with-others”.

NEW PERSPECTIVES ON DEPAYSEMENT EPISTEMOLOGIQUE... AND
NEW QUESTIONS

From this perspective, how can we think the dépaysement épistémologique (Barbin,
1997, 2006; Jahnke et al., 2000) that is associated with the encounter with the history
of mathematics experienced by students during their initial pre-service teacher
program? The theory of objectification probably sees this encounter as an eminently
social phenomenon encouraging people to take a critical look at the social aspect of
mathematics to better understand the historical and cultural mechanisms of their
production, to understand that mathematics are not ideologically neutral knowledge,
and that all knowledge is part of ethical issues for which we need to develop our
sensibility.

And what about the sphere of being, ethics and otherness here? What can mean this
meeting with the history of mathematics for future math teacher? How the study of
the history of mathematics and the encounter that it raises can make sense for
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students that are becoming teachers? And most importantly, how to give the students
a voice about this experience?

Armed with a conceptual framework from the theory of objectification, while being
inhabited by these epistemological questions, my research objective is to describe the
experience of dépaysement épistémologique lived by future high school mathematics
teachers in the context of training activities that involved mathematics history.

APPROACH(ES)

The need to clarify the meaning of a particular experience for the learners and the
focus on the lived experience of the individual in the description of the phenomenon
led me to choose a phenomenological approach. The phenomenological approach in
human sciences has been developed particularly in psychology (Giorgi, 1975, 1997)
and education (van Manen, 1989, 1994). It obtains, from individual testimonies,
specific descriptions of the participants’ experience. Descriptive and comprehensive,
the phenomenological approach focuses on “the experience of the individual and his
subjective experience” (Anadon, 2006, p. 19). It highlights the significant elements of
the internal living world. In addition, it brings the researcher into a welcoming
attitude and openness towards participants’ lived experience, searching to avoid a
reified, reducing or sterile description of dépaysement épistémologique.

That being said, the socio-cultural perspective that carries the theory of
objectification on the dépaysement épistémologique invites me to question the kind of
description that I’m searching for and the way to construct such a description. Indeed,
the sociocultural perspective implies a particular view of knowledge, learning and the
self. For instance, through different authors such as Bakhtin, Levinas and Heidegger,
the theory of objectification emphasizes on the possibility of a divided and multiplied
self. Historical, we are thrown into a world that asks us answers. As it has been
discussed, learning mathematics, as a process of objectification and subjectification,
is inevitably learning-with-others and implies the development of an ethical subject.

To provide a description consistent with this view, I settled up various ways “to
mesh” the participants’ views and to recognize the common living world that
emerged from their experiences. Without rejecting the phenomenological approach
that seems, at first glance, focusing on the individual and his subjective experience, |
was searching for ways to articulate it to the conceptual framework. This articulation
appeared to be possible through the development of a particular form for the general
description of the phenomenon proposed in this study.

In other words, | was searching for a description of dépaysement épistémologique that
tries to maintain the plurality of discourses and emphasizes on their “permeability”,
how they respond to each other and let them being transformed by the others. The
phenomenological approach leads to a general description of the phenomenon from
specific descriptions obtained by the testimony of each participant. In fact, how can
we get an overview from specific descriptions? How can we avoid the simple
observation of redundancy, as if, by accumulation, a general and final description
could appear? This could reduce participants to simple exemplarities, culminating in

LEINY3

statements such as; “This one, he lived it like that”, “that one otherwise”, “that one
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stands out by this”, etc. Inhabited by the epistemological assumptions underlying the
theory of objectification, and the prospect of “being-in-mathematics” questioned
earlier, | felt the need to look for the multiplicity of students’ experiences. A
multiplicity that does not seek to present side by side, in rows, the experiences of
each participant, but to truly provide the “common world” that emerged during the
trials that took place.

LOOKING FOR COMMUNE LIVED EXPERIENCES: HELP FROM
LITERARY CRITICISM

Mikhail Bakhtin, one of the main references in the theory of objectivation, rightly
said that any movement of consciousness is itself dialogical, that is to say, penetrated
by those of others, and therefore, cannot be discussed without taking into account
other movements of consciousness that respond to it, and make it respond.
Discourses, intimately related to consciousness here, are then perceived as “dialogic”.
Indeed, this dialogism "goes far beyond the relationship between the built replicas of
a formal dialogue [...] it is universal and goes across all human speech, in general
everything that has meaning and value™ (Bakhtin, 1929/1998, p. 77). Very broadly,
we can speak of dialogues both in language and in terms of ideas and social horizons.

Going further on dialogism, Bakhtin developed the concept of the “polyphonic
narrative” (ibid.). A scientific, literary or philosophical work can be called
“polyphonic” if it offers a strong plurality of discourses and understandings of the
world. Bakhtin profoundly highlights an example: the novel The Brothers Karamazov
written by Fyodor Dostoyevsky. The novel is considered emblematic of the
polyphonic work. Dostoyevsky portrayed here many characters inhabited by singular
personalities that take finely established roles (the bourgeois, liberal atheist, scientist,
etc.). They are characters acting as “spokespersons of world views” (Sabo & Nielsen,
1984, p. 80) that are constantly in dialogue. These strong individual speeches, which
escaped the author “control” through the narration, highlight the existential,
ideological and socio-historical thickness of the reality. For Bakhtin, it is this
polyphonic aspect of the novel that allows the readers to account for the reality of
Dostoyevsky, in this case Russia after the 1860 reforms.

In a polyphonic work, “the hero and the author jointly express [...] the speech works
openly, despite having two faces, like Janus” (Bakhtin, 1977, p. 198). | am myself as
a writer/researcher inevitably involved in this web of meaning that bind all the
“actors” of the events of the dépaysement épistémologique. Therefore, it is important,
as Bakhtin points out, to join “the accents of the heroes (participants) and those of the
author (me as a researcher) within a single linguistic construction” (id., 214).

For my study, polyphonic narrative appeared as a way to stage this world in common
that emerged with the participants. Then, it will be possible to bring the “knowing-
with-others” that emerged, the collective experience, the fabric of shared meaning on
the study of the history of mathematics.

Searching for ways-of-being-in-mathematics as it claimed by the theory of
objectivation, my research inscribes itself profoundly in sociocultural approaches in
mathematics education. With the constitution of a polyphonic narrative as a
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methodological strategy to grasp the world-in-common that has arisen during these
experiments, it goes deeper in research itself and looks for consistency and
coherence.

“CONTEXTS” AND “DATA”

The participants’ selection was conducted among those registered in the History of
Mathematics course offered in the secondary school mathematics teachers program at
the University of Quebec in Montreal. During winter 2013, | stepped in the classroom
activities by providing seven reading activities (90 minutes each) of historical texts.
Those texts were constituted of the writings of mathematicians associated with
different eras discussed in class:

1. A'hmosé: Rhind papyrus, problem 24.

2. Euclid: Elements, proposition 14, book 2.

3. Archimedes: The quadrature of the parabola.
4

. Al-Khwarizmi: The Compendious Book on Calculation by Completion and
Balancing, types 4 and 5.

o

Chuquet: Tripartys en sciences des nombres, problem 166.

6. Roberval: Observations sur la composition des mouvements et sur le moyen de
trouver les touchantes des lignes courbes, problem 1.

7. Fermat: Méthode pour la recherche du minimum et du maximum, problems 1-
5.

These classical texts were read in small groups (2 or 3 students). Both synchronic and
diachronic lectures (Fried, 2008) were performed. Trying, first, to understand the
mathematics involved and to bring it to a modern understanding, and, second, to read
the text with the worry to keep the author in his historical, social and mathematical
background.

For Fried, teachers and mathematicians too often reinforce the synchronic reading of
mathematical objects. In this context, the role of the teacher should precisely be to
constantly switch the learner between these two visions. It is this back-and-forth work
that is continuously needed and that is creating the emergence of an awareness of its
own conceptions of mathematics in the learner, its individuality toward the subject
and the possibility for him to confront constructively with those of others. These
considerations were taken into account during the reading activities implementation,
continuously trying to, not only translate the texts in modern language, but also stay
with the author in his historical and mathematical background.

Six students in the group were recruited to participate in individual in-depth
interviews (approximately 90 minutes) and a group interview at the end of the study
session. Video recordings of classroom activities and transcripts of interviews
constituted the data of my study.
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Individual interviews focused on three topics: their overall experience of the course,
their experience of readings historical texts and, specifically, their experiences of
cultural and epistemological dépaysement épistémologique.

The same set of themes was taken for discussion during the group interview. This
time, the goal was to encourage participants to share their experiences. Therefore, the
point was not necessarily to seek consensus, but rather to refine their description of
their experiences through listening to those of others. Participants were asked to
respond to the comments of their colleagues in order to possibly recognize
themselves or to assert their differences.

ANALYSIS (S)

Phases of analysis given here are seen as steps in writing. These analyses have
allowed the collect of notes for the construction of the polyphonic narrative.

Video recordings show how activities affect learners. Students in learning situations
do not know in advance how to guide their quest for knowledge. In this sense, the
reading of historical texts “affects” students, and can leave them with frustration and
both positive and negative emotions, because students “suffer” the objects of
knowledge (Roth, 2011). Video recordings yield descriptive elements of the
encounter with the history of mathematics. It could be gestures, reactions or
particular expressions that emerged during the reading of historical texts. In addition,
having fully participated in the readings activities as an animator, | do not exclude
myself from the descriptions.

Concerning the analysis of individual interviews, they explicitly give voice to the
study’s participants. The goal here is to get closer to the participants, to go meet
“them”. Analyses of written transcripts of individual interviews were done in two
steps: the extraction of meaning units and the construction of the specific
descriptions. Concerning the extraction of meaning units, most phenomenologist
researchers generally include four phases (Deschamps, 1993). (1) Making a general
sense of the entire description of the phenomenon. (2) Identify the meaning units that
emerge from the description. (3) Exploring the meaning of these units by assigning a
specific category. (4) Establish the phenomenological experiences associated with
meaning units. Thereafter, a summary text will be produced for each participant. This
summary is called the specific description.

These phenomenological analyses recognize more accurately the experience of each
participant of the study. In this particular phase of analysis, | tried to trace the process
of subjectification associated with the activities of reading historical texts. As noted
above, the conscience is also changing during the learning process. Learning means
to frequent knowledge, but also means “becoming”. This is what phenomenological
analysis is pointing on.

This phenomenological approach seems appropriate here, despite the distance
between the perception of the subject (including consciousness) in the
phenomenological perspective and in the theory of objectification. It is not a matter
of establishing facts, but to investigate the participants’ experiences. | borrow to
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phenomenology a method, an approach, a style of analysis, but | also borrow its
openness, its a-theoretical mind, and the need to leave in indecision as long as
possible the establishment of the significance of the participants’ experience. It is this
attitude that allows to perceive the participants, not as thought by science, but as
subjects received throughout the concreteness of their experiences, with all the
texture, nuance and density that is implied.

TOWARDS A POLYPHONIC NARRATIVE

The transcription of the group interview forms the basis for the final description that
takes the form of a polyphonic narrative. This narrative will derive its density of two
previous phases of analysis. The narrative/description allows me to bring out tensions
between points of view on dépaysement épistémologique, which overlap and
influence each other, creating a sort of siphonophore, both singular and plural. Unlike
the positivist position that tries to eliminate alternative discourses on the phenomenon
and the subjective position of the researcher, my study rather seeks to integrate them.
This narrative will be the “results” of the study. It is a way to provide the community
with a rich and open description of the dépaysement épistémologique that occurs
during the study of the history of mathematics in the context of pre-service teacher
training program, a description that is consistent with the underlying epistemological
theory of objectification posture.

In this perspective, my research is asking theses questions: how to stay here “on the
wire” and keep a form of dialogue between individual and community, between
isolated subject and multiplied subject, between singular and shared learning of
participants, between inner space and group activities...?

SOME “RESULTS” FROM THE PHENOMENOLOGICAL ANALYSIS

When adopting a phenomenological stance, major themes emerge from the analysis.
Two of them are the experience of otherness and empathy.

Students are saying that they are trying very hard to understand the mathematic
depicted in original texts. They show great difficulties concerning language, notation,
implicit argument, style, definitions, interpretations, typography, etc. Literally, they
“suffer the texts”. The experience of otherness seems brutal, from a cognitive and
affective point of view, it sometimes includes shocks and violence.

From Levinas, I learned that violence is a “thematization of the Other”, a reification
of the Other, a way to make the Other a Mine, and that to understand something is to
control it, make violence at it. | saw a few acts of violence during my
experimentation, for instance, someone said: “Fermat was doing this or that”.

That’s why otherness is linked with empathy. Again with Levinas, and also with
Bakhtin, empathy could be heard as an effort of a non-violent relation with the Other,
in this case, a way of keeping alive the subjectivity of the authors, keeping it fragile
and mysterious. The question is how to accompany the students in this ordeal, in this
hardship of the experience of otherness? How to maintain an empathic relation with
the authors?
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Oral Presaentation
HISTORY IN MATHEMATICS ACCORDING TO ANDRE WEIL

René Guitart
Université Denis Diderot Paris 7

André Weil (1906-1999) was one of the most famous mathematicians of the XXth
century, working mainly in arithmetic and algebraic geometry, and he worked also
on the history of mathematics, especially history of number theory. He had a very
specific way to give sense to mathematical activity, in narrow relation with its
history, which is useful for mathematicians at first, and perhaps also for teachers and
students. Our question here is to understand, what really are history and mathematics
— history linked to mathematical activity — and how each one is useful for the other,
in Weil’s conception ; s0 in this perspective we want to clarify the interest of history
in teaching of mathematics.

1. SUMMER 1914: FROM CARLO BOURLET ...
In his Apprenticeship of a Mathematician (Weil, 1992, 22), André Weil wrote:

At that time, the textbooks used in secondary education in France were very good ones,
products of the “new programs” of 1905. We tend to forget that the reforms of that period
were not less profound, and far more fruitful, than the gospel (supposedly inspired by
Bourbaki) preached by the reform of our day. It all began with Hadamard’s Elementary
geometry and J. Tannery’s Arithmetic, but these remarkable works, theoretically intended
for use in «elementary mathematics» (known as math.elem.) course during the final year
of secondary school, were suitable only for the teachers and best students: this is
especially true for Hadamard’s. In contrast, Emile Borel’s textbooks, and later those by
Carlo Bourlet, comprised a complete course of mathematics for the secondary school
level. I no longer recall which one of these fell into my hands in that summer of 1914, but
I still have an algebra text by Bourlet for third, second, and first form instruction, which
was given to me in Menton, in the spring of 1915. Leafing through it now, | see it is not
without its defects; but it must be said that this is where | derived my taste for
Mathematics.

From 1914 to 1916 [...] As for mathematics | had for the time no need of anyone: | was
passionately addicted to it (Weil, 1992, 23).

In the taupe [this is the name commonly given to courses preparing students for entrance
examinations of the Ecole Polytechnique and the scientific section of the Ecole Normale],
of course, the student acquires or at any rates acquired at that time — a facility with
algebraic manipulation, something a serious mathematician is hard put to do without,
whatever some might say to the contrary (Weil, 1992, 31).

These facts are important for us, because we think that the perspective in which Weil
linked history and mathematics later, is surely related to the first influences he was
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subjected to, those of its professor at the lycée Saint-Louis, Auguste-Clément Grévy,
and then the mathematicians Jacques Hadamard and Elie Cartan, and the books of
Emile Borel and Carlo Bourlet, as we saw above.

We claim that we cannot really understand what someone says about mathematics,
and eventually about its history, if we don’t know who, from the beginnings, teached
him what are mathematics.

2.... TO READ ORIGINAL TEXTS ...

Weil was student at the Ecole Normale Supérieure in Paris from 1922 to 1925, where
his best friends were Henri Cartan, Jean Delsarte, Claude Chevalley. In the 1920’s, the
first determination of “history” for André Weil (Weil, 1992) was his willing to read
the masters — Bernhard Riemann, read by Weil since 1923, and then Pierre de Fermat
— as the best source of inspiration, before any reading of the “auteurs a la mode du
jour”. In 1926, he was one of the first French mathematicians to go in Germany
(Audin, 2012). He sustained the beginning of his own activity by fruitful relations
(conversations) with colleagues out of France: for example, with Carl Siegel at
Gottingen and with Francesco Severi (Weil, 1979, 1-524-525), with Mittag-Leffler
(Weil, 1992, 54). But throughout his life he travelled and met many colleagues: to
know the full network of these relations, the best is to look at the index of names in
The Apprenticeship of a Mathematician (Weil, 1992, 193-197).

3. ... DOING MATHEMATICS AND HISTORY OF MATHEMATICS
TODAYS

A second step, after 1926 [Weil, 1979, 111-400] is related to his frequenting the
Institute of Mathematics of Francfort (with Max Dehn, Ernst Hellinger, Carl Siegel,
Otto Toeplitz, Paul Epstein, Otto Szasz), and the Dehn’s seminar on History of
mathematics (started in 1922).

Weil wrote: “I have met two men in my life who make me think of Socrates: Max
Dehn and Brice Parain” (Weil, 1992, 52). Max Dehn wrote: “Mathematics is the only
instructional material that can be presented in an entirely undogmatic way”. It would
be interesting to know how in the mind of Dehn, and possibly of Weil, it was related
to instruction with historical sources. Perhaps that, as a kind of paradox, undogmatic
attitude is possible only if we respect our source text, because effective respect of
source puts in perspective any dogma.

On the link between mathematics and history, a comparison between the Weil’s
approach and the genetic method of Toeplitz would be useful (Toeplitz, 1964) —
written in the 1930’s, and started in a paper in 1927, from a talk in 1926 (Toeplitz,
1927). As quoted by Gottfried Kéthe in its foreword to the German edition of 1949:

Toeplitz does not want to have his method labelled “historical”: “The historian — the
mathematical historian as well — must be record all that has been, whether good or bad. I,
on the contrary, want to select and utilize from mathematical history only the origins of
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those ideas which came to prove their value. Nothing, indeed, is further from me than to
give a course on the history of infinitesimal calculus. I, myself, as a student, made escape
from a course of that kind. It is not history for its own sake in which | am interested, but
the genesis, at its cardinal points, of problems, facts, proofs” (Toeplitz, 2007, xi).

Toeplitz was convinced that “historical considerations could be useful in bridging the
gap between mathematics at the Gymnasium level and at the universities” (Folkerts,
2002, 136) ; or, as said by Kothe, he was “convinced that the genetic approach is best
suited to build the bridge between the level of mathematics taught in secondary
schools and that of colleges courses” (Toeplitz, 2007, xi).

In 1979, Weil explained that in the Dehn’s seminar, they read one classical original
paper, and, if necessary, they used contemporary authors and witness:

On ne croyait pas devoir feindre d’ignorer ce que 1’auteur n’avait pas su ; au contraire, on
s’en servait pour mettre en lumiere les intuitions qu’il n’avait pas ét¢ en mesure
d’exprimer clairement.[...]. Je ne congois pas de plus saine méthode historique que celle-
ci (Weil, 1979, 1ll, 460).

Nonetheless he precised that “Dehn showed how this text [Cavalieri, read in 1926]
should be read from the viewpoint of the author [...]” (Weil, 1992, 52).

Toeplitz assumed to modify the “objective complete history”, in order to construct a
tool for teaching (his genetic method). Weil also assumed to disrupt the “true historical
data” — with the introduction of nowadays knowledge — but he rather did that in order
to get a better reading of the history itself. Furthermore, his target was not teaching,
but the development of an historical foundation or motivation for new research, for
him and for any mathematician at work.

History according to Weil will be a history of mathematics for mathematicians, almost
a part of mathematics. Weil was scrupulously honest with ancient texts, but he worked
with the help of modern knowledge and notations, because he wanted to use past to
validate mathematics of today. So he allowed this goal to historical data. In our
conclusive section we will give an example of an historical analysis by Weil, where
past is taken as a mirror in which we admirated our own understanding and the way in
which today the things seem to be clarified. We read the past at the light of what we
know today (and the history is closed because of this goal).

It is interesting, but another different way to do history of mathematics for
mathematicians at work today, would be in the first instance to try to understand old
texts on their own, in their own time, and in the second place, with such an
understanding in hands, to try to understand some mathematical piece of today. In this
case our supposition is that we do not yet understand what we are doing, and
consequently history can act on our free future works.
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4. THIRD STEP: HISTORICAL NOTES IN BOURBAKI’S “CELEMENTS DE
MATHEMATIQUE”

André Weil was one of the founders of the Bourbaki group, in fact its unquestionable
leader. The starting point of Bourbaki was a conversation between André Weil and
Henri Cartan, about their teaching in Strasbourg. Weil said: “Why don’t we get
together and settle such matters once for all, and you won’t plague me with your
questions any more ?” (Weil, 1992, 100).

From the beginning of Bourbaki, officially founded in 1935 (the first Bourbaki
congress was held in July), he suggested to include historical notes “in order to put in
a right perspective some too much dogmatical expositions”. For him, this suggestion
was natural, as a consequence of his experience in the Dehn’s seminar:

Ayant eu le bénéfice d”’une pareille expérience, je me trouvais naturellement porté,
lorsque Bourbaki commenga ses travaux, a proposer d”’y faire figurer des commentaires
historiques pour replacer dans une juste perspective des exposes qui risquaient de tomber
dans un dogmatisme excessif (Weil, 1979, Ill, 460).

He did the job himself for General Topology and for Infinitesimal Calculus. Then
others collaborators (as Jean Dieudonné, mainly) continued the job: “The point is, for
each theory, to clarify completely the directive ideas, how these ideas are developed,
and how they interact each one on the others” (Bourbaki, 1984, 5).

According to Weil, the history of mathematics is a kind of “natural history”, in a
world of living interactive entities named “mathematical ideas”: original technical
gestures, formulations, methods, “theories”.

The Bourbaki’s collaborators do have a conception of their collective work as attached to
a tradition, represented by Poincaré and [Elie] Cartan in France, by Dedekind and Hilbert
in Germany. The “Eléments de mathématiques” had been written to provide a solid
foundation and an easy access to this type of research [in this tradition], and in a
sufficiently general form to be applicable in many possible contexts (Dieudonné, 1977,
XI).

Thus, historical notes have to be understood in relation with this tradition, in order to
confirm the formal foundation by an underlying historical background, and to expose
in advance a large set of possible extensions.

In history of mathematics we very often see that a theory does start by a very specific
problem, and efforts to solve it. [..] There are theories which are fruitful and still very
much alive (as for examples: theory of Lie groups, algebraic topology) [...] almost each
idea in such theories has repercussions on other theories (Dieudonné, 1977).

A problem is important if it generates a method or a fruitful and alive general theory
(as analytic theory of numbers, theory of finite Groups; but these theories are not in
the Bourbaki scope).

As observed by Halmos (Halmos, 1979), in the Dieudonné’s Panorama, every chapter
ends with a list of initiators: creators of principal ideas or substantial contributors.
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The introduction of history in this way, via fruitful problems and initiators, is
completely in the Weil’s style, including of course the perturbation of history by our
today’s understandings, and a somewhat naive belief in progress.

In “Two lectures on number theory, past and present” (Weil, 1979, III, 280), we read
that Weil knew, or seemed to know, what are “a perfectly good and valid subject”, and
“perfectly good mathematics”. Weil and Bourbaki developed history under this
assumption that there are good mathematics, good scientists and geniuses, and today
we know what these good mathematics are, and who these geniuses are. This implies
a specific choice, and according to that choice, the purpose of history is to put
mathematical ideas in the “right perspective”.

5. STRUCTURES AND HISTORY

Through the historical notes, Bourbaki constructed a tool for teaching mathematics,
although the Eléments de mathématiques do not constitute a manual. But this work is
also of an historical nature in another aspect, as a story of structures.

Bourbaki planed to reformulate the Eléments de mathématique, through an axiomatic
development of mathematical structures. Bourbaki took ideas on axiomatics from
Euclid or Hilbert (but their ideas of “axiomatics” are different), and he used the
logico-set theoretical system — induced by the Cantor approach’s within set theory,
and the research in logic at the end of XIX™ century —, which is an available tool at
this time (the 1930’s). The axiomatics in the algebraic context is implicitely supported
by the works of Emmy Neether and Emil Artin on the natural typical types of rings in
geometry. And on the side of functional spaces and analysis, it is related to the works
of Maurice Fréchet or Felix Hausdorff. In Geometry or Analysis again, it is related to
Elie Cartan or Jacques Hadamard works, two mathematician that Weil met (and
admired) at the beginning of the 1920’s.

André Weil explained that, he probably imported the notion of structure from the field
of linguistics (Russian linguists, Roman Jakobson), that he knew by his friends or
relations Claude Levy-Strauss, Brice Parain, or Emile Benveniste:

In establishing the tasks to be undertaken by Bourbaki, significant progress was made
with the adoption of the notion of structure, and of the related notion of isomorphism.
Retrospectively these two concepts seem ordinary and rather short on mathematical
content, unless the notions of morphism and category are added. At the time of our early
work these notions cast new light upon subject which were still shrouded in confusion:
even the meaning of the term of “isomorphism” varied from one theory to another. That
there were simple structures of group, of topological space, etc., and then more complex
structures, from rings to fields, had not to my knowledge been said by aznyone before
Bourbaki, an dit was something that needed to be said. As far for the choice of the word
“structure”, my memory fails me: but at that time, | believe, it had already enterd the
working vocabulary of linguists, a milieu with which | had maintained ties (in particular
with Emile Benveniste). Perhaps there was more here than a mere coincidence (Weil,
1992, 114).
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For him, in fact, the notion of structure is really a mathematical notion, or more
exactly has to be mathematically determined. In any event, the notion of structure has
to be mathematically defined with respect to mathematical activity, and to be
recognized through the history of mathematics. When he read Fermat, he observed the
invention of gestures, as “the method of descent”, or as more elementary “tricks”, and
these things are in some sense “structures”, or “mathematical ideas”.

In Bourbaki, a very special grosso modo determination of a structure is a set
equiped with constants, functional symbols, relational symbols, axioms. As
mathematical objects are specified in Model theory or in Universal Algebra. But more
generally, structures are also any mathematical algorithm, mathematical process,
mathematical idea. Furthermore, in the Bourbaki view, as specified by Claude
Chevalley (Aczel, 2009, 124), each mathematical fact has to be explained, and the
result of a computation is not enough for this purpose: the true explanation is the
discovery of the natural structure under a given fact.

We can say that, for André Weil, the history of mathematics is the history of
emergence of structures, of mathematical delimitations of mathematical ideas. And
consequently, the Eléments de mathématique by Bourbaki are not a treatise of
mathematics, but a fictional articulation, a kind of history, made of successive
treatises on chosen mathematical subjects. The story started with an “hygienic”
background on sets and logics; then, some “structures-meres” were exposed, in a
rational way. But the mathematical necessity of their choice and the order of these
“structures-meres” is not proved, it is based on a feeling of history, and on the initial
formation of the concerned mathematicians in those days.

However, in two different periods, in the Bourbaki group, two mathematicians were
very attracted — in two different ways — by the question of structures in mathematics,
and the research of natural structures: Charles Ehresmann and Alexander
Grothendieck did not share the Weil’s perspective. For Ehresmann, it was essential to
incorporate the “local structures” to the “structures-méres”, and, for Grothendieck the
question was to reach the level of “categories”.

But these ideas were new, and Weil seemed very careful with new things, because he
believed in the historically known facts as being the deep roots of mathematical
development. The difference was between the historically constraint of mathematical
meaning and the Cantor’s proclamation of a basic pure freedom in mathematics.

A history of mathematics based on problems is possible, but a history based only on
our today’s view of old problems (that is to say on what we consider as convenient
solutions) is too restrictive. We have to understand how in their own time problems
were posed and solved. This will be a good tool for the comprehension of what we do,
and what we will do.
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6. LETTER TO SIMONE WEIL: MATHEMATICS AS AN ART

In the difficult context of the beginning of the war in 1940, André Weil used history to
explain the meaning of his mathematical work to his sister, the philosopher Simone
Weil. He did that in two letters in 1940 (Weil, 1979, I), (Weil, S., 2012). There exists
an English translation by Martin H. Krieger (Krieger, 2005). It is important to notice
that, there is a kind of fusional relationship between Simone and André.

In the first letter he wrote that the mathematician is an artist, similar to a sculptor,
working in a very hard matter, namely the strict mathematical culture, where
constraints are previous theories and problems. He suggested to examine history of
mathematics from this point of view (as the history of an art).

In the second letter he adds:

When | invented (I say invented, and not discovered) uniform spaces, | did not have the
impression of working with resistant material, but rather the impression that a
professional sculptor must have when he plays by making a snowman.

For Weil, it is impossible to explain the mathematical research to the layman (that
means a deaf person related to mathematics), and what about history of mathematical
research? Probably it is impossible too, and this explains why he only developed a
history for mathematicians. He wrote:

Quant & parler a des non-spécialistes de mes recherches ou de toute autre recherche
mathématique, autant vaudrait, il me semble, expliquer une symphonie & un sourd [A.
Weil, CP, I, p.255. Lettre a Simone weil] La mathématique [...] n’est pas autre chose
qu’un art, une espéce de sculpture dans une matieére extrémement dure et résistante [...]
I’ceuvre qui se fait est une ceuvre d’art, et par la méme inexplicable [...] I’histoire de I’art
est peut-étre possible: et I’on n’a jamais, que je sache, examiné I’histoire des
Mathématiques de ce point de vue (a I’exception de Dehn, autrefois a Francfort [...]). Et
il est tout a fait vain de se lancer la-dedans sans une étude approfondie des textes. [...]
J’ai dit une fois a Cavaillés qu’il y aurait lieu d’étudier les débuts des fonctions elliptiques
[-..] (Weil, 1979, 1, p.255).

Later Weil accomplished such a study on elliptical functions (Weil, 1976).

Weil considered mathematical research as an art, and therefore as an inexplicable
activity. For him, it is as a kind of sculpture, in a very hard marble or porphyry. But he
thought that the history of art is possible, and after Dehn, that the history of
mathematics could be done in this way. He insisted on starting with a deep study of an
original text. So this type of history is reserved to mathematician, and the questions
are again: Who could read it? Who can do it?

In fact, André Weil could not really discuss his mathematical works with his sister
Simone, but he discussed with Simone (who was not a mathematician) on the
historical and philosophical subjects of antique mathematics, as the pythagorean ideas
(Weil S., 1999, 2012). For Simone, this discussion was incorporated in her teaching of
philosophy of sciences. She admired her brother unconditionally.
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7. LETTER TO SIMONE WEIL: DEVELOPPING ANALOGIES

In the second letter to Simone, he explained the meaning of his own work, informally
but with a lot of details. Mainly he claimed to develop and to construct a triple
analogy, between three mathematical domains in progress:

— the theory of numbers and fields of numbers,
— the Riemanian theory of algebraic functions on complex numbers,
— the theory of (algebraic) functions on finite fields (Galois fields).

These theories are described from an historical point of view. He considered that he
constructed a kind of trilingual dictionary, in order to decipher a trilingual text made
of desultory fragments, trying to construct mathematical analogies — see also the
Weil’s paper of 1960 “De la métaphysique aux mathématiques” (Weil, 1979, 1I). It is
related to the process of “changement de cadre” (Douady, 1984). It is a case of what
we call a “mathematical pulsation” (Guitart, 1999, 2008). More recently, Gérard
Laumon introduced this question of analogy in his “Allocution de Réception a
I’ Académie des sciences (Laumon, 2005).

8. HISTORICAL REFERENCES IN HIS MATHEMATICAL WORK

In his mathematical works, André Weil used of “historical insights” to motivate and
possibly to start his mathematical gestures, and also to increase the prestige of
his results (beside the main point which is that these results do solve a problem). The
legitimacy of this process is clear in the area of mathematics, in the “creative phase”,
when we do invent — or discover — our problematics. We have to know that such a
“history” is only a tool for doing mathematics.

We give one example, expressed by two quotations, from two papers of Weil.

The first quotation comes from “Sur les fonctions algébriques a corps de constantes
finis” written in 1940 (Weil, 1979, 1, 257):

Les travaux de Hasse et de ses éléves; comme ils ’ont entrevu, la théorie des
correspondances donne la clef de ces problémes ; mais la théorie algébrique des
correspondances, qui est due a Severi, n’y suffit point, et il faut étendre a ces fonctions la
théorie transcendantale de Hurwitz.

And the second quotation comes from “On the Riemann hypothesis in function-fields”
written or edited in 1941 (Weil, 1979, I, 277):

I have now found that my proof of the two last-mentioned results is independent of this
transcendental theory, and depends only upon the algebraic theory of correspondences on
algebraic curves, as due to Severi.

With such observations, we understand that Weil invented a genealogy of his work for
future readers, which inserts it in the great flow of the history of mathematics; and,
simultanuously, objectively he gave some interesting mathematical explanations.
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9. THE THREE PRINCES AND THE QUEEN, THE PROBLEMS:
AN ENCHANTING STORY FOR MATHEMATICIANS

André Weil wrote in “L’avenir des mathématiques” in 1947:

Mais si la logique est ’hygiéne du mathématicien, ce n’est pas elle qui lui fournit sa
nourriture ; le pain quotidien dont il vit, ce sont les grands problémes. “Une branche de la
science est pleine de vie, disait Hilbert, tant qu’elle offre des problémes en abondance”
(Weil, 1979, 1, 361).

Weil thought that “logic is only the hygiene of mathematics”, but the real foods for
mathematics are problems. As Hilbert said: “A science is alive as long as it as
abundance of problems”.

So the history of mathematics does start with problems, rather than with logical
foundations. The question of logical foundation is nothing else than one special
problem, for “hygiene”.

Hence again, we have the question of initiators, of progression of good ideas, and
good problems.

In each new special theory there are initiators, and then good contributors (Dieudonné,
1977).

No mathematician ever attained such a position of undisputed leadership [...] as Euler did
[...]. In 1745 his old teacher Johann Bernouilli, not a modest man as a rule, addressed
him as “mathematicorum princeps” (Weil, 1984, 169).

In 1775 he [Euler] clearly felt ready to pass the title to Lagrange “the most outstanding
geometer of this century” [...] In the next century the title of “mathematicorum princeps”
was bestowed upon Gauss by the unanimous consent of his countrymen. It has not been in
use since (Weil, 1984, 309).

“The Arithmetics is the Queen of mathematics” (Gauss). In the Weil’s style, the
historian knows a priori who are the geniuses or inspired initiators (e.g. Riemann,
Fermat, i.e. the Princes), those creating good new theories; and then, the historian
writes an informal but mathematical explanation of links between main ideas in
theories.

He does or writes a kind of mathematical story telling of the living world of
mathematical problems, ideas and theories; it is also a travel story of a mathematician
through mathematical ideas and analogies.

The good reader for that type of history has to be himself a mathematician; in this
case, such a history is useful, the reader could find a true mathematical clarification of
some notions. From our point of view, the decisive point is that it is not a fairy tale
(arbitrary), but an enchanting story of the real (presupposed) growing of mathematical
knowledge, a story of its own mathematical clarification. We can consider that such a
story is still a part of mathematics.
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For Weil, it is a construction of the meaning of mathematics, and because of that, it is
enchanting for a mathematician, it is the reason for which he admires mathematics. A
mathematician is such an admirer.

André Weil is a specialist of Number Theory, and, furthermore he wrote five books in
order to teach Number Theory.

His very basic book, written with the collaboration of Maxwell Rosenlicht, Number
Theory for Beginners is an elementary manual, and it introduces the very basic
operations of arithmetic, without historical information, only by Definitions /
Theorems / Proofs / Exercises (Weil and Rosenlicht, 1979).

In Basic number theory (Weil, 1967), a more advanced study, Weil exposed local
field, adele, class-field theory, and there he added a chronological list of initiators:

a chronological table [...] as a partial substitute for an historical survey of a chronological
list of the mathematicians who seem to have made the most significant contributions to
the topics treated in this volume.

Fermat (1601-1665) Riemann (1826-1866)
Euler (1707-1783) Dedekind (1831-1916)
Lagrange (1736-1813) H. Weber (1842-1913)
Legendre (1752-1833) Hensel (1861-1941)
Gauss (1777-1855) Hilbert (1862-1943)
Dirichlet (1805-1859) Takagi (1875-1960)
Kummer (1810-1893) Hecke (1887-1947)
Hermite (1822-1901) Artin (1898-1962)
Eisenstein (1823-1891) Hasse (1898-) [1979]
Kronecker (1823-1891) Chevalley (1909- ) [1984]

We notice the name of Emile Artin, which is essential for the history of the quadratic
reciprocity law in the 1920’s ; this is important, because, for André Weil, the modern
history of Number theory turns around this law.

In fact the subject of Adeles is also introduced by Weil in another book, Adeles and
Algebraic Groups (Weil, 1982). In the foreword, Weil said that “it is based on
lectures, which were nothing but a commentary on various aspects of Siegel’s work™.
It is as data recorded for future historians, but also in itself it is a piece of new
mathematics. We can say the same thing of the encyclopedic collection of the
Séminaires Bourbaki. This shows us how much the different aspects of his work
(teacher, researcher, author, historian) are very closely related.

The two other books are completely different, and they mix deep mathematics and
deep history, they are explicitly exercises of historical reading for mathematicians.
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The book on elliptic functions, Elliptic functions according to Eisenstein and
Kronecker (Weil, 1976) is appreciated by the mathematical community: “this text
undoubtedly contributes notably to the history of our science, it is also of great value
to contemporary mathematical research” (P. Hilton, Chairman, Editorial board,
Ergebnisse der mathematik)

The last book Number Theory An approach through history from Hammurapi to
Legendre (Weil, 1984) leads to the reciprocity law, through a history account of
technical gestures in number theory. Let us give two short explanations on this very
original last book.

Starting from the works of the three princes (Euler, Lagrange, Gauss) and other
initiators, the history of mathematics is at first the story of the life of the Queen
(arithmetics), the mathematical comprehension of the life of its problems.

Our main task will be to take the reader, so far as practicable, into the workshop of our
authors, watch them at work, share their successes and perceive their failures (Weil,
1984. IX).

In a Seminar at the Institute for Advanced Study in Princeton, Weil said that “he knew 50
proofs of the law of quadratic reciprocity, and that for each he had seen there were two
others he had not » (Gerdstenhaber) “It can be said that everything which has been done
in arithmetic from Gauss to these last years consists of variations on the law of
reciprocity: one started with Gauss’s law and arrived, thereby crowning all the works of
Kummer, Dedekind ansd Hilbert, at Artin’s reciprocity law, and it is the same” (Weil,
“Une lettre et un extrait de lettre & Simone Weil” (Weil, 1979, I), (Lemmermeyer, 2000,
V-Vvi, Xi.).

The list of the proofs (246 proofs) and the bibliography on the quadratic reciprocity

law, as given by Lemmermeyer, can be considered as an effect of the practice of Weil
with history of mathematics for mathematicians.

10. HISTORY OF MATHEMATICS: WHY AND HOW (1978)

In 1978, André Weil wrote a paper “History of mathematics: why and
how?” (Weil, 1979, IlI), explaining his conception of the practise of history of
mathematics in a remarkable concise and clear way. At first he considered that we
have good historians as Moritz Cantor, Gustav Enestrom, Paul Tannery, and that
we can discuss of their methods, with respect to Leibniz’s conception:

Leibniz wanted the historian of science to write in the first place for creative or would-be
creative scientists. Its use is not just that History may give everyone his due and that
others may look forward to similar praise, but also that the art of discovery be promoted
and its method known through illustrious examples (Leibniz, Math. Schr., ed. C.1.
Gerhardt, t.V, p. 392.).

At one moment he wrote: “A mathematician will find it appropriate to ...”. This
sentence shows that he is doing a history as a mathematician, and for mathematicians.
Also he observed that “Eisenstein fell in love with maths at only an early age by
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reading Euler and Lagrange”: so let us read the masters (as also Weil did); so history is
“some guidance to go back in mathematical readings”.

For mathematics, as well as for history of mathematics, it is useful to distinguish
between tactic and strategy. Tactic is the day-to-day handling of the tools of the period
(with competent teachers and contemporary works). Strategy is the art to recognize the
main problems, the pertinent structures, etc.

From Enestrém and Tannery, history consists in following the evolution of ideas over
long periods, to follow

the filiation of idea, and the concatenation of discovery (Tannery)
to be able
to look beyond the everyday practice of his craft (Weil).
So we get the question: “What is and what is not a mathematical idea?”.

For the determination of history, according to Weil we quote the three following
sentences by Weil in this paper:

History and philosophy of maths: it is hard to me to imagine what these two subjects can
have in common

Mathematical ideas are the true objects of history of mathematics.

Large part of the art of discovery consists in getting a firm grasp on the vague ideas which
are “in the air”.

Coming back to the question of anachronism or attribution of our conception to an
ancient author, Weil underscored that this default is different from the use by the
historian of our modern knowledge. As a comment on this opinion, we have, by
Tannery:

The greater his talent as a scientist, the better his historical work is likely to be.

11. AN EXAMPLE OF HISTORY “A LA WEIL”: THE DEBATE ABOUT
TANGENTS BETWEEN DESCARTES AND FERMAT

Weil concluded his paper “History of mathematics: why and how ? (Weil, 1979, IlI)
with a discussion on the debate about tangents between Descartes and Fermat.

The discussion lays on two ideas of Descartes and Fermat, isolated and formulated by
Weil, and three observations of Weil, as below:

Idea 1 (Descartes): a variable curve [for example a circle] intersecting a given one C at
a point P, becomes tangent to C at P when the equation for their intersection acquires
a double root corresponding to P.

Idea 2 (Fermat): infinitesimal method, depending on adequation, or the first term of a
local power-series expansion.

Weil did the following “historical observations™:
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Observation 1: the debate is between algebraic and mechanical curves.

Observation 2: to the “défi” of Fermat about the cycloid, Descartes do replies by the
invention of the instantaneous centre of rotation.

Observation 3: At this period (XVIIth century), the distinction between differential
and algebraic geometry has not been clarified. But now we can understand that
Descartes’method belongs to algebraic geometry, and Fermat’s method belongs to
differential geometry. The first one is available with some general ground field, the
second one works for more general (non-algebraic) curves.

Today, on this subject of tangents, the reader is invited to examine several analysis by
Evelyne Barbin, from an historical point of view (Barbin, 2006, 2015b) and from a
didactical point of view (Barbin, these Proceedings).

12. CONCLUSION: ON THE USE OF HISTORY IN THE TEACHING OF
MATHEMATICS

From Weil’s works and positions on history or with history, we can isolate some
observations about the link between mathematics and history of mathematics, in the
perspective of pursuing, transmitting and teaching of mathematics.

For various aspects of the use of a historical perspective into mathematics teaching
and learning, we refer the reader to some recent published papers (Barbin, 1997, 2012,
2015c). One main idea of Evelyne Barbin (Barbin, 1997), studied again in
(Guillemette, 2014), is the notion of « dépaysement épistémologique ». A decisive
point is that « dépaysement » arrives if we read a mathematical text in the same way
as a contemporary of the author was able to read it. Clearly André Weil contravene
this attitude of mind with history, when he reads masters in order to clarify the future
of theories, in order to justify the Bourbaki venture, or its own line of development in
mathematics. The same observation works for the genetic approach of Toeplitz, and
both, Toeplitz and Weil, admits a fictional history, eventually far from the real history,
as a tool for mathematical motivation and formation. Of course any historical
reconstruction is helpful for mathematical teaching, because this provides an exciting
imaginary world of thinking, and in this world a personal motivation, a possibility of
identification with some heroes. But a deeper insight is obtained if we work with
interpretations respectful of contemporary understanding of a text; in this case we
could observe the finest gestures and interpretative pulsations, and try to reconstruct
the very moment of invention.

In the primary formation of André Weil, we noticed, on the one hand the influence of
two great creative professionals, Hadamard and Cartan, both heirs of practize of
natural care of history in science, and on the other hand the passage through
preparatory classes for great schools, with Grévy. The preparatory classes (taupe) is an
heritage from the beginnings of the Ecole polytechnique (Barbin, 2015a), and certainly
they instil the habit of taking good care of the link between mathematics and its
history.
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Of course for Weil, as for any mathematician, the elementary technical training inside
any given closed system of calculus have to be executed as grammatical exercises,
musical games, remedial gymnastics: quickly, unscrupulously and without qualms.
But also the signification of such a training has to be seek out, and the natural way for
that is through the reading of original mathematical texts, in the stream of an history
of mathematics. And the question is the underlying conception of this history.

A point is that the core of mathematics is just its own history, and only after that point
comes the questions of matters, subjects, methods which are to be considered,
according to our feeling of the history. Mathematics is a culture, the history of
elucidation of the necessity of mathematical ideas, rather than the history of contingent
mathematical themas in which these ideas are implicated or even incarnated, or a
fortiori rather than the history of its philosophical, epistemological or technical
motivations. Whatever we choose to be taught from historical situations, in teaching
mathematics we have to be very careful with this distinction between ideas and
themes, and this is feasable especially through the reading of masters.

Another point is that mathematical works and teachings are elaborations in two
directions: from problems to solutions, which are structural explanations, and
conversely from structures to new problematics. So in the history appear problems,
and structures, in a kind of dialectic; this dialectic is the motor of rational thinking.

From the history of mathematics we learn that the mathematician is the one which find
problems where nobody could see difficulties ; and from this point derives its ability to
solve problems on which everybody stumbles against. The true rigor relative to
signification is there, in discovering problems; not in the process of solving, in which
logical rigor is only a necessary hygiene. The point is to discover how to become
subtle as far as to discover new problems. And certainly the history is the best school
for that.
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The new context of Master's level courses for initial teacher education led in France
to the development of history and epistemology courses on a larger scale, in
interrelation with didactics of mathematics. We report on this phenomenon and
especially on an experiment conducted at Montpellier University that aimed at
training teacher students how to use history and epistemology tools. This is overall
an opportunity to discuss the interrelations of epistemology and didactics, in the
French culture.

I. INTRODUCTION

Due to several recent reforms of the initial teacher education system, the situation
with regard to history and epistemology of mathematics for trainee teachers in France
changed since the publication of the ICMI study (Fauvel & van Maanen, 2000).
Indeed, the reform of 2010 offered a unique opportunity to introduce history and
epistemology courses on a larger scale as Master's degrees in teacher education were
created in order to raise the academic level of teachers. The national competitive
examination (CAPES [1]) that regulates positions in secondary education was
postponed to the second year of the Master's degree. As a consequence, a full year
was gained in the training of teacher students, which gave time to teach fundamental
concepts of didactics, but also history and epistemology of mathematics in more
depth, in response to an increased awareness of its importance by the institution. For
instance, official guidelines for Grade 10 (Terminale in France), published in 2011,
make it clear that:

elements of epistemology and history of mathematics fit in naturally in the
implementation of the curriculum. To know the names of a couple of
famous mathematicians, the period in which they lived and their
contribution to mathematics are an integral part of the cultural baggage of
all students taking scientific education. Presentation of historical
documents is an aid to the understanding of the genesis and evolution of
certain mathematical concepts ([2]).

The purpose of this article is to give an overview of the situation by taking
Montpellier University as an example. The author will elaborate on the basis of his
experience as a University lecturer in epistemology and didactics of mathematics as
well as researcher in mathematics education. In particular, we will analyze teacher
training in history and epistemology at Montpellier University using the whys and
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hows classifications available in the literature (the ICMI Study, Fauvel & van
Maanen 2000; Jankvist 2009).

The core of this paper is an experiment that the author conducted with second year
Master students that aimed at teaching teacher students by the practice how to use
history and epistemology as a tool in the classroom. The students' project work led to
the elaboration of “didactic source material” that, “compared to primary and
secondary source material, seem to be the most lacking in the public domain” (ICMI
Study p. 212). It is therefore also an interesting question to discuss the methodology
to produce this type of resource. What kind of interactions between history,
epistemology and didactics of mathematics can we expect and aim for? This is a deep
question that is often debated inside the HPM community (Barbin 1997) and certainly
cannot lead to a unique and definite answer. We will contribute to the debate by
giving a detailed account of the epistemological and methodological domains used
for the project work as well as the successes and drawbacks that we met using this
approach.

Il. HISTORY AND ESPISTEMOLOGY AT MONTPELLIER UNIVERSITY:
FROM 2010 TO 2014

About the goals and the context of initial teacher training

The many reasons for integrating history of mathematics in mathematics education
have been carefully reviewed in the ICMI Study (Fauvel & van Maanen 2000). The
reader will find in Annex 1 the result of our attempt to synthesize and arrange the
why arguments in a table. Considering that the education community is composed of
students, teachers and didacticians (in a simplified model), we also indicated the
protagonist who was mainly concerned for each of the argument. Our teacher
students are both students (at University) and teachers (in the classroom for their
practice work or apprenticeship). They may also adopt the posture of the didactician
when they are given the task of elaborating some (simple) didactical engineering.
Therefore, most of the arguments presented in Annex 1 may apply to them.

On the occasion of the 2010 reform of the teacher education system in France, local
and national committees debated on the goals of initial teacher training in history and
epistemology of mathematics. Arguments needed to be formalized in order to obtain
from the French Ministry of Education the accreditation of the new Master's track.
Several dimensions were thus combined and put forward: an epistemological,
historical and cultural approach of scientific knowledge; a didactical approach of the
construction of concepts in a teaching and learning environment; minimal knowledge
on history of education; a practical and reflexive approach on the way a teacher may
introduce a historical perspective in his lessons.

Specification and clarification of competencies with regard to history and
epistemology in initial teacher education has been carried out in great detail by a
local group of lecturers and researchers in history of science that piloted the new
Master's track at University Paris 12 ([3]). We will list these competencies below and
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relate them to our typology of whys (between brackets, see also Annex 1; the sign ~
indicates an approximate matching).

e To develop one's scientific culture (~11)

o To understand how scientific knowledge is developed (6)

e To situate one's discipline in a larger context (~4)

e To acquire proficiency in the written language through the reading and
studying of ancient scientific texts (5)

e To identify, in their epistemological and historical context, concepts, notions
and methods met in the teaching of science at a given level (1)

e To appropriate different didactical options in the integration of a historical
perspective in scientific teaching (2)

e To apprehend transverse competencies (reading, argumentation, writing, etc.)
that history may work with in scientific education (5)

e To have knowledge on the history of education and the place of scientific
education

e To get initiated to the questions and methods of epistemology and history of
science as research fields

Initial teacher training at Montpellier University

At Montpellier University, two 50 hours-courses were devoted to history and
epistemology of mathematics during the period 2010-13. The first course, a first-year
Master's course, focused on tertiary level mathematics (abstract algebra, topology,
probability theory, etc.) and aimed at promoting reflexive thinking on mathematical
objects and methods (what is a mathematical proof, the problem of definitions and
axioms, the axiomatic method, mathematical structuralism, the meta-notions of rigor,
evidence, error, etc.). Students were trained to analyze and comment on a corpus of
documents including primary sources or essays written by historians or philosophers.
The second course was a second-year Master's course directed towards secondary
level mathematics with a view to articulating history and epistemology of
mathematics with didactics of mathematics. Conceptions that appeared in history
were therefore connected to conceptions identified by didacticians in a learning
context.

Unfortunately (or not), a second reform that took place in 2013 (after the French
Presidential elections) affected the Master's degree. In an attempt to make the
teaching career more attractive, the competitive examination (CAPES) was taken
back to the first year of the Master, in order to facilitate a progressive entry in the
career, no later than 4 years after the French Baccalauréat, with a 9 hours a week of
practical training during the second year of the Master's course. As a consequence,
teaching time dedicated to history and epistemology as well as fundamentals of
didactics had to be diminished, which also resulted in a stronger articulation between
these fields.

Nowadays in Montpellier are offered two 50 hours first-year master courses in
history-epistemology and didactics of mathematics as combined subjects: a first
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course shares time equally between the two and corresponds more or less, as far as
history and epistemology is concerned, to the previous 2010-13 course deprived of
the discussion of advanced mathematics. A second course reviews the didactics of the
main mathematical domains in secondary education (geometry, algebra, analysis,
probability and statistics, etc.) with integrated elements of history and epistemology.
Finally, a third course (24 hours) during Master 2 is focused on practical issues:
learning to use history and epistemology tools in the classroom, elaboration of
pedagogical scenarios and their implementation. Although 2013-14 was more of a
transition year, it offered an opportunity to experiment such a course. We will report
on this experimentation in the sequel.

I1l. THE STUDENTS' PROJECT WORK: A CASE STUDY

We will now describe in detail the tasks that were assigned to teacher trainees so that
they may learn how to use history and epistemology as tools in the classroom. We
will analyze a few students' productions and comment on the difficulties that they
encountered in the completion of such tasks.

Description of the project work

Teaching design has been chosen as an activity for students to learn by doing how to
use history and epistemology tools. This makes sense in our context since second
year Master students in 2013-14 had a teaching duty of 6 hours a week, which
motivated an emphasis on classroom practices. This work, carried out in groups of 3-
4 teacher students, also served as a project-based assessment for the course. There are
of course several possible and different ways of integrating history of mathematics in
mathematics education. What are the choices made by educators at Montpellier
University?

Referring to the classification of ‘hows’ presented in the ICMI study (Tzanakis &
Arcavi pp. 208-213), students were asked to follow a “teaching approach inspired by
history” (loc. cit., p. 209). Nevertheless, in comparison to such an approach, less

emphasis was made on a “genetic approach to teaching”. To rephrase it more
properly, our approach may be characterized as:

a teaching approach supported by an epistemological analysis

articulating history and epistemology with didactics of mathematics

using history and epistemology as tools in the classroom

distilling elements about the nature of mathematics or mathematics as a
cultural endeavor

e producing some “didactic source material”, that is a “body of literature which
is distilled from primary or secondary writings with the eye to an approach
(including exposition, tutorial, exercise, etc.) inspired by history” (loc. cit. p.
212).

This approach certainly fits in the French didactical culture, in which design has
always been given a central role, through the notion of “didactical engineering”
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(Artigue 1992). Epistemology plays an important role, which was again
acknowledged by the French school of didactics of mathematics since its foundation
(Artigue 1991).

To be precise, the project work was presented to the students in the following
programmatic terms:

1. Choose a theme and set up mathematical and didactical goals (parameters: the
curriculum, known didactical phenomena, keeping in view the use of history
and epistemology tools)

2. Epistemological analysis of mathematical notions

o 1st goal: identify cognitive roots in history and reflect on it

e 2nd goal: identify primary or secondary historical sources that may be
used in the classroom or identify a crucial epistemological anchor point
to work as a lever in the classroom

Method: reviewing the literature in history and epistemology and also in
didactics of mathematics

1. Set up epistemological goals (useful to meet didactical goals or as a combined
goal: aspects related to the intrinsic/extrinsic nature of mathematical activity,
the nature of mathematics/mathematics as a cultural endeavor)

2. Didactical engineering

e History as a tool: motivation by historical questions and problems,
contextualizing as a meaning-providing activity, etc.

e Or Epistemology as a tool: through the meta lever (see epistemological
domain below)

Produce a worksheet + detailed scenario + comments on didactical choices
1. Write down the a priori analysis
2. Classroom testing and a posteriori analysis (if possible)

In the context of this project work, history and epistemology are used as tools since
they contribute to meet mathematical and didactical goals. The reader may also note
that both tools are carefully distinguished. To our knowledge, epistemology as a tool
in the classroom is given little attention in the literature. This may be due to the fact
that elements related to the nature of mathematics are usually seen as history and
epistemology as a goal. Moreover, epistemology may be more demanding than
history to work out as a tool since it can seldom rely directly on a source document
but always involves reflexive and critical thinking.

Epistemological and methodological domains

According to Radford, “the linking of psychological and historico-epistemological
phenomenon requires a clear epistemological approach” (ICMI Study p. 162) as well
as an adequate methodology for the design of historically or epistemologically based
classroom activities. This statement is illustrated by figure 5.1 (loc. cit. p. 144) which
certainly deserves to be reproduced here:
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Epistemological domain

Theoretical framework

Psychological domain Historical domain
Students’ learning of Conceptual development
mathematics of mathematics

Design of classroom activities

Methodological domain

Figure 1: linking of psychological and historico-epistemological domains in the design of
classroom activities, according to Radford.

Our epistemological domain may be described by the following formula:
Brousseau TDS + socio-cultural inputs + the meta lever

Brousseau's theory of didactical situations in mathematics (Brousseau 1997) is based
on the idea that mathematical knowledge makes sense to the learner whenever it may
be perceived as an optimal solution to a given system of constraints, in a problem-
solving activity. Brousseau also incorporated in the field of didactics Bachelard's idea
of epistemological obstacle. The didactical action is therefore centered on the
organization of an adequate student/milieu relationship and the elaboration of
“teaching situations built on carefully chosen problems that will challenge the
student's previous conceptions and make it possible to overcome the epistemological
obstacles, opening new avenues for richer conceptualizations” (ICMI Study, p. 163).
It should be pointed out that, in this perspective, the articulation between students'
learning and conceptual development of mathematics in history is not recapitulation
or parallelism. History plays a role in so far as it may suggest or inspire fundamental
situations as well as inform on possible misconceptions and potential steps in the
conceptualization process. But any assumption should be confronted with the reality
of classroom experimentation, in other words with the didactical phenomena.

In order to ponder Brousseau's paradigm, we also follow Radford and acknowledge
the input of a socio-cultural perspective: mathematical knowledge is better
understood “in reference to the rationality from which it arises and the way the
activities of the individuals are imbricated in their social, historical, material and
symbolic dimensions” (loc. cit. p. 164).

In order to make this rationality explicit, teacher students are asked to employ the
meta lever (Dorier & al. 2000), that is “the use, in teaching, of information or
knowledge about mathematics. [...] This information can lead students to reflect,
consciously or otherwise, both on their own learning activity in mathematics and the
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very nature of mathematics”. Although a large part of the meta is usually taken in
charge of by the teacher, we encourage the devolution to the student of some part of
this reflection, which may require a piece of didactical engineering (see examples
below).

As far as the methodological domain is concerned, the project work, which leads to
the production of didactical source material, uses a dedicated resource format, which
may be seen as a didactical tool, since it helps students to clarify their thoughts and
organize their work, to make explicit the choices that they make so that didactical
action may be discussed, in particular the impact of history and epistemology and its
functioning as tools. Mathematical, didactical and epistemological goals need to be
carefully declared upfront and related to the curriculum, history and epistemology
tools have to be described and commented: to which extent does it function as a
lever? The text of the activity is complemented by a detailed scenario, and
epistemological and didactical analysis are provided as annexes. Our resource format
is in fact an adaptation of the SfoDEM resource documentation format (Guin &
Trouche 2005), which has been designed for the purpose of collaborative elaboration,
pooling and sharing of didactical material within a community of practice consisting
of about 300 mathematics teachers in secondary education.

In other words, referring again to the typology of hows given in the ICMI Study and
precisely the typology of examples of classroom implementation, our teacher students
are building a “historical package” (Fauvel & van Maanen pp. 217-218): “focused on
a small topic, with strong ties to the curriculum, suitable for two or three class
periods, ready for use in the classroom”; a self-contained package “providing detailed
text of activity, historical and didactical background, guidelines for classroom
implementation, expected student reactions (based on previous classroom trials)”. In
our case, such an extensive documentation is motivated by the development of
professional skills but also by pooling and sharing since teacher students will
communicate about their group-work during oral presentations in front of the
assessors and their peers.

Examples

Several examples have been given to students in order to illustrate a functioning
implementation of the historical or epistemological lever. We will present below a
teaching sequence engineered by a team of teachers and educators at the IREM of
Montpellier (Hausberger 2013, annex 3, pp. 120-158).

This sequence is devoted to a further discussion of the notion of mathematical
demonstration, at the entrance of the Lycée (age 15-16). Students have already made
acquaintance with standard Euclidean demonstrations during the last two years of
Collége. In the sequel, history and epistemology will be called for meaning-
producing activities as we tackle the following questions: what constitutes a
mathematical demonstration compared to other types of argumentation? Why did
mathematicians choose to set up these rules?

During a first activity, students are assigned the following tasks:
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e Look up in the dictionary for definitions of the verbs “to show” ([4]) and “to
demonstrate” ([5]). Give synonyms for each word. Bring into light the
differences to be made between the two.

e For each of the following documents, identify the statement which is asserted
and rewrite it if necessary. Is the argumentation of the statement a
mathematical demonstration? If so, can you explain the different steps of the
reasoning? If it isn't, can you write down a demonstration or demonstrate that
the statement is false?

The documents submitted to the students include Lafontaine's poem “the wolf and the
lamb” (doc. 1), the values of n?> —n+17 for n € {0,1,2,3,4,11} and the statement
“n? —n+17 is prime for any natural numbern” (doc. 2), “let us show that the square
of an odd number is also odd” and a proof based on the algebraic development of
(2n + 1)?(doc. 3), the graphical representation of the function f(x) = 10x> +
29x* — 41x + 12 and the statement that “the equation f(x) = 0 has two solutions
since the curve intersects the x axis in two points” (doc. 4), a puzzle inspired from
Chinese mathematics that establishes that a square inscribed in a right triangle of
sidesaandb(apart from the hypotenuse) has side c=ab/(a+b) (doc. 5), and finally
another puzzle by Lewis Carroll that leads to the erroneous conclusion that a square
of side 8 and a rectangle of width 5 and length 13 have equal area (doc. 6).

This is an example of epistemology as a tool in the classroom: an implementation of
the meta lever, involving reflexive thinking and devolution of meta-discourse to the
students. No historical contextualization is given at this stage. Although a few
mathematical competencies may be developed through this activity (for instance,
refuting a universal statement by providing a counter-example or working out the
factorization of a function), the goal is the development of competencies that our
IREM team decided to set apart and explicitly describe as epistemological: being able
to identify and characterize a mathematical demonstration, to distinguish induction
and deduction, to distinguish the truth of a statement and the validity of an
argumentation, etc. The role and status of the figure or representation is discussed
with the students in the situations of “visual doubt” (doc. 4 to 6: these situations call
into question the limits of our perception with the senses) as well as the validity of
“cutting and pasting” procedures (doc. 5 and 6: the treatment of mathematical
objects as material puzzles leads to an accurate answer in the first case but an
erroneous result in the latter).

During a second activity, three historical primary sources are presented to the
students: the Problem 41 of the Rhind mathematical papyrus, in which the scribe
indicates how to compute the volume of a cylinder-shaped grain silo, the Yale

Babylonian tablet 7289, which presents a very interesting approximation ofv2 in

sexagesimal numbers, and finally Euclid's demonstration of the irrationality ofv2
(which requires quite a sophisticated pedagogical script in order to facilitate the
reading and to make the devolution of the Greek context of magnitudes possible).
Again, mathematical goals may be pursued, for instance on approximations and
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algorithms by asking about the obtainment of the Babylonian value by empirical
measurement and the introduction of Heron's (of Alexandria) method, or on logic and
mathematical reasoning (implication, contrapositive, reduction to the absurd). Once
such mathematical aspects have been worked out, the pedagogical scenario puts
forward the following questions for investigation and discussion in the classroom:

e On the basis of these historical documents, what distinguishes Greek
mathematics from Egyptian and Babylonian mathematics?

e What might have been, according to you, the reasons that led to the
development of such Greek mathematics?

This is an illustration of both history (historical contextualization) and epistemology
(reflexive thinking) as a tool, again through the meta lever. Elements about the nature
of mathematical objects and mathematical activity as well as mathematics as a
cultural endeavor may be addressed, since historians and epistemologists identified
both internal and external reasons for the appearance of the mathematical
demonstration in the Ancient Greece. This socio-cultural approach makes sense both
epistemologically and didactically: indeed, as stated by Balacheft, “knowledge needs
to be constituted in veritable theories and be recognized as such, which means
accepted by a community that renounces to take anywhere the arguments that it may
use. The mathematical demonstration relies on a body of knowledge highly
institutionalized, whose validity is socially shared.” (Balacheff 1987, p. 160, our
translation; [6]). Accordingly, the criteria for a valid argumentation in mathematics
should be submitted to classroom discussion and connected to the practices of
mathematicians, which is the very purpose of our teaching sequence.

Students’ productions

We will now present and analyze the work of 3 groups of 4 teacher students who
were involved in the project, out of a total number of 5 groups. Our main questions
are the following: did they manage to implement a functioning lever? What kind of
difficulties or pitfalls did they encounter? How does history-epistemology and
didactics of mathematics interact in practice in the students' project works?

a) Group 1 decided to elaborate an activity dedicated to the introduction of
Pythagoras's theorem at Grade 8 (4eme in France). They used history as a tool and
chose to put forward the following historical problem as a motivation: how have
Karnak and Luxor temples been constructed, knowing that historians consider that
the masonry set square only appeared in the 15" century? The Egyptian 13-knots
rope was soon introduced as an historical object, which led the classroom into an
experiential mathematical activity dedicated to the construction of right-angled
triangles. The pythagorean triple (3,4,5) finally emerged together with a new
problem: how to characterize pythagorean triples? In order to introduce the
pythagorean relation 32 + 42 = 52and interpret it in terms of square areas,
the scenario used a mechanical device in plexiglass (which had been manufactured
by one of the students!):

Page 229



THOMAS HAUSBERGER

Fiaure 2: Students' mechanical device for the internretation of the nvthaaorean relation

The blue liquid contained in the small squares flows to fill the bigger one when the
device is turned upside down. Further investigations of the pythagorean relation were
conducted afterward with the help of an interactive geometry software: “does other
triangles fulfilling a similar relation seem to be right-angled triangles? What equality
seems to exist between the sides of a triangle for it to be right-angled?”. The rest of
the activity was devoted to working out a proof of Pythagoras's theorem by means of
a contemporary version of the Chinese puzzle. Although it was the key to the
justification of the Egyptian procedure, the reciprocal was admitted without proof.

As a conclusion, teacher students did a good job in the implementation of the history
lever. Several cognitive representations or procedures that appeal to our senses and
participate in the conceptualization of Pythagoras's theorem were introduced either
using historical contextualization or an approach inspired by history. A weak point of
the activity would be an insufficient epistemological clarification of the idea that the
pythagorean relation characterizes right-angled triangles, which is visible in the two
questions above. The current official guidelines instruct not to distinguish the
theorem and its reciprocal, which troubled our teacher students. This is certainly an
opportunity to work out an epistemology lever.

b) Group 2 named its project work “trigonometry and triangulation”. The genesis is
the result of one student's personal encounter with the method of triangulation and the
necessity to relate to the curriculum. They proposed the following situation:

About 600 years BC., Thales finds himself on a boat (point A) and wishes to know
the distance to the coast. For that purpose, he sends two observers (B and C) on the
(straight) coastline, separated by a known distance BC=700m, and gives them
instructions to measure the angles from the coastline to the boat. The purpose is to
help Thales compute the distance, the measured angles being 83.8° and 87.7°.

Teacher students described their situation in terms of an “open problem” (adidactical
and non-routine task) and gave a decent a priori analysis. As far as history is
concerned, they argued about motivation by a “historical” problem. It is of course
concrete, practical... but is it historical? Contextualization is quite limited. Moreover,
the mention of Thales is both historically and didactically misleading: such a question
has been raised by Thales but the targeted method of resolution which involves the
tangent function has nothing to do with Thales and Thales's theorem.

As a conclusion, this is diagnosed as a non-functioning history lever, both with regard
to the articulation with didactics and on a social-cultural perspective. Teacher
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students didn't manage to mobilize the results of their research in the history of
trigonometry and the triangulation principle in the elaboration of the activity and
pedagogical scenario.

¢) Group 3 worked on proportionality and the linear model, with a project entitled
“inappropriate linear reasonings”. The starting point, once the theme had been chosen
in relation to the curriculum, to lesson planning and the possibility of classroom
testing, was the review of didactical literature on proportionality. Teacher students
therefore got acquainted with the notion of “illusion of linearity” by reading De Bock
& al. (2008). They identified the presence of an epistemological obstacle and took
note of Aristotle’'s famous error (speed and mass are proportional) pointed out by
Galileo. They decided that Aristotle's error was as a historical situation appropriate
for discussing in the classroom the misuse of the “linear model”, together with a
geometric situation taken from De Bock & al. (to fertilize a square field of side 200m,
the farmer needs 8h. How long will it take to fertilize a field of side length 600m?)
which was first presented to the students so that they (or at least some of them) may
experience the illusion of linearity.

As we can see, historical-psychological parallelism is pointed out by teacher students
but they do not reflect on the goals of historical contextualization in the present
context. It could be an opportunity to discuss with their students the place and role of
errors, to connect these with the conceptions and methods in the historical context,
and state that the linear model is often advocated by application of a principle of
simplicity as a heuristic rule (“nature operates in the shortest way possible”™).

Among the goals declared by teacher students, the latter mention “to clarify the
concept of model: proportionality models a constraint (physical, logical or social)
between at least two magnitudes (which makes them dependent) and describes a
functional relation between their elements”. Yet, proportionality as a linear model
remains an unmet epistemological goal. The epistemological problem which relates
to validating/refuting a mathematical model remains implicit in the scenario.
Validation criteria for the linear model are not discussed: the teacher is the validator
in the geometric situation. The experimental refutation of Aristotle's assertion is also
difficult in the classroom without an appropriate protocol, which was not known to
our mathematics teacher students who experimented with rulers and rubbers
(although it is well known to physics teachers: for instance, take two tennis balls and
fill one of the two with sand). The pedagogical scenario therefore uses a “thought
experiment” and appeals to students' aptitude to argue that the result is unrealistic.
Teacher students were not clear on the point that the underlying epistemology of
model validation is that of experimental sciences, not mathematics! Mathematical
procedures of validation would be available if tables of values were produced, which
was not the case in Aristotle's situation.

As a conclusion, the teacher students' approach was quite interesting but they didn't
succeed in working out the history and epistemology lever, due to lack of hindsight,
particulary on an epistemological point of view (insufficient understanding of
Avristotle’s context and lack of expertise to discuss the notion of model, also
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interdisciplinarity issues in a context mixing mathematics and physics together with
their specific epistemologies).

IV. GENERAL CONCLUSIONS AND PERSPECTIVES

Initial teacher education in France has been considerably impacted since 2010 by two
consecutive reforms, which offered an opportunity to improve the training of pre-
service teachers in history, epistemology and didactics as interrelated subjects.
Courses at Montpellier University were more focused on history and epistemology as
a goal during the first year of the Master degree, then as a tool in year 2 in relation to
practical training. Nevertheless, the goal/tool distinction shouldn't erase dialectical
aspects which were always present.

The methodology used to produce didactic source material has been carried out
successfully by teacher students, although it required to search the literature in history
and epistemology for connections with the curriculum, in relative autonomy, which
was not straightforward. They produced simple engineerings or appropriated existing
ones themselves. History as a lever has been more successfully implemented than
epistemology. An analysis of the didactical material that they produced reveals quite a
few epistemological issues, which suggests that epistemology as a tool should
deserve further investigation within our community of practice.

Our 20 students were asked after completion of the project work the following
question: “what are, according to you, the benefits of an approach that uses history
/epistemology as a lever?” Their answers were interpreted and dispatched on our grid
of whys (see Annex 1) as follows:

Re-contextualization as a meaning-producing activity 16 (students)

Historical genesis/ artificial genesis 7
Psychological motivation
Interdisciplinarity

Linguistic and transverse competencies
Nature of mathematics

Obstacles and conceptions

Illusion of transparency

O O N OO OB W N

Teacher's dogmatism

-
o

Humanization of mathematics and human qualities

P N O O 01O O O

11 | Mathematics as a cultural endeavor

Figure 3: Motivations for the integration of history and epistemology of mathematics into
classroom teaching, as perceived by the students after the project work

As we can see, re-contextualization as a meaning-producing activity is very well
perceived. Whys connected to Brousseau's paradigm (2,7) are also reasonably
acknowledged, which isn't surprising (epistemological framework of the project,
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French culture of didactics). Accent has not been made on the socio-cultural
perspective.

To summarize, our approach is characterized by the intent that history/epistemology
should explicitly meet didactical goals. For a happy and fruitful marriage, didactics of
mathematics should certainly develop more specific and dedicated tools in order to
integrate history and epistemology as full partners.
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NOTES
1. Certificat d'Aptitude au Professorat de I'Education Secondaire.

2. Des ¢léments d’épistémologie et d’histoire des mathématiques s’insérent naturellement dans la mise en ceuvre du
programme. Connaitre le nom de quelques mathématiciens célebres, la période a laquelle ils ont vécu et leur
contribution fait partie intégrante du bagage culturel de tout éleve ayant une formation scientifique. La présentation de
textes historiques aide & comprendre la genése et I’évolution de certains concepts (Bulletin officiel spécial n° 8 du 13
octobre 2011, p.1 ; http://www.education.gouv.fr/pid25535/bulletin_officiel.html?cid_bo=57529).

3. (1) Développer leur culture scientifique (2) Comprendre comment se construisent les connaissances scientifiques (3)
Situer sa discipline d’origine dans un contexte plus large (4) Travailler la maitrise de la langue écrite au travers de la
lecture et de I’étude de textes scientifiques anciens. (5) Identifier dans leur contexte épistémologique et historique les
concepts, notions et méthodes rencontrés dans I’enseignement des sciences a un niveau donné. (6) S’approprier
différentes pistes didactiques permettant d’inclure une perspective historique dans I’enseignement des sciences (7)
Appréhender les compétences transversales que font travailler I"'usage de I’histoire dans I’enseignement des sciences
(lecture, argumentation, écriture...) (8) Connaitre I’histoire du systéme scolaire et de la place qu’y occupe
I’enseignement des sciences (9) S’initier aux méthodes et aux problématiques propres a I’épistémologie et I’histoire des
sciences (A. Besnard, A.S. Genin, A. Mayrague, Proposition pour des formations en épistémologie et histoire des
disciplines d’enseignement scientifiques et technologiques, dans le cadre des masters et parcours de masters
‘enseignement” ;  http://f.hypotheses.org/wp-content/blogs.dir/873/files/2014/06/08_10_15_DOCT-7-MAQUETTE-
EPISTEMO-HIST-SC.pdf).

4. « montrer » in French.

5. « démontrer »: note that the two verbs differ only by a prefix in the French language, the etymology being very
enlightening.

6. Elles [les connaissances mathématiques] doivent étre constituées en une véritable théorie et étre reconnues comme
telle, c'est-a-dire acceptée par une communauté qui ne s'autorise plus a aller chercher ou elle veut les arguments
qu'elle utilise. La démonstration en mathématiques sappuie sur un corps de connaissances fortement
institutionnalisé, ensemble de définitions, de théorémes, de régles de déduction, dont la validité est socialement
partagée.
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Oral Presentation

DEGREES OF INCONSISTENCY
Ladislav Kvasz
Pedagogical faculty, Charles University in Prague

Several mathematical theories, such as Newton’s theory of fluxions and fluents or
Peano’s theory of natural numbers were originally formulated in an inconsistent
form. Only after some period of time consistent formulations of these theories were
found. The paper analyzes several historical cases of this ““initial inconsistency™. It
distinguishes three kinds of inconsistency by measuring the ““distance” of the
inconsistent theory from its consistent form. They correspond to whether re-
formulations, relativizations or recodings are needed for turning the inconsistent
theory into a consistent one. The paper argues that inconsistencies of different kind
have different cognitive background and so should have different role in education.

INTRODUCTION

Inconsistency is a phenomenon, which can be viewed from different perspectives.
Alongside efforts to create paraconsistent logic we can study inconsistency also from a
historical perspective. New mathematical theories are often born as inconsistent, but
despite the inconsistencies their authors manage to derive a series of remarkable
mathematical results. Sooner or later after the discovery of the inconsistency of the
particular theory mathematicians usually succeed constructing a logically consistent
version of the theory, in which it is possible to derive basically the same results as in
the original inconsistent version. A classic example is the differential and integral
calculus discovered by Newton and Leibniz. It took more than hundred years before
Cauchy and Weierstrass presented a consistent version of this theory, nevertheless, the
majority of theorems proven by Newton and Leibniz turned out to be correct also in
terms of the consistent theory.

When logicians comment on this episode, they emphasize the logical inadequacy of
the original theories of Newton and Leibniz. A. W. Moore, for example, in his book
The Infinite writes: “For all its depth and beauty, the reasoning here is, as we have
seen, fundamentally flawed. It rests on a certain notion of an infinitesimal difference
(as not quite nothing, but not quite something either) and this notion is ultimately
incoherent.” (Moore 1990, p. 63). This approach has the effect that as scientifically
(and philosophically) relevant are considered only the consistent versions of the
calculus presented by Cauchy and Weierstrass. The logical and philosophical analysis
of the basic concepts of Cauchy’s and Weierstrass’s theory is taken seriously in the
literature, while the analysis of the concepts on which Newton and Leibniz built their
theories is reduced to the level of historical curiosities that do not deserve a deeper
logical or epistemological analysis. By having proved their inconsistency everything
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relevant seems to be told. To engage in a serious philosophical analysis of an
inconsistent theory seems to make no sense.

| believe that this view is mistaken. Of course, in an inconsistent theory it is possible
(using the means of our formal logic) to derived almost anything, but we have to keep
in mind that most of the results obtained by Newton and Leibniz in their “logically
inconsistent” theories turned out to be correct. If we chose a random system of
inconsistent axioms, we would be probably unable to ensure that we systematically
derive only (or mainly) “correct” results. The problem seems to be that the derivations
that Newton and Leibniz made, were not based on inferences of formal logic (and they
have never claimed so), but were rather based on some contextually bound rules of
inference. If this is indeed the case, then the logical inconsistency of their theory is not
as a fundamental problem, as it appears to be from the point of view of contemporary
formal logic. 1 do not want to defend here inconsistent theories in mathematics.
Logical consistency is the basis of all mathematics and | do not want to question it.
I’m just trying to understand how it is possible to derive within a logically inconsistent
theory almost exclusively correct results. Of course, this was not always the case, but
the errors were much less frequent than we might expect. Inconsistent theories, such
as Newton’s and Leibniz’s versions of the calculus or Euler’s analysis of the
infinitesimals had, despite their inconsistencies, a great methodological and
epistemological significance. It is therefore important to subject them to a serious
philosophical analysis.

My goal is to split the broad concept of logical inconsistency into three narrower
notions that can be characterized by the minimal transformations that an inconsistent
theory must undergo to become consistent. All three of these narrower notions of
inconsistency apply to inconsistent theories that can be converted into consistent ones
by means of specific transformations. Thus | will determine the degree of
inconsistency of a theory by describing how radical changes its linguistic framework
must undergo in order to turn it into a consistent theory. These distinctions may offer
new arguments into the debate led in the philosophy of mathematics about Euler’s
analysis of the infinitesimals. During the 19™ century the infinitely small quantities
were considered illegitimate; Euler’s theory was considered inconsistent and was
replaced by Cauchy’s and Weierstrass’ theories of limits.

When Abraham Robinson discovered non-standard analysis, he considered it a
vindication of Euler’s theory. He was convinced that he has shown that Euler’s theory
was not inconsistent as the mathematicians of the 19" century thought, because it is
possible to give the concept of infinitesimal quantity a precise meaning. Some
philosophers, however, reject Robinson’s view. They argue that Robinson in his
construction of the infinitely small quantities used mathematical means that were
unavailable to Euler, and thus his construction does not show the legitimacy of Euler’s
methods. So Moore in the cited work writes: “the German logician Abraham
Robinson (1918-1974), who invented what is known as non-standard analysis,
thereby eventually conferring sense on the notion of an infinitesimal greater than 0
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but less than any finite number. But in making this sense precise he used logical
methods and techniques that went far beyond what would have been recognizable to
seventeenth-century mathematicians. It would be anachronistic to see his work as a
vindication of what they had been up to. It did not show that the notion of an
infinitesimal, as understood by them had been coherent.” (Moore 1990, p. 69).

Moore makes here a remarkable argumentative move, a move that is typical. When he
is confronted with the epistemological fact, that Euler’s theory is not inconsistent — as
it was considered so far — he turns from the objective fact of consistency or
inconsistency of as theory to the subjective fact of how this theory was understood by
mathematicians of a particular period of time. But this is, from the point of view of
philosophical analysis, irrelevant. To analyze the different ways a theory was
understood in a particular period is the business of the history of science, not
philosophy. Thus Moore shifts the analysis of the particular theory from philosophy to
history. Although he treats Euler’s theory not as a historical curiosity (as inconsistent
theories were usually treated), but he still considers the psychological aspect of its
understanding decisive. This psychological aspect should decide about the legitimacy
of an epistemological reconstruction.

In order to be able to start the analysis of inconsistent theories, we must first clarify
what we are going to analyze in them. | believe that besides the “uninteresting”
inconsistent theories there are three kinds of inconsistent theories that are inconsistent
in an “interesting way” (i.e. they have a consistent “core” that is expressed in an
inconsistent way).

1. THE NOTION OF LOCAL INCONSISTENCY

We call a theory locally inconsistent if it is logically inconsistent, but through a re-
formulation it can be turned into a consistent one.* A local inconsistency can thus be
regarded a mistake or an error of the author of the particular theory, because all means
needed for the formulation of the consistent versions of the theory were already
available. It seems that the author of a locally inconsistent theory only due to some
unfortunate formulation of his assumptions, definitions, or arguments got into a
contradiction. This type of inconsistency is not surprising. | introduced it just as a foil
against which the two other types, the introduction of which is the main purpose of
this paper, could be characterized. In many cases, and | believe that Newton’s or
Frege’s case is included, at the time of the formulation of the theory it was not
possible to create a consistent theory because the conceptual framework, in which
these authors worked, did not have means for a consistent formulation of the contents,
which they tried to analyze.

An example of a locally inconsistent (mini-) theory is Cauchy’s proof of a theorem
about the sum of a series of functions. Cauchy, one of the initiators of strict
foundations of mathematical analysis proved the erroneous assertion that the sum of a
convergent series of continuous functions is itself continuous. By calling this a local
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inconsistency | want to emphasize that Cauchy was the creator of the conceptual
framework in which it is possible to formulate the correct version of that assertion.
Thus Cauchy’s proof was separated from the correct theory by a mere re-formulation.
In this respect Cauchy’s theory differs fundamentally from the theories of Newton or
Euler, which were separated from the correct theories by a complete change of the
conceptual framework of mathematical analysis.

1.1 Cauchy’s theorem about the sum of a series of continuous functions

Cauchy defined continuity as: “the function f(x) is a continuous function of x between
the assigned limits if, for each value of x between these limits, the numerical value of
the difference [f(x +ca) — f(x)]decreases indefinitely with the numerical value of «. In
other words, the function f(x) is continuous with respect to x between the given limits
if, between these limits, an infinitely small increment in the variable always produces
an infinitely small increment in the function itself.” (Cauchy 1821, p. 26). This
definition is interesting because it defines the concept of continuity of a function not
for a point, but for the entire interval (for x between given borders). Before
introducing Cauchy’s assertion about the continuity of the sum of the series of
continuous functions, | will quote three definitions given by Cauchy: the definition of
a variable: “We call a quantity variable if it can be considered as able to take on
successively many different values. We normally denote such a quantity by a letter
taken from the end of the alphabet.” (Cauchy, 1821, p. 6), the definition of the limit:
“When the values successively attributed to a particular variable indefinitely
approach a fixed value in such a way as to end up by differing from it by as little as
we wish, this fixed value is called the limit of all the other values.” (ibid. p. 6) and the
definition of an infinitesimal quantity: “When the successive numeral values of such a
variable decrease indefinitely, in such a way as to fall below any given number, this
variable becomes what we call infinitesimal, or an infinitely small quantity. A
variable of this kind has zero as its limit.” (ibid. p. 7).

Now we can state the: “Theorem I. — When the various terms of series (1)
[(1) Uo, Uz, Uz,..., Up, Un+1, ]

are functions of the same variable x, continuous with respect to this variable in the
neighborhood of a particular value for which the series converges, the sum of the
series is also a continuous function of x in the neighborhood of this particular value.”
(ibid. p. 90).

The proposition in this form is not true. First who criticized Cauchy’s proof was Abel
in (Abel 1826). As a counterexample we can take the following Fourier series:

f(x) =+1 for 0<x<m,
fx) =0 for x=0,

Page 240



DEGREES OF INCONSISTENCY

f(x) =-1 pre -t <X <0.
This function is obviously discontinuous at x = 0, but its Fourier series is

£(x) = %{sin(x)+%sin(Sx)+%sin(5x)+%sin(7x)+..}

This is an infinite series of continuous functions, the sum of which is discontinuous.
This clearly contradicts Cauchy’s assertion.

1.2 Introduction of the concept of uniform continuity

What is the problem with Cauchy’s theorem is explained in many textbooks of
mathematical analysis. In the case of functional series we must distinguish between
the point wise convergence and the uniform convergence. Cauchy’s definition
captures the point wise convergence, but in order to secure the continuity of the sum
of a series of continuous functions, it is not enough to have pointwise convergence,
but uniform convergence is a sufficient condition. 1 will not discuss here the technical
details of the theory of functional series; those can be found in textbooks of
mathematical analysis. Similarly, I will not to burden the paper with the history of the
concept of uniform convergence; this can be found for instance in (Litzen 1999). The
important thing to realize is, however, that both concepts — the concept of points wise
convergence as well as the concept of uniform convergence — can be introduced in the
same conceptual framework. By a simple re-formulation of Cauchy’s definition of
limit it is possible to obtain a definition of uniform convergence. Thus already in the
linguistic framework of Cauchy’s theory it was possible to define the concept of
uniform convergence and to formulate Cauchy’s theorem in a consistent form. Now |
do not want to raise the question, why did Cauchy not distinguish between the point
wise and the uniform convergence. This is an important question that | leave open for
further historical investigation. My point here is epistemological, namely the fact that
Cauchy’s inconsistent theory was separated from the consistent theory by a mere re-
formulation.®

1.3 The concept of locally inconsistent theory

Shortly after Abraham Robinson discovered non-standard analysis, Imre Lakatos
wrote (but did not publish) the paper Cauchy and the continuum: the significance of
non-standard analysis for the history and philosophy of mathematics (Lakatos 1966).
In this paper Lakatos expressed the view that Cauchy did not make any mistake, but
he used a different concept of the continuum — the non-Archimedean continuum in
which there are infinitely small and infinitely large quantities. Although this view did
not become dominant, there is a stream of papers arguing in favor of this view (e.g.
Laugwitz 1987, Katz and Katz 2011). In my opinion, the efforts to interpret Cauchy’s
theorem using non-standard analysis is inadequate. Cauchy’s theory is only locally
inconsistent, and therefore it is easier to interpret it on the background of the
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Archimedean continuum as a theory with one small inconsistency. It is unlikely that
Cauchy would use the concept of the non-Archimedean continuum and this fact
would in the almost 400 pages of his book manifest itself in a single place—the proof
of the above theorem.

2. THE NOTION OF CONCEPTUAL INCONSISTENCY

We call a theory conceptually inconsistent if it is logically inconsistent, it cannot be
made consistent by means of a re-formulation, and the creation of a consistent version
of the theory requires a new conceptual framework, i.e. a relativization.* Similarly as
a locally inconsistent theory can be made consistent using a re-reformulation, in the
case of a conceptually inconsistent theory this requires a relativization. An example of
such a theory is Leibniz’s or Newton’s calculus. Newton and Leibniz used in their
proofs arguments that are logically inconsistent. When | say that their theories are
conceptually inconsistent, | want to emphasize that the inconsistency that occurs in
these theories, although by an order greater than the local inconsistency, is
considerably smaller than the contribution of these theories. Newton and Leibniz
created a new instrument of symbolic representation: they discovered the concept of
a function, introduced the fundamental distinction between function and argument,
introduced the concept of derivative, and discovered the relation between
differentiation and integration. This fundamentally changed the entire mathematics.’
That these innovations were introduced in an inconsistent conceptual framework is not
so important. They were separated from the consistent version by few relativizations.

2.1 Newton’s and Leibniz’s versions of the differential and integral calculus

As an illustration of Newton’s method of determining the derivative we can take the
passage of his The Method of Series and Fluxions, quoted by Fauvel and Gray: ,,The
moments of the fluent quantities (that is, their indefinitely small parts, by addition of
which they increase during each infinitely small period of time) are as their speeds of
flow. Wherefore if the moment of any particular one, say x, be expressed by the
product of its speed x and an infinitely small quantity o (that is, by xo0), then the
moments of the others, v, y, z [...] will be expressed by vo, yo, o, [...] seeing that
V0, X0, yoand zo are to one anotheras v, x, y and z.

Now, since the moments (say, xo and yo) of fluent quantities (x and y say) are the
infinitely small additions by which those quantities increase during each infinitely
small interval of time, it follows that those quantities x and y after any infinitely small
interval of time become x +x0 and y +yo. Consequently, an equation which
expresses a relationship of fluent quantities without variance at all times will express
that relationship equally between x +x0 and y +yo as between x andy; and so x
+x%x0 and y +yo may be substituted in place of the latter quantities, x and y, in the
said equation.
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Let there be given, accordingly, any equation x® — ax? + axy — y* = 0 and substitute
X + xo0in place of xand y + y o in place of y: there will emerge

(* + 3%x0x* + 3x%0% + %%0°) — (ax’ + 2axox + ax?0?)
+ (axy + axoy + ayox + ax yo?) — (y* + 3yoy* + 3y 20’y + y°0®) = 0.

Now by hypothesis x* — ax* + axy — y° = 0, and when these terms are erased and
the rest divided by o there will remain

3xx* +3x%%0x +x%0? —2axx —ax?0 +axy +ayx +ax yo-3yy*-3y?oy -y 30’ = 0.

But further, since o is supposed to be infinitely small so that it be able to express the
moments of quantities, terms which have it as a factor will be equivalent to nothing
in respect of the others. | therefore cast them out and there remains

3xx* —2axx+axy+ayx—3yy*=0.

It is accordingly to be observed that terms not multiplied by o will always vanish, as
also those multiplied by o of more than one dimension; and that the remaining terms
after division by o will always take on the form they should have according to the
rule. This is what | wanted to show* (Fauvel and Gray 1987, p. 385, emphasis LK).
From the equation, which Newton states as the last one we can easily derive the
derivative of the quantity y (i.e. of the implicit function) in the form as we are used

now: dy/dx = ¥/x = (3x? — 2ax + ay)/(3y* — ax).

2.2 Berkeley’s criticism

In the long quote from Newton | emphasized two steps that were relevant for the
further development of the theory. In 1734, seven years after Newton’s death, George
Berkeley publishes his famous The Analyst or a Discourse Addressed to an Infidel
Mathematician, where he presented a vivid and witty criticism of Newton’s theory
fluxions and fluents. Berkeley’s aim was to show that mathematical analysis that
underpins the entire contemporary natural science, does not have any more solid basis
than religion with its angels and miracles. Berkeley’s criticism consist in observing
that Newton first operates with the quantity o as if it were different from zero (in order
to make division by 0), but subsequently he treats it as if it were equal to zero (when
neglecting its higher powers). According to Berkeley, a particular quantity is either
equal to zero, but then it is equal to zero throughout the entire calculation, and
therefore it is impossible to divide by it, or it is not equal to zero, but then it is not
equal to zero throughout the entire calculation, and therefore it can not be neglected.
Berkeley explains the fact that mathematicians obtain correct results in spite of these
errors as a compensation of errors: the calculations of the mathematicians are
mistaken, but in mathematical analysis they use errors always in pairs, so that they can
cancel each other out and the calculations give correct results. The correctness of the
result is not the consequence of correct methods, but of the fortuitous circumstance
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that the errors cancel each other out. Thus the results of mathematical analysis are no
more reliable than the miracles of religion.

2.3 The creation of the strict foundations of the differential and integral calculus

Interestingly, the way in which mathematicians obtained the consistent theory of
differential and integral calculus, in a sense, followed the main idea of Berkeley’s
(ironically meant) interpretation of the correctness of the results of the calculus as a
compensation of errors. Mathematicians stopped viewing the derivative as a ratio of
two differentials (or moments) and started to see it as an indivisible whole. In other
words, they combined the infinitesimal expressions into pairs so that their
infinitesimal character canceled out, exactly as described by Berkeley, and for these
“conglomerates” they formulated the exact rules of the calculus. So, instead of
calculating with independent moments or differentials (as Newton or Leibniz would),
they worked only with ratios of two moments or differentials, and thus removed from
the outset the errors described by Berkeley. This combining of the infinitesimals was
the idea of Lagrange, who considered dy/dx a compact expression whose value must
be determined by the rules of the calculus. He rejected the notion of a limit and for
expressions like dy/dx he wanted to find rules analogous to those used in algebra.

The approach of Lagrange did not succeed. The successful approach is due to Cauchy,
who took the idea of Lagrange to combine the differentials into compact expressions,
but instead of algebraic rules he decided to determine the values of these expressions
by means of a limit transition. Cauchy’s version of the differential and integral
calculus is thus constructed from the same ingredients as were used by Newton or
Leibniz, only these ingredients are combined differently. While Newton and Leibniz
first created for each individual variable its moment or differential by means of a limit
transition, and then tried to combine these individual moments or differentials, Cauchy
first (making use of Lagrange’s idea, the roots of which go back to Berkeley)
combines these variables into certain fixed combinations and then (unlike Lagrange
who rejected the limit transition) goes with these combinations to the limit. This is a
fundamental change. Newton wanted to define the derivative as the ratio of the limit
values (i.e. moments) of two variables, but was unable to say exactly what is in that
ratio. He summed up his views in the famous theory of first and last ratios, which
Berkeley ridiculed calling the limit values of the variables that make up the ratio
ghosts of departed gquantities. Cauchy in contrast to this defines the derivative as the
limit of the ratio of final values of the variables and understands it not as the value
which the expression has for the limit values of the variables, but as the value that the
expression as a whole converges towards.

I would like to interpret the differences between Newton’s, Lagrange’s and Cauchy’s
approach to mathematical analysis as relativizations, i.e. differences in the form of
language.® Newton’s approach to mathematical analysis can be interpreted as based on
the perspectivistic form of language while Lagrange’s approach as based on the
compositive form and Cauchy’s theory as based on the interpretative form. It was
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necessary to pass several relativizations to get a conceptual framework, in which it is
possible to give Newton’s calculations and arguments a consistent interpretation.

2.4 The concept of the conceptually inconsistent theory

When we accept the fact that there are theories, as for instance Newton’s theory of
fluxions and fluents, which allow by means of heuristic schemes of reasoning discover
many important theorems despite the fact that that they are logically inconsistent (i.e.
an opponent like Berkeley is capable by means of the same rules arrive at paradoxical
results), and at the same time in the linguistic framework in which they are
formulated, they cannot be cast in a consistent form, this sheds new light on several
philosophical theories of the development of science.

On the one hand, this shows the inadequacy of Popper’s falsificationalism. Had
Newton be a falsificationalist, mathematical analysis would probably never emerge.
Newton knew that his project has many weaknesses, but fortunately he was undeterred
by all the paradoxes and created a theory that after undergoing a sequence of four
relativizations was finally formulated in a consistent way. Thus, the fact that scientists
often ignore facts that contradict their theories is not necessarily the consequence of
their complacency or irrationality. They can, like Newton, on the one hand realize that
their aim (in Newton’s case it was a new recoding) is of a fundamentally greater
importance than the details which cause the contradictions. On the other hand, they
may feel that, given the stage of development of the discipline it makes no sense to try
to solve these contradictions, because in the linguistic framework that is at their
disposal, it is not possible (i.e. that their theory is conceptually inconsistent, and thus
any attempts to solve the inconsistencies by means of re-formulations is doomed to
failure). There are several testimonies that demonstrate the awareness of this situation,
as for instance the words of d’Alembert words “Go forward, and faith will come to
you!”.

On the other hand, the above fact calls into question the idea of a scientific theory as a
set of propositions closed under the relation of logical consequence. This abstraction,
which for the purposes of mathematical logic seems to be fully adequate, is absolutely
inadequate for epistemology and philosophy of science. The phenomenon of
conceptual inconsistency is important because a theory inconsistent in this particular
way cannot be easily (i.e. by means of a re-formulation) made consistent. The
inconsistency is part of the theory for a long period (relativizations are changes that
last several decades). But despite this inconsistency theory has a core, which, thanks to
the internal development of the inconsistent theory itself (i.e. without external
intervention) can be consistently formulated.

3. THE NOTION OF GLOBAL INCONSISTENCY

We call a theory globally inconsistent if it is logically inconsistent, it is not locally or
conceptually inconsistent, but nevertheless, by means of a recoding it can be made
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logically consistent. An example of such a theory is Euler’s theory of infinitesimally
small quantities. This theory is much “wilder” than Newton's theory of fluxions and
fluents. Euler’s theory could not be made consistent by means of relativizations.
Cauchy’s rescue of Newton’s theory consisted precisely in eliminating infinitely small
quantities, which for Euler’s theory is not a viable path (using Berkeley’s words, we
could say that Euler did not care to let the errors in his theory occur in couples). Only
when Robinson, using the tools of a completely different recoding (set theory),
constructed a model of infinitely small quantities, he was able to give Euler’s theory a
logically consistent form. Thus, unlike the Cauchy, which worked still within the
framework of the differential and integral calculus (i.e. within the same
representational framework as Newton), Robinson left Euler’s representational tool
and proved the consistency of Euler’s theory, so to speak, from outside, using the
means of a completely different language.

3.1 Euler’s theory of infinitesimals

To illustrate Euler’s work with the infinitely small and infinitely large numbers, I will
show his derivation of the series for the exponential function taken from (Euler 1748,
par. 114-116). Let a > 1 and w be an “infinitely small number, or a fraction so small
that it is almost equal to zero.” Then

a’=1+y
for an infinitely small . Now let us put w = kw. Here k depends only from a; then
a’=1+kao.
For any real number i we have
' =(1+ko)
Thus thanks to the binomial theorem
i(i—

a“ :1+ikw+721) keo? 4+ 1000 =2)ss

1.2.3 1)
For z, a finite positive number, i=Zis infinitely large. Putting a;:iE into (1) we get
0]

z

—a® =1+t 4

a i __1) K272 +1(| _1)_(| _2) K323 4+ .
1 i 1.21.3i
But when i is infinitely large, "=2=1, '=2_1  etc., and we get
i i
. kz k?z* K2* k*z*
a‘=1+—+ + + +...
1 12 123 1234

Natural logarithms arise when a is chosen so that k = 1. Euler gives the value of a
with the precision of 23 decimal places, introduces for it the symbol e which is still in
use today and writes
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, : 2 7 z*
e =1l+—+—+ +
1 12 123 1234

+..

On this and many other derivations of Euler we can see that he used infinitely small
guantities not as approximations, as Newton and Leibniz did. On the contrary, he used
them as numbers. Thus Berkeley’s strategy of “pairing” the errors, which is the basis
of Cauchy’s construction of rigorous foundations of analysis, is here useless.

3.2 Elements of Robinson’s non-standard analysis

Euler’s formulation of mathematical analysis was never shown to be inconsistent.
Nevertheless, at the end of the 18™ century the mathematicians came to the conclusion
that the concept of infinitely small and infinitely large quantities cannot be given a
consistent interpretation. This belief, shared by some philosophers even today (see the
quote from Moore in the introduction), was sufficient reason for the abandoning
Euler’s calculus and for its replacement by Cauchy’s &6 analysis. It was therefore a
big surprise when in the early 1960-ies Robinson managed to create non-standard
analysis, and to introduce the so called hyperreal numbers, that is system containing
infinitely small and infinitely large numbers. Thus, over 200 years after Euler
published his Introductio ad analysin infinitorum (Euler 1748) it turned out, that
Euler’s techniques using infinitesimal numbers were fully consistent.

3.3 The concept of the globally inconsistent theory

On the above episode from the history of mathematics it is remarkable that even in
mathematics it is possible to lose confidence on the basis of “defamation”. No one has
ever shown that Euler’s calculus was inconsistent, and despite this fact the belief that
the concept of infinitely small and infinitely large numbers is internally inconsistent
became dominant and the theory was abandoned.’

In addition to the remarkable fact that in mathematics the phenomenon of social
persuasion plays such an important role in the process of acceptance or rejection of a
particular theory — at least in the short run, because eventually the truth came to light
(although two hundred years is not that short time) — this case is interesting also in
another respect. The consistency of Euler’s analysis was shown by means of model
theory and thanks to non-trivial contribution of set-theoretical techniques, both of
which are theories having a logical and expressive power (in the strict, technical
sense, as these terms are introduced in Patterns of Change) far outweighing the logical
and expressive power of the language of mathematical analysis, in which Euler’s
theory was originally formulated. Thus, if we come back to the second passage from
Moore’s book that we quoted in the introduction, it can be argued that it is certainly
not an anachronism to understand Robinson’s work as a vindication of Euler’s efforts.
Euler’s theory was rejected not because Euler’s understanding of infinitely small
quantity was inconsistent. The mathematicians of the 19" century, just like
mathematicians today (unlike philosophers) do not care how Euler understood the
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concept of infinitely small quantities. They are interested in whether the concept of
infinitely small quantities itself is or is not coherent. Mathematicians of the 19"
century thought (wrongly, as we now know, thanks to Robinson) that this concept is
inconsistent, and therefore they rejected Euler’s theory. Robinson, in my opinion, has
shown that the concept of infinitely small quantities is consistent, and thus he showed
that Euler’s theory was unjustly rejected. The discovery of this fact can, by all means,
be considered a vindication of Euler’s theory.

4. CONCLUSION

The most serious form of inconsistency is that which can not be corrected by means of
recoding. This kind of inconsistency can be called absolute inconsistency. A theory
that contains it remains forever beyond rational discourse. The difference in evaluation
of the presence of an inconsistency in a mathematical theory by mathematicians and
philosophers is probably due to the fact that philosophers construe inconsistencies
automatically as absolute inconsistencies. Mathematicians, on the other hand, led by
the historical experience with (locally, conceptually, and globally) inconsistent
theories show more willingness to further work with such theories. The four concepts
of inconsistency, which | propose to distinguish, are probably of no importance for
current research. Today we have no idea which re-formulations, relativizations, and
recodings will bring the future development of mathematics. Thus looking on an
inconsistency we are not in the position to tell, which kind of inconsistency we are
dealing with. However, the distinction of these four concepts is important in
retrospect, for understanding the development of a mathematical discipline.

4.1 The rationality of the decision to ignore an inconsistency

For a historian to distinguish the different kinds of inconsistency makes it possible to
give rational content to the words of d’Alembert “Go forward, and faith will come to
you!”. It can be paraphrased as: “don’t worry about local or conceptual
inconsistencies when you are laying the foundations of a new recoding.”
D’Alembert’s encouragement can be viewed as the advice not to worry about an
inconsistency of a smaller level of magnitude than the level, on the development of
which the mathematician is actually working. The point is that during the 18" century
the foundations of a new recoding—the differential and integral calculus — were laid.
Therefore, it is rational to ignore temporally such paradoxes as the one described by
Berkeley. Of course, it will be necessary to return to them, once the new recoding is
sufficiently worked out.

When we see in Newton and Leibniz the creators of an entirely new language, we
need not emphasize the logical inconsistencies in their theories (as A.W. Moore does),
and instead we can highlight their work with functional variables (the new type of
variables that the calculus introduced into mathematics), what operations they apply to
them (substitution, differentiation, and integration), etc. The fact, that they failed to
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find a consistent justification for their calculus, is not so important. The calculus had
to be discovered first, only then could it be justified.

By this | do not want to defend inconsistencies. | want to say that the development of
mathematics goes on at different levels, and inconsistencies of lower levels may be
temporarily ignored in order to concentrate efforts on the construction of a higher
level.® There are very few mathematicians who became the founders of a new
recoding — besides Newton and Leibniz we can mention Frege (for predicate calculus),
or Cantor (for set theory). Therefore, the fact that in the work of most of them some
logical inconsistencies appeared does not reduce the value of their contribution. These
inconsistencies can be repaired, and mathematicians of the next generations repaired
them (in the case of Newton it was Cauchy, in the case of Frege it was Russell, and in
the case Cantor it was Zermelo). | do not want to diminish the importance of the work
of Cauchy, Russell, or Zermelo, yet it can hardly be compared with the importance of
the work of Newton, Frege, or Cantor. The idea to calculate areas and volumes by
means of inverting the operation of derivative; the idea to consider propositions as
functions; or the idea to continue the number sequence into the transfinite — each of
these ideas represent a breakthrough into an entirely new universe. The fact that the
first reports describing these new universes contained some logical inconsistencies can
be interpreted as just an annoyance.

4.2 The necessity to ignore inconsistencies

Our classification explains the legitimacy of ignoring inconsistencies also in another
sense. Newton and Euler did not have a chance to make their theories consistent. By
the linguistic tools available in their time it was simply impossible to create a
consistent differential and integral calculus. They stood before the choice either to
follow to the strict standards of logical consistency and to give up the development of
the differential and integral calculus or to develop the differential and integral calculus
in the best available form. In the first case we would have neither modern physics nor
modern technology. Fortunately, it was the second alternative, which Newton and
Euler, and after them hundreds of mathematicians decided to take.

The reason why by the linguistic means available at the time of Newton and Euler it
was not possible to create a logically consistent differential and integral calculus can
be explained using the theory of relativizations (in the case of Newton’s theory) or the
theory of recodings (in the case of Euler’s theory). We have to realize that a consistent
version of Newton’s theory of fluxions and fluents was created by Cauchy using the
interpretive form of language. It seems, however, that the sequence of forms from
perspectivistic, and projective, through coordinative and compositive to the
interpretative and integrative is not accidental. Each form in this sequence is built
using the resources of the previous one. The interpretative form (the first form, which
is sufficiently rich to formulate a logically consistent theory of the differential and
integral calculus) could not be created before the previous forms were built — the
perspectivistic, the projective, the coordinative, and the compositive one. The
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differential and integral calculus, constructed by means of the previous forms was
necessarily logically inconsistent.

NOTES

1. lintroduced the notion of re-formulation in (Kvasz 2008) as a change that does not alter the conceptual framework in
which the theory is formulated, but changes only the formulation of particular propositions. An example of a re-
formulation was the discovery of the planet Neptune. This discovery did not changed the concept of a planet, but it
changed the answer of the question how many planets has the solar system. That is why | write re-formulation with a
hyphen. The original formulation (“The solar system has seven planets.”) and the new formulation (“The solar system has
eight planets.”) logically exclude each other. In this respect a re-formulation differs from a reformulation (written
without a hyphen) which usually expresses the same content by other words.

2. The derivation of this formula can be found in many textbooks, for example in (Courant 1927, p. 517).

3. My point here is the mere possibility of formulating the correct theory in the linguistic framework, which was used by
Cauchy. | acknowledge that it is easier to define the concept of uniform convergence in Cauchy’s linguistic framework, if
we already have a definition of this concept. So it is possible that in order to discover this concept, it was necessary to
abandon Cauchy’s linguistic framework because in this framework the definition of uniform convergence is highly
unnatural. | leave this epistemological question aside. From the logical point of view it is essential that in the particular
linguistic framework it is possible to formulate a definition of uniform convergence.

4. The concept of relativization is discussed in the second chapter of Patterns of Change (Kvasz 2008). It is not possible
to explain this concept in few words, but a relativization can be understood as the creation of a (cognitive) distance; as
the ability to look at the particular subject matter from outside. This is when something that we are immersed in becomes
an object which (often only in our imagination) we see in front of us as.

5. While relativizations are bound to the conceptual framework of a theory, recodings which are connected to the
introduction of new instruments of symbolic (or iconic) representation are a more fundamental change in the language of
mathematics. In Patterns of Change recodings are discussed in the first chapter. When Newton and Leibniz created a
new representational tool, they created a new universe of objects—the universe of functions. This universe can be
conceptualized in different ways and relativizations represent transitions between these different conceptualizations.

6. Relativizations are in Patterns of Change described as changes of the form of language (in the sense of the Tractatus
Logico Philosophicus of Wittgenstein). There seems to be at least eight forms of language: perspectivist, projective,
coordinative, compositive, interpretative, integrative, constitutive, and conceptual.

7. Therefore Euler’s theory is probably not the best illustration of the concept of a globally inconsistent theory because,
strictly speaking, it does not meet the first requirement of the definition of that concept—namely that the particular
theory was indeed inconsistent. Euler’s theory was only considered as such. But on the other hand, the fact that was
indeed consistent did not help. It was rejected as if it were inconsistent.

8. A re-formulation is understood as a change of a lower level than a relativization, just like a relativization is understood
as a change of a lower level than a recoding.
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A THEORETICAL FRAMEWORK OF HPM
LIN Jiale
East China Normal University

The relationship between the history of mathematics and mathematics education
(HPM) is a special research field in mathematics education. Some of the issues in this
field are:

1. Why is HPM studied?
2. What are studied on HPM?
3. How can HPM be realized?

For the first question, some scholars have made a reply from the perspective of the
teachers and students respectively; for the third question, some scholars have
established the theoretical framework of how to integrate the history of mathematics
into mathematics teaching. In this presentation, we try to establish a theoretical
framework of the relationship between history of mathematics and mathematics
education on the basis of a triangle model of teaching. What’s more, we discuss the
first and second questions based on this framework and try to give comprehensive
and holistic answers as far as possible.

Page 253






Oral Presentation

KNOWLEDGE ACQUISITION AND MATHEMATICAL
REASONING

Arto Mutanen
Finnish National Defence University

Mathematical and logical reasoning can be understood as being tautologous
which makes the reasoning, informationally, empty. Mathematical and logical
truths are valid, i.e., true in every possible world. That is, mathematical and
logical truths do not exclude any possibilities, and contradictory statements
exclude all of them. To understand how mathematics increase our knowledge, it
is important to analyze concrete mathematical reasoning. In geometry, the
essential element is the constructivity of the entire reasoning process. A
key notion in understanding mathematical knowledge acquisition is the notion of
constructivity, which is closely connected to the methodology and epistemology of
mathematics. However, at the same, the constructivity allows us to understand
the applicability of mathematical reasoning to experimental and empirical
reasoning. The strategies of experimental and mathematical reasoning are parallel.

INTRODUCTION

The notion of reasoning, as well as the notion of mathematical reasoning, is used
in everyday language. However, it is not obvious what this everyday notion is
intended to mean; maybe it is, as everyday notions usually are, ambiguous. Moreover,
in scientific usage, the notion of reasoning seems to be a very flexible notion.
Even in the philosophy of science, there is no consensus on the meaning of the
notion of scientific reasoning (Niiniluoto, 1999). In mathematics and in logic,
there are different philosophical approaches that interpret the mathematical and
logical reasoning in different ways (Benacerraf & Putnam, 1989).

The notion of reasoning is connected to the notion of learning: all learning is, in
one sense or another, reasoning. So far, so good. However, the meaning of the
notion is, once again, ambiguous; the learner learns by reasoning, but not all
reasoning need be learning. Sometimes reasoning is just an explication of what we
already know. There are interesting degrees of knowledge, ranging from (full)
knowledge to (full) ignorance (Hintikka, 1989).

There are different kinds of reasoning, for example, Peirce characterized three
kinds of reasoning, namely deductive, inductive, and abductive reasoning (Peirce,
1955). We come across deductive reasoning in logic and in mathematics, and
we meet inductive reasoning in (ordinary) empirical scientific reasoning; for
example, normal statistical reasoning is inductive. Abductive reasoning is more
problematic, and it is met in discovery processes (Hintikka, 1998). Deductive
reasoning is truth preserving,
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which implies that deductive reasoning does not increase our knowledge. Inductive
and abductive reasoning increase our knowledge, which makes these modes of
reasoning very problematic, and there are no generally accepted inference rules for
inductive or abductive logic (Kelly, 1996).

Mathematical and logical, reasoning and all truth preserving reasoning that can be
characterized as being tautologous (see Tractatus 6.1231). This tautologousness means
that the reasoning is, informationally, empty which in terms of information theory
means that mathematical and logical truths do not exclude any possibilities, that is,
they are true in every possible world. On the contrary, contradictions are,
informationally, full, since they exclude all the possibilities, that is, they are false in
every possible world. Both logical truths and contradictions seem to be useless in any
real communication; they cannot be used in conveying any factual and meaningful
information.

However, the informational emptiness is not the whole story. It is true that logic and
mathematics are tautologous and, hence, “‘useless” in real communication, but then
several questions arise: Why study mathematics? Why is mathematics so difficult to
study? Can mathematics increase, in any reasonable sense, our knowledge? Why can
mathematics be applied in so many fields of sciences? These questions are interesting
as such, but they are closely connected to each other. As formal sciences, mathematics
and logic are, informationally, empty, but this makes it possible to apply them to
different fields of sciences. At the same time, as formal and abstract sciences, they are
not easy to grasp.

Mathematics and logic, even if they are formal sciences, evoke emotions and passions.
We have to understand that there is no pure mathematics or pure philosophy of
mathematics in a sense that it would be explicit, explicitly presented and have a lack
of “unintentional meanings” or “Unintentional connotations”. The philosophical views
are built from heteronomous sources, some ideas increasing, some decreasing. The
heteronomity is a permanent condition, which has to be kept in mind while
formulating a philosophy of mathematics; in particular, this heteronomity has to be
recognized in mathematics and logic teaching.

It is hard to see any single fundamental opinion which could be seen as prevailing, and
it is not an easy task to build a coherent picture. In a sense, the kind of practical
attitude given by Beta in Lakatos (1989; 54) may seem to be the final opinion:
“Whatever the case, I am fed up with all this inconclusive verbal quibble. I want to do
mathematics and | am not interested in the philosophical difficulties of justifying its
foundations. Even if reason fails to provide such justification, my natural instinct
reassures me.” In textbooks of logic and mathematics, the emphasis has been on
teaching inference rules, but not on teaching the strategic aspects of the whole
reasoning process (Hintikka, 1996; 2007; Detlefsen, 1996). Teaching strategic aspects
supposes that the teacher has in his or her mind a holistic picture, which he or she is
intending to convey to students. However, the very nature of mathematics and
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mathematical reasoning is still a problem to be solved. Independently, whether we
solve the problem consciously or unconsciously, we have a philosophy of
mathematics. This philosophy affects the way we think about, teach, or do the
mathematics. So, it is better that the philosophy of mathematics is explicit.

Mathematics and logic are understood as being formal tools that can be used in
different fields of sciences. However, the notion of a tool is not as innocent as is
sometimes assumed. Mathematics and logic are cultural constructs, hence
mathematical and logical notions, similarly to material objects, like a hammer, carry
their cultural history. Mathematics and logic are not merely tools, but part and parcel
of the methodology of natural sciences; they are built into the knowledge acquisition
processes (Hintikka, 2007).

In the following we are not intending to give a conclusive characterization of
mathematics and logic. We are not intending to remove the multifaceted nature of
mathematics and logic. The intention is to characterize one possible view which does
justice to mathematical and logical reasoning. We will connect the expressed approach
to some other approaches which give a richer view of the topic.

ABOUT THE PHILOSOPHY OF MATHEMATICS

The fundamental questions of the philosophy of mathematics and of logic — such
as “What is mathematics?” and “What is logic?” — are open questions which do not
have well characterized conclusive answers (Hintikka, 1976). Still, they are worth
asking. There are several different kinds of answers in the history of philosophy,
mathematics and logic. In the introduction of The Principles of Mathematics, Russell
says that “The present work has two main objects. One of these, the proof that all
pure mathematics deals exclusively with concepts definable in terms of a very
small number of fundamental logical concepts, and that all its propositions are
deducible from a very small number of fundamental logical principles
...” (Russell, 1903, p. v). The characterization is easy to accept: mathematics is
a deductive science, which is based on some fundamental statements usually called
axioms and on some set of rules of inference. The Russellian approach has its
philosophical roots in the emergence of new mathematical logic, which “tends
to identify mathematics with its formal axiomatic abstraction (...) as the
formalist school” (Lakatos, 1989, p. 1). Russell and Frege can be seen as founders
of the modern mathematical logic.

The late 19" century and early 20" century formed a “golden age” for modern
formal logic. There is no single logic, but it has seen several different kinds of
objectives. Logic has been understood, for example, as “laws of thought”, a universal
language or general natural science, which all have different interpretations.
So, as laws of thought, logic describes how humans think (psychologism in
logic) or logic tells us how to reason correctly, not how human actually or usually
reason (normatism).
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Mathematics and logic can be understood as just a formal study of (uninterpreted)
symbols. The expressions “formal logic” or “symbolic logic” may suggest such an
interpretation, which is a very problematic interpretation (Haack, 1995, p. 3). Of
course, in logic, the manipulation of symbols, according to inference rules, is a central
task. This manipulation is not the central content of mathematics and logic: they are
rich in content and, hence, no simple idea captures their whole meaning.

The present day approach — in which logic is a field of mathematics — is compatible
with the normative interpretation. Even if we do not understand logic or mathematics
as part of philosophy, they are rich in content. There is no need to assume any
“philosophical logic”, besides the ‘“mathematical logic” (Hintikka, 1973, ch 1).
Carnap, in his early publications, emphasized the formal aspects of logic and
philosophy. The notion of syntax was central for him (Carnap, 2000), and Carnap’s
notion of syntax is reminiscent of Wittgenstein’s notion of grammar, which is a
fundamental notion of his philosophy of language.

The fundamental idea that interconnected late 19" and early 20™ century logic was
formulated in logicism, which was the study of the foundations of mathematical
reasoning. The basic intention was to reduce mathematics to logic. Russell was very
optimistic when he said that it is possible to reduce mathematical propositions “to
certain fundamental notions of logic” (Russell, 1903, p. 4). Nowadays, we may say
that the fundamental idea was wrong: mathematics cannot be reduced to logic. Still,
we can say that the logicist approach was very fruitful: the approach inspired research
and brought together different kinds of researchers.

The more general idea behind the development of logic was the Leibnizian idea of
universal language (lingua characterica), which was shared among the logicians of
the “golden age”. The “golden age” of logic was a proper golden age; the development
of logic and mathematics was something remarkable. The names like Frege, Hilbert,
Russell, Carnap, Godel, Tarski, and Genzen give an impression how rich the
development in logic and in mathematics was at that time, and Frege and Russell can
be seen as the founders of the modern logic.

Russell was a foundational researcher in the emerging modern logical theory. He knew
exactly the ethos of modern empirical philosophy, and his logic and philosophy also
had a foundational role in the emergence of this new empirical philosophy. However,
at the same, Russell was anchored in the old philosophical tradition, his philosophical
roots in the (criticism of) Kantian philosophy. His philosophical orientation can be
seen very clearly in The Principles of Mathematics, which are very clear from the
structure of the book'. Russell sees logic as a certain kind of natural science: “Logic, I
should maintain, must no more admit a unicorn than zoology can; for logic is
concerned with the real world, just as truly as zoology, though with its more abstract
and general features” (Russell, 1929, p. 169).

Frege’s philosophical roots are in the tradition of universal language. Logic was for
him the language “in the sense that, for him, something could be said if, and only if; it
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could be said in that very language” (Haaparanta, 1986, p. 159). His two-dimensional
logical notation was pictorial and, hence, intuitively very attractive. However, the
notation is very unpractical: it becomes very difficult to see when we consider longer
sentences (see Frege, 1979). The linear notation introduced by Peano became the
prevailing notion, and was used by Russell and Whithead in Principia Mathematica.
Even if Frege never developed an explicit theory of semantics, his (semantical)
analysis of language, based on his analysis on the notions of Sinn and Bedeutung, is
extremely deep. The rejection of the possibility of the explicit theory of semantics is
based on his opinion that it is not possible for us to look at the language outside of the
language. (Haaparanta, 1986, 41). This opinion was later shared, for example, by
Wittgenstein. Moreover, Russell’s theory of definite descriptions is syntactic, but the
intention is semantic (Hintikka & Kulas 1985, pp. 33-34). So, it is possible to agree
with Wheeler (2013, p. 293), when he said: “One would be hard pressed to
overestimate Frege’s impact. His term logic and the invention of the predicate calculus
(1879; 1893) revealed a rich, yet unified structure behind complex, quantified
sentences of mathematics, and this breakthrough in logic opened the way to rigorously
analyzing the meaning of mathematical statements and mathematical proof.”

There was a great deal of belief in the possibilities and the power of growing logic.
Godel (1931) proved his famous and shocking incompleteness theorem for first order
logic. The paper in which the theorem was proved is extremely important; it
introduces several new and essential mathematical notions. For example, the method
of Godel numbering made it possible to speak about mathematics within mathematics,
i.e., it made the metamathematics part of mathematics itself. The proof constructs a
sentence which says that it is true but not provable. The proof clearly shows in which
sense mathematical proofs can be constructive, and moreover, the theorem was
something unexpected: it crushed Hilbert’s original program (Nagel & Newman 1989;
Hintikka, 2000).

After Godel’s result, logicians managed to formalize the notion of computability. In
the 1930s, several different formalizations of the notion emerged, namely recursivity
(Godel, Kleene, Herbrand), A-definability (Kleene, Church, Rosser), and Turing
machine computability (Turing, Post). It was especially interesting was that all these
were proved to be coextensive, which has been the basis for the Church’s thesis,
which says that an intuitive notion of computability can be identified with the notion
of recursivity. Church’s thesis cannot be proved, since it interconnects a nonlogical
notion of intuitive computability and a logical notion of recursivity. However, the
notion of computability allowed for logical proofs that prove something not-
computable. In fact, the class of non-computable functions has proven to be an
extremely interesting area of study (Mutanen, 2004).

The semantical or model theoretical approach has been developed extensively since
the 1930s, with Carnap becoming one of the founders of the model theoretical
approach. Tarski, in his papers 1933 and 1944, formulated a logico-mathematical
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notion of truth, which was intended to explicate the Aristotelian notion of truth. The
Tarskian notion is, nowadays, known as an explication of the correspondence theory
of truth (Hodges, 1986). The history of the model theoretical approach can be seen as
anchored in independence and definability results in logic and in mathematics.
Padoa’s principle states that a predicate is not definable in a theory, if it is possible to
give two different interpretations to the predicate, while all the other non-logical
constants of the theory have the same interpretation. The explication of non-Euclidean
geometry was a similar model theoretic proof that parallel axiom is independent of the
other axioms of geometry. The modern model theoretical approach has been developed
by researchers like Carnap, Tarski, but also by Léwenheim, Skolem, Henkin, and
Beth. However, there is no proper disagreement between proof theoretical and model
theoretical methods within first-order logic: Gédel’s completeness theorem shows that
a sentence is provable if, and only if, it is valid.

The difference between syntactical (proof theoretical) and semantical (model
theoretical) methods is very important to keep in mind. Even if in school teaching
calculating, and hence syntactical methods, are emphasized, model theoretical
methods are also introduced. Maybe it could be reasonable to highlight the
methodological approaches more systematically. This could enrich the conceptual
understanding of mathematics and logic. The approach we are formulating in this
paper gives an example of such an enrichment.

Mathematics and logic are heterogeneous disciplines in which there are several
different kinds of approaches present. To get a better picture we have to consider
mathematics and logic “from outside”. However, this task is not so straight-forward,
because it leads us to one central mathematical and logical problem: the character of
metamathematics. This leads us to the lines of thought that are central for the
argumentation in this paper.

LOGIC AS CALCULUS AND LOGIC AS LANGUAGE

The formal character is present in modern mathematical and logical theory, which can
be seen from the works and journals of logic and mathematics. Even if logic and
mathematics are expressed in different kinds of formalisms, logic and mathematics are
not merely a formal game of the symbols on paper. Hilbert’s famous characterization
of mathematics, as a mere game played by simple rules with meaningless symbols on
paper, must be understood within his more general philosophical view of mathematics.
Hilbert was interested in problems of metamathematics, and his intentions were almost
the converse to that of Wittgenstein.

Wittgenstein imbedded the problem of mathematics in his more general philosophy of
language, when he asked the question: “Is mathematics about signs on paper?” The
answer he gives is “No more than chess is about wooden pieces.” (Wittgenstein, 1988,
p. 290) According to Wittgenstein, mathematics is a certain kind of activity or a
certain game to be played. It is not possible to take a look at the fundamentals of the
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game, that is, there is no metamathematics which could tell us about what
mathematics really is, and it is not possible to look at the mathematical game outside
of the game itself; we are bound just to play the game. That is, the only way to get to
know mathematics is just to do mathematics. The meaning of the mathematical notion
cannot be found from the result, but rather to understand the meaning, one must look
at the proof, “the calculation actually going on in the proof” (Wittgenstein, 1988, pp.
369-370).

To get a better grasp let us consider the following distinction made by van Heijenoort
(1967): [1] logic and mathematics as calculus and [2] logic and mathematics as
language. The very idea is that if we understood logic and mathematics as calculus
then it would appear to be interpretable and reinterpretable over and over again. The
possibility of interpreting over and over again provides a great deal of practical
freedom: a mathematician or a logician can decide which kind of interpretation he or
she chooses, and this interpretation is developed systematically in model theory. On
the contrary, mathematics and logic can be understood as language, that is, as a
language with a fixed interpretation. Thus, logic and mathematics as language are
languages which speak about the reality, as Russell characterized mathematics to be
above. In fact, Hilbert’s characterization of mathematics as a game is a game in the
sense of the calculus; and for Wittgenstein, the game is in the sense of language.

The taxonomy given by van Heijenoort can be generalized as a whole language as
Kusch (1989) demonstrates. The taxonomy is based on very fundamental
philosophical presuppositions, which are not easily recognized. In particular, the
philosophical presuppositions behind mathematics and logic are extremely difficult to
recognize. Moreover, as fundamental philosophical presuppositions, they are
orientating principles rather than explicit statements or norms (Hintikka, 1996).

Independently on the philosophical orientation, as Wittgenstein said, “calling
arithmetic a game is no more and no less wrong than calling moving chessmen,
according to chess-rules, a game” (Wittgenstein, 1989, p. 292). Wittgenstein
interconnects mathematical and chess games, but at the same time, he brilliantly
separates mathematics and chess from a game of billiards: “A billiards problem is a
physical problem (although its solution may be an application of mathematics). (..) a
chess problem is a mathematical problem” (Wittgenstein, 1989, pp. 292-293). The
characterization of mathematics as a game does justice to mathematics as a dynamic
computation process, which was explicated in Turing’s formulation of computation
(Turing, 1936).

In Turing machine computation, the starting point is a known (and usually solvable)
problem, for example, what is the sum of given numbers. However, in mathematical
and logical reasoning, we do not merely consider these kinds of well-defined and
answerable problems; even if they seem to be over-represented in school mathematics.
Mathematics is, essentially, something more than mere computation or merely
following given rules. These rules allow us to formulate constructive proofs and this
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constructiveness is related to the demonstrativity of mathematical and logical
reasoning. The strategies of mathematical and logical reasoning are the most important
things to learn, in order to understand mathematical and logical reasoning. Moreover,
strategic aspects are central, when mathematics and logic are applied in different fields
of sciences (Hintikka & Kulas, 1985, ch Il p. 17).

CONSTRUCTIVE METHODS

The philosophical background of constructive philosophy is very deep. In Meno, Plato
demonstrates a dialectical method, which is a marvelous example of epistemic
construction in which dialog proceeds via questions and answers. These questions and
answers build up the knowledge of the learner (the answerer) in a factual manner. The
teacher (questioner) has a strategic map of the learning situation. The dialog is
extremely rich and one can find all the central aspects of constructive learning and
teaching from the text. The discussion in philosophy and in pedagogy, based on Meno,
is still going strong.

It is not obvious in what sense mathematical and logical reasoning are constructive.
Carnap (1969, p. 152) says that “The basic language of the constructional system is
the symbolic language of logistics. It alone gives the proper and precise expression for
the constructions; the other languages serve only as more comprehensible auxiliary
languages.” For Carnap, the foundation of constructions is in phenomenalism: “In this
book, I was concerned with the indicated thesis, namely that it is, in principle, possible
to reduce all concepts to the immediately given.” (Carnap 1969, p. vi) However,
constructive philosophy does not presuppose commitment to phenomenalism or to any
other ism.

Perhaps the best example of construction in mathematics can be found in geometry.
Elementary geometry is known to be decidable, which means that there is a
(computable) decision method for the geometry. This does not imply that it would be a
trivial or a mechanical task for generating proofs in elementary geometry. One
excellent example in which the geometrical constructions and their knowledge-
providing character becomes evident is the slave boy example in Plato’s dialogue
Meno." In the dialog, Socrates directs the reasoning process of a slave boy by his
questioning method. The reasoning is based on the drawings made on the ground
during the process. The dialog shows how these drawings increase the slave boy’s
knowledge. These drawings, together with general geometrical knowledge, construct
the intended result. This knowledge construction process is essential in all
mathematical and logical reasoning.

The conclusion of the reasoning in Meno is a geometrical theorem. The proof of the
theorem is a strategic search for the information needed in the proof. The strategy is
realized by the Socratic questioning method. However, in the end, anyone who has
followed the construction sees the result; that is, he or she understands the theorem
and, hence, sees the truth of it. In fact, the Socratic method used in the dialog
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demonstrates a general pedagogical paradigm which can be used — and has been used
— in any teaching.

The Socratic questioning method brings up the strategic level of mathematical
reasoning. The questions Socrates asks are motivated by a strategy that directs the
reasoning towards the intended conclusion. What knowledge is needed to lead such a
process? How do such processes take into consideration the learner’s level of
knowledge? The process is a step-by-step process, in which each step is made obvious
by giving the information needed — the questioning-answering method is designed to
guarantee the success. What about the teacher’s knowledge? The Socratic irony refers
to idea that Socrates, in fact, knew, but he feigned being unknowing. However, there
is no need to have full knowledge before the teacher leads the reasoning process; what
he or she has to have is good a methodological knowledge of the problem setting.
Hence, methodological knowledge is a solution to Meno’s paradox (Hintikka, 2007;
Kelly 1996). The explicit presentation of the reasoning process with the pictures and
formulas makes the reasoning process observable. Hence, the entire audience can
follow the reasoning and infer the same conclusion for himself or herself. That is,
mathematically reasoned knowledge will become transmissible by such an explicit and
public process (Hendricks, 2001; 2010).

The increase of geometrical knowledge in the example in Meno can be related to a
more general problem of knowledge transmissibility. In fact, the argument shows that
such geometrical knowledge is a paradigmatic example of transmissible knowledge.
The reason is methodological: geometrical knowledge is constructed during the
reasoning process, in a step-by-step manner. In fact, this observation can be
generalized to all mathematical and even certain kinds of empirical reasoning. The
pedagogical aspect of the dialog is that Socrates asks the question in a way that allows
the slave boy to understand the questions and find the answers himself. So, all the
steps become constructively known by the slave boy. This kind of explicit knowledge
acquisition process can be followed and reproduced. Moreover, as Hendricks (2010)
shows, knowledge transmissibility is closely related to public announcement that
explicitly take place in the strategically led discussions like Socrates and the slave boy
had in Plato’s Meno.

The idea of the constructions is to take more and more new individuals into
consideration and look at their relations to other individuals. In intuitionism, the
constructive method has been an essential part of logical reasoning: “In practice, the
most important requirement of the program of constructive proof is that no existential
statement shall be admitted in mathematics, unless it can be demonstrated by the
production of instance.” (Kneale & Kneale, 1962, 675) The observation was
generalized to a geometrical method of analysis and synthesis by Hintikka and Remes
(1974). They characterize geometrical analysis as follows:

“Speaking first in intuitive terms referring to geometrical figures, an analysis can only
succeed if, besides assuming the truth of the desired theorem, we have carried out a
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sufficient number of auxiliary constructions in the figure in terms of which the proof
is to be carried out. (...) This indispensability of constructions in analysis is a
reflection of the fact that in elementary geometry, an auxiliary construction, a
kataskeue (...), which goes beyond the ekthesis (...) or the ‘setting-out’ of the theorem
in terms of a figure, must often be assumed to have been carried out before a theorem
can be proved.” (Hintikka & Remes 1974, p. 2)

Geometrical constructions bring new geometrical objects into the reasoning process,
and these new objects increase the information used in reasoning. This can be
generalized into logical reasoning by observing that the geometrical objects behave
similarly to individuals in logical reasoning. These new individuals increase the
information, which can be precisely defined and even measured. The definition of the
increased information is based on the number of interconnected individuals in the
reasoning. The number tells us the depth of the argumentation, and it can be shown
that an increase of the depth increases the logical information. Hintikka (1973) based
his definition of surface tautology and depth tautology on this measure:

”Depth information is the totality of information that we can extract from a sentence
by all the means that logic puts to our disposal. Surface information, on the contrary,
is only that part of the total information which the sentence gives us explicitly. It may
be increased by logical operations. In fact, this notion of surface information seems to
give us, for the first time, a clear-cut sense in which a valid logical or mathematical
argument is not tautological, but may increase the information we have. In first-order
logic, valid logical inferences must be depth tautologies, but they are not all surface
tautologies.” (Hintikka, 1973, p. 22)

EMPIRICAL REASONING

Logical reasoning is theoretical in the sense that it can be done by paper and pencil.
The results of such reasoning are statements. Such reasoning should be separated from
empirical reasoning: “This means that all talk about construction, including the
construction postulates, is inappropriate, for it is about doing things, whereas, in fact,
geometry is a theoretical discipline that treats eternal things. Since, what Plato
criticizes is just the “language” of geometers, it does not mean that all the geometer’s
concern with construction problems could be excluded from geometry as a science,
rather, they should be reinterpreted as theoretical statements.” (Stenius, 1989, p. 78)

If we use Hintikka’s (1973) notions, we can say that this kind of theoretical reasoning
is part of the indoor games. However, there is need for the logical analysis of
empirical and experimental reasoning. To carry out this task, Hintikka (1973)
introduces outdoor games, which are games of seeking and finding in reality. There is
no essential methodological difference between indoor and outdoor games. In fact, this
close interconnection is already recognized by Newton: “It is the use of the method of
analysis as a model of experimental procedure of the great modern scientists, notably
by Newton.” (Hintikka & Remes, 1974, p. xvii)
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The analysis of experimental reasoning shows that this kind of model-related logic can
be a realistic reconstruction of experimental (and empirical) reasoning. Thus, we can
understand why Hintikka and Remes (1974) say that:

“We do believe that in a very deep sense, Newton really practiced what he preached,
and that his methodological pronouncements present an interesting general model of
the experimental method at large. We have come to realize that both these claims, also
the historical one, need further argument and further evidence, before we are prepared
to rest our case. (...) In the case at hand, the need and unpredictability of auxiliary
constructions in analysis shows once and for all that in spite of its heuristic merits, the
method of analysis just cannot serve as a foolproof discovery procedure.” (Hintikka &
Remes, 1974, p. xvii)

In a similar manner to how geometrical reasoning can be generalized as logical
reasoning, this Newtonian reasoning can be generalized as general experimental
reasoning. The theoretical foundation is the interrogative model of inquiry developed
by Hintikka. The interrogative model of inquiry shows how the usual experimental
reasoning can be constructive, just as logical, mathematical, and geometrical reasoning
are, whilst the constructive aspects connect the interrogative model to present day
discussions about causality (Woodward, 2003). The difference between the
interrogative model and logical theory is in the character of the forthcoming
information. With both logical and experimental reasoning, the intention is not to find
singular facts or to generalize universal laws from given sets of data, but to understand
the mechanisms underlying the phenomena (Hintikka & Kulas, 1985, p. x). However,
the underlying logic is the same usual logic and, in particular, logical and experimental
reasoning are strategically parallel (Hintikka, Halonen & Mutanen 2002).

CONCLUDING REMARKS

We have seen that there are several different interpretations of mathematics and logic
which are not compatible. This is not something that should be denied or avoided.
Rather, it is a symptom of the richness of the content of mathematics and logic. The
heterogeneity of mathematics and logic cause polysemy into the field, which may
occur in practical problem solving situations. This is challenging for teachers and
researchers, but the challenging situation makes mathematics and logic extremely
interesting topics to study. As we have seen, it is possible to find rich interpretations
which formulate a holistic picture of the field of study and which allow for open
discussion together with other interpretations.

NOTES

1. To fully comprehend this, please take a look at the table of contents of the book.

2. To see more detailed analysis of the example, see Hintikka & Bachman 1991 pp. 20-28.
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HISTORICAL EPISTEMOLOGY: PROFESSIONAL KNOWLEDGE
AND PROTO-MATHEMATICS IN EARLY CIVILISATIONS

Leo Rogers
University of Oxford

This paper has been prompted by the work of Hoyrup (2004) and Netz (2002) that we
should be cautious of the conceptual categories we use to investigate the past. Lloyd
(1990) showed that a ‘mentality’ ascribed to a cultural group was untenable, and
both Hoyrup and Netz discuss the action of using a tool as extended from physical to
cognitive and theoretical objects. Regarding historical epistemology as a process of
investigating the dynamics of proto-scientific activity led to considering the
Vygotskian (1978) concept of tools-in-action leading to mental functions and
Gibson’s (1977) Theory of Affordances to consider early people as active agents
embedded in a multi-layered socio-ecological environment. Some brief notes on pre-
classical civilisations indicate particular points of focus.

INTRODUCTION
Pre-Classical Contemporary Historiography

Studies in pre-classical mathematics were often regarded as ‘primitive’ efforts toward
the more sophisticated and elegant mathematics of Greece, rather than valid
explorations of ideas within specific socio-cultural contexts. However, from 1959, a
series of papers by Abraham Seidenberg on the ritual origins of mathematics appeared
(1959, 1962a, 1962b,) which, while dismissed by some researchers as largely fanciful
and unreliable, contained references to aspects of the so-called primitive world that
were based largely upon cultural and religious studies, using translations of Sanskrit
and other ancient texts,' these being the only ‘non-mathematical’ evidence available at
the time. More recently, the critiques led by Unguru (1975) Hoyrup (1994) and Netz
(1999) and followed by more consolidated accounts of Babylonian, Indian, and
Egyptian mathematics (Robson, 2008; Plofker, 2007; Imhausen, 2003a) show that
some of Seidenberg’s opinions may have been justified, and contemporary
historiography now addresses wider contexts through extended forensic interpretation
of ancient texts and artefacts, using techniques from areas such as archaeology, social
anthropology and linguistics. Combined with sensitive and broad knowledge of the
development of past mathematics the mode of historiographic research has changed
considerably in the last twenty years, offering us deeper insights into the pre-classical
past.
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Historical Epistemology

Epistemology makes a distinction between methods of discovery and methods of
justification: that is, the way one discovers a property of a situation or a relation
between objects and how a conjecture becomes a mathematical truth may be quite
different from how it is later justified, accepted by a community, and established as a
truth. We address questions like, ‘what are the methods and grounds for such
discoveries;” ‘what is the role insight plays in these discoveries;” and ‘how do
interconnections between mathematical concepts lead to discoveries’? Because there
are no meta-mathematical discussions in the texts made by the actors about what they
are doing and why, one answer is to regard historical epistemology as investigating the
dynamics of proto-scientific developments, insofar as they can be extracted from an
analysis of texts and practices. Any analysis of the development of mathematical ideas
necessarily calls for a serious approach to the social and cultural contexts and the
physical environments in which the knowledge in question was generated, and should
attempt to answer questions about the motivations and means (practical and
theoretical) available to the agents involved. Hitherto, researchers have been looking at
mathematical" texts; namely those considered to have been written to teach or learn
mathematics, but they were looking at a group of texts already categorized in a
particular way — because they ‘look like’ contemporary mathematics (or parts of it)
they were identified as somehow the ‘same’ (e.g. as equations), but neglected texts
that speak about mathematics, or show practices being developed in some way might
suggests a ‘mathematical — like’ activity.

Hoyrup, (1994) suggests that sub-scientific knowledge™ arises out of cultural practices,
rather than taking ‘already-known’ knowledge being ‘applied’ to a problem, this
knowledge can be found in craft skills like making tools, in rituals, emergent
astronomy, astrology, or knowledge arising in the making of, or building significant
objects by a particular group or individual.

Mathematics has not always been the ‘same’ because, at different periods, different
kinds of mathematics were possible. The contexts, tools, and motivations, were
different, and many of the problems were concerned with the immediate needs; ritual,
social, and economic of the people involved. Much of this happened before there was
any need for recording, since societies developed ways of handing on ideas in myths,
storytelling, poetic algorithms, and practices not recognised as ‘scientific’ by former
historians.

PRE-CLASSICAL CULTURAL STUDIES

Egypt

The work of Annette Imhausen (2007, 2003a,b) shows that original mathematical
texts on papyrus, leather, or other materials are extremely rare" and so it is very
difficult to make an overall assessment of the Egyptian mathematical corpus. Earlier
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accounts of Egyptian mathematics (Gillings, 1971; Clagget, 1999) contain similar
subject matter presented in contemporary mathematical terms, and consequently their
commentaries have been limited by their preconceptions.” Apart from the more
substantial Rhind and Moscow Papyrus and the Leather Roll, and some fragments of
mathematical problems, there is scarce little else. However, other Egyptian texts
contain a variety of everyday contexts, and their problems of calculating rations,
granary volumes, the daily baking, brewing and herding activities are recorded on a
variety of documents, not all obviously mathematical.” Difficulties lie in the technical
terms that give clues to different kinds of concepts, so that establishing the social
contexts of the texts involved is problematic. (2003b: 371-373). There are
administration texts that show the application of techniques, and tomb representations
of everyday tasks where the actual procedure is ambiguous, but knowing the
administrative, economic, and practical contexts helps to understand the problems that
draw on the professional lives of scribes and use their terminology, and techniques.
Imhausen shows how difficult it is to translate everyday colloquial Egyptian (2003b:
374) where not all processes describe the same steps, and although these steps may be
followed, the sense of the problem is obscure because we lack information about how
individual objects are actually made and we do not fully understand Egyptian scribes’
own conceptions of their mathematical world. It is difficult to find out what parts of a
procedure were ‘sub-scientific’ or ‘proto-mathematical’ since the true social context is
not clearly known. What is needed is more information about the role of mathematics
in Egyptian culture, and the satirical text Papyrus Anastasi (Imhausen 2007: 10-11)
while not a mathematical text, is discussed in detail, showing how important
mathematics is for Egyptian scribes"'. The mathematical problems found in Anastasi
do not contain all the data needed to solve the exercises, but if they come from a well-
known body of scribal mathematical tasks, the account of the type of problem was
enough for an Egyptian reader to know the relevant group of problems.

There are some 14 diagrams in the ancient Egyptian mathematical corpus, but as yet,
there are no systematic instructions for constructing them. We do not know their
representational conventions, nor how those conventions relate to other aspects of
Egyptian culture. There are tomb paintings representing a ritual from the Book of the
Dead (Taylor, 2010) showing the use of a simple beam balance for weighing the heart
of the dead person against the ‘feather of truth’. If the balance reaches equilibrium, the
dead person can enter Paradise. Clearly, the balance has to be accurate, and the
technique employed in this ritual has to be managed by the priests, so that the outcome
is beneficial (Seidenberg & Casey, 1980). On the other hand, it is apparent from a few
problems (Rhind 24-29) that proportional reasoning was used in the arithmetic, and
while much of the text is written as arithmetic, the conceptual background may well
have been mechanical or geometrical. Having realized that other sources are relevant
to a fuller understanding of the mathematics, it will take some time to collate the
evidence and relevance of wider aspects of ancient Egyptian life.
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Mesopotamia

This was an area where early translations regarded many of the mathematical
problems to be ‘the same’; or at least similar enough for researchers like Thureau-
Dangin, Bruins and Neugebauer" to recognise elements in the texts that enabled them
to translate the problems into contemporary mathematical terms. Since then,
excavations in Mesopotamia have been more extensive in chronological period and
cultural areas, and new methods used to investigate not only the mathematical texts,
but much more extensive research into the social and cultural contexts of the people
living in that area. These results are now found in Nissen, Damerow and Englund
(1993), Hoyrup (1994, 2010), and in Robson (2008) so that we now have extensive
and detailed descriptions of different sources supporting the development and use of
mathematical concepts and procedures, as well as much deeper knowledge of the
languages employed.

India

The Vedic people who entered North West India were responsible for the earliest
extant texts known as the Vedas, the oldest scriptures of Hinduism that became a
recognised corpus of Sanskrit literature before the middle of the first millennium BCE.
These texts contain hymns, formulas, and spells for rituals, and part of these were the
Sulba Siitras that provide the ‘cord-rules’ for the construction of sacrificial fire altars
(Seidenberg 1962a). They give the instructions for building brick altars used in ritual
sacrifice. Most mathematical problems considered in the Sulba Sitras spring from a
single ritual requirement; namely that of constructing altars that have different shapes
but occupy the same area. (Plofker 2009: 13-28). How this ritual geometry became
integrated into the process of sacrificial offerings is unknown, the rules may have
emerged through trying to represent cosmic entities physically and spatially, or
perhaps existing geometric knowledge was incorporated into ritual to symbolise some
universal truth about spatial relationships. Whatever their deep motivations, the basic
tools were simply ‘peg and cord’ to make arcs of a circle. The origins of this geometry
can be seen in the use of the shadow-stick gnomon to set the East-West equinoxes and
record the daily passage of the sun (Keller, O. 2006: 28-41). Many of the instructions
contain transformation rules for preserving areas, such as changing a rectangle into a
square of the same size, and one of the elementary perceptions involved are the
proportional properties of the right angled triangle and the division of a rectangle by a
diagonal. (Keller, 2006: 125-166) (Plofker, 2009:13-42) From the instructions in the
texts, the following diagrams (Figs. 1la and 1b) show that removing the small red
square from the large blue square produces the equal areas of the blue rectangle and
the green square.
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Fig 1a

Fig 1b

The ritual is preserved in a film made by Frits Staal, now available on the internet™.

China

Divine origins of arithmetic and geometry are repeatedly stressed in the earliest
records we have of Chinese history. The earliest Canonical* account of the past is the
creation of a socio-political order by a human ruler in the Shu Jing, The Book of
Documents (c. 500 BCE) traditionally compiled by Confucius from earlier sources
where the legendary Emperor Yao commissioned two star-clerks Xi and He, to
“accord reverently with august Heaven and its successive phenomena, with the sun,
and the moon, and the stellar markers, and thus respectfully to bestow the seasons
upon the people.” (Cullen 1996: 3) The times of the summer and winter solstices and
the spring and autumn equinoxes were recorded, eventually establishing a solar
calendar of about 366 ¥ days. Chinese mathematical astronomy appeared as a
functioning system in the Han Dynasty (c. 207BCE - 220CE) where the use of a
carpenter’s square, a compass, and other astronomical tools were already well
practiced. Chinese astronomers had to deal with a luni-solar calendar, having to work
with months that followed lunations quite closely, as well as keeping a civil year of a
whole number of months in step with the seasons, and months in step with a cycle of a
‘week’ of 10 days (Cullen 1996: 7-26). The calendar had an important Ritual function
because the Chinese emperor was responsible for looking after the people, as well as
the world order, and disorder in nature was a sign of a malfunction of the human order
thereby causing criticism of the emperor’s rule. The astronomer’s task was to reduce
as many phenomena as possible to rules and thus to predictability, so that state rituals
should be carried out at the proper times, and if mistimed or not performed correctly,
harm could come to the population. It was therefore expected that the motions of the
visible planets should be tabulated in detail, and that lunar eclipses, and other
phenomena should be predicted. Irregular events could be ominous; comets, meteor
showers, and novae could predict disaster. Almanacs were published to detail these
events, and virtually all activities had to be considered in terms of the calendar. As yet,
there is very little in translation about mathematical techniques in the centuries before
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the Han, but the use of the Gnomon and plumb line as essential tools must have
appeared well before the written data, and the ‘out-in’ principle in geometry appeared
as a very powerful method of using the idea of equivalence of areas. The diagram
(Fig. 2) where the upper and lower areas are equal is visually ‘obvious’ was well
established in the Zhou bi suan jing in the Zhou dynasty (1046 - 256 BCE) (Cullen,
1996).

Fig. 2.

Earlier practical examples of these ideas have so far not been found, yet in the earliest
known bamboo text Suan shu shu — A Book on numbers and computation put together
in the Qin dynasty, (221-186 BCE) which is a collection of problems showing
examples of the use of fractions, distribution of goods using proportion, and problems
on areas of fields, shapes and volumes. (Cullen, 2004). Applications and
developments of these algorithms are found in more detail later in the Nine Chapters
(Chemla & Shuchun 2004) where, in particular, we find the dissection of a cube into
three square pyramids (388-406, Diagram 5.15). Fig 3

Fig 3

We have learnt to be much more cautious in our interpretations of ancient evidence,
but also realise that many of the ideas found in the well-documented activities in
Mesopotamia, India, Egypt and China indicate that at the most basic level; namely
ideas of ratio and proportion, dissection and rearrangement, and area conservation,
that appeared as professional knowledge of the scribe, priest, or shaman, be it ‘sub-
scientific’ or ‘proto-mathematical’, in some of the earliest activities in human
development."

INVESTIGATING MATHEMATICS PAST AND PRESENT

Jens Hoyrup: Canons and Taboos (2004)

Hoyrup (2004) addresses a perennial problem: were historical concepts really
different, and the historical actors unable to think or express themselves in our terms,
or is everything just a question of terminology and notation? Citing the example of
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Unguru’s (1975) paper on rewriting Greek mathematics showed that historians of
mathematics, being mathematicians, tacitly assumed that mathematical entities were
Platonic, sharing the same ideal forms, having no connection with the thought of the
individual or the historico-cultural context into which the historical writer’s ideas were
being broadcast. Hoyrup points out that this kind of debate is unduly simplistic, and
that more careful reading of early sources indicates that early mathematical writers
might have other reasons than inadequate conceptual capacity or unhelpful
terminology to be able to express themselves in ways different from our own.

By deconstructing the idea of a “mode of thought” as intangible*" that “does not in
itself assist us in understanding whether, why or in which respect this mathematics
differed from ours”. Hoyrup suggests that talking about the mathematical concepts of
a culture is less elusive, but we should not identify a concept with the words that are
used to describe it. He describes a mathematical concept as a mental tool that is being
used for specific operations, together with the connected network of concepts and
their properties, characterises a particular ‘mode of thought’ (Hoyrup 2004: 131)

Hoyrup’s metaphor is very similar to the ideas of Vygotski who proposed that just as
physical tools extend our physical abilities, mental tools extend our mental abilities,
enabling us more able to solve problems. Before we learn to use mental tools, learning
is largely controlled by the environment; being a matter of reaction to various stimuli.
Once we learn to master mental tools, we become learners, who by attending and
remembering in an intentional and purposeful way, can transform cognitive behaviors,
and also use other mental tools to transform our physical, social, and emotional
behaviors. These mental tools can also transform our minds, leading to the emergence
of higher mental functions. This idea first appeared in Vygotski’s Thought and
Language (1962) and was further developed in his Mind in Society (1978). Mental
functions are cognitive processes acquired through learning and teaching within a
system of practices common to a specific culture. Hoyrup points out that structures of
mathematical operations emerge from operations with physical tools or particular
cultural practices: (for example, bamboo sticks, or tokens on a counting board, using a
dust abacus, or practicing routines for accounting, or solving equations). These
practices are never identical with the abstracted mathematical structure because the
mathematical structure is essentially abstract.
“it cannot be excluded that mathematical conceptual structures that are fairly
congruent with something we know grow out of manipulations of tools that are
quite different from those from which we are now accustomed to see them evolve.
Identifying underlying tools that differ from ours does not prove that the
corresponding concepts were also fundamentally different.” (Hoyrup 2004: 133)

After offering a variety of examples from Egyptian and Old Babylonian culture, he
concludes,
... that much of what the texts do not say or do not do must be explained, not from
what their authors could not think but instead in terms either of what they did not
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find it professionally fitting to say, or what they found it incoherent to say. (Hoyrup
2004: 142)
Practices can be built up by a powerful economic or political clique and defended to
exclude others, or to preserve a practice in the face of modification or opposition.
Thus the role and social status of the scribe in ancient Egypt, as evidenced by the
Egyptian Papyrus Anastasi, or the concentration of the Chinese astronomers on
prediction of events to defend their status, or the priests maintaining the rituals of the
Sulbautras, all provide examples where certain practices may be built up and
maintained for reasons other than immediately useful or ‘scientific’, so that
. the absence of such conceptualizations from ancient sources as a modern
mathematical reader might expect to find there does not prove that the
ancient authors were not able to think more or less in our patterns — it may also be
due to an explicit rejection of this way of thinking, either because of the
existence of some canon or because they deemed it conceptually incoherent. Only
close analysis of the sources at large will, in the best of cases, allow us to
distinguish between cognitive divergence and cognitive proscription.” (Hoyrup
2004:144-45)

Reviel Netz: It’s not that they couldn’t.
In this paper, Reviel Netz (2002) takes up the discussion by demonstrating that
transforming an old piece of mathematics into its contemporary equivalent is
misleading, because it conceals the idiosyncratic features of the old mathematics that
prevented it from becoming contemporary mathematics. He insists that it is not just a
matter of notation.
It is difficult to see what is meant by ‘similar’ or ‘equivalent’ here.
“The standard example - the equivalence of Euclid’s Elements Il with algebraic
equations - seems to suggest a meaning of ‘equivalence’ along the following lines:
historians of mathematics often take two theorems to be equivalent when, from the
perspective of the modern mathematician, the proof of any of the theorems serves to
show, simultaneously, the truth of the other.” (Netz 2002: 264 footnote)
In my opinion, this means at the very least, being able to make the mental
transformation from one medium to another, and ‘seeing the algebra in the geometry’,
which comes from ignoring the true socio-cultural context of the work.
Netz (2002: 265) also cites Unguru’s (1979) response to the opposition led by van der
Waerden (1976) involved wide-ranging historiographical and philosophical comments
that conclusively settled the argument. At the heart of Unguru’s reply lies his critique
of Jacob Klein’s (1968) Greek Mathematical Thought and the Origins of Algebra,
where Unguru claimed that Greek mathematics could not be interpreted to be the same
as modern mathematics, because the Greeks did not possess the right kind of concepts:
for algebra, one needs ‘second-order’ concepts that refer to other concepts, but the
Greeks had only first-order concepts, referring directly to reality. (Italics, mine)*"
Thus, modern mathematics, in the Greek context, was conceptually impossible. In
Klein’s work, concepts constitute the ‘mode of thought’ of a group of individuals,
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without any historical account of why their mental possibilities should be limited in a
particular way. So the historiography of conceptual structures is no more than a
version of the history of mentalities. The idea that Greek science could be explained as
expressing an abstract mentality was attacked by Lloyd (1990), by showing the
contradictions and inconsistencies when particular mentalities are assigned to an
individual, a group, and even to a whole nation.

Netz draws on several studies of Greek mathematics where exceptions to the rules
appear, claiming differences in mathematical practice®. While examples may be rare,
they exist, and taken together, they show the inadequacy of the argument from
conceptual impossibility. Furthermore, Netz points out that there are extra-
mathematical concerns influencing the definitions of unit and number (Euclid, VII. 1-
2). Definitions interact with the intellectual world where they serve philosophical
goals; so Netz claims that readers of Elements | would feel that a discussion of
what‘points’ were, was philosophically necessary, so Euclid put the definition, ‘a
point is that which has no part’, at the beginning of his work. Furthermore when, in
the Sand Reckoner Archimedes introduced a new numerical system for a non-
mathematical audience, it was necessary to name, in a natural language sense,

XVi

extremely large numbers, Netz (2002: 277)™".

Netz refers to Hoyrup’s use of concepts as tools and maintains (2002: 282) that it is
clear that as people produce artifacts, and have recourse to several tools that are
culturally available, so the action of using the tool can be extended from material
objects, to cognitive and indeed theoretical objects.*" The possibilities opened up by a
tool, whether physical or cognitive are considerable, and unpredictable. The
unsuspected possibilities of applying a tool to a task set up an interaction between the
tool and the task itself, with often unpredictable results. Many values influence any
particular activity, and depending on the different value, different practices might
arise. For the sake of efficient calculation, typographic representations of numbers are
preferable; for the sake of proximity to natural language, verbal representations are
preferable. Practices are determined not by the totality of values brought to bear, but
by the most important of such values: the value of efficient calculation was important
to Archimedes, but in the context of a literary treatise, it has an even more important
value for a non-mathematical audience, that of proximity to natural language. So Netz
puts forward the following explanation of the non-arithmetical nature of Greek
mathematics:

Greek literary production is marked by a hierarchy of values always related to a
certain ‘literary’ or ‘verbal’ preference: literature is ranked above science, inside
science philosophy is ranked above mathematics; persuasion (to the Greeks, the
central verbal art) is ranked above precision, and natural language above other
symbolic domains. Hence it is easy to understand Euclid’s deference to philosophy
in his definition of number. More significant, inside Greek mathematical writings,
the qualitative statements of geometrical demonstration become the norm against
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which arithmetical representations of the same object come to be seen as marked.
(Netz 2002: 287)

Thus reinforcing Hoyrup’s point about other external influences from practices built
up by tradition or a powerful economic or political clique that are defended to exclude
others, or to preserve a practice in the face of modification or opposition.

ASPECTS OF HUMAN COGNITION
Gibson’s Theory of Affordances.

Gibson’s principal idea is that cognition is not isolated from all the other attributes that
may influence a learning agent at a particular time, place, or context. It is a way of
looking at cognition that considers an active agent embedded in a multi-layered socio-
ecological environment. Gibson first applied his theory to psychology as ‘A way to
understand how learning takes place through perception of, and interaction with, an
environment’ (Gibson, 1977), where he conceived the individual actor (animal or
human) in a general ecological environment, and considered the options available in
terms of possible awarenesses, perceptions and their consequent actions.

The Affordances of an environment are what it offers the agent, what it provides or
furnishes; the consequences of which could be good or bad. As an affordance of
support for a species of animal, they have to be measured relative to the animal. They
are unique for that animal or agent, and not just abstract physical properties.
Affordances have a unique unity relative to the nature, physical attributes, and
behavior of the agent being considered. Affordances are "action possibilities™ latent in
the environment, objectively measurable, and independent of the individual's ability to
recognize them, but always in relation to the actor and therefore dependent on their
capabilities. Constraints may be actual, physical, environmental, or perceptual,
depending on the context and the abilities of the agent. Knowledge emerges through
the primary agent's bodily engagement with the environment, rather than being simply
determined by and dependent upon either pre-existent situations or personal
construals. Greeno (1994) took up Gibson's agent-situation interactions in ecological
psychology in his ‘situated cognition’ research because its holistic approach rejected
the assumptions of individual ‘factors’ in current psychology. This perspective
focused on ‘perception-action’ instead of memory and retrieval. A perceiving-acting
agent is coupled with a developing-adapting environment and what matters is how the
two interact. Greeno also suggested that affordances are "preconditions for activity,"
and that while they do not determine behavior, they increase the likelihood that a
certain action or behavior will occur. These ideas continue to be developed in an
active school of ecological psychology, where Harry Heft (2003) writes,

At a basic, pre-reflective level of awareness, prior to the abstractions (e.g.
categorization, analysis) all humans so readily perform on immediate experience,
we perceive our everyday environment as a place of functionally meaningful objects
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and events. In their immediacy, the “things” of our everyday environment have
perceivable psychological value for us in terms of the possibilities they offer for our
actions and, more broadly, for our intentions. This aboriginal mode of awareness
runs through the flow of our ongoing perceiving and acting, constituting its
experiential bedrock. ....... Perceiving the affordances of our environment is, if you
will, a first-order experience that is manifested in the flow of our ongoing
perceiving and acting. By first-order experience | mean experience that is direct
and unmediated; it is the experiencing of x, in contrast to experiencing x through the
intercession of y or z.” (Heft, 2003: 151)

In this sense it is the intuitive and unmediated experience that gave rise to the
Vygotskian perceptions of the emergence of activities and use of physical tools
leading to the development of mental functions. Gibson is clear that the environment
offers affordances and constraints (physical, social, or mental) that may act upon or be
acted upon by the agent, thus illustrating the variety of possible outcomes. From what
we now know of ancient cultures, we can recognise individuals in a milieu of
affordances and constraints available in their environments, ecological, social, and
cognitive, acting upon individuals and groups that resulted in the artefacts, products,
and writings that have been (and continue to be) discovered, analysed and debated.

Visualisation and Diagrammatic Reasoning

The brief survey by Hanna and Sidoli (2007) shows how recent interest in
visualisation has grown in both mathematics, philosophy of mathematics, and
mathematics education, and while they refer to Mancosu’s chapter on visualisation in
(2005: 13-30) which is valuable itself as an investigation into relatively recent
mathematics, Mancosu there considers the re-emergence in modern terms of what |
regard as an ancient cultural-historical human ability. After the denigration of visual
evidence in mathematical proof in the nineteenth century, he sees the recent interest in
visualisation as a change in mathematical style (2005: 17). On the other hand
Giaquinto (2007: 35-49) addresses what he sees as the acquisition of “... basic
geometrical knowledge ...not acquired by inference from something already known or
some external authority ...” and furthermore, in (262-263) he describes different
aspects of visualized motion that contribute to our ability to act upon and transform
our mental images.

In the contexts explored above we see that archaeologically recovered materials from
Egypt and Mesopotamia, India and China provide some of the earliest written sources
of astronomy and mathematics known to us today. By the middle of the first
millennium BCE the cultures discussed here had reached a high level of socio-
economic organization and technical expertise, developed from the use of simple tools
for plotting objects in the sky or measuring the ground for both practical and ritual
purposes. The use of simple practical tools inspiring many developments were
motivated by a variety of purposes that depended on the affordances that the agents
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perceived in their environments. The manipulation of constructed objects like
manufactured bricks or wooden frameworks was transferred to local media (sand
table, clay, papyrus, painted surfaces) that may be used for demonstrating a particular
practice or the transmission of technical knowledge, as a visual record to be passed on
to others.

In all of these representations it is inevitable that some tacitness remains and
unarticulated aspects are ‘taken-for-granted’ by the actors. The observation of and
contemplation upon the dynamic effects of manipulation of the ‘object-image’ affords
the possibility of using these properties in a different context as a new tool to solve
what may be a totally unrelated problem. Access and conviction grew from ‘hands-on’
practical activities, manipulation of actual objects and their transformations by
developing the use of representations of these objects, mentally, and in terms of locally
available media as iconic likenesses so that operations on these representations led to
the ‘dissection and re-arrangement’ of indexical (Peircean) fluidity of the icon. But
while it seems clear that at some stage the contextual affordances gave rise to the
comparison and reinforcement of intuitive properties of, for example, right-angled
triangles and the emergence of proportional relations, some important questions
remain.

If, as | have stated at the beginning of this paper we regard historical epistemology as
investigating the dynamics of professional knowledge and proto-scientific
developments, insofar as they can be extracted from an analysis of texts and practices,
to what extent can | justify the transfer of practical knowledge to theoretical
knowledge and higher mental functions as evidenced by the texts we already have?
Both Hoyrup and Netz allow the development of a functional dynamic of mental
operations with uncertainties about the outcome: Hoyrup considers the “metaphor that
a mathematical concept is a tool: a mental tool, but a tool only by being a tool for
operations. The shared properties and conditions of the whole network of connected
mathematical concepts with participating operations then characterize the
corresponding mode of thought.” (Hoyrup 2004:131)

And Netz agrees that outcomes cannot be pre-determined: “There is always a grey
area of what a tool can do, depending on which task you put it to: grey area which is
not fully determined by the tool itself-so that a dialectic of tools and tasks ensues.”
(Netz 2002: 282-283)

Mental tools contain knowledge representation structures that allow for drawing
inferences from prior experiences about complex objects and processes even when
only incomplete information on them is available, and so the epistemic function of
visualisation in mathematics can go beyond the merely heuristic one and become a
means of discovery of new ideas - and even become belief-forming dispositions.
(Giaquinto, 2007: 35-49). Allied to the affordances, we can recruit a conception of an
emergent community of learning which emphasizes various processes of socialization,
involving communities and their values with not only the acquisition of skills and
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participation in activities, but a third stage where individual and collective learning
goes beyond mere information given, and advances knowledge and understanding by a
collaborative, systematic development of common objects of activity into shared
knowledge-creation. (Sami and Hakkarainen 2005)"™"

Why should we restrict the creativity of our ancestors with an attitude restricting the
possibilities of what was available to them? Is it not better to allow that “we come up
with an account where mathematics is not always the same, while people are: which
forms, 1 believe, the historian’s intuition.” (Netz 2002: 288) After all, | could remark
that the field is open, and “absence of evidence is not evidence of absence.” (Sagan
1995: 221).

REFERENCES

Chemla, K. & Shuchun, Gou. (2004) Les Neuf Chapitres: La Classique
Mathematique de la Chine Ancienne et ses commentaries. Paris. Dunond.

Clagett, Marshall (1999) Ancient Egyptian Science Volume IlI: Ancient Egyptian
Mathematics. Philadelphia: American Philosophical Society.

Cullen, C. (1996). Astronomy and Mathematics in Ancient China: The Zhou bi suan
jing. Cambridge. Cambridge University Press.

Cullen, C. (2004). The Suan shu shu ‘Writings on reckoning’: A translation of a
Chinese mathematical collection of the second century BC, with explanatory
commentary. Needham Research Institute Working Papers: 1. Needham
Research Institute, Cambridge

Engestrém, Yrjo; Miettinen, Reijo; Punamaki and Raija-Leena (1999). Perspectives
on Activity Theory. Cambridge University Press

Giaquinto, M. (2007) Visualisation in Mathematics: an Epistemic Study. Oxford.
O.U.P.

Gibson, J.J. (1977), The Theory of Affordance. In Perceiving, Acting, and Knowing:
Toward an Ecological Psychology. Shaw, R. and Bransford, J. (eds) Hillsdale,
N.J. Lawrence Erlbaum. 67-82.

Gibson, J.J. [1979] 1986. The Ecological Approach to Visual Perception. Boston:
Houghton Mifflin.

Gillings, R. (1971) Mathematics in the Time of the Pharaos. Cambridge Mass. MIT
Press.

Greeno, J.G. (1994). Gibson's affordances. Psychological Review 101 (2): 336-342.

Hanna, G., & Sidoli, N. (2007 Visualisation and Proof: a brief survey of philosophical
perspectives, ZDM Mathematics Education. 39:73-78.

Heft, H. (2003) Affordances, Dynamic Experience, and the Challenge of Reification.
Ecological Psychology, 15:2, 149-180.

Hoyrup, J. (1994) In Measure, Number, and Weight: Studies in mathematics and
culture. Albany, New York. SUNY Press.

Page 281



LEO ROGERS

Hoyrup, J. (2004) Conceptual Divergence-Canons and Taboos-and Critique:
Reflections on Explanatory Categories. Historia Mathematica 31. 129-147.
Hoyrup, J, (2010) Old Babylonian “Algebra”, and What it Teaches us about Possible
Kinds of Mathematics. ICM Satellite Conference. Mathematics in Ancient
Times. Kerala School of Mathematics. Kozhikode. 29 August — 1 September

2010

Imhausen, A. (2003a) Egyptian Mathematical Texts and Their Contexts. Science in
Context 16 (3) 367-389

Imhausen, A. (2003b). Calculating the daily bread: Rations in theory and Practice.
Historia Mathematica 30: 3-16

Imhausen, A. (2007) Egyptian mathematics. In: Katz, V. (2007) (ed). The
Mathematics of Egypt, Mesopotamia, China, India and Islam. (7-56) Princeton.
Princeton University Press

Katz, V. (2007) (ed). The Mathematics of Egypt, Mesopotamia, China, India and
Islam. Princeton. Princeton University Press

Keller, O. (2006). La Figure et Le Monde: Une Archeologie de la Ceometrie. Paris.
Vuibert.

Klein, J. (1968) Greek Mathematical Thought and the Origins of Algebra. NewYork.
Dover Publications.

Leont'ev A.N. (1981) (1977). The Development of Mind. (Moscow: Progress
Publishers) Erythrospress.com

Lichtheim, M. (1976) Ancient Egyptian Literature. Volume Il. The New Kingdom.
Berkeley, Los Angeles, London. University of California Press.

Lloyd, G. (1990) Demystifying Mentalities. Cambridge. C.U.P.

Mancosu, Paolo, Klaus Jorgensen and Stig Pedersen (2005) Visualisation,
Explanation and Reasoning Styles in Mathematics. Springer.

Netz, R. (1999) The Shaping of Deduction in Greek Mathematics. Cambridge. C.U.P

Netz, R. (2002) It’s not that they couldn’t. Revue d’Historire des Mathematiques. 8
263-289

Nissen, H.J., Damerow, P., & Englund, R.K., 1993. Archaic Bookkeeping: Early
Writing and Techniques of Economic Administration in the Ancient Near East.
Chicago. Chicago University Press.

Plofker, K. (2007) Mathematics in India. In Katz (2007) (ed). The Mathematics of
Egypt, Mesopotamia, China, India and Islam. Princeton. Princeton University
Press. 385-410.

Plofker, K. (2009). Mathematics in India. Princeton University Press. Princeton.

Robson, E. (2008) Mathematics in Ancient lIraq: A social history. Princeton.
Princeton University Press.

Page 282



HISTORICAL EPISTEMOLOGY: PROFESSIONAL KNOWLEDGE AND PROTO-MATHEMATICS IN ...

Paavola, S., & Hakkarainen, K. (2005). The Knowledge Creation Metaphor — An
Emergent Epistemological Approach to Learning Science & Education 14: 535-
557 Sagan, Carl. (1996). The Demon-Haunted World: Science as a Candle in
the Dark. New York. Random House.

Seidenberg, A. (1959). Peg and Cord in Ancient Greek Geometry. Scripta
Mathematica. 24. 107-122

Seidenberg, A. (1962a). The Ritual Origin of Geometry. Archive for the History of the
Exact Sciences. 1, 5. 488-527

Seidenberg, A. (1962b). The Ritual Origin of Counting. Archive for the History of the
Exact Sciences. 2. 1-40.

Seidenberg, A., & Casey, J. (1980). The Ritual Origin of the Balance. Archive for the
History of the Exact Sciences. 23, 3. 179-226.

Taylor, J.H. (ed), Ancient Egyptian Book of the Dead: Journey through the afterlife.
British Museum Press, London, 2010.

Unguru, S. (1975) On the Need to Rewrite the History of Greek Mathematics,"
Archive for History of Exact Sciences, vol. 15. 67-114.

Unguru, S. (1979) History of Ancient Mathematics-Some Reflections on the State of
the Art. Isis. 70, 4. 555-565.

van der Waerden, B.L. (1976) Defence of a ‘shocking’ point of view. Archive for
History of the Exact Sciences. 15, 199-210.

Vygotski, L.S. (1962) Thought and Language. Massachusetts, MIT

Vygotski, L.S. (1978) Mind in society: The development of higher mental processes.
Cambridge, MA. Harvard University Press.

NOTES

“text” here applies (as in linguistics) to inscriptions of any kind, on any kind of object.
" The word mathematical here may be pre-emptive, determining the ‘mathematical’ context in advance
" See Hoyrup 1994: 25. «... specialists’ knowledge that (at least as a corpus) is acquired and transmitted in view of
its applicability. Even sub-scientific knowledge is thus knowledge beyond the level of common understanding...”

It appears that no new mathematical sources have been discovered in the last 70 years.

Clagett (1999) for example, sees arithmetic and geometric progressions, and geometric problems, while Gillings
(1972) sees equations of the first and second degree.

"' An overview of the individual problems and their classification can be found in the introduction of Imhausen 2003.

vi The well-known Satire of the Trades compares the position of the scribe to other professions where a scribe has
pleasant work and a higher place in society, referring to mathematics and tax collection as part of the scribal
profession (Lichtheim 1976). See UCL website
http://www.ucl.ac.uk/museums-static/digitalegypt/literature/satiretransl.html

Vil Much of this work was not easily accessible. For details see Robson 2008 Chapter 1. 1-26.

Seidenburg & Casey (1980: 336 footnote 53) states that Frits Staal made the film of the Atiratra Agnicayana ritual,
now available at https://www.youtube.com/watch?v=UnbgnMhbB44
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xviii

By Canonical, is meant the officially accepted ‘traditional’ account.
The ‘in-out” principle is also applied in the Nine Chapters (Chemla & Shuchun 2004: 661-693).
Of course, whether or not there was any transfer of ideas between these cultures remains an open question.

There are deeply embedded influences from de Tocqueville, Levy-Bruhl and others that attribute styles of thinking
as a characteristic of different social or national groups.

There is a problem with the labeling of and attributing ‘second order concepts’ to writers in the past. How do we
know what ‘first order concepts’ they had? These categories are all of our own making.

See Euclid 1,4 for ‘superposition’ as part of the proof that triangles are congruent which is used again in I, 8 and
111, 24 but rarely found elsewhere. ‘Superposition” may be intuitively obvious, implies a physical action on an ideal
object.

In Vedic literature there are names for each of the powers of 10 up to 10% In the Buddhist tradition, the
Lalitavistara Sutra recounts a competition between the mathematician Arjuna and the Buddha for naming very
large numbers. Today, the words lakh and crore referring to 100,000 and 10,000,000, respectively, are in common
use in newspapers and among English-speaking Indians.

The role played by culture and language in human development is an essential aspect of the Vygotskian framework
which examines the relation between learning and mental development through (a) social sources of individual
development, (b) semiotic mediation, and (c) genetic (developmental) analysis.

Scandinavian Cultural-Historical Activity Theory developed from Vygotski’s (1978) Cultural-Historical Psychology
and Leontev’s (1977) Activity Theory. See Engestrom, Yrjo (1999).
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IN EULER’S “ELEMENTS OF ALGEBRA”

Katrin Schiffer, née Reimann
University of Cologne

Many problems encountered by students during the time of transition from arithmetic
to algebra are based on different understandings and usages of the concept of
number and variable. The analysis of the historical development of algebra and
within this field the nature of the discussed objects can be helpful to understand the
problems for students nowadays. In the following article Leonhard Euler’s
understanding of algebra in his textbook “Elements of Algebra” will be discussed.
Unlike modern mathematics Euler considers numbers as objects grounded in an
empirical subject area. Numbers are defined as the ratio of measurable quantities. In
conclusion Euler’s understanding of the concept of number will be discussed with the
help of the idea of empirical theories.

“ELEMENTS OF ALGEBRA”

The analysis of the understanding of algebra in course of the historical development
is based on Euler’s textbook “Elements of Algebra”. The choice of this textbook is
firstly justified by Euler’s position in the development of mathematics in general and
his contribution to teaching of mathematics in particular and secondly by the
significance of the textbook itself. The importance of his textbook has to be seen in
the chronological context in which it was written. Most likely Euler started to write
the “Elements of Algebra” in Berlin. It was published 1768 in St. Petersburg at first
in a Russian translation before it was released 1770 in the original German version.
The textbook was translated and reprinted several times, especially with the additions
of Lagrange. 1774 the “Elements of Algebra” appeared in a French translation of
Johann 111 Bernoulli. This French edition became a source of the English version. The
following analysis applies to this English translation by John Hewlett from 1828.
Even though Euler’s Textbook had only a small positive impact on science after the
appearance (Schubring, 2005, p. 258), it was widely read. In the German edition of
Reclam, the textbook was printed from 1883 till 1942 in 108.000 copies. Therefore,
Euler’s Algebra was really a bestseller (Fellmann, 2007, p.120f). Because of this
great demand and the many translations in other languages the “Elements of Algebra”
played a major role for the learning of algebra.

The circumstances of the appearance of the textbook are affected by Euler’ blindness.
Euler needed the help of his servant to write the book. In accordance to an anecdote
Euler’s non-skilled servant understood the mathematics Euler dictated to him and was
in the end able to do algebra by himself (Euler, 1828, Advertisement).
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The textbook is addressed to a mathematical interested audience. According to the
Advertisement, Euler’s intention was to

“compose an Elementary Treatise, by which a beginner, without any other assistance,
might make himself a complete master of Algebra.” (Euler, 1828, Advertisement)

Judging from today’s point of view the standard set in this textbook and also the
treated subjects are beyond the capability of an untrained learner. Nevertheless, the
textbook “Elements of Algebra” is a progressive introduction from the natural
numbers to Diophantine equations. As set out by Fellmann, the textbook is still

“-in the judgment of today’s foremost mathematicians — the best introduction into the
realm of algebra for a “mathematical infant.” (Fellmann, 2007, p.121)

The “Elements of Algebra” are a systematic introduction into the arithmetic and
elementary algebra. The book is subdivided in two parts. The first part contains the
initiation of different kinds of numbers, the basic arithmetic operations, the
calculation with variables and the calculation of interests. The second part deals
mainly with solving equations of different degrees.

The following analysis is a systematic and text-based approach in order to obtain an
understanding of the concept of numbers within the “Elements of Algebra”. The
achieved insights will be used to discuss the broader understanding of algebra as
presented in this textbook. These results will indicate what kind of understanding the
reader of Euler’s textbook will possibly develop.

THE CONCEPT OF NUMBER

Euler starts his presentation with an ontological explanation of mathematics and the
processed objects. He writes at the beginning of the first chapter:

“[...] And this is the origin of the different branches of the Mathematics, each being
employed on a particular kind of magnitude. Mathematics, in general, is the science of
quantity; or, the science which investigates the means of measuring quantity.” (Euler,
1828, part 1 § 2)

This definition of mathematics can be seen as a programmatic fundament for the
following contents in the textbook. Contrary to today’s understanding of mathematics
as an abstract formal science, Euler considers mathematics as a science of concrete
measurable quantities. A quantity is defined as follows.

“Whatever is capable of increase or diminution, is called magnitude, or quantity.” (Euler,
1828, part 1 8 1) [1]

Euler introduces quantities not as an element of a formal axiomatic structure, but as
quantity founded empirically. As examples for quantities Euler names weight, length
and the sum of money. The given examples indicate that Euler refers quantities to
real subject area. Euler’s definition of quantity can be traced back to Euclid. Thiele
describes the introduction and use of the concept of quantities in Euclid’s Elements in
this way:
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“There is no definition of the concept of magnitude (Greek ueyefog, megathos) because
there is no superior concept for this fundamental concept. Nevertheless, Euclid is dealing
with magnitudes throughout the Elements; [...] Magnitudes are generally characterized
by the property of being able to increase and decrease.” (Thiele, 2003, p. 6)

Like Euclid Euler defines quantities in reference to their capability of increase and
diminution. Therefore, Euler assumes a definite order of the quantities, which he does
not discuss explicitly. The same applies for the properties of an axiomatic domain of
quantities, as transitive and irreflexive. The domain of quantities should be
considered as an algebraic structure with an operation addition and an order relation
less-than. The quantities in Euler’s “Elements of Algebra” are given by empirical
examples and it seems like the properties of the quantities are also given based on the
empirical foundation and require no formal definition.

To compare and calculate with quantities it is necessary to be able to measure or
determine a quantity. Euler remarks to this:

“Now, we cannot measure or determine any quantity, except by considering some other
quantity of the same kind as known, and point out their mutual relation.” (Euler, 1828,
part1 8 3)

The determination of a quantity requires a unit, a quantity of the same kind, which
can be put in a ratio to the proposed quantity. The following given examples are once
again real quantities as weight, length and the sum of money.

Natural Number, Whole Numbers and Rational Numbers

Based on the concept of quantity Euler defines numbers as the ratio of one quantity to
another:

“So that a number is nothing but the proportion of one magnitude to another arbitrarily
assumed as the unit.”(Euler, 1828, part 1§ 4)

The definition of numbers by Euler is based on the fundamental idea of partition and
measurement. Nowadays in mathematics school courses numbers are defined as
cardinal numbers, ordinal numbers or measure values. However, Euler introduces
natural numbers as the ratio of quantities of the same kind. Therefore, natural
numbers are characterized according to the empirical origin of the underlying
guantities.

After the introduction to numbers Euler initiates the basic arithmetic calculation for
the new objects. He starts with an explanation of the symbols + and — and the use of
these symbols related to the natural numbers. Within this approach Euler mixes the
symbols as operation signs and as algebraic signs of a number. He states;

“Hence it is absolutely necessary to consider what sign is prefixed to each number: for in
Algebra, simple quantities are numbers considered with regard to the signs which precede
or affect them. Farther we call those positive quantities, before which the sign + is found,;
and those are called negative quantities, which are affected by the sign —.” (Euler, 1828,
part 1 § 16) [2]
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It can be seen that a change of the ontological state of the signs happens here. Before
the sign stood for an operation, which connects two numbers with each other. In the
context of positive and negative numbers the sign is part of the name of the quantity
itself. Euler pays no particular attention to this fact.

Also nowadays the whole numbers are defined as difference a — b of to natural
numbers a and b. The subtraction of the field Z is introduced with the inverse element
regarding to the addition.

In Euler’s approach this is just a step further towards the extension of the number
system to whole numbers. Based on the characterising of negative quantities Euler
introduces negative numbers with regard to the empirical quantities:

“The manner in which we generally calculate a person’s property, is an apt illustration of
what has just been said. For we denote what a man really possesses by positive numbers,
using, or understanding the sign +; whereas his debts are represented by negative
numbers, or by using the sign —.” (Euler, 1828, part 1 § 17)

It becomes clear at this point, that Euler does not strictly distinguish between a
quantity and a number, which is defined as ratio of quantities. Euler considers
negative number as quantity itself. In this sense Euler also proceeds with numbers as
if they were quantities of a material world. According to the relation of whole
numbers to the domain of quantities of a sum of money, numbers can be ordered
linearly on the number line. Euler argues that:

“Since negative humbers may be considered as debts, because positive numbers represent
real possessions, we may say that negative numbers are less than nothing.” (Euler, 1828,
part 1 § 18)

In this explanation zero stands for the case when someone has no property of his own
or in other words it represents nothing. Euler himself does not name zero directly as
number in this chapter, but includes it in the series of natural numbers and also in the
series of negative numbers. Nevertheless, in the summarization of whole numbers
Euler does not name zero as a possible value of numbers. The given context and also
the handling in the subsequent chapters show that zero as a possible value has to be
included. He describes whole numbers as follows:

“All these numbers, whether positive or negative, have the known appellation of whole
numbers, or integers, which consequently are either greater or less than nothing.” (Euler,
1828, part 1 § 20)

This characterisation corresponds to the law of trichotomy for R or more generally
for ordered sets.

“If x e S and y € S then one and only one of the statements X <y, x =y, y < X is true.”
(Rudin, 1964, p.3)

A formal introduction of negative numbers does not occur. Euler’s justification of
negative numbers and the existence of the order of whole numbers is based on the
presented quantities.

Page 288



ON THE UNDERSTANDING OF THE CONCEPT OF NUMBERS IN EULER’S “ELEMENTS OF ...

In the same manner Euler initiates rational humbers. Here again Euler refers to a
concrete domain of quantities to justify the new numbers. Special attention should be
given to the fact, that Euler defines rational numbers not directly as ratio of two
natural numbers, but rather introduces rational numbers by the help of lengths. The
example leads Euler to an idea of the concept of rational numbers and justifies the
ontological existence of the number at the same time. Euler states:

“When a number, as 7, for instance, is said not to be divisible by another number, let us
suppose by 3, this only means, that the quotient cannot be expressed by an integer
number; but it must not by any means be thought that it is impossible to form an idea of
that quotient. Only imagine a line of 7 feet in length; nobody can doubt the possibility of
dividing this line into 3 equal parts, and of forming a notion of the length of one of those
parts.” (Euler, 1828, part 1 § 68)

The “number” we gain by dividing a quantity by a number is a quantity with a given
unit, which is contrasted by Euler’s definition of numbers in general. The given
problem is based on the fundamental idea of distribution and not of the proposed
fundamental idea of partition and measurement, as indicated by the definition of
number. Euler just introduces numbers by empirical examples and does not define the
ordered field (Q, <,+). But like for the whole numbers Euler presupposes a natural
order of the rational numbers.

Euler’s formulation “nobody can doubt” emphasises the self-evident character of his
explanation. Euler uses the knowledge and laws of the everyday life to introduce and
also justify new contents. Vollrath points out that also for today’s students it is
obvious that a division of a distance leads to another distance. The recurrent problem
is only to determine the length of the parts (\Vollrath, Weigand, 2007, p. 40).

In summary, the numbers underlying concrete quantities are the basic concepts,
which require no definition. They are defined by the capability of increase and
diminution and are clarified by examples. Euler’s understanding of mathematics is
highly related to science.

Properties of Numbers

The properties of numbers are gained by the interpretation of the numbers as
quantities of an empirical subject area. The justification of the properties relies on
empirical examples. Euler refers to obvious characteristics of the quantities, which
are transferred to the numbers, equally to his approach by the extension of the
number systems. This is clearly evidenced in Euler’s explanation of density:

“For instance, 50 being greater by an entire unit than 49, it is easy to comprehend that
there may be, between 49 and 50, an infinity or intermediate number, all greater than 49,
and yet all less than 50. We need only to imagine two lines, one 50 feet, the other 49 feet
long, and it is evident that an infinity number of lines may be drawn, all longer than 49
feet, and yet shorter than 50.” (Euler, 1828, part 1§ 20)
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Euler does not only introduce new concepts and properties referring to empirical
quantities, but also justifies operational rules and laws by reference to concrete
guantities. For the justification of the operational rule (+)(-) = — Euler observes:

“Let us begin by multiplying —a by 3 or +3. Now since —a may be considered as debt, it is
evident that if we take the debt three times, it must thus becomes three time greater, and
consequently the required product is —3a.” (Euler, 1828, part 1 § 32)

The phrase “evident” suggests for the student an implicitness of the obtained rule.
Euler apparently considers this rule as an evident statement, which is an extract from
an empirical observation and for this reason does not require a formal proof.

The validation of the commutative law is illustrated by empirical examples. Contrary
to the previous rule Euler explains the commutative law not by referring directly to
quantities but under the specification of concrete number values. He argues:

“It may be farther remarked here, that the order in which the letters are joined together is
indifferent; thus ab is the same thing as ba; for b multiplied by a is the same as a
multiplied by b. To understand this, we have only to substitute, for a and b, known
numbers, as 3 and 4; and the truth will be self-evident; for 3 times 4 is the same as 4
times 3.” (Euler, 1828, part 1 § 27)

Euler’s example is so simple and common in the everyday life, that he also states this
fact as self-evident. Similar to the other presented introductions and explanations
Euler abdicates a formal derivation or proof.

Euler’s approach resembles the methods and access in nowadays school mathematics.
As Padberg points out, in the primary school the properties are obviously not
formulated in an abstract way. The students will rather experience them as
computational advantageous. The justification of the properties can be obtained by
example-attached strategies of proof (Padberg, 2009, p.125). The given explanations
refer mainly to dot patterns or arrangements of objects.

For Euler numbers simply have their properties because of the fact, that the
underlying relevant quantities have these properties and this is so obvious and
common knowledge, that there is no need for any kind of proof. It seems as if the
numbers inherit the characteristics from the basic empirical entities.

Imaginary Numbers

Of great importance for Euler in the “Elements of Algebra” is the concept of the
imaginary number. It should be pointed out here that it should be distinguished
between the complex number as an element of the field C, like it is understood today,
and the square root of a negative number as imaginary number of Euler’s days. In
Euler’s days there was no theory of complex numbers and therefore there had not
been an axiomatic approach, on which it could fall back on. The first documents
bringing up complex numbers date back to the Renaissance. In 1645 Cardano
published his book “Ars Magna”, where the process to solve cubic equations had
been generalised by the help of the square root of negative numbers (Remmert,
1991). By means of some equation the presented process provides imaginary
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numbers as solutions. Cardano suggested that square roots of negative numbers have
a “sophisticated nature” since they are neither near the “nature of a number” nor near
the “nature of a quantity”. Cardano concluded that the results of equations, which
include square roots of negative numbers, are useless (Cardano, 1545, p. 288). Even
years later, when imaginary numbers were used in calculations a systematic analysis
of the imaginary numbers is missing. Although Euler handled imaginary numbers in
calculations and actually invented i as notation for /-1, the ontological state of
imaginary number was undetermined. Only 1831, Gauss was able to interpret
imaginary numbers as points in a plane and founded them in geometry. Several years
later Hamilton described imaginary numbers as an ordered pairs (x,y) of real numbers
and defined for them arithmetic calculations as addition and multiplication (Remmert,
1991).

As written above, Euler was well aware of imaginary numbers, but nevertheless

“Euler had great difficulty in explaining and defining just what the imaginary numbers,
which he had been handling so masterfully during the past forty years and more, really
were.” (Remmert, 1991, p. 59)

For Euler the imaginary number represents an expression without any relation to the
real subject area. Nevertheless, this expression has to exist, due to the fact, that he
gains them by applying allowed calculation rules on negative numbers. Thus the term
of the square root of a negative number appears in this sense in a natural way. But the
new term is not compatible with Euler’s understanding of a number, since the
definition of number, as ratio of quantities of the same kind, does not apply to the
square root of negative numbers. Especially the properties of numbers that result
from their definition do not refer to the new terms. Euler notes that:

“All such expressions, as vV—1,v/—2,v/—3,v/—4, ... are consequently impossible, or
imaginary numbers, since they represent roots of negative quantities; and of such
numbers we may truly assert that they are neither nothing, or greater then nothing, nor
less than nothing; which necessarily constitutes them imaginary, or impossible.” (Euler
1828, part 1 § 143)

As pointed out above, a main characteristic of numbers is that they can be ordered
linearly on a number line. The law of trichotomy must be fulfilled. Thus every kind
of number has to be less than zero, equal to zero or greater than zero as condition to
be a possible number. The square root of negative numbers, however, does not follow
any characteristic of a linear order. Moreover, the unknown expressions cannot even
be approximated. The value of the square root of a negative number can not be
qualified. Euler points this out as follows:

“”[...] whereas no approximation can take place with regard to imaginary expressions,
such as v—5; for 100 is as far from being the value of the root as 1, or any other
number.” (Euler, 1828, part 1 § 702)

The square root of a negative number is a result of solving an equation, but is not
even considered as possible number. Imaginary numbers do not refer to empirical
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objects and therefore, they are not part of our material world. There is no empirical
quantity, which is expressed by the imaginary number, as it is the case for the
negative number and the debts.

Nevertheless, Euler considers imaginary numbers to be important for addressing
algebra. Euler justifies his considerations regarding the imaginary numbers against
the widespread opinion that they are useless expressions and do not need to be
discussed. Euler identifies the benefit of imaginary numbers as indicator whether an
equation is solvable or not. He states:

“For the calculation of imaginary quantities is of the greatest importance, as questions
frequently arise, of which we cannot immediately say whether they include any thing real
and possible, or not; but when the solution of such a question leads to imaginary
numbers, we are certain that what is required is impossible.” (Euler, 1828, part 1§ 151)

This opinion on the imaginary numbers as an indicator for solvability of problems is
not new. Before Euler, Newton only had understood the imaginary expression as
symbol for the impossibility to solve the equation (Remmert, 1991, p. 58) and
Descartes had actually understood imaginary numbers as geometric impossibility:

“To see how Descartes understood the association of imaginary numbers with
geometrical impossibility, consider his demonstration on how to solve quadric equation
with geometric constructions. He began with the equation z* = az — b®, where a and b?
both non-negative, [...].” (Nahin, 1998, p. 34)

Another point in which imaginary numbers show themselves to be of use for Euler is
as provisional result, since after operating with them they can lead to possible
numbers. Thus Euler uses imaginary numbers later on to find the factorisation of the
equation ax®+ bxy + cy®. The integration of imaginary number in the calculation is
one further step to a theory of complex numbers.

Euler’s solution in handling the imaginary expressions is to transfer the well-known
operations and calculation rules from the real numbers to the new expressions. This is
done without a formal definition of the potential operations regarding imaginary
numbers. For Euler it is natural that the normal calculation rules also apply to
imaginary numbers due to the fact that we can have an idea of them:

“But notwithstanding this, these numbers present themselves to the mind; they exist in
our imagination, and we still have a sufficient idea of them; since we know that by v—4
is meant a number which, multiplied by itself, produces -4; for the reason also, nothing
prevents us from making use of these imaginary numbers, and implying them in
calculation.” (Euler, 1828, part 18 145)

Euler’s proceeding resembles his examination of real numbers. Real numbers also
appear by extracting the square root of numbers, which are no square themselves. In
the same way as for the imaginary numbers Euler gains an idea of the real numbers.
He writes as follows:

“These irrational quantities, though they cannot be expressed by fractions, are
nevertheless magnitudes of which we may form an accurate idea; since, however
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concealed the square root of 12, for example, may appear, we are not ignorant that it must
be a number, which, when multiplied by itself, would exactly produce 12; and this
property is sufficient to give us an idea of the number, because it is in our power to
approximate towards its value continually.” (Euler, 1828, part 1§ 129)

Despite the parallels in these two remarks the differences are obvious. Although
Euler is not able to obtain a concrete perception of the square root of 12, he may
approximate the value of the real number by rational numbers and especially he can
order the real numbers linearly. Both qualities do not apply for the imaginary
numbers, as pointed out above.

The application of the empirically founded calculation methods to imaginary
numbers without a proper definition is problematic. The missing definition of the
basic arithmetic operation for the square root of negative numbers leads to an
ambiguity of the multiplication. On the one hand Euler writes:

“In general, that by multiplying v—a by v—a, or by taking the square of v—a we obtain
—a.” (Euler, 1828, part 1 § 146)

On the other hand Euler states two paragraphs later:

“Moreover, as v/a multiplied by /b makes vab, we shall have v/6 for the value of v—2
multiplied by v—3;” (Euler, 1828, part 1 § 148)

Like Neumann points out, the attentive reader will have to ask himself how v—av—a
has to be determined (Neumann, 2008, p. 118). Firstly it can be calculated vV—av—a
= (V=a)? = —a, and secondly like this: v—av—a = \/(—a)? = Va? = —a. Euler does
not clarify this issue. [3] Remmert remarks to this problem, that “Euler occasionally
makes some mistakes” (Remmert, 1991, p. 59). This is, however, not tenable,
because it implies the existence of the definition of the multiplication of imaginary
numbers. But an algebraic definition of the multiplication did not exist until
Hamilton.

The question of the ontological status of imaginary numbers was not sufficiently
answered. Scholz points out correctly, that the question has to be whether the
knowledge about calculation methods is reason enough to award imaginary numbers
with their own ontological status (Scholz, 1990, p. 294). It seems in the “Elements of
Algebra” that any kind of algebraic expression based on empirically founded
arithmetic operation, are ontologically justified due to the fact that these exist simply
because of this operation. Besides the investigation of imaginary numbers Euler
discusses algebraic expression such like = in his Algebra. His statement has to been
seen critically:

“For < signifying a number infinitely great and 2 being incontestably the double of 2, it is
evident that a number, though infinitely great, may still become twice, thrice, or any
number of times greater.” (Euler, 1828, part 1 § 84)

In this regard, Jahnke draws attention to the fact that an abstract quantity simply can
be determined by its occurrence as a variable in a formula. And due to this fact also
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objects, which cannot be interpreted empirically, can be referred under this concept
(Jahnke, 2003, p. 106).

In contrary Kvasz does not believe that for imaginary numbers a complete
detachment from the empirical subject area is possible. He writes:

“Thus for Euler too these quantities exist only in our imagination. But this subjective
interpretation of the complex numbers cannot explain how it is possible for computations
involving these non-existent quantities to lead to valid results about the real world. [...] If
the complex numbers make it possible to disclose new knowledge about the world, they
must be related to the real world in some way. A purely subjective interpretation is
therefore unsatisfactory.” (Kvasz, 2008, p. 182)

Euler’s discussion of the imaginary numbers clearly shows that the ontological status
must not be fully determined and that an axiomatic access to operate with expression
as objects is not necessarily required. The known and established operations, which
were initiated on the basis of empirical quantities, can be transferred to new,
undefined expressions. The imaginary numbers do not belong to any known and
empirically justified number system. Nevertheless, they exist, since they result by
taking the square root of a negative number.

As it has been made clear in this chapter, Euler deals with symbolic expressions
without referring directly to a real subject area. It is indeed wrong to assume that
Euler justifies each step in his Algebra by referring to empirical objects. Furthermore,
Euler introduces new concepts with regard to his basic objects, the empirical
guantities, but subsequently handles them without reference to the domain of
quantities. Euler handles and uses the concepts algebraically. At the beginning of his
textbook he points out:

“In Algebra, then we consider only numbers, which represent quantities, without
regarding the different kinds of quantity.” (Euler 1828, part 1 § 6)

The foundation of his approach remains the localisation of Algebra in the context of
empirical quantities.

THE CONCEPT OF VARIABLE

The word “variable” is a term from the present day and is not used by Euler in the
“Elements of Algebra”. Euler describes the variables in terms of a sought number,
unknown quantity or known numbers. Since for Euler a number is the ratio of two
quantities, it could be expected that the unknown itself is no abstract entity to him.

Euler introduces the variables at the very beginning of the Algebra during the
initiation of the basic arithmetic operations. Euler discusses arithmetical laws in this
manner generally. He characterises the variable as follows:

“All this is evident; and we have only to mention, that in Algebra, in order to generalise
numbers, we represent them by letters, as a, b, ¢, d etc.” (Euler, 1828, part 1 § 10)
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In Euler’s Algebra variables represent numbers. The use of these variables is to
generalise a proposition and to be able to examine equations. Therefore, Euler needs
a general symbolism and syntactic rules to operate with the letters. After
demonstrating every arithmetic operation for examples they are applied to letter as
variables.

Euler does not specify the conditions for arithmetical operations and laws. Therefore,
he does not introduce a set to which the operation or law applies. He neither discusses
the closure under the operation. Even for the generalisation of a ratio Euler does not
limit the domain for the variable. In this context, Heuser mentioned in his
introduction to real analysis that the calculation with letters can be handled as used
from school, since there does not exist something newly learned regarding to the
basic arithmetical operations (Heuser, H. (2009), p. 40). It can be said that in the
same way, in Euler’s Algebra, the transfer of the operations to the variables is
familiar, because the variables just represent the numbers or quantities sought.

In German secondary schools nowadays the variable as concept is usually introduced
as representation of a number or quantity. Also, known operations from the presented
number system are transferred to the variables without further formal explanation, but
with a visualisation of the validation regarding concrete quantities.

Euler uses letters as variables not only for the number sought, but also for given
unknown numbers. During the discussion of solving quantities Euler states:

“And, in general, if we have found x + a = b, where a and b express any known number,
[...].” (Euler 1828, part 1 § 574)

In order to solve the equation, Euler demonstrates the calculation methods for
exemplified problems. During the problem solving Euler handles the variables as if
they were concrete numbers. This can be clearly seen by this example:

“In order to resolve this question, let us suppose that the number of men is = X; and,
considering this number as known, we shall proceed in the same manner as we wished to
try whether it corresponded with the conditions of the equation.” (Euler, 1828, part 1 §
567)

Euler does not justify every transformation step during a calculation with regard to
empirical quantities. As already described above, Euler discusses mental
representations of empirical objects and uses empirically founded operations. Thus, a
justification is given implicitly all the time by the nature of the processed objects.

EULER’S UNDERSTANDING OF ALGEBRA

The manner in which Euler introduced the concepts in the textbook as well as the
introduction of properties provides justified conclusion about Euler’s understanding
of algebra. The previously gained insights into the understanding of the concept of
numbers and variables shall be discussed with the help of the idea of empirical
theories. [4]
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Contrary to the modern understanding of algebra, which is focussed on the structure,
Euler’s ambition in the “Elements of Algebra” is to describe and explain empirical
phenomena. He wants to develop a theory of algebra, which can help to solve
problems of the natural environment. Since the “Elements of Algebra” is constituted
as a textbook with the intention that an unskilled student can learn the algebra
without further help, Euler starts his description with the basic objects of his theory.
The basic objects are concrete, measurable quantities, because Euler defines the
quantities through their empirical characteristic of the capability of increase and
diminution. A natural number is defined through the ratio of quantities of the same
kind. Based on this concept of numbers Euler extends the number system to the
whole numbers and also the rational numbers with reference to a domain of
quantities. Thus Euler introduces the numbers as representation of empirical objects.
They are Elements of a real subject area. In the introduction of other concepts and
laws Euler refers to the underlying empirical quantities. His justifications as shown
above are intuitive. He calls on the common knowledge of the reader of empirical
quantities and numerical examples. Thus it can be said that Euler fulfils in his
Algebra the characteristics of an empirical algebraic theory regarding to a subject
area.

Euler does not define his theory of algebra like modern mathematicians. The objects
in this textbook are not composed abstract elements of a set, but rather representation
of empirical objects. The properties of the numbers are not deduced from stated
axioms but are derivated from the properties of the quantities. Similar the calculation
laws are constituted related to a subject area. Thus, a formal proof or logical
derivation from axioms is not required. Euler’s characterisation of the imaginary
numbers as indication of insolvability of a problems shows the necessity of verifying
the statements empirically. This contrast modern understanding of mathematics, in
which verification of a statement can only be attained by a formal proof.

He experiments with symbols like a scientist. Fraser’s opinion about analysts can be
transferred to Euler:

For the 18" century analyst, functions are things that are given ,out there’, in the same
way that the natural scientist studies plants, insects or minerals, given in nature.” (Fraser
(2005), p. 246)

In the “Elements of Algebra” natural numbers are defined by the ratio of two
quantities. In this sense the numbers are for Euler given objects of his Algebra with
which he can experiment.

Imaginary numbers have a unique status in Euler’s Algebra. They are not possible
numbers, since they are not less than, equal to or more than zero. Imaginary numbers
do not represent empirical objects and therefore they are imaginary. Nevertheless,
they are created by the application of allowed operations on negative numbers. Thus,
imaginary numbers exist and Euler applies the current operation on the undefined
expressions. Imaginary numbers have no independent ontological status and thus
cannot be discussed isolated from the operation, which creates them. Imaginary
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numbers only have a meaning in the context of the theory of algebra, since they exist
through the defined operation within the Euler’s theory of algebra. In this manner it
can be said that Euler’s approach in Algebra is empirical. [5]

NOTES

1. In this article the terms magnitude and quantity are used as synonyms.

2. It should be pointed out here, that in the original German version the formulation of the sentence leads to a stricter
interpretation of Euler’s understanding of numbers. The understanding of numbers as quantities themselves is more
clearly expressed. Euler writes: “Hence, they used to consider in the algebra numbers with the preceding sign as a single
quantity.” (Ibid. Euler, 1770)

3. Indeed Neumann notes correctly that an ambiguity of the multiplication exists here, but he himself makes a mistake
by formulating the two different ways to handle the equation. Instead of taking the square of v/—a, he calculates

V—av—a =./(—a)? = -a for the first possibility.
4. Compare the approach of empirical theories by Balzer & Moulines & Sneed (1987) and Burscheid & Struve (2010).

5. For further discussion compare Reimann & Witzke (2013).
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THE PROBLEM OF THE PARALLELS AT THE 18™ CENTURY:
KASTNER, KLUGEL AND OTHER PEOPLE

Klaus Volkert
Universitat Wuppertal

During the 18" century a lot of work on the problem of the parallels — that was in the
traditional understanding, proving Euclid’s parallel postulate on the base of his other
axioms and postulates — was done. There was G. Saccheri with his remarkable work
“Euclidis ab omni naevo vindicatus“ (1737) — which remained more or less
completely unnoticed - on one hand and A.M. Legendre with his widespread
demonstrations (“Eléments de géométrie” (1794)) on the other hand. But in between
there was also a remarkable dissertation written by Georg Simon Kliigel (“Conatuum
praecipuorum theoriam parallelarum demonstrandi recensio” (1763)) under the
guidance of Abraham Gotthelf Kastner at Gottingen; it was the latter who draw some
skeptical conclusions of the work done by Kiligel in his remarks in his
“Anfangsgriinde” (first published 1758-1764; there are different later editions).

In my conference | want to retrace in a short way the history of the problem of the
parallels in particular the proposals made by Saccheri and Legendre. Its main purpose
is to describe Kliigel’s critical work and the conclusions derived from it by Késtner.
We will see that the convictions of the mathematicians were surprisingly enough very
important in this history — the main difference between J. Bolyai and N. Lobachevsky
on one hand and their precursors laying exactly in this respect, Kliigel and Ké&stner
being remarkable forerunners of them.

The dissertation by Kligel is now available in a German translation by Dr. M.
Hellmann (Weilheim) in Volkert, K. “Das Unmoégliche denken. Die Rezeption der
nichteuklidischen Geometrie im deutschsprachigen Raum 1860 — 1900 (Heidelberg:
Springer, 2013).
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HPM IN MAINLAND CHINA: AN OVERVIEW
WANG Xiaogin
East China Normal University

Primarily five themes on HPM are discussed in Mainland China: 1) Discussion on
“Whys” & “Hows”. The “whys” are categorized corresponding to three mathematics
teaching objectives, and four approaches to using the history of mathematics in
teaching are identified based upon teaching practice. 2) Education-oriented
researches on the history of mathematics. The history of specific topics on school
mathematic is studied, for example, the history of the concept of ellipse, the history
of using the letters to represent the numbers, etc. 3) Empirical studies on the
“historical parallelism”. For example, students’ understanding of the concept of the
tangent line is surveyed, and the historical parallelism id examined. 4) Integrating the
history of mathematics into mathematics teaching: classroom practice or experiments.
Many teaching experiments are carried out and many teaching materials have been
built so far. 5) HPM & mathematics teachers’ professional development. In this
presentation, we mainly focus on the four approaches to using history in teaching
based on some lessons, such as the linear equation with one unknown, the application
of similar triangles & congruent triangles, the concept of complex numbers, etc.
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DIFFERENT UNDERSTANDINGS OF MATHEMATICS:

AN EPISTEMOLOGICAL APPROACH TO BRIDGE THE GAP BETWEEN SCHOOL
AND UNIVERSITY MATHEMATICS

Ingo Witzke
University of Siegen

A survey in Germany amongst students who have chosen to obtain a teaching degree
shows that the transition from school to university mathematics is experienced in the
context of a major revolution regarding their views about the nature of mathematics.
Motivated by the survey, a team of researchers is currently working on a historically-
motivated concept for an undergraduate course to help bridge the gap.

THE PROBLEM OF TRANSITION: STILL OF IMPORTANCE

A classical problem of mathematics education certainly is the problem of transition
from school mathematics to university mathematics and back again. It is a problem all
high school teachers around the world encounter during their training. Even Felix
Klein (1849-1925), prominent mathematician and mathematics educator, in this
context complained about the phenomena he coined as “double discontinuity”:

The young university student found himself, at the outset, confronted with problems,
which did not suggest, in any particular, the things with which he had been concerned at
school. Naturally he forgot these things quickly and thoroughly. When, after finishing his
course of study, he became a teacher, he suddenly found himself expected to teach the
traditional elementary mathematics in the old pedantic way; and, since he was scarcely
able, unaided, to discern any connection between this task and his university
mathematics, he soon fell in with the time honoured way of teaching, and his university
studies remained only a more or less pleasant memory which had no influence upon his
teaching. (Klein, 1908/1932, p. 1, author’s translation)

In the following we focus on the “first discontinuity”, postulating an epistemological
gap between school and university mathematics. As the problem is at least more than
100 years old, definitive solutions do not seem to appear on the horizon (cf. Gueudet,
2008). Contrarily, dropout rates (especially in western countries) remain on a
constantly high level — in Germany about 50% of the students studying mathematics or
mathematics-related fields stop their efforts before having finished a bachelor’s degree
(Heublein et al., 2012). This again leads to an at least perceived intensification of
research in this field. In 2011 the most important professional associations regarding
mathematics (education) in Germany (DMV-Mathematics, GDM - Mathematics
Education & MNU - STEM Education) formed a task force regarding the problem of
transition (cf. http://www.mathematik-schule-hochschule.de). In February 2013 a
scientific conference with the topic “Mathematik im Ubergang Schule/Hochschule
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und im ersten Studienjahr” (“Mathematics at the Crossover School/University in the
First Academic Year”) in Paderborn (Germany) attracted almost 300 participants
giving over 80 talks regarding the problematic transition-process from school to
university mathematics. The proceedings of this conference (Hoppenbrock et al.,
2013) and its predecessor on special transition-courses (Bausch et al., 2014) give an
impressive overview on the necessity and variety of approaches regarding this matter.
Interestingly a vast majority of the studies and best practice examples for “transition-
courses” locate the problem in the context of deficits (going back as far as junior high
school) regarding the content knowledge of freshmen at universities.

In the “precourse and transition course community” it seems to be consensus by now that
existing deficits in central fields of lower-secondary school’s mathematics make it
difficult for Freshmen to acquire concepts of advanced elementary mathematics and to
apply these. Fractional arithmetic, manipulation of terms or concepts of variables have an
important role e.g. regarding differential and integral calculus or non-trivial application
contexts and constitute insuperable obstacles if not proficiently available. (Bieler et al.,
2014, p. 2, author’s translation)

The question of how to provide first semester university students with the obviously
lacking content knowledge is certainly an important facet of the transition problem.
But as the results of an empirical study suggest, there are other, deeper problem
dimensions which aid in further understanding the issue.

MOTIVATION: A SURVEY

To investigate new perspectives on the transition problem, approximately 250 pre-
service secondary school teachers from the University of Siegen and the University of
Cologne in 2013 were asked for retrospective views on their way from school to
university mathematics. When the questionnaire was disseminated the students had
been at the universities for about one year. Surprisingly, the systematic qualitative
content analysis of the data (Mayring 2002; Huberman & Miles 1994) showed that
from the students’ point of view it was not the deficits in (the level and amount of)
content knowledge that dominated their description of their own way from school to
university mathematics. To a substantial extent, students reported problems with a
feeling of “differentness” of school and university mathematics than with the abrupt
rise in content-specific requirements. Three exemplar answers to the question,

What is the biggest difference or similarity between school and university mathematics?
What prevails? Explain your answer.

illustrate this point quite clearly.

Student (male, 20 years): “The biggest difference is, that university mathematics is a
closed logical system, constituted by proofs. School mathematics in contrast is limited to
applications. Regarding the topics there are more similarities, regarding the process of
reasoning more differences.” (author’s translation)
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Student (male, 19 years): “The fundamental difference develops as mathematics in school
is taught ostensibly (“anschaulich™), whereas at university it is a rigid modern-axiomatic
structure characterizing mathematics. In general there are more differences than
similarities, caused by differing aims.” (author’s translation)

At this point we can only speculate on the term “aims” but in reference to other
formulations in his survey it seems possible that he distinguishes between general
education (Allgemeinbildung) as an aim for school and specialized scientific teacher-
training at universities.

The third example is impressive in the same sense:
Student (female, 20 years):

Frage 8:

Wa liegt fiir Sie der grofie Unterschied oder die priBte Gemeinsamkeit zwischen Schul- und
Hochschulmathematik? Gibt es insgesamit eher mehr Gemeinsamkeiten als Unterschiede oder
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Figure 1: A student’s appreciation of difference or similarity between school and
university mathematics.

In all three cases the students clearly distinguish between school and university
mathematics, which is most prominent in the last example (see Fig. 1): for this student
school mathematics and university mathematics are so different, that the only
remaining similarity is the word ‘mathematics’. This “differentness” encountered by
the students is specified in further parts of the questionnaire with terms as vividness,
references to everyday life, applicability to the real world, ways of argumentation,
mathematical rigor, axiomatic design, etc.

Using additional results of studies with a similar interest (e.g. Gruenwald et al., 2004;
Hoyles et al., 2001) the author comes to the preliminary conclusion that pre-service
teachers clearly distinguish between school and university mathematics regarding the
nature of mathematics. In the terms of Hefendehl-Hebeker et al., the students
encounter an “Abstraction shock.” (Hefendehl-Hebeker et al., 2010)
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This sets the framework for further research concerning the problem of transition:
following the idea of constructivism in mathematics education, students construct their
own picture of mathematics with the material, problems and stimulations teachers
provide in the classroom or lecture hall (Anderson et al., 2000; Bauersfeld, 1992).
Thus it is helpful to reconstruct the nature of mathematics communicated explicitly
and implicitly in high school and university textbooks, lecture notes, standards, etc.,
with a special focus on differences.

REFLECTIONS ABOUT THE NATURE OF MATHEMATICS &
MATHEMATICAL BELIEF SYSTEMS IN SCHOOL AND UNIVERSITY

Beliefs

The terms nature of mathematics and belief system regarding mathematics are closely
linked to each other if we understand learning in a constructive way. Schoenfeld
(1985) successfully showed that personal belief systems matter when learning and
teaching mathematics:

One’s beliefs about mathematics [...] determine how one chooses to approach a problem,
which techniques will be used or avoided, how long and how hard one will work on it,
and so on. The belief system establishes the context within which we operate [...]
(Schoenfeld, 1985, p. 45)

From an educational point of view beliefs about mathematics are decisive for our
mathematical behavior. For example, there are four prominent categories of beliefs
concerning mathematics as a discipline distinguished by Grigutsch, Raatz, and Térner
(1998): the toolbox aspect, the system aspect, the process aspect and the utility
aspect. Liljedahl et al. (2007) specified this wide range of possible aspects of a
mathematical worldview as follows:

In the “toolbox aspect”, mathematics is seen as a set of rules, formulae, skills and
procedures, while mathematical activity means calculating as well as using rules,
procedures and formulae. In the “system aspect”, mathematics is characterized by logic,
rigorous proofs, exact definitions and a precise mathematical language, and doing
mathematics consists of accurate proofs as well as of the use of a precise and rigorous
language. In the “process aspect”, mathematics is considered as a constructive process
where relations between different notions and sentences play an important role. Here the
mathematical activity involves creative steps, such as generating rules and formulae,
thereby inventing or re-inventing the mathematics. Besides these standard perspectives on
mathematical beliefs, a further important component is the usefulness, or utility, of
mathematics. (p. 279)

Very often these beliefs are located within certain fields of tension (Spannungsfelder):
there is, for example, the process aspect which is always implicitly connected to its
opposite pole the product aspect. Another pair of concepts in this sense is certainly an
intuitive aspect on the one hand and a formal aspect on the other, having even a
historical dimension: “There is a problem that goes through the history of calculus: the
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tension between the intuitive and the formal.” (Moreno-Armella, 2014, p. 621) These
fields of tension may help to describe the problems the students encounter on their
way to university mathematics. Especially helpful when looking at the survey results,
representing one important facet, seems to be the tension between what Schoenfeld
calls an empirical belief system and a formal(istic) belief system — a convincing
analytical distinction following the works of Burscheid and Struve (2010). The
empirical belief system on the one hand describes a set of beliefs in which
mathematics is understood as an experimental natural science, which of course
includes deductive reasoning, about empirical objects. Good examples for such a
belief system can be found in the history of mathematics. The famous mathematician
Moritz Pasch (1843-1930) who completed Euclid’s axiomatic system, explicitly
understood geometry in this way,

The geometrical concepts constitute a subgroup within those concepts describing the real
world [...] whereas we see geometry as nothing more than a part of the natural sciences.
(Pasch, 1882, p. 3)

Mathematics in this sense is understood as an empirical, natural science. This implies
the importance of inductive elements as well as a notion of truth bonded to the correct
explanation of physical reality. In Pasch’s example Euclidean geometry is understood
as a science describing our physical space by starting with evident axioms. Geometry
then follows a deductive buildup — but it is legitimized by the power to describe the
physical space around us correctly. This understanding of mathematics as an empirical
science (on an epistemological level) can be found throughout the history of
mathematics — prominent examples for this understanding are found in many scientists
of the 17" and 18" centuries. For example, Leibniz conducted analysis on an
empirical level; the objects of his calculus differentialis and calculus integralis were
curves given by construction on a piece of paper — not as today’s abstract functions
(cf. Witzke, 2009).

Now, how does all of this come together with students and the transition problem? If
we take a closer look at the survey results, and combine this with a look at current
textbooks we see that students at school are likely to acquire an empirical belief
system — which on epistemological grounds shows parallels to the historical
understanding of mathematics. These epistemological parallels were fundamental for
the design of our ‘transition seminar’ for students. The main idea is that the
recognition and appreciation of different conceptions of mathematics in history (i.e.,
those held by expert mathematicians) can help students to become aware of the own
belief system and may guide them to make necessary changes.

SCHOOL & UNIVERSITY

If we look at the most recent National Council of Teachers of Mathematics (NCTM)
standards and prominent school books we see that for good reasons, mathematics is
taught in the context of concrete (physical) objects at school: The process standards of
the NCTM and in particular “connections” and “representations” (which are
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comparable to similar mathematics standards in Germany) focus on empirical aspects.
At school it is important that students “recognize and apply mathematics in contexts
outside of mathematics” or “use representations to model and interpret physical,
social, and mathematical things” (NCTM, 2000, p 67).

The prominent place of illustrative material and visual representations in the
mathematics classroom has important consequences for the students’ views about the
nature of mathematics. Schoenfeld proposed that students acquire an empiricist belief
system of mathematics at school (Schoenfeld, 1985; 2011). This is caused by the fact
that mathematics in modern classrooms does not describe abstract entities but a
universe of discourse ontologically bounded to “real objects”: Probability Theory is
bounded to random experiments from everyday life, Fractional Arithmetic to “pizza
models”, Geometry to straightedge and compass constructions, Analytical Geometry
to vectors as arrows, Calculus to functions as curves (graphs) etc.).

At university things can look totally different. Authors of prominent textbooks (in
Germany as well as in the U.S.) for beginners at university level depict mathematics in
quite a formal rigorous way. For example in the preface of Abbott’s popular book for
undergraduate students, Understanding Analysis, it becomes very clear where
mathematicians see a major difference between school and university mathematics:
“Having seen mainly graphical, numerical, or intuitive arguments, students need to
learn what constitutes a rigorous proof and how to write one” (Abbott, 2000, p. vi).
This view is also transported by Heuser’s popular analysis textbook for first semester
students (Heuser, 2009, p. 12, author’s translation).

The beginner at first feels [...] uncomfortable [...] with what constitutes mathematics:

- The brightness and rigidity in concept formation

- The pedantic accurateness when working with definitions

- The rigor of proofs which are to be conducted [...] only with the means of logic not
with Anschauung.

- Finally the abstract nature of mathematical objects, which we cannot see, hear, taste
or smell. [...]

This does not mean that there are no pictures or physical applications in the book; it is
common sense that modern mathematicians work with pictures, figural mental
representations and models — but in contrast, to many students it is clear to them that
these are illustrations or visualizations only, displaying certain logical aspects of
mathematical objects (and their relations to others) but by no means representing the
mathematical objects in total. This distinction gets a little more explicit if we look at a
textbook example. In school books the reference objects for functions are curves.
Functions are virtually identified with empirically given curves. Consequently,
schoolbook authors work with the concept of graphical derivatives in the context of
analysis (see Fig. 2). At university, curves are by no means the reference objects
anymore; they are only one possibility to interpret the abstract notion of function. The
graph of a function in formal university mathematics is only a set of (ordered) pairs.
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If we, in a theoretical simplification, AR
contrast the empirical belief system e 2
many students acquire in classroom .
with the formal(ist) belief system
students are supposed to learn at
university we have one model that
explains the problem of transition.
For example, in this model the notion
of proof differs substantially in
school and university mathematics.
Whereas at universities (especially in
pure mathematics) only formal
deductive reasoning is acceptable, non-rigorous proofs relying on “graphical,
numerical and intuitive arguments” are an essential part of proofs in school
mathematics where we explain phenomena of the “real world”. In the terminology of
Sierpinska (1992), students at this point have to overcome a variety of
“epistemological obstacles”, requiring a big change in their understanding of what
mathematics is about.

Figure 2: Graphical derivatives in a
schoolbook.

HELPING TO BRIDGE THE GAP: SEMINAR CONCEPTION

The findings of the survey and the theoretical discussion are essential for the author’s
design of a course for pre-service teachers which will be taught, evaluated and
analyzed for the first time in spring 2015 together with the University of Cologne
(Horst Struve) and the Florida State University (Kathleen Clark). [1]

The overall aim of the course is to make students aware and to lead them to
understand of crucial changes regarding the nature of mathematics from school to
university. The different conceptions of mathematics in school and university can be
reconstructed as well for the history of mathematics, as we previously stated. Thus, an
understanding of how and why changes regarding the nature of mathematics (for
example from empirical-physical to formal-abstract) took place may be achieved by an
historical-philosophical analysis (cf. Davies 2010). This is the key idea of the course.
Thereby we hope that the students then can link their own learning biographies to the
historical development of mathematics. This conceptual design of the course draws
upon positive experience with explicit approaches regarding changes in the belief
system of students from science education (esp. “Nature of Science”, cf. Abd-El-
Khalick & Lederman, 2001).

The undergraduate course designed to cope with the transition problem is organized in
four parts:

1) Raising attention for the importance of beliefs/philosophies of mathematics.
2) Historical case study: geometry from Euclid to Hilbert. Which questions lead to
the modern understanding of mathematics?
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3) What characterizes modern formal mathematics? (Exploration of Hilbert’s
approach.)
4) Summarizing discussion and reflection

1) Raising attention for the importance of beliefs/philosophies of mathematics.

In the first part of the seminar we want to make the students aware of the idea of
different belief systems/natures of mathematics. Here we start with individual
reflections and work with authentic material such as transcripts from Schoenfeld’s
research that clearly show the meaning and relevance of the concept of an empirical
belief system. In a next activity we will compare textbooks: University textbooks,
school textbooks, and historical textbooks.

3. Die Ableftungsfunktion

A Zelchnerische Bestimmung

T

Figure 3: Three excerpts of different textbooks for comparison.

The three excerpts (Fig. 3) illustrate how we will work in this comparative setting. In
the upper right-hand corner of Fig. 3 is a formal university textbook definition of
differentiation. It is characterized by a high degree of abstraction: the objects of
interest are functions defined on real numbers and even complex numbers. We see a
highly symbolic definition where the theoretical concept of limit is necessary. Just
below we see in contrast, is an excerpt from a popular German school textbook. Here
the derivative function is defined on a purely empirical level: the upper curve is
virtually identified with the term “function’. Characteristic points are determined by an
act of measuring and the slopes of the triangles are then plotted underneath and
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constitute the red curve. Interestingly for students, should be that the theoretical
abstract notion of function — as it is presupposed in the university textbook — did not
always characterize analysis.

If we look back to Leibniz (one of the fathers of analysis), with his calculus
differentialis and intergalis, he conducted mathematics in a rather empirical way as
well (cf. Witzke, 2009): his objects were curves given by construction on a piece of
paper — properties like differentiability or continuity were read out of the curve...and
not only there seem to be parallels on an epistemological level between school analysis
and historical analysis. For example, Leibniz presented (published in 1693) the
invention of the so-called integrator (left-hand side of Fig. 3), a machine that was
designed to draw an anti-derivative curve by retracing a given curve. So here, as in the
schoolbook, it is on an epistemological level that the empirical objects form the theory.
Combined with selected quotes from schoolbooks emphasizing its experimental and
empirical access to mathematics, quotes like Pasch’s regarding Euclidean geometry as
an empirical science on the one hand and Hilbert’s statement,

If 1 subsume under my points arbitrary systems of things, e.g. the system: love, law,
chimney sweep ..., and then just assume all my axioms as relationships among these
things, then my theorems, e.g. also the Pythagorean theorem, are true of these things,
too. (Hilbert to Frege, 1980, p.13, author’s translation)

on the other, it becomes clear that something revolutionary had changed regarding the
nature of mathematics at the end of 19" century mathematics. This change is a
revolution, which on an epistemological level has parallels to what students encounter
when being faced with abstract university mathematics.

2) Historical case study: geometry from Euclid to Hilbert. Which questions lead to
the modern understanding of mathematics?

An adequate description of the development of the conception of mathematics in the
course of history requires more than one book. We refer to the following ones: Bonola
(1955) for a detailed historical presentation; Grabe (2001), Greenberg (2004) and
Trudeau (1995) for a lengthy historical and philosophical discussion; Ewald (1971),
Hartshorne (2000), and Struve & Struve (2004) for a modern mathematical
presentation. Additionally, Davis & Hersh (1981 & 1995) or Ostermann & Wanner
(2012) presented aspects of the historical and philosophical discussion in a concise
manner, relatively easily accessible to students.

The overall aim of the historical case study is to make students aware of how the
nature of mathematics changed over history. Regarding our theoretical framework, we
aim to make explicit how geometry — which for hundreds of years seemed to be the
prototype of empirical mathematics, describing physical space — did develop into the
prototype of a formalistic mathematics as formulated in Hilbert’s foundations of
Geometry in 1899 (cf. Fig.4). And thus, we can help students on their way to develop

Page 311



INGO WITZKE

an understanding for different mathematical conceptions, in particular, modern ones
taught at the university level.

In the course we start with Euclid’s Elements: they show what a deductively built
piece of mathematics looks like in a prototype manner. Here we will induce the
students, e.g., to display in a graphical manner how Pythagoras’ theorem can be traced
down to the five postulates — as the 2013 survey results showed that most students
were not familiar with a deductive structure after one year at university.

It is quite important for the overall goal of the seminar that the Elements give reason to
discuss status, meaning and heritage of axiomatic systems. Thereby we will focus on
the self-evident character of the axioms (or, postulates) describing physical space in a
true manner — as undoubtedly provides insights on the surrounding real space which
were accepted without proof (cf. Garbe, 2001, p. 77).

- Projective me- Hilbert's
Euclid’s Euclidean .
Elements Geometry Geomet Foundations
(300 BC) (18th/19t (19‘“/20?: of Geometry
century) (1899)
century)
) i::‘;: - New - Quest for - Thebondts
: ohjects? the "true’ reality has
- Deduction L .
- Principle of Duality geometry been cut

Mathematics leaving physical space

Figure 4: The historical and philosophical development of mathematics along the
development of geometry

Projective geometry is the next stop on our way to a modern understanding of
geometry (cf. Ostermann & Wanner, 2012, pp. 319-344). Starting with the question of
whether other geometries, besides the Euclidean one, are conceivable, projective
geometry seems to be an ideal case. Related to the overall aim of the course, the notion
that there is more than one geometry can foster the idea that there is more than ‘one’
mathematics, leading away from the quest for one unique mathematics describing
physical space (cf. Davis & Hersh, 1985, pp. 322-330).

Well, on the one hand, projective geometry seems to be so intuitive and evident if we
look at its origin in the arts in the vanishing point perspective. On the other hand it
adds new abstract objects to the Euclidean geometry (the infinitely distant points on
the horizon) and familiarizes us with the idea that all parallels may meet eventually.
With projective geometry the students encounter a further axiomatizable geometry —
which has irritating properties that finally influenced Hilbert (cf. Blumenthal, 1935, p.
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402) to ultimately design a geometry free of any physical references. Julius Pliicker
saw in the 19™ century for the first time, that theorems in projective geometry hold if
the terms “straight line” and “point” are interchanged: the so-called principle of duality
— giving a clear hint why it became reasonable in mathematics to focus on mere
structures of theories.

A decisive revolutionary step towards a formalistic abstract formulation of geometry
can then be seen in the development of the so-called non-Euclidean geometries. This
development is connected in particular to the names Janos Bolyai (1802-1860),
Nikolai Ivanovitch Lobatchevski, Carl Friedrich GauBR (1777-1855) oder Bernhard
Riemann (1826-1866) (cf. Garbe, 2001, Greenberg, 2004, Trudeau, 1995 on their
historical role regarding non-Euclidean Geometries).

In fact, the non-Euclidean geometries developed from the “theoretical question”
around Euclid’s fifth postulate, the so-called parallel postulate:

Let the following be postulated: [...]

That if a straight line falling on two straight lines makes the interior angles on the same
side less than two right angles, the straight lines, if produced indefinitely, will meet on
that side on which the angles are less than two right angles. (Heath, 1908)

Compared to the other postulates like the first, “to draw a straight line from any point
to any point,” the fifth postulate sounds more complicated and less evident. This
postulate cannot be “verified” by drawings on a sheet of paper as parallelity is a
property presupposing infinitely long lines. In the words of Davis & Hersh (1995), “it
seems to transcend the direct physical experience” (p. 242). In history this was seen as
a blemish in Euclid’s theory and various attempts have been undertaken to overcome
this flaw. On the one hand, different individuals tried to find equivalent formulations,
which are more evident (e.g. Proclus (412-485), John Playfair 1748-1819)*. On the
other hand, several mathematicians tried to deduce the fifth postulate from the other
postulates so that the disputable statement becomes a theorem (which does not need to
be evident) and not a postulate (e.g. Girolamo Saccheri (1667-1733), Johann Heinrich
Lambert (1728-1777)). (cf. Davis & Hersh, 1985, pp. 217-223; Garbe, 2001, pp. 51-
74; Greenberg, 2004, pp. 209-238)

In contrast in the 18" and 19" century, Bolyai, Lobatchevski, GauB, and Riemann
experimented with negations and replacements of the fifth postulate guided by the
question of whether the parallel postulate was logically dependent of the others (cf.
Greenberg, 2004, pp. 239-248). If this would have been true — Euclidean geometry

! To Proclus, who was amongst the first commentators of Euclid’ Elements in ancient Greece,
already formulated doubts on the parallel postulate and formulated around 450 an equivalent
formulation (cf. WuRing & Arnold 1978, p. 30). Playfair’s formulation (1795), “in a plane, given a
line and a point not on it, at most one line parallel to the given line can be drawn through the
point*“, is quite popular today (cf. Prenowitz & Jordan 1989, p. 25; Gray 1989, p. 34).
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should actually work without it — what it does, in a sense that no inconsistencies
occur. But this logical act leads to conclusions that differ from those in Euclidean
geometry.

For example:

- In the so-called hyperbolic geometry the sum of interior angles in a triangle adds
up to less than 180°, in elliptic geometry to more than 180° (see Fig. 6).

- The ratio of circumference and diameter of a circle in hyperbolic geometry is
bigger than =, in elliptic smaller than .

- In hyperbolic as in elliptic geometry triangles which are just similar but not
congruent do not exist.

- In hyperbolic geometry there is more than one parallel line through a point P to
a given line g and in elliptic geometry there are no parallel lines at all (see Fig.
5).

(cf. Davis & Hersh, 1985, p. 222; Garbe, 2001, p. 59)

Working with texts and sources regarding
the process of discovery of the non-
Euclidean geometries may have an
important impact on students’ beliefs
system, as it tackles the so-called
“Euclidean Myth” (Davis & Hersh, 1985)
which was widespread within the 2013
survey results: to many first-year students
mathematics is a monolithic block of eternal

Figure 5: Klein’s Model for hyperbolic {ruth; a theorem, once proven, necessarily
geometry: More than one parallel line holds in every context.

to a straight line through a given point.  \jth the discovery of the non-Euclidean

geometries, it became apparent in history
that there is no such truth in a total sense. In contrast, there seems to be more of such
truths, depending on the context you are working in. A discussion of Gauss’s qualms
to publish results on non-Euclidean geometry implicitly emphasizing this aspect,
afraid of being accused of doing something suspect, or the (probably legendary) story
that he tried to measure on a large scale whether the world is Euclidean (cf. Garbe,
2001, pp. 81-85), can make the students amenable to the revolutionary character of
this discovery for changing natures of mathematics. Following Freudenthal’s (1991)
idea of guided reinvention, recapitulating the history of humankind seems to bear
quite fruitful perspectives for the development of individual belief systems in this
context.
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Finally, from the discussion of the non-Euclidean N
geometries students will approach the questions
which lead to Hilbert’s formal(istic) turn. If there was
more than one consistent geometry, which one is the
true one? This question is closely linked to the
question, what is mathematics?

3) What characterizes modern formal mathematics?
(Exploration of Hilbert’s approach.)

Hilbert actually gave an answer to this problem — not
only in a philosophical and programmatic way but
also by formulating a geometry “exempla trahunt”
(Freudenthal, 1961 p. 24), a discipline that was seen for ages as the natural description
of physical space, in a formalistic sense and characterized by an axiomatic structure.
The established axioms are fully detached and independent from the empirical world,
which leads to an absolute notion of truth: mathematical certainty in the sense of
consistency. With Hilbert the bond of geometry to reality is cut. This becomes very
vivid when reading Hilbert’s Foundations of Geometry (1902; see Fig. 7) in detail, as
we plan to do with the students in the seminar.

Figure 6: Angle sum in an
elliptic triangle.

§1. THE ELEMENTS OF GEOMETRY AND THE FIVE GROUPS OF AXIOMS.

Let us consider three distinet systems of things. The things composing the first systern,
we will call points and designate them by the letters A, B, (’.._ .: those of the second, we
will call straight lines and designate them by the letters a. b, c....:; and those of the third
system, we will call planes and designate them by the Greek letters a, 3, 7.... The points
are called the elements of linear geometry; the points and straight lines, the elements of
plane geomelry; and the points, lines, and planes, the elements of the geometry of space

or the elements of space.

Figure 7: The famous first paragraph of Hilbert’s Foundations of Geometry.

Hilbert does not give his concepts an explicit semantic meaning; he speaks
independently from any empirical meaning of distinct systems of things.
Consequently, intuitive relations like in between or congruent do not have an
empirical meaning but are relations fulfilling certain formal properties only. (cf. for
example, Greenberg, 2004, pp. 103-129)

As we all know, the development of mathematics did not come to an end with Hilbert;
the seminar is intended to finish with discussions of texts taken from What is
Mathematics, Really? (Hersh, 1997). Hersh understands “mathematics as a human
activity, a social phenomenon, part of human culture, historically evolved, and
intelligible only in a social context” (p. xi), which creates a balanced view.

However, nobody will deny that formalism in Hilbert’s open-minded version had a
lasting effect on the development of mathematics. As a consequence, today’s
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university mathematics has the freedom to be developed without being ‘true’ in an
absolute sense anymore (cf. Freudenthal, 1961), but nevertheless including the
possibility to interpret it physically again.

In the meantime, while the creative power of pure reason is at work, the outer world again
comes into play, forces upon us new questions from actual experience, opens up new
branches of mathematics, and while we seek to conquer these new fields of knowledge for
the realm of pure thought, we often find the answers to old unsolved problems and thus at
the same time advance most successfully the old theories. And it seems to me that the
numerous and surprising analogies and that apparently prearranged harmony which the
mathematician so often perceives in the questions, methods and ideas of the various
branches of his science, have their origin in this ever-recurring interplay between thought
and experience. (Hilbert, 1900)

It is the openness and freedom of questions of absolute truth, which Hilbert replaced
by the concept of logical consistency that made mathematics so successful in the 20"
century (cf. Freudenthal, 1961, p. 24; Garbe, 2001, pp. 100-109, Tapp, 2013 p. 142).
In Einstein’s words:

Geometry thus completed is evidently a natural science; we may in fact regard it as the
most ancient branch of physics. Its affirmations rest essentially on induction from
experience, but not on logical inferences only. We will call this completed geometry
“practical geometry,” and shall distinguish it in what follows from “purely axiomatic
geometry.”[...]JAs far as the propositions of [modern axiomatic] mathematics refer to
reality, they are not certain; and as far as they are certain, they do not refer to reality.[...]
The progress achieved by axiomatics consists in its having neatly separated the logical-
formal from its objective or intuitive content [...] These axioms are free creations of the
human mind. The axioms define the objects of which geometry treats. [...] | attach
special importance to the view of geometry, which | have just set forth, because
without it | should have been unable to formulate the theory of relativity. (Einstein,
1921, as cited in Freudenthal, 1961, p. 16; for a readable article on exactly this point
compare with Hempel (1945))

This makes again quite clear that modern mathematics after Hilbert is on
epistemological grounds completely different than (historical) empirical mathematics
and of course mathematics taught in school. Whether the first is grounded on set
axioms and the notion of mathematical certainty (inconsistency), the second and third
are grounded in evident axioms — thus describing physical space including a notion of
(empirical) truth, resting essentially on induction from experience.

4) Summarizing discussion and reflection

In the last part of the course we want to initiate discussions connecting the insights
gained from the historical perspectives with the individual biographies. We plan to
remind the students about the preliminary discussions regarding different personal
belief systems that occurred in the first part of the course. The intention is that the
transparency on the historical problems that led to a modern abstract understanding of
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mathematics leads to an understanding of what happens if students live on
epistemological grounds through this revolution as individuals, thus opening
differentiated views on the transition problem. For school purposes — from a well-
informed mathematics educator’s point of view — nothing speaks against doing
mathematics in an empirical way (when including deductive reasoning, of course,
otherwise it would just be phenomenology). History has shown that empirical
mathematics was a decent way to develop mathematical knowledge and the
experimental natural sciences generate knowledge comparably. Yet approaches to
bring formal(istic) mathematics into school classrooms have failed miserably.
Moreover, we cannot step away from teaching mathematics in a theoretical way at
universities. In contrast, the course described here intends to make tangible,
understandable, and explicit (that) to first-year students the transition from school
mathematics to university mathematics is an epistemological obstacle. Hefendehl-
Hebeker (2013, p. 80) sees quite comparably

[...] a principle difference between school and university is at university with the
axiomatic method a new level of theory formation has to be reached, and thus it follows
that the discontinuity cannot be avoided.

So if the discontinuity cannot be avoided, what may teachers and students at
university take from a course like the one described here?

1) The historical excursions do not only focus on the beliefs aspect but also
demonstrate crucial mathematical activities — especially regarding deductive reasoning
within the frameworks of consistent mathematical theories.

2) Teachers and students should be sensible about the dimension of the problem: it is
not as easy as repeating some lower secondary school mathematics, as many
approaches seem to suggest. Instead a revolutionary act of conceptual change is
required that does not occur overnight and needs guidance. The historical questions
that lead to the modern understanding of mathematics are too sophisticated and
waiting for students to develop these for themselves is a particular burden on top of all
the other factors of beginning at university. The approach of initiating these questions
explicitly within the described framework may support a more adequate and prompt
change of belief system.

3) The course should sensitize for crucial communication problems. Teachers and
students should acknowledge that when talking about mathematics, using the same
terms might not imply talking about the same things. For example, students may come
from school to university having learned calculus in an empirical context such that
functions might be equivalent to curves. This might imply that properties like
continuity or differentiability are empirical and can be read from the sketched graph of
the function (comparable to 17" century mathematicians). The lecturer at university on
the other hand probably has a general abstract notion of function implying a
completely different notion of mathematical reasoning and truth. In particular,
lecturers should repeatedly check if the knowledge of their students is still bonded to
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(single) objects of reference. The same holds for the students eventually leaving
university and starting as secondary school mathematics teachers: they should be
aware that what they consider from an abstract point of view their students may
instead possess visualizations of abstract notions as the reference objects.

CONCLUDING REMARKS/PERSPECTIVES

An in-depth study based on data collected from surveys containing both standardized
and open-ended items and student interviews accompanying the seminar course
describes here will follow in 2015. A follow-up course will be conducted at Florida
State University in spring 2016. The data, along with the personal evaluations of the
involved researchers, will clarify whether explicitly discussing historical
epistemological obstacles regarding changes on mathematical belief systems supports
students on their way through university mathematics. Much will depend on if we
succeed in initiating thinking-processes which bring the historical and personal
perspectives together. Only then will it be possible to determine if the historical-
philosophical elements of the course have a lasting effect.

NOTES

1. Many elements of the course discussed here have been tested in isolated settings in Cologne and
Siegen but not in a coherent course to face the problem of transition.

2. Also, there is another dimension to the axioms as fundamentals of a platonic construct of ideas,
called “geometry”.
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Oral Presentation

PARALLELS BETWEEN PHYLOGENY AND ONTOGENY
OF LOGIC

Karel Zaviel
Charles University in Prague

The principle of a parallel between the ontogenetic and the phylogenetic development
of knowledge is a known principle in mathematics education (see Schubring 1978). If
teaching omits some of the stages, that were important in the historical development
of the particular discipline, it can become an obstacle for students understanding.
Logic is in this respect a very special discipline. Its origins are linked to ancient
philosophy; during the Middle Ages it became an instrument for
theological disputations. It was not until the late 19™ century that a specific kind of
logic, which we today call mathematical, started to develop. In our research we
try to find out whether there are any parallels between the historical development
of logic and the spontaneous growth of logical thinking in children.

THE GENETIC PARALLEL

The idea of a parallel between the ontogenetic and the phylogenetic development is
established internationally (Schubring 1978) as well as in the Czech didactics of
mathematic (Hejny 1984, Hejny & Jirotkovad 2012). Also P. Erdnijev’s words are
often cited:

“The growing of the tree of mathematical knowledge in mind of each person will be
successful only if repeats (to a certain extent) history of growing of this science.”
(Erdnijev 1978, p. 197)

Freudenthal expressed the same idea more precisely:

“Children should repeat the learning process of mankind, not as it factually took place but
rather as if would have done in people in the past had known a bit more of what we know
now.” (Freudenthal 1991, p. 48)

If the teaching process does not respect some important developmental stages of a
particular discipline or topic, students can have problems to understand it. As one
example for all, we can take the calculus. The history of this mathematical discipline
is linked with Newton’s and Leibniz’s theory of infinitesimals. But nowadays teaching
of derivatives typically starts with the so-called €-6 calculus, which is mathematically
more correct, but much less intuitive (Toeplitz 1949). Many students then have
problems to grasp the essence of this topic; they learn to repeat theorems and proofs
only in a formal way.

Logic is a very special discipline in this respect. As we indicated in abstract, the
historical development of this discipline has crossed the spheres of philosophy,
theology and other humanities. And only a short period of its modern development is
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connected with mathematics. But — contrasting to that — the first (and often the only)
logic students meet is the mathematical one; Boole’s truth-functions and Frege’s
quantifiers. These logical lessons take place typically during the first year of higher
secondary education.

RESEARCH QUESTIONS AND AIMS

The idea of the genetic parallel seems to be ignored in teaching/learning logic. Should
we see this as a problem? What is the level of logical abilities of students leaving
lower secondary education? Is there a significant progress in logical abilities during
the lower secondary education? And finally: Are there any parallels between the
historical development (phylogeny) and the ontogeny of logic? For example, is it
possible to say, that a child, that cannot solve a syllogism, will be unable to understand
the idea of implication?

These questions and all of them are rather broad and so it is not possible to give
precise and clear answers. This is a beginning of our research and we hope to
formulate some more specific questions (and answers) in our future research and
experimental work.

THE THEORY OF ONTOGENETIC DEVELOPMENT

Why do we think, that we should be able to recognize a development of logical
abilities of children during the lower secondary education? One of the reasons is
Piaget’s theory of stages of cognitive development. According to him, the last stage of
cognitive development, which is called “stage of formal operations”, starts about the
12" year of age.

“Subject starts to be able to draw logical consequences from possible truths. (...) He/she
should be able to use new propositional operations, such as implication (if then)
disjunction (either or)...” (Piaget 1971, p. 98)

The important part is the “possible truths”. It means that children in this stage should
be able to determine the truth value of statements only on the basis of the logical form
of the sentences.

RESEARCH TASK EXAMPLES

We will discuss two concrete tasks and examples of their evaluation from our
research. The first task is concerned on the very idea of implication. From the
ontogenetic point of view, it is generally known, that children (but not only them) do
not distinguish the relation of logical implication from that of equivalence. There are
many researches on this topic, e. g., Shapiro & O’Brian (1970), Hoyle & Kuchemann
(2002). This tendency even received its own label; it is known as “child logic”.

Focusing on the phylogenetic approach, implication has been a big issue since ancient
times. There were some alternatives to the classical material form of implication, e. g.
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Diodoros or Chrissipos attempts (Kneale & Kneale 1962), but all of them used modal
logical functors. A few centuries later, C.I. Lewis deals with this topic in the realm of
modern logic; his conception of conditionals is widely called “a strict implication”
(Lewis & Langford 1932). This concept, just like those of Diodoros and Chrissipos, is
situated in the field of intensional logic.

From the practical point of view, a very important issue is the influence of context. In
the wider sense — we have no other possibility than to use our natural language to
describe the task situation. And there problems could appear caused by the ambiguity
of some terms of natural language. And in a more strict sense context is closely
connected with the issue of motivation. More information about the role of context in
logical tasks can be found in O’Brian, Shapiro & Reali (1971).

The concrete form of our implication-task was inspired by the Wason selection task. It
is a very famous task from the area of psychology, when researchers tried to disprove
Piaget. Wason selection task was submitted to different groups of adults, but almost in
all cases the number of correct answers was only about 10 %. A very interesting study
about using this task in the rather specific population of mathematics teachers and
students is in Inglis & Simpson (2006).

Let us formulate the first task:

A brave Prince entered a mysterious castle and after a while he found himself in a special
room. There were no windows and the light of a few torches fell upon a large book that
lay on a pedestal in the middle of the room. The book was opened on the first page and
the prince read:

Brave visitor, the door can hide great danger!
Choose well: If there is a tiger behind the door, there is the letter T on this door.
In addition to the door by which the prince entered the room, there were three doors:
(1) door with the letter D,
(2) door with the letter T and
(3) door without any letter.
Make a decision for every door whether:
a) there is a tiger,
b) there is not a tiger,
¢) we cannot decide, whether there is a tiger.

To find the correct answer two mental steps are needed. At first — in the first and in
the third doors cannot be a tiger, because in that case there was one, there would be a
“T” on these doors. From the logical point of view, it is the rule of modus tollens.

The second operation is much more difficult. About the second door we cannot
decide, because in either case, if there is or is not a tiger behind the door, the rule
(tiger — T) is not broken.
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The correct answer is 1b-2c-3b. That means: behind the door with the letter D there is
not a tiger, about the door with the latter T we cannot decide whether there is a tiger
and behind the door without any letter there is not a tiger.

Table of respondents of our research follows:

Grade 5th 6th 7th 8Ih gth
Number of respondents 38 47 51 55 37

Table 1: Numbers of respondents

In our research sample only 2 % of respondents chose the correct combination (1b-2c-
3b). The semi-correct answer (1b-2b-3b or 1b-2a-3b) chose 20 %. The most common
wrong answer was, as you can guess, 1b-2a-3c; chosen by 35 % of respondents.

But this is a very general classification of the answers. We tried to introduce a finer
and deeper classification ascribing a score value for every part of all possible answers.
This score value expresses the difficulty of the particular answer. In the following
table you can see the scores and also the concrete percentage of given parts of the
answers. In the table below there are the score values we assigned to these answers.

Door (1) Door (2) Door (3)
Answer a) b) c) a) b) c) a) b) c)
Percentage 7% [62% |29% (|84% |10% | 5% | 7% |40% |50 %
Score value 0 3 1 1 2 20 0 4 1

Table 2: Percentages and scoring values for task no. 1

Let us explain how we ascribed the score values. The simplest is the explanation of the
score values 1. For the second and the third door we used this value for answers,
which are the most intuitive. In the first door we used this value for the answer 1c,
which is logically equivalent with the choice of 3c.

We decided to assign a slightly higher value to the answer 2b. It is still a wrong
answer, but the respondent seems to suspects that the implication form cannot be
reversed without loss of a generality.

Next higher values — 3 and 4 — we used for the correct answers in the first,
respectively in the third door, which are logically equivalent. But the values are not the
same, because the answer 1b is much more intuitive than the choice of 3b.

Finally we have to justify the high score value for the answer 2c. As we already
mentioned, a very difficult mental operation is needed to do this choice. To determine
the concrete value we compute how many “points” we gave in total in the first and in
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the third door. In both of these doors the total score was about 200 (205 and 210
respectively). To have a similar total score in the second door, we decided to use the
value 20.

The zero values were used for answers, which are wrong and contra-intuitive; we are
not able to identify the concrete mental operations leading to these answers.

After ascribing score values to each answer we can calculate the table of average
scores in each grade. As can be seen from the table below, no significant progress can
be seen there.

G rade 5th 6th 7th 8Ih gth
Average score 6,03 511 7,53 5,85 6,94

Table 3: Average scores for task no. 1

The second task we used was based on the logical form of a syllogism. From the
ontogenetic point of view, a syllogism is a very common logical form, but usually we
use it implicitly, some of the premises are unspoken. To justify the choice of a
syllogism from the phylogenetic point of view, we can, of course, mention Aristotle
and his very impressive logical system. But we will cite the research of the Russian
psychologist Alexander R. Luria (1976). In his study on the historical development of
cognitive processes we read:

“The emergence of verbal-logical codes allows to abstract the essential symptoms of
objects ... leads to the formulation of complex logical apparatus. These logical devices
allow getting the conclusions from the premises without immediate clearly achievable
(known) reality. They allow acquiring new knowledge discursive, verbal-logical manner.”
(Luria 1976, p. 116)

To map the historical development of cognitive processes Luria did a research during
the 1930-ties in the least developed areas of Soviet Union, on the territory of present-
day Kyrgyzstan and Uzbekistan. People living here were usually illiterate, in most
cases they have never left their native valley. And Luria gave them tasks, in which
different levels of abstraction were needed. Some of these tasks also deal with
syllogistic form. For example:

“Cotton can grow only where it is hot and dry. In England the weather is cold and damp.
There can grow cotton?” (Luria 1976, p. 122)

For most of Luria’s respondents it was typical that their thinking very strongly bond to
their common everyday concrete reality. Using modern terminology, they were unable
to make a hypothetical judgment. We can quote one typical answer:

“I do not know, I was just in Kaschgaria ... if there was a man who was everywhere, well
he could have answered to that question.” (Luria 1976, p. 122)
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We expected similar phenomena when we gave tasks with syllogism to children. The
context we were using was familiar to the children, so this kind of argumentation
(from experience) was possible. But, of course, we hoped to see an increasing portion
of use of logical argumentation. Let us formulate the task:

In a class, for all boys the following two rules apply:
1°: Anyone who plays football can run well.
2" Somebody of those who plays hockey plays football too.

Can we surely say that there is a hockey player, who can also run well in this class? Write
why.

And there are two answers representing a kind of experience-argumentation. Both of
them were written by 5™ graders.

“Yes, hockey player knows how to run, because if he could not, he cannot skate fast.”

“No, he is a hockey player, so he may not be able to run well, but he must skate well to be
able to play the game.”

Even if these two answers are, from the logical point of view opposite — both of them
are on the same cognitive level. Let us describe the evaluation process of this task.
After repeated reading of all the answers we sorted them to five, respectively six
categories. These categories we ordered to according to cognitive performance needed
to give this kind of answer and we assigned them corresponding values.

In the 0" category we included the respondents, who didn’t give any answer.

The 1% category we used for students, who answered yes or no, but without
argumentation.

Next category included the “experience-argumentation”.

Category no. 3 we called “stepping out of experience”. It is not really a judgment, but
some hints can be seen in that direction.

Next — the 4™ category — is a logical judgment.

And the last category is an if-judgment. Because the really right answer should include
a condition of non-empty set of boys in that class and similarly a condition of non-
empty set of football players.
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5" grade | 14 % 8% 35% 3% 43 % 0% 2,91 2,53

6" grade | 38 % 24 % 20 % 2% 20 % 0% 2,27 1,45

7" grade | 22 % 10 % 33% 6 % 33% 0% 2,75 2,16

8" grade | 19 % 11% 30 % 4% 39 % 0% 2,84 2,33

9" grade | 19 % 6 % 8% 8 % 56 % 6 % 2,57 2,89

Table 4: Percentages and average scores for task no. 2

We used two averages in this task. If we want to know which of them fits better the
situation, we need to know why some of our respondents didn’t give us any answer.
This can be because they didn’t understand it or because they really didn’t know.
There many possibilities.

Seeking any trend in this table, we can compare the column titled “Judgment” and the
last column, “Average score excluding o" category”. In both of these columns we can
see an increasing trend starting in the 6" grade. But our data do not allow us to say
whether these trends are statistically significant.

CONCLUSIONS AND FUTURE ORIENTATION OF RESEARCH

Our research, a small part of which was described here, consisted from seven tasks.
We tried to map logical abilities of children in the several areas such as classification,
negation, syllogism and implication. At first we were a really surprised by the absence
of any remarkable trend.

Nowadays we believe that the idea of genetic parallel in logic needs to be grasped in
another way. We have at least two two possible explanations:

a) We can find no continous ontogenetic development, because the phylogenetic
development wasn’t fluent too. After a very fruit-full era of ancient logic there were
several centuries, in which the development of logic was incomparably slower. And
from the end of 19™ century, this development again rapidly accelerated by the onset
of modern logic.

b) We cannot rely on the spontaneous ontogenetic development, because the
phylogenetic development wasn’t spontaneous too. Aristotle’s Organon emerged from
his confrontation with the social problem of sophistic philosophy. The origin of
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modern logic was stimulated and conditioned by requirements of the development of
mathematics.

This indicates that our approach to this topic has to be wider. Now we are studying
possible connections between logic and cognitive sciences. We can see some concepts
which can be very useful for our effort to describe development of logical thinking in
children; e.g. conceptual metaphors and theory of embodied mind, that were
introduced by Lakoff & Nuiiez (2000) in the book “Where the mathematics comes
from” or the very impressive theory about cognitive tools, which was worked out for
the field of logic by Novaes (2012) in her book “Formal languages in logic — A
Philosophical and Cognitive Analysis.”
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Using the history of mathematics in everyday classroom activities is difficult because
of various reasons, but it is an intriguing aim. This paper will report examples of
activities, mainly inherent to interpretation of original texts, developed in my classes.
Opportunities and problems, achievements and failures will be analysed.

With the aim of carrying out a critical analysis, theoretical considerations will be
taken into account. The purpose is to introduce an ongoing discussion with regard to
the complexity of everyday classroom activities. Ultimate answers are not the main
aims of my analysis.

INTRODUCTION

It is widely recognized the importance of introducing history in mathematics teaching
at all school levels, see (Furinghetti, 2012; Barbin & Tzanakis, 2014). In this paper |
report on the activities | have recently carried out in my classroom. My motivations
for the use of history rely on the conviction that history is a carrier of culture in
student’s view of mathematics (Jankvist, 2015) and that important educational goals
of mathematics teaching may be achieved through history (Kjeldsen & Jankvist,
2011). In planning my activities | followed Janhke et al. (2000) who support the use
of original sources in the classroom as a demanding task that may be carried out
according to different perspectives. | considered group work among students and role
of the teacher as tools for transformation of knowledge (Radford, 2011).

My paper will illustrate the theoretical background orienting my choices, the school
context in which | realized my project, the main steps of the implementation into the
classroom and the analysis of the outputs with some preliminary conclusions. My
experiment will be presented almost as a narration to allow the reader hearing the
voice of a teacher who tries to combine his educational goals in teaching mathematics
with his passion for history. This narration is going to highlight the facts that, in my
opinion, are really significant for discussing the issues related to the use of history
and make my experiment transferable to other situations.

The problem of the transferability of experiments to different situations with different
teachers is really crucial. In particular, when dealing with the introduction of history
of mathematics in mathematics teaching, there is the problem of the teachers who do
not believe that this introduction is possible or really suitable to reach their teaching
goals. Many teachers are not familiar with history of mathematics and, even more,
with original sources. All these difficult cases were discussed in the workshop |

Page 335



ADRIANO DEMATTE

carried out during the conference ESU7 (see Dematte, to appear) on the ground of the
paper (Siu, 2006). To meet the need and the perplexities of these teachers | devote a
section of this paper to the presentation of materials and teaching sequences that may
be developed in a mathematics laboratory.

In recent years, some authors, Jankvist (2009) for one, have raised the question of
promoting empirical research to better understand the potentialities of this use.
Through the description of my experiment and the analysis of the doubts raised by
the results of my experiment | hope to offer materials for facing the following
research questions:

— What kinds of activities are most suitable to involve teachers in using
history of mathematics in their classroom?

— What educational goals regarding the use of originals could teachers
consider relevant goals for their mathematics classes?

THEORETICAL BACKGROUND

Due to the fact that in my experiment I try to combine the need of achieving my
educational goals and my confidence on the efficacy of history in my teaching, the
theoretical underpinning of my work is inspired both by the research in mathematics
education in general and by the particular research which concerns the relation
between history and pedagogy of mathematics.

Classroom culture and mathematical discourse

Let me start from the educational side by quoting my personal experience as a young
teacher. | remember an author whose works | got to know during a training course at
the very beginning of my career. That is Carl Rogers (1951), the American
psychologist who is considered the founder of the client-centred approach in
psychology. Nowadays, | am able to quote only little of his thought, the following
sentence for example: “A person cannot teach another person directly; a person can
only facilitate another's learning”. Some key words of this statement, or suggested by
it, synthesize my ideal approach to teaching: facilitate, students’ autonomy, learning
with meaning and consciousness.

To explain my approach to teaching I start from the drawing of figure 1 where an
Italian pupil of grade 3 answers the task: “Draw your mathematics class, that is the
teacher and your classmates in a mathematics lesson. Use bubbles for speech and
thought to describe conversation and thinking. Mark yourself (Me) in your drawing”,
see (Laine, Naveri, Ahtee, Hannula, & Pehkonen, 2012).

The student’s perception of the atmosphere in the classroom expressed by this
drawing is in line with the description made by Lampert (1990, p. 31) of the school
experience in which: “doing mathematics means following the rules laid down by the
teacher; knowing mathematics means remembering and applying the correct rule
when the teacher asks a question; and mathematical truth is determined when the
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answer is ratified by the teacher.” As a consequence of this school experience we
have a cultural assumption which associates mathematics with the idea that knowing
mathematics means to be able to get the right answer, quickly and following the rules
given by an authority (the textbook, teachers). | try to challenge this common
assumption by changing the roles and responsibilities of teacher and students in
classroom discourse so that, as advocated by Lampert (1990), the practice of knowing
mathematics in school becomes closer to what it means to know mathematics within
the discipline.

IHEY COPY THE BLACKBOARD

- -

Fig. 1. Drawing by a pupil of grade 3

As a teacher | try to create a classroom culture in which student activity can occur
through participation in the doing and learning mathematics so that students learn not
only contents of their curriculum but also “what counts as knowledge and what kind
of activities constitute legitimate academic tasks” (Lampert, 1990, p. 34). In the
classroom discourse | implement teacher-student interaction and content, such as:
learning as (re)discovery, group work, discussion among peers and between teachers
and students, exploring mathematical phenomena, generating conjectures, verifying
and, in case, refuting and refining them. Students become authors of their ideas and
responsible of their intervention in the mathematical discourse. As discussed in
(Dematte & Furinghetti, to appear), the laboratory is a good place where to realize
my project since it allows actual participation to mathematics activities.

Using original historical sources

Taking into account the large amount of literature and my previous experiments, |
decided that the history of mathematics is a good tool for realizing my ideas. In
particular, as pointed out in the Introduction , original sources have shown their
pedagogical efficacy in mathematics teaching, see (Furinghetti, Jahnke, & van
Maanen, 2006; Pengelley, 2011; Jankvist, 2014).

Barbin (2006) has pointed out that there are different ways of reading original
sources. My way, in line with previous experiments in the classroom, see (Bagni,
2008; Glaubitz, 2011a), is based on the hermeneutic approach. This approach changes
the strategy of teaching/learning. Students use original mathematical documents and
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are asked to use the mathematics they have learnt, in a new way. Jahnke (2014,
pp.83-84) outlines the basic guidelines of the hermeneutic procedure as follows:

“(1) Students study a historical source after they have acquired a good
understanding of the respective mathematical topic in a modern form and a modern
perspective.

The source is studied in a phase of teaching when the new subject-matter is applied
and technical competencies are trained. Reading a source in this context is another
manner of applying new concepts, quite different from usual exercises.

(2) Students gather and study information about context and biography of the
author.

(3) The historical peculiarity of the source is kept as far as possible.
(4) Students are encouraged to produce free associations.

(5) The teacher insists on reasoned arguments, but not on accepting an
interpretation which has to be shared by everybody.

(6) The historical understanding of a concept is contrasted with the modern view,
that is the source should encourage processes of reflection”.

The points of the guidelines may be grouped according to different types of action.
(2), (3) and (6) concern history of mathematics in its “strong role” (Dematte, 2006a).
In contrast with the ”weak role” that confines the use of history to mathematics, the
“strong role” is based on didactical activities that are directly inherent to history and
aims not only at learning the mathematical subject-matter. Then it requires an
additional amount of time. Definitely, (2) refers to giving historical knowledge, while
(3) may be integrated with mathematics teaching/learning since “the historical
peculiarity” may regard the use of unusual procedures and concepts that reinforce
previous students’ skills by provoking the dépaysement, that is the alienation and
reorientation (see Janhke et al, 2000). The point (6) furnishes a synthesis of deep
reasons for reading originals instead of doing ordinary exercises.

Developing points (4) and (5) means that through the originals it may happen that
students’ capabilities and though of ancient mathematicians meet. Point (4) suggests
that students should get some ways to become protagonists, autonomously with
respect to the leading teacher’s role. What (5) suggests is far from the current
situation in Italian schools. In order to be implemented, it requires a radical change in
students’ assessment criteria. Judgments would be referred to individual advancement
instead of to a set of abilities required by institution. Most teachers agree that students
have to be involved in “reasoned arguments”, but they aim at contents and
conclusions which have to be shared by all students. These teachers would not accept
the proposal to use originals according to the point (5). Points (4) and (5) introduce a
way to personalize teaching, suggesting students to build their learning directly on
personal previous knowledge (this reminds us the ideal teaching we spoke at the
beginning). However (4) and (5) do not suggest how to establish students’ levels of
proficiency. On the contrary, class tests, national and international achievement
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inquiries require all students to achieve common competencies (PISA, for example).
(6) could suggest that the teacher should establish common levels of proficiency
during “the processes of reflection” on “the modern view” of mathematical subjects.

When the hermeneutic approach in Jahnke (2014) makes it difficult to cope with the
requirements of the school situation, that is to reach a homogeneous level for all
students, the teacher may resort to socio-cultural resources of interaction between
peers and teacher, in line with \Wygotsky (1978).

By combining the previous issues concerning theoretical background and practical
requirements | pinpointed the following goals of my experiment:

- reinforcing abilities regarding solution of quadratic equations;

- using previous knowledge and abilities for discovering the familiar into the
unfamiliar (Jahnke et al., 2000);

- using a text to gather mathematical information;

- knowing peculiarities of an original text (types, rhetoric aspects, choose of
terms, lack of symbolism);

- viewing the document in broad sense including students' personal connections
and remarks.

Since | assume, as Leatham (2006) does, that “teachers are seen as complex, sensible
people who have reasons for the many decisions they make” (p. 100), in the present
paper we will mainly concentrate on the reasons behind my decisions. In doing that, |
feel 1 am in the situation so well illustrated by Donald Schén (1987) in his The
reflexive practitioner where he highlights how professionals do not always feel at
ease reflecting on their action because of the turbulence of environments like schools.
In fact, reflection in action increases complexity of teachers’ task and, as an extreme
consequence, situations might even slip out of control. The other side of the coin is
that teachers have to look for proper circumstances suitable to promote reflection on
what they are doing, otherwise their work risks to become at least an unfruitful ritual.

A CLASSROOM EXPERIMENT USING ORIGINALS
My teaching context

I teach in a “Liceo delle Scienze Umane” [Human Science Lyceum]. Students can
choose between two branches: a) ‘human sciences’, strictu sensu, b) ‘social-
economic’ in which the study of human sciences is less widely treated, in favor of
economics and mathematics. The school lasts 5 years. The students' score in
mathematics is quite low. An ‘entry test’ is prepared by the school department of
mathematics teachers and is handed out at the beginning of the first year. The average
score is around 60% of correct answers. At the end of the second year a test provided
by the National assessment organization INVALSI-Istituto Nazionale per la
VALutazione del Sistema educativo di Istruzione e di formazione (National Institute
for evaluating the educational system of instruction and education) is administered. It
gives information to schools and teachers but, at the moment, do not officially certify
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students’ levels. At the end of the fifth year, students take their final state national
examination. Together with three or four other school subjects, mathematics is part of
a one out of three written tests and with five other subjects is part of an oral
examination.

The classroom activity with original sources

The activity took place in a third class of the socio-economic lyceum (students aged
17-18). The average level of proficiency in National achievement examination of
these students was under the average score. Students were weak in algebraic
manipulation and were having difficulties in problem solving so | was looking for
new kinds of problems and | considered interpretation of texts a good option. In
previous lessons they met history of mathematics in various circumstances:
references to Archimedes works about levers, use of Arab combinatorial reasoning,
arithmetic triangle in Chinese, Arab, Tartaglia’s versions, solution of quadratic
equations by al- Khwarizmi, a quadratic function from a medieval treatise etc. For
some topics | used the materials in (Katz & Michalowicz, 2004).

An example of a document | proposed is in figure 2. It concerns an exercise which
requires calculations less complicated then most of those required by students’
textbook, but not trivial.

Fig. 2: From Pacioli’s Summa de Arithmetica, Geometria, Proportioni
et Proportionalita, Venice 1523, edition of 1523 (first edition 1494), folio 145.
“l.--]

Find for me a number that, if joined to its square, makes 12. Imagine that the number
be a thing. Square it. It makes 1 census. Join 1 thing. It makes 1 census plus 1
thing equals 12. Halve the things. It becomes %. Multiply by themselves. It makes ¥a.
Joint the number which is 12. It makes 12% . And the square root of 12% minus %,
because of the halving of the things, equals the thing that is 3. And the required
number makes this amount, as it appears. [...].”

Giving to the students the short document from Pacioli’s Summa, | asked them to read
it and interpret it with respect to mathematical content. 1 underlined that the
main goals that students were requested to achieve were to use personal resources
and that the interpretation of the document aimed at: using previous
knowledge and reinforcing abilities regarding quadratic equations, using a
text to gather mathematical information, knowing peculiarities of that ancient
text, formulating personal remarks, connecting with Italian literature whose
origins students were treating in class.
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I considered that history allows introducing humanistic aspects in mathematics
teaching (mainly those regarding communication) according to the peculiarities of
school (a human sciences lyceum). | reflected on the opportunity to use a different
version of the original, changing, in case, some aspect but | decided to maintain all
the following characteristics:

- types, because they show that it is an ancient document, at a glance;

- use of abbreviations, because it poses questions regarding printing in 15" and
16™ Century;

- archaic Italian words, because they show example of evolution of language;

- absence of separation between problem and solution, because it recalls a
feature present in mathematical treatises since early Middle Ages;

- redundancies, because also the manner to communicate mathematics has
changed;

- unusual manner to write rational numbers, because it shows an example of “the
familiar found inside the unfamiliar” in elementary mathematics.

The students worked in pairs. | asked them to translate the document in modern
Italian language, to conjecture about the meaning of the full document and its specific
parts and to compare personal explanations of the mathematical passages in order to
write a shared version of the interpretation. After a few minutes, | listened to their
questions and | answered through hints or other questions that could help them to
reflect upon the document and the (partial) explanations they had found at that
moment. In order to give further opportunities for better understanding and for
reviewing, | requested them to compare their explanations in this manner: standing in
front of mates, most of them read their interpretations; they could also briefly
criticize interpretations of other students.

Actually, the activity based on Pacioli's document showed controversial outcomes.
Supplementary explanations by the teacher followed the group activities and in the
written test students got an average score similar to previous tests, some of them even
better. Students considered it as a meaningful experience. On the contrary, the part of
the activity in which students were requested to work autonomously showed
unsatisfactory results. The use of the written text did not fully succeed, with respect
to the goal regarding solution of quadratic equations and use of previous knowledge
and abilities for discovering familiar concepts into the unfamiliar document. The
document highlighted students’ incapability to use their mathematical knowledge to
interpret the text or, in the same sense, to link their previous abilities to the content of
the document. After the experiment, I met other class situations that had similar
outcomes (even if regarding different kinds of documents such as an Euler’s excerpt,
or a graph). | have argued it could depend on the operational nature of my students’
mathematical conceptions (Sfard, 1991) so that their knowledge was not actually at
their disposal for interpreting the text. Many students required supplementary
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explanations about algebraic skills, which they were able to apply in routine exercises
but they did not think to use for interpretation.

Here it is a list of difficulties that several students had.

1. Typefaces. For example: “What does  mean, inside the word ?” The
current Italian word Trovami suggests the right answer: “T”. At the same time,

appears as a different manner to write v.

2. Contractions. In the word , “quadrato”, two letters, that is u a, are omitted
and the specific mark  highlights this fact.

3. Exposition of the statement. “Where is the question? Where does the solution
begin? No modern symbols!”. The sequential exposition in the document
conflicts with the modern formula which shows all operations together.

4. From words to symbols. “Find a number that, if joined to its square, makes 12:
what equation can I obtain?” [By a really weak student].

5. Unknown mathematical procedure. “Why do I have to halve the ‘things’
(coefficient of the linear term)? It is not even!”

6. Search for information to guess meanings (general meta-cognitive
competency). Some students looked lost in front of difficulties 1) and 2): they
did not think to read the text again, in order to find in the document the specific
meaning of letters and words.

7. Meta-cognitive competencies regarding mathematical tools. Many students did
not think to use the modern formula in order to interpret the document (to

understand the meaning of specific elements like the letter &’ for “Root”, as
well as passages in the reasoning).

Comments

I shortly describe my students’ difficulties as lack of willingness to guess, to produce
conjectures, or to check them autonomously searching reasons inside the document. It
seems that they have not internalized the hermeneutic circle which concerns the idea
that the interpreter’s understanding of the text as a whole is established by reference
to the specific parts and his/her understanding of each individual part by reference to
the whole. | considered that students had experienced the hermeneutic circle using
different kinds of texts, in various disciplines.

About the lack of disposition to make conjectures, we can identify a diagnostic role
of hermeneutic approach. Conjecturing shows one's competences; students who
produce conjectures reveal their being. It is really different from repeating a piece of
the teachers' lesson! These remarks are based on the works of an Italian author,
Bertagna (2000). He notes that from Parmenides and Aristotle until Heidegger,
Fromm and Marcel an anthropological dilemma regards the distinction between to be
and to have. The somebody’s being is her/his essence or substance. The Italian term
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“capacita” (capacity), in psycho-pedagogical context, recalls individual potentialities.
The term competence has been used by Chomsky in contrast to performance: when
teachers want to see whether students know a procedure, they create a task that
requires a performance. A valid performance sometimes hides a lack of underlying
competence. Both capacity and competence are inherent to the being of a student. On
the contrary, knowledge and skill belong to the having. It is remarkable that from the
Latin verb habeo (to have) derived: habitus (to behave), habilis (to do something
well), habitare (to live in a place). About knowledge, we know that, where/when/why,
how. The meaning of skill is strictly connected with that of the Greek techné (craft or
art).

Fig. 3: Interpreting a text; from (Glaubitz, 2011b).

In interpreting a text, “you start with a certain image of the text reflecting
your expectations about what it might be about. Then you read the text and
realize that some aspects of your image do not agree with what is said in the
source. Thus, you have to modify your image, read again, modify and so on until you
are satisfied with the result or simply do not like to continue [...] the
hermeneutic circle can be considered as a process in which a hypothesis is put
up, tested against the source, modified, tested again and so on until the reader
arrives at a satisfying result” (Jahnke, 2014, pp.84-85), with reference to
figure 3. Notice that the term “hypothesis” is used. I agree with Lampert (1990)
who, quoting Lakatos, indentifies a conjecture with a “conscious guess”. | believe
that making hypothesis could be an unconscious guessing, also in the case in which
students interpret originals.

When students are requested to interpret the text without any suggestion by
the teacher, as in the first part of the experiment, they have to take a risk and
guess or make conjectures, because they do not have the opportunity to choose
the right specific knowledge or the skill they have got by the teacher. They have
to abandon the reference to what has come to them from outside, and instead
use their inner sources (the fact that they know to be requested to interpret the text
with respect to its mathematical content does not significantly influence the
situation). We call these inner sources competences.
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| presume that only self confident students, i.e. those who believe to have a chance to
give a “rewarding” answer to questions asked by teacher (a right one or, in any case,
one well accepted by the members of class), have the willingness to conjecture. The
students involved in the experiment got quite low test scores. Therefore | was not
completely surprised when they did not conjecture trying to interpret Pacioli's
original. As a teacher, this fact has posed me the problem on how to help students.
Beyond individual cognitive difficulties, | think that they are influenced by other
factors, mainly by the didactical contract discussed by Brousseau (1984), so that
students consider more rewarding to give a performance quickly, rather than to
“waste” time in personal efforts. It mostly happens in written tests. In addition,
students could consider that leaving interpretation to the teacher has positive
consequences: the quality of performance will be better, so they will get a better
mark.

These reflections cannot be general because of the way in which the experience had
been realized. However, some characteristics of my students are the same of other
Italian students: they attend a state school which has similar curricula with respect to
other kinds of secondary schools, the performance standards in mathematics and
literature are similar to a significant percentage of Italian students, almost all of them
have personal interests especially in new technologies etc. This leads to guess that
some of their difficulties could be common to many other students.

HISTORY IN THE MATHEMATICS LABORATORY: APROPOSAL TO THE
TEACHERS WHO DO NOT USE HISTORY; AWAY TO ACT ON THE ZONE
OF PROXIMAL DEVELOPMENT

Reflection on the questions reported in Introduction about teachers’ reluctance to use
history in their mathematics teaching, led me to design proposals of activities that are
now collected in the textbook (Bergami & Barozzi, 2014). Almost every chapter of
this textbook contains a section called historical laboratory divided in three parts: the
first one is printed in the paper book as input; the second regards “supplementary
exercises” and is on-line, like the third which is devoted to cultural context (where
and how mathematicians operate, mathematics and other subjects or applications, a
research on the internet). As an example | describe the activity entitled “Equations
with Friar Luca Pacioli”.

EQUATIONS WITH FRIAR LUCA PACIOLI

[In translating into English | kept the reduction of old words used in the original passage:
“co” literally means “thing”; “ce” means “census’. ]

[The students are requested to read the following historical document.]
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“[...] Find for me a number such that, if %
of its square is added, makes 3. Let that
number be 1 co; its square will be 1 ce. Its
Y4 be ¥4 ce which added to 1 co will make 1
co p[lus] ¥ ce, it will be equal to 3. You
see that you have less than 1 whole ce
because it results ¥ ce, but | say that you
[can] reduce it to 1 whole ce, that is divide
all equation by ¥%; you will have 1 ce p 4
coequals 12 [...]”

Luca Pacioli, Summa, p. 146.
Let’s interpret the document together.

[In the original worksheet, the problem
“Find for me a number such that, if ¥4 of its
square is added, makes 3” is written in contemporary Italian here.]

a) Search the problem inside the original. How is written the word “quadrato” [square]?
How is shown the omission of letters?

b) Write the associated equation.
¢) Delete denominators [using equations’ properties].

d) Use the answers a), b) to interpret the other lines of the document; then, answer the three
following questions:

|. What do “co” and “ce” mean?

I1. Divide the equation you wrote (previous point b) by ¥: what do you get? Check that you
are right looking at the original text.

How does Pacioli write the addition sign?
Extra exercises

1. Use the reduced formula to solve the equation you have got from p.146 of the Luca
Pacioli’s Summa.

2. What we name “reduced formula” describes a procedure friar Luca used even when the
linear coefficient is not an even number. Analyze the following original [students are
requested to use the same formula to interpret the document].

[See the English translation in figure 2].
Luca Pacioli, Summa, p. 145.
a) Focus on the problem.
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b) Write the corresponding equation

c) Solve it using the “reduced formula” (the linear coefficient is equal to 1 and can be
written as 2 %2 ).

d) Compare the reckonings you have made to the part of the document which starts from
“Smezza le cose” [halve the things]: first of all, find the manner Pacioli uses to write the
square root and the minus sign, then calculate the value of 12 %..

e) Take note that Pacioli obtains only one solution: which one doesn’t he consider?

[The correct answer to the €) question is that Pacioli does not consider the value -4 as a
solution of the equation. After that answer | propose to students the following historical
remark, in order to explain the reason of this fact.]

In millenarian tradition, the solution of equations was based on geometric figures.
Research activity

IS MATHEMATICS THE SAME EVERYWHERE? [This is the main question of the task
that is explained in the following two points.]

1) Babylonians, Greeks (Euclid), Indians, Arabs, Europeans (for us, Luca Pacioli): this is a
short list of peoples who have made the history of algebra, particularly of quadratic
equations. Search further details in the web or in books. Consider that these peoples are
from different places so, in this case, mathematics looks the same everywhere.

2) On the contrary, point out the fact that different peoples had their own specific
mathematics, with their own connotations.

Keywords for web research

Luca Pacioli, quadratic equations in the history of mathematics [in English also in the
original for search on English sites], Babylonian-Arab-Indian mathematics, al-Khwarizmi,
completing the square.

Suggested readings

Dematte Adriano, Vedere la matematica — Noi con la storia, UNI Service Trento, 2010
(http://www.uni-service.it; some pages in http://books.google.it)

Joseph G. Gheverghese, C'era una volta un numero, Il Saggiatore Milano, 2003. [Joseph G.
Gheverghese, The Crest of the Peacock: Non-European Roots of Mathematics].

Suggested sites
www.e-rara.ch/zut/content/titleinfo/2683230

http://www.matematicamente.it/tesi-didattica/Lungo-Equazioni.pdf

http://www-history.mcs.st-and.ac.uk/HistTopics/Quadratic_etc_equations.html
[In the Publisher’s website, students can find the answers to the previous questions]

Fig. 4: From the textbook (Bergamini & Barozzi, 2014)
The role of questions posed by the teacher
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In the historical laboratory (figure 4), some questions for students accompany the
document to specify with respect to what issues interpretation is required. They are
aimed at facilitating the task and they:

- take into account the hypothesized students’ prerequisites

- construct prerequisites (like in the case of the original we analyzed at the
beginning of my presentation with respect to the other);

- address the main points of the document;
- suggest how to create a bridge between modern solution and ancient solution;

- propose situations so that students could infer by themselves the meaning of
specific elements in the document (for example, question d) 1.);

- could be used for tests.

Asking questions to help pupils to acquire knowledge reminds us of the Socratic
maieutics as a pedagogical method based on the idea that truth is latent in the mind of
every human being. I consider it a fundamental part of the deep, ancestral teachers’
role. It is a way to act on the zone of proximal development of \ygotsky (1978).

An example of asking questions can be found also in (Pinto, 2010) and regards the
description of a workshop based on Pedro Nunes’ shadow instrument (figure 5). The
author asked four questions to participants so that they could “understand and
validate the functioning of this instrument”:

“1. Show that the triangles [S’TS] and [S’TO] are congruent and that <SS°7 =<OS’T.
2. Show that <OS’T = <AOX .
3. Show that the plan SS’T is perpendicular to the horizontal plan.

4. Show that the angle that the sun rays make with the horizontal plan is equal to <AOX, i.e.
equal to the angle marked in the circle by the shadow of the hypotenuse of the triangle.”

Fig. 5: The shadow instrument

Page 347



ADRIANO DEMATTE

Pinto's workshop, such as my laboratories for students, engages participants in a
double level of text analysis: the original and the questions. In my opinion, questions
can facilitate the understanding but not remove all obstacles (in case students are not
good at reading, for example). Students have the obligation to follow a supplementary
reasoning, just the one sketched by questions. It, paradoxically, requires no
interpretation. More precisely, the students’ attempt to refine their image of the text
constituted by questions would introduce an “impossible” task, because they would
have to understand the reasoning made by experts in mathematics like the teacher or
the writer who prepared the written material.

Jahnke (2014, previous quotation) suggests that there could exist many kinds of
reasoning in interpreting a document. In fact, expressions like “certain image of the
text”, “expectations about what it might be about”, “satisfying result” implicitly
suggest that, for example, a mathematics historian and a student do not have the same
image and expectation about the Pacioli’s document they never saw before. In
addition, he states that “different readers with their different backgrounds arrive at
different interpretations”. As a teacher | know that students with low motivation
consider satisfying the result that is unsatisfying for other mates; students like those
in (Dematté, 2006b) got the same result but paying attention to different steps of
reasoning. | have to precise that, in this paper, the term “reasoning” refers to
individual processes aimed to acquire mathematical notions, nothing saying about
mathematical objects.

In different classes of mine, using different documents accompanied by written
questions, it happened that some students required supplementary explanations just
regarding those questions. In this case, we can not say that every question facilitated
their understanding. Another problem derives from the fact that questions usually
regard specific parts of the text but students have to understand the whole meaning of
the document, according to the concept of hermeneutical circle. In (Dematte, 2006b),
| reported a case study of a student (grade 12) who focuses on specific parts of an
original regarding al-Khwarizmi’s graphical resolution of quadratic equations. This
way, he did not get the whole view of the document. | argued that he was worried by
reckoning and by dealing with algebraic passages, so that he did not acquire the
capability to reason and operate with reference to an aim, that is to establish
connections among data into the final geometric figure, in which also the solution is
represented. Differently, a female student of the same class operated trying to
interpret the figure: she was able to explain it with reference to the meaning of each
part and to remedy her reckoning mistakes. In general, | consider that the reference to
an aim is a manner to reconstruct a mathematical reasoning in an “almost narrative
way”, an “elementary” but necessary way to understand, because abstract reasoning
is based on it. Aims inside mathematical reasoning suggest a track for identifying the
whole meaning of a document (see Solomon & O’Neill, 1998; Thomas, 2002; Zazkis
& Liljedahl, 2009).

Page 348



HISTORY IN THE CLASSROOM: EDUCATIONAL OPPORTUNITIES AND OPEN QUESTIONS ...

FINAL REMARKS

In this paper, examples of class experiences as well as proposals of activities are
described. | have considered this plenary an opportunity to let know a teacher's point
of view. | am aware that not many teachers use history in their classes, but I believe
that every teacher could agree about the relevance of educational problems like, for
example, the way to involve students or to help them in learning, which have been
analysed with reference to the history in mathematics class. With respect to
educational research, | hope that the classroom episodes | have described in these
pages could be useful for discussing the role of history in mathematics teaching,
specifically for discussing what kind of mathematical or interdisciplinary abilities
history can contribute to develop. | consider that this is one of the main contributions
that teachers who participate in ESU-HPM Group activities can give, according to the
goals we can find in the history of the Group written by Fasanelli and Fauvel (2006):

- “To produce materials which can be used by teachers of mathematics to
provide perspectives and to further the critical discussion of the teaching of
mathematics.

- To facilitate access to materials in the history of mathematics and related areas.

- To promote awareness of the relevance of the history of mathematics for
mathematics teaching in mathematicians and teachers”.
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MATHEMATICS, ALGORITHMICS AND HISTORY: AN
INTEGRATED APPROACH IN TWO CLASSROOM
EXPERIMENTS

Ghislaine ldabouk
Université Paris Diderot

In 2009, algorithmics was explicitly introduced in the new mathematics curriculum
for the first year of secondary education in France. This introduction was extended to
the new curricula for the second and third year published in 2010 and 2011. In
the latter, the intentions of the curricula developers regarding algorithms are
clearly stated: algorithms should be part of a problem-solving approach
integrated in the other topics of the mathematical curriculum (analysis,
geometry, statistics and probability, logic) and they could also be connected to other
disciplines.

Algorithmics is therefore not meant as an independent sub-part but as a spiral
work throughout the high school mathematics curriculum. Having this in mind, we
had the idea to integrate history of mathematics in this approach to
algorithmics. The following article presents two classroom activitites based on the
reading of original sources and experimented with first and third year students in two
different classroom contexts. The first activity is a computer-assisted exercise
session meant as an introduction to the chapter on quadratic functions for first-year
students and based on a problem by Al Khwarizmi. The second activity is a guided
research session based on Heron’s method for the approximation of the square
root of a number. It was intended for third year students enrolled in the scientific
section (Terminale S) as a conclusion to the chapter on sequences and limits
and was carried out in small groups. After describing the pedagogical
intentions and conceptual process, we review the activities and summarize the
pupils’ work. We end up with an assessment of these two classroom activities
from both pupils’ and teacher’s standpoints. In particular we try and assess the
relevance, in these two cases, of the use of historical material and of the introduction
of a historical perspective in teaching mathematics.

Page 353






WORKSHOP

‘TELLING MATHEMATICS’ REVISITED
Jan van Maanen
Utrecht University & Groningen University

The history of mathematics has a strong oral tradition. People tell each
other problems and methods, and not so much in classrooms but rather in
coffeehouses and during walks and parties. | studied this phenomenon before and
reported about it at the European Summer University at Louvain, calling it
“Telling mathematics”. Interest in these problems continued, as can be seen
from the recent book Mathematical Expeditions - Word problems across the ages
by Frank Swetz (2012).

I will shed some new light on this culture, of passing mathematical problems
and knowledge by sharing it with others. In Louvain my focus was on the role that
such problems and especially the act of telling it to fellow students, could have
in the classroom. In this presentation | will take a more historical and anthropological
point of view. An experiment with two groups of about 40 mathematics teachers
each will provide information about the repertoire of professional mathematicians,
as far as ‘telling mathematics’ is concerned. And some of these problems | will
trace through history. Many of them originated in Asia, and entered Europe in the
Middle Ages and Renaissance. And they continue to be told.

An interesting didactical question arises, which is why this spontaneity of
sharing problems with each other is observed rather outside school. What can we,
teachers, learn from that?
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Workshop
WORKSHOP ON THE USE AND THE MATHEMATICS

OF THE ASTROLABE
Wilfred de Graaf* & Michel Roelens”
“Utrecht University, "University Colleges Leuven-Limburg

For more than one thousand years the astrolabe was one of the most used
astronomical instruments in both the Islamic World and Europe. It was used to locate
and predict the positions of the sun and stars, for instance to schedule prayer times,
and to determine the local time. In the first part of the workshop, the participants
learn how to use (a cardboard model of) the astrolabe. In the second part they study
the mathematical and astronomical principles on which the astrolabe is based. We
explain the mathematical properties of stereographic projection and we show how
the lines and circles on the astrolabe can be computed.

INTRODUCTION
Background of the workshop

The astrolabe workshop is based on an idea by Prof. Dr. Jan P. Hogendijk, University
of Utrecht. The workshop has been held in recent years on several occasions in Iran,
Tajikistan, The Netherlands, Turkey, Syria and United Kingdom by Wilfred de Graaf.
In Belgium the workshop has been held by Michel Roelens for high school students
and (future) teachers. Recently a detailed instruction on the use of the astrolabe and
on the mathematical method of stereographic projection has been published by
Michel and Wilfred in Uitwiskeling, a Belgian journal for high school mathematics
teachers.

Classroom use

The workshop as a whole is suitable as an interdisciplinary project for high school
students aged between roughly 15 and 18 years that have a keen interest in the school
subjects of physics and mathematics. The first part of the workshop, on the actual use
of the astrolabe, can also be given to a wider audience with interest in history,
geography and culture, and younger pupils (13-14 years old). For mathematics
education the astrolabe is of particular interest since the instrument is based on the
mathematical concept of stereographic projection. In a classroom situation the pupils
could for example be asked to derive certain formulas related to this projection,
thereby using such things as Thales’ theorem and the inscribed angle theorem of
plane geometry. About the use of the astrolabe in the classroom, see also de Graaf
and Roelens (2013) and Merle (2009).
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The original astrolabe

Based on mathematical principles which date back to Greek antiquity, the astrolabe
flourished in the Islamic World from the year 800 CE onwards. In this workshop the
participants learn how to use the astrolabe of the renowned mathematician and
astronomer Abtit Mahmud Khujandi.

Figure 1: The astrolabe of Abii Mahmiid Khujandi

He constructed this astrolabe in the year 985 CE at the observatory in Baghdad. It is
one of the oldest and most beautiful decorated astrolabes extant today. It is currently
displayed at the Museum of Islamic Art in Doha, Qatar. The distributed astrolabe
model has been recalculated for the latitude of Antwerp, i.e., 51° N.

Principles

The astrolabe is based on the mathematical principles of the celestial sphere and
stereographic projection. The celestial sphere is an imaginary sphere concentric with
the earth on which the stars and the apparent one year path of the sun are projected
from the centre of the earth. Stereographic projection is a method to map a sphere
onto a plane. In this case the celestial sphere is mapped from the celestial south pole
onto the plane of the celestial equator.

FIRST PART: THE USE OF THE ASTROLABE
The astrolabe model consists of two parts.
On the overhead slide: the spider

The spider contains the stereographic projections of the ecliptic, which is the apparent
one year trajectory of the sun along the sky, and of 33 stars. These stars are the same
as on the astrolabe of Khujandi. The positions of the stars are recomputed for the year
2000 CE, showing the effect of precession of the equinoxes if the model is compared
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to the original astrolabe. The precession is about 15 degrees in a 1000 year interval.
In the model, the position of a star is indicated by a dot in the middle of a small

circle.

On the sheet of paper: the plate

The plate has been combined with the rim, which is a circular scale divided into 360
degrees. The plate displays (parts of the) the stereographic projections of the
following points and circles.

The centre of the plate is the celestial north pole, which is the centre of three
concentric circles: the Tropic of Cancer, the celestial equator and the Tropic of
Capricorn.

The horizon, whose projection is visible on the plate in Eastern, Northern and
Western directions. The twilight line is 18° below the horizon.

The almugangarat (altitude circles) are the nearly concentric circles 3°, 6°,
9°... above the horizon.

The zenith is the point directly above the head of the observer, i.e. 90° above
the horizon.

The azimuthal circles or circles of equal direction. Its projections are drawn for
5° intervals and are numbered at their intersections with the horizon. The first
vertical is the azimuthal circle through the East and the West point. It is the
reference circle for the other azimuthal circles. Note that all azimuthal circles
pass through the zenith.

Figure 2: The stereographic projection of the Tropic of Capricorn from the celestial

sphere onto the plane of the celestial equator
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Figure 3: The spider with the ecliptic and the star Rigel highlighted
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The back side of the astrolabe is not shown in this model. It contains the alidade: a
metal strip with two sights and a pointer. An alidade can be used to measure the
altitude of the sun or a star in degrees, if the astrolabe is suspended vertically. The
altitude can be read off on a circular scale.

The use of the astrolabe

If one knows the position of the sun in the ecliptic on a given day, the astrolabe can
be used to tell the local time. It can then also be used as a compass. The position of
the sun can be estimated using the fact that the sun moves through the twelve
zodiacal signs, into which the ecliptic is divided, in the course of one year. Every sign
is divided into 30 degrees. The sun moves with a velocity of approximately one
degree per day.

For any day, the position of the sun in the ecliptic can be marked on the spider by a
non-permanent marker. The altitude of the sun can be measured using the alidade on
the back side of the astrolabe. The spider can now be set to represent the actual
position of the celestial constellations with respect to the horizon. By means of the
azimuthal circles one can read off the direction of the sun, for example 10° S or E. To
determine the local time, note that the pointer of the spider indicates a number on the
rim. A full rotation of the spider corresponds to 24 hours, so 1 degree of rotation
corresponds to 4 minutes of time. By rotating the spider, one can determine the
interval of time between the moment of observation and, for example, sunset, noon,
and sunrise.

Aries March 21 - April 19
Taurus April 20 - May 20
Gemini May 21 - June 20
Cancer June 21 - July 22

Leo July 23 - August 22
Virgo August 23 - September 22
Libra September 23 - October 22
Scorpio October 23 - November 21
Sagittarius November 22 - December 21
Capricornus | December 22 - January 19
Aquarius January 20 - February 18
Pisces February 19 - March 20

Table 1: The signs of the zodiac and their corresponding dates

The assignments of the workshop are divided into three levels: the calculation of the
length of daylight on a given day of the year (level 1), the use of the astrolabe as a
clock and as a compass (level 2) and the determination of the direction of Mecca
(bonus level).
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Workshop on the use of the astrolabe, level 1

1. The date of your anniversary is: day ........ month ........

2. Then the sun is in the sign of the zodiac: ........

3. And in the degree: ........ In case the degree is 31, write 30.

Now mark the position of the sun on the ecliptic on the spider. Be sure to mark it on the
outer rim of the ecliptic!

4. Atsunrise on your anniversary, the position of the pointer is: ........
Recall that the sun rises on the Eastern horizon.
5. At sunset on your anniversary, the position of the pointer is: ........

6. The difference between the position of the pointer at sunset and the position of the
pointer at sunrise is: ........ degrees. When encountering a negative difference, add 360
degrees to the position of the pointer at sunset.

7. The length of daylight on your anniversary is: ........
Recall that 15 degrees corresponds to 1 hour.

Workshop on the use of the astrolabe, level 2

Suppose you have measured with the alidade on the back side of the astrolabe that the
sun is 9 degrees above the horizon. You have done the measurement in the afternoon of
your anniversary date.

8. The position of the pointer at that moment is: ........
9. The position of the pointer at noon (12.00 true local solar time) is: ........

10.The difference between the position of the pointer at the moment that the sun is 9
degrees above the horizon and the position of the pointer at noon is: ........ degrees.

11.The true local solar time at the moment that the sun is 9 degrees above the horizon is:

12. The direction of the sun at that moment is: ........

Workshop on the use of the astrolabe, bonus level

Suppose you are at a place with the same latitude as Antwerp. The geographical
longitude of this place is 15 degrees East of Mecca. You know that the sun passes
through the zenith of Mecca on the days when it is in 7 Gemini and in 23 Cancer.

13. Use the astrolabe to find the direction of prayer, gibla, at your place.

SECOND PART: THE LINES ON THE ASTROLABE
Stereographic projection

Each line on the astrolabe is the stereographic projection onto the equatorial plane of
a circle on the celestial sphere. We project from the south pole of the celestial sphere.
This means that the circle that we want to project is connected by straight lines with
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the celestial south pole so that an oblique® circular cone is created. The stereographic
projection is the intersection of this cone with the plane of the equator.

A major advantage of the stereographic projection is that the circles are projected as
circles (we will prove this later). The lines of the astrolabe can thus be drawn with a
compass!

Figure 5 shows the stereographic projection of a set of circles on the celestial sphere
that lie in a set of planes that are parallel to each other, but not parallel to the plane of
the equator. This is for example the case with circles at a fixed altitude above the
horizon (e.g. all the points 20°,40°... above the horizon).

equatonal piane |7} WA

Figure 6: Stereographic projection of the ecliptic

Figure 6 shows the stereographic projection of the zodiac. The zodiac is the apparent
path of the sun around the earth in one year. It is the intersection of the celestial
sphere with the ecliptic plane. Since the rotation axis of the earth is not perpendicular
to the ecliptic plane, the projection of the zodiac is decentred with respect to the
centre of the astrolabe.
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Circles on the celestial sphere remain circles on the astrolabe

We want to prove that the stereographic projection on the equatorial plane of a circle
on the celestial sphere is again a circle.

Take any circle ¢ on the celestial sphere. The stereographic projection of c is the
intersection ¢' of the cone of base ¢ and apex S (the south pole of the celestial sphere)
with the plane of the equator. We want to prove that ' is also a circle.

Apollonius of Perga (3™ century BCE) proves in Conica the following two
propositions.

(Conica I1.4) The intersection of an oblique circular cone with a plane parallel to the
basis is a circle.

(Conica I.5) The intersection of an oblique circular cone with a ‘subcontrary’ plane is
also a circle.

Figure 7: Intersecting a cone with a ‘subcontrary’ plane

Apollonius explains what he means by ‘subcontrary’. For this purpose, he uses the
intersection ABT of the cone with the plane perpendicular to the basis and containing
T and the centre of the basis (see figure 7). In this plane, AB is the diameter of the
basis and CD is the diameter of the intersection, with C on AT and D on BT. If we cut
the cone parallel to the basis, then the angle C is equal to the angle A. Now, cutting
with a subcontrary plane means cutting in such a way that the angle D is equal to the
angle A.
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Proof based on Apollonius’ theorem

Figure 8

We operate in the plane passing through the centre M of the sphere, the celestial
south pole S and the centre of the circle c. This plane is then automatically
perpendicular to the equatorial plane. We have to prove that the angles A and D are
equal (figure 8). Indeed, if this is the case, it follows from the theorem of Apollonius
that the intersection ¢’ of the cone with the equator plane is also a circle.

Using figure 9, we can prove the equality of the angles A and D. We have: 4 is equal
to N because they are inscribed in the same circle. Now, N is the complement of $
because B is inscribed in a semicircle. Finally, S is the complement of D in the right
angled triangle DMS. This proves that A = D.

x-.
\
\

;

S

Figure 9

With theorem 1.5 of the Conica we have proved that the stereographic projection of a
circle on the celestial sphere is a circle on the equatorial plane (and thus on the
astrolabe). We now give a proof of Apollonius’ theorem L.5.
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Proof of Apollonius’ theorem

Given is an oblique cone, with circular base in the plane « and apex T. This cone is
cut by a plane that is perpendicular to the plane ABT, in such a way that the angle D
is equal to the angle A, as in figure 7. We have to prove that the intersection with /3 is
a circle too.

Apollonius takes an arbitrary point P on this intersection and he proves that the angle
CPD is right. He considers the intersection of the cone with a plane o’ parallel to «
through P. In a previous theorem (Conica 1.4), Apollonius proved that this
intersection is a circle. Since the planes o’ and $ are both perpendicular to the plane
ABT, their intersection line is also perpendicular to this plane. Denote by M the
intersection point of this line with the plane ABT (figure 10). The triangles CEM and
DFM are similar. So we have:

CM-MD =EM - MF
In the right angled triangle EPF, we have
EM-MF = PM?
Hence
CM-MD = PM?

Figure 10

From this it follows that the triangle CPD is rectangular in P. Note the use in the two
directions of the property "the triangle CPD is rectangular in P if and only if the
height on CD is equal to the product of the length of the segments CM and MD in
which it divides CD ".

This proves Apollonius’ theorem.
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Drawing the Horizon

Using some trigonometry, students can draw some circles on the astrolabe
themselves. In the workshop below, we will do this for the special case of the
horizon.

Workshop: Drawing the Horizon

Figure 11: Blank astrolabe

We want to draw the horizon on the plate of the ‘blank’ astrolabe of figure 11. The
projections of the celestial equator and the two tropics are already drawn. Just like on the
model, we have taken r = 4.6 cm as the radius of the celestial equator. Using that the
latitude of the tropics is at 23°26°16” N and S, we can calculate that the radius of the
Tropic of Cancer on this model is 3.0 cm and that of the Tropic of Capricorn is 7.0 cm.

The horizon of an observer at a certain latitude on earth is projected on the plate. We
assume that the observer is at the latitude of Antwerp, 51° N. All circles on the plate are
stereographic projections of circles on the celestial sphere. In order to draw the horizon,
we first identify what circle on the celestial sphere represents the horizon; then we
determine its stereographic projection. Because we know that the stereographic
projection is a circle again, it suffices to determine its centre and radius.

On an earth globe, we locate Antwerp at 51° N. The plane tangent to the earth at this
point is the plane of the horizon for an observer in Antwerp (figure 12).
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Figure 12: Earth globe with plane of the horizon

Exercise 1 What is the angle a between the plan of the horizon and the plane of the
equator?

Because the earth is negligibly small compared to the celestial sphere, we can regard the
plane of the horizon going through the centre M and having an angle « with the plane of
the equator. The horizon is the intersection of this plane with the celestial sphere. The
earth is represented as the point M (figure 13).

herizontal plane celestial sphere

equatorial plane

s

Figure 13: Horizon in the celestial sphere

We have to determine the stereographic projection of the horizontal circle. In figure 14,
the horizontal circle is represented by the line segment AB and its stereographic
projection by the line segment 4°B".
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celestial sphere

M (= Earth)

Figure 14: Constructing the projection of the horizon

Let us now write r for the radius of the celestial sphere in general. For the astrolabe
drawing we will take r = 4.6 cm at the end of the computation.

Exercise 2

Did you find

Exercise 3

Express the distance 4’M and the distance B’M in terms of the radius r.
Make use of the right angled triangles 4 °MS and B’MS. What is the radius
r, of the projection of the horizon on the astrolabe? How far from the centre
M of the astrolabe should the centre P of the projection of the horizon be
drawn?

r
=35 (tan 64.5° + tan 25.5°) ~ 5.9 cm;

r
|PM| = 2 (tan 25.5° — tan 64.5°) ~ 3.7 cm?

Draw the projection of the horizon on the blank astrolabe. Note that P
should be ‘above’ the midpoint M (that is southward) on the astrolabe.

In an analogous manner (other) altitude circles can be drawn. You can do this at home for
example for the altitude circle 30° above the horizon (figure 15). It is more complicated
to draw the azimuthal circles. (It involves another feature of stereographic projection,
namely that it preserves angles.)
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Figure 15: Construction for the projection of the altitude circle 30°
above the horizon
FINAL REMARK

We believe the astrolabe is a very powerful didactic instrument to learn on the one
hand about the movements of the earth, the sun and the stars, and on the other hand
about the mathematics that is behind the method of stereographic projection. Also,
we believe, the astrolabe is a wonderful historical tool to enthuse young students for
the study of mathematics and natural sciences.

NOTES

1. An oblique (circular) cone is a cone of which the apex is not situated directly above the centre
of the (circular) base. It may also occur that the cone is not oblique but right. This is the case
when the circle on the celestial sphere happens to be in a plane parallel to the equatorial plane.
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PLAYING WITH EULER

Caterina Vicentini

Liceo Artistico “Max Fabiani” & Universita degli Studi di Udine

This workshop has been based on the work my students and myself have made during
the school year 2011-2012 and we have presented at the “Mathematical Games’
Corner” of the Third Edition of the Scientific Communication Festival “Scienza
under 18 that took place in May 2012 in Monfalcone (Italy).

We played with other students and the general public a new game which was born
during the work on original sources examined during some extra-curricular
workshops on History of Maths. The participants were all volunteer students (aged
from 15 to 18 years) frequenting the ISIS “D’Annunzio-Fabiani” in Gorizia, coming
from the linguistic, scientific and artistic sections of our Institute.

During the workshop in Copenhagen we have played the difficult version of the game
and we have examined the pages of Euler s Algebra we had taken into account. Then
we have discussed about the transposition of original sources in a game as well as
the value of social games in increasing of students’ motivation in the learning of
mathematics.

INTRODUCTION

In Italian Schools, Mathematics is generally taught and learned in a way that comes
with an almost always implicit Platonic Epistemology (1995). Even though nowadays
some problem solving activities are faced in textbooks and classroom practice, they
are often coming from the INVALSI [1] and OCSE-PISA tests and going in the
direction of merely guarantee acceptable learners’ performances in these assessment
occasions. Some pills of History of Maths appear here and there too, usually exiled in
the textbooks’ chapters’ last pages, often neglected by teachers and learners. History
of Mathematics, even when present is mostly not integrated with the core of the
subject, as one can see consulting the syllabi by Bergamini, Trifone, Barozzi (from
1997 to 2015) or Sasso (from 2006 to 2015) that, all together seem to cover the 90%
of Mathematics textbooks national sales. There are of course some virtuous
exceptions and they are well known in literature, but they unfortunately are neither
systemic nor close to the average classroom habit.

Going against the flow, I have always felt the need to conceive tasks based on
original sources to let students become aware that Mathematics and its teaching have
a historical development and are therefore a human cultural product. As a teacher, |
usually only had the opportunity to do so in my own classrooms, but since 2010 the
Science Communication Festival “Scienza under 18 has given to my students and
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myself the chance to reach all the education community of the Gorizia’s province as
well as the general public at least during three days a year.

Being quite difficult to find some financial support to realize extracurricular
initiatives during this economic crisis period , a good way to obtain some funds from
the Friuli Venezia Giulia Region has been to connect the introduction of an original
source with the popularization of cultural heritage that enriches the local institutions
and the well-known European CLIL [2] Project.

THE WORKSHOPS AT SCHOOL

As already said, the first phase consisted in 6 sessions of extracurricular two hours
workshops on an original source. The book chosen was “The Elements of Algebra”
by Leonhard Euler, whose original version, “Volistandige Anleitung zur Algebra”,
dates back to 1770. The main reason for this choice is that a copy of its second
French edition dating back to 1807 is kept by the Biblioteca Statale Isontina in
Gorizia and its third English edition (1828) is available for free in the site of the
Harvard College Library. So we had the possibility to visit the ancient books section
of the library and could touch and smell the ancient book. This experience had an
important emotional impact on learners. What is more, during the Festival we
popularized the existence of the generally unknown important ancient collection of
mathematical books stored in town, becoming cultural promoters.

The students were all volunteers, coming from the linguistic, artistic and scientific
sections of the Istituto Statale d’Istruzione Superiore “D’Annunzio—Fabiani” in
Gorizia: quite heterogeneous group. For this reason the choice of the topic needed to
be quite accessible, generally unknown, but not trivial. This fact also in consideration
of our final goal: the construction of a social mathematical game that would have
been played by pupils, students and the general public. So, we took into account the
third section of the first book, in particular the chapters three and four concerning
arithmetical progressions and their summation (1828). This topic in fact, even though
present in the program guidelines and textbooks, is very often neglected by teachers
due to the structural lack of time in Italian Mathematics schedule of all types of high
schools.

The workshop sessions were organised in this way: at the beginning the students
individually read a small fragment followed by some questions proposed by the
teacher, then shared their ideas with a partner and in the end two pairs were asked to
come together in a group of four to work out the task.
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The first quote considered was:

CHAP. I1I.

Of Arithmetical Progressions.

402. We have already remarked, that a series of numbers
composed. of any number of terms, which always increase, or
decrease, by the same quaatity, is-called an arithmetical

€8310N. '
hus, the natural numbers written in their order, as
1,2 3,4,5,6,7, 8,9, 10, &c. form an arithmetical pro-
Tﬂby,_bemnse they constantly increase by unity; and
the eseries 25, 22, 19, 16,.13, 10, 7, 4, 1, &c. is also such a¢
pro ion, since the numbers constantly decrease by 3.

408. The number; or quantity, by which the terms of an
arithmetasal progression become greater or less, is called the
difference ; so that when the first term and the difference:
are given, we may continue the arithmetical progression to
any length,

For example, let the first term be 2, and the difference 3,
and we shaﬁ have the following increasing progression :
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, &c. in which each term
is found by adding the difference to the preceding one.

404. It1s usuaf to write the natural numbers, 1, 2, 3, 4,
5, &c. above the terms of such an arithmetical pro ion,.
in order that we may immediately perceive the rank which
any term holds in the progression, which numbers, when
written above the terms, are called indices ; thus, the above
example will be written as follows:

Indices. 1 23 4 5 6 7 8 9 10

Arith. Prog. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, &c.

where we sce that 29 1s the tenth term.

accompanied by the following questions:

1. Let a be the first term, and d the difference, how would you write the 10" term
if the progression is increasing?

2. and if the progression is decreasing?

3. How would you write the n™ term in both cases?
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The second fragment:

405. Let a be the first term, and d the difference, the
arithmctical progressionp will go on in the following order:

1 2 3 4 5 6 T
a,atd,a*2d, a+3d, a*4d, a+5d, a+6d, &c.
according as the series 1s increasing, or decreasing, whence
it appears that any term of the progression might be easily
found, without the necessity of finding all the preceding
oncs, by means only of the first term a and the difference d ;.
thus, for example, the tenth term will be @ * 9d, the hun-
dredth term @ * 99d, and, generally, the nth term will be

a+ (n-—1)d. -

406. When we stop at any point of the progression, it is
of importance to attend to the first and the last term, since
the index of the last term will represent the number of
terins, If, therefore, the first term be a, the difference d,
and the number of terms n, we shall have for the last term
a * (n — 1)d, according as the series is increasing or de-
creasing, which. is consequently found by multiplying the
difference by the number of terms minus one, am{v adding,
or subtracting, that product from the first term. Suppose,
for example, in an ascending arithmetical progression of a
hundred terms, the first term is 4, and the difference 3 ; then
the last term will be 99 x 3 4 4 = 301.

was followed by the questions:

4. Suppose to have an increasing progression of 7 terms, whose first is 2 and last
26, find the difference.

5. If in a finite increasing progression we know that the terms are n and the first
term a and the last term z are given, how to calculate the difference?
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Then students discussed on the third quote:

407. When we know the first term a, and the last 2, with
the number of terms n, we can find the difference d; for,
since the last term z = @ = (n — 1)d, if we subtract-@ from
both sides, we obtain z — a = (» — 1)d. So that by taking
the difference between the first and last term, we have the
product of the difference multiplied by the number of terms
minus 1; we have therefore only to divide z —a by n — 1

in order to obtain the required value of the difference d,
zZ—a

which will be — This result furnishes the following

rule: Subtract the first term from the last, divide the re-
mainder by the number of terms minus 1, and the quotient
will be the common difference: by means of which we may
write the whole progression.

408. Suppose, for example, that we have an increasin
arithmetica rogression of nine terms, whose first is 2, an
last 26, and tgat 1t is required to find the difference. 'We must
subtract the first term 2 from the last 26, and divide the re-
mainder, which is 24, by 9 — 1, that is, by 8; the quotient
8 will be equal to the difference requiret{, and the whole
progression will be:
. 123 4 5 6 7 8 9
2, 5, 8, 11, 14, 17, 20, 23, 26.

that went with:

6. How to find the number n of terms if the first and the last terms are given
together with the difference?

7. Would question 6 always have an answer?

8. If yes explain why, if not, give a counterexample.

Page 377



CATERINA VICENTINI

Afterwards the scrap examined was:

. 409. If now the first term a, the last term z, and the dif-
ferepce d, are given, we may from them find the number of
terms n; for since z — @ = (n'— 1)d, by dividing both
Z—a

g =n- 1; also » being greater by
z—a

1 than n — 1, we have n = ~—— + 13 consequently the

number of terms is found by dividing the difference between
the first and the last term, or z —a, by the difference of the

prtigrmon, and adding unity to the quotient.
or example, let the first term be 4, the last 100, and the
difference 12, the number of terms will be 10(;2- 4 4+1=9;
410. It must be observed, however, that as the number
of terms is necessarily an integer, if we had not obtained
such a number for %, in the examples of the preceding
article, the questions would have been absurd.
Whenever we do not obtain an integer number for the

value of =, it wil be impossible to resolve the question;

sides by d, we have

and consequently, in order that questions of this kind may
be possible, 2 — a must be divisible by d.

Moreover, after having examined the hereafter paragraphs 412, 413, the students
were asked for a proof that the sum of any two terms equally distant, the one from the
first, the other from the last term, is always equal to the sum of the first and the last.
After that the following paragraph 414 was given for a check.
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CHAP. 1V.

Of the Summation of Arithmetical Progressions.

412. It is often necessary also to find the sum of an
arithmetical progression. This might be done by adding
all the terms together; but as the addition woul! be very
tedious, when the progression consisted of a great number
of terms, a rule has been devised, by which the sum may be
more readily obtained. '

413. We shall first consider a particular given ession,
such that the first term 1s 2, the difference 3, tﬁe ast term
29, and the number of terms 10 ; :

I 238 4 5 6 7T 8 9 10
2, 5, 8, 11, 14, 17, 20, 23, 26, 29.

In this progression we see that the sum of the first and

last term is 81; the sum of the second and the last but one
31 ; the sum of the third and the last but two 81, and so on:
hence we conclude, that the sum of any two terms equally
distant, the one from the first, and the other from the last
term, is always equal to the sum of the first and the last
term.
414. The reason of this may be easily traced ; for if we
suppose the first to be a, the last %, and the difference d, the
sum of the first and the last term is @ 4+ z; and the second
term being @ 4 d, and the last but one z — d, the sum of
these two terms is also @ + z. Farther, the third time being
a + 2d, and the last but two z — 24, it is evident that these
two terms also, when added together, make @ + z; and the
demonstration may be easily extended to any other two
terms equally distant from the first and last.

In a successive moment the proposed aim was finding the general formula for the
sum in two cases:

1. knowing the first, the last and the number of terms;

2. knowing the first term, the difference and the number of terms.
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As a result, students read the Euler solution in paragraphs from 415 to 420:

415. 'T'o determine, theretore, the sum of the progression
proposed, let us write the same progression term by term,
inverted, and add the corresponding terms together, as
follows::

24 54 8+4+114144+174204234+26429
29+26+238+204+17+14+114+ 84 5+ 2

81431431431 481431+ 31+381431+31

This series of equal terms is evidently equal to twice the

sum of the given progression: now, the number of those

ual terms is 10, as in the progression, and their sum con-

:r(elquently is equal to 10 x 31 = 810. Hence, as this sum

1s twice the sum of the arithmetical progression, the sum re-

quired must be 155.

" 416. If we proceed in the same manner with respect to
any arithmetical progression, the first term of which is a, the
Jast z, and the number of terms n; writing under the given
progression the same progression inverted, and adding term
to term, we shall have a series of n terms, each of which will
be expressed by a + x; therefore the sum of this series will
be n(u 4 :), which is twice the sum of the prc anth-
metical progression ; the latter, thervfore, will be repre-

sented by ﬂg-f—).

Afterward they were asked to particularize the formula in the cases of progressions
starting with 1, having n terms and whose difference varies from 1 to 10 and then
they checked the various particular formulae in paragraphs from 421 to 424.
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421. If it be required to add together all the natural
numbers from 1 to n, we have, for finding this sum, the first
term 1, the last term n, and the number of terms n ; there-

2
fore the sum required is 2 ;-n= n(n;— '). If we make n
= 1766, the sum of all the numbers, from 1 to 1766, will
be 883, or half the number of terms, multiplied by 1767 =
1560261.

422. Let the progression of uneven numbers be proposed,
1, 8, 5,7, &c. continued to n terms, and let the sum of it be
required. Here the first term is 1, the difference 2, the
number of terms n; the last term will therefore be 1 4-
(n —1)2 = 2n — 1, and consequently the sum required
= nd

The whole therefore consists in multiplying the number
of terms by itself ; so that whatever number of terms of this
progression we add er, the sum will be always a square,
namely, the square of the number of terms; which we shall
exemplify as follows:

Indices, 12 3 4 5 6 7 8 9 10, &c.
Progress. 1, 3,5, 7, 9,11,13, 15,17, 19, &e.
Sum. 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, &c.

423. Let the first term be 1, the difference 3, and the
number of terms n; we shall have the progression 1, 4, 7,
10, &c. the last term of which will be 14(n—1)3=3n-2;
whercfore the sum of the first and the last term is 8% — 1,

and consequently the sum of this lon i
T ]s)eq end y ¢ ‘ progression is equal to
g =g and if we suppose n = 20, the sum

will be 10 x 59 = 590.
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424. Again, let the first term be 1, the difference d, and
the number of terms n; then the last term will be 1 +
(# — 1)d; to which adding the first, we have 2 + (n — 1)d,
and multiplying by the number of terms, we have 2n +
n(n — 1)d; whence we deduce the sum of the progression
"+ ﬂ(ﬂ-; l)d.

And by making d successively equal to 1, 2, 3, 4, &c.,
we obtain the following particular values, as shewn in the
subjoined Table.

Ifd = 1, the sum is n 4 nu=t) _ntn

2 T 92
d=2 . . . u+27z(n2—l)=ﬂ‘
_ Sn(n—1) 8p*—n
d=8, - - - g =%
' 4n(n—1
d=4, - - - u+—-(—ng—-):2n9—n
on(n—1) 5n*-3n
d=05 . - . g = PR
(7 —
d=6, - - - a4 6’3\"2 D = 3n* —
., ™m(n—=1) "Tn*-5n
d="7 - - - a4 3 = 3
d=8, - . . ?;-%E;f%'_—-])=4-u2——3n
In(n—1) —"In
d= - - - . =
% ntT3 3
d=10,- - - n¢ Mﬂ_l) = On* — 4n

2
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THE SCIENTIFIC COMMUNICATION FESTIVAL

The three last workshops were dedicated to imagine how to share with others the
school work at the Third Edition of the Scientific Communication Festival “Scienza
Under 18” which was announced for the first week of May 2012.

The Festival “SU 18” is a three days meeting directed to all the schools of the
Gorizia’s province, in which classes or other groups of students explain to mates and
the general public a peculiar scientific work they have done during the year. The main
feature of the festival is its being composed by hands-on exhibits, i.e. you may touch
and interact with the stand.

During the previous editions, we had verified that to let people play a game is an
appreciated way to set up a mathematical exhibit (2012, 2014) while other type of
fittings had led to a lower rate of presence and enthusiasm.

Therefore we concentrated in designing the game.
The main goals were:

e to let a large amount of people have fun while doing Mathematics in order to
encourage everybody to try to understand it,

e to enhance mathematical self-esteem of all the participants to convince people
that it is worth to do the effort needed to succeed in Mathematics,

¢ to endorse mathematical reasoning and mental calculating,

e to convey an important topic usually neglected, namely the arithmetical
progressions and their sum,

e to introduce the figure of Euler to the general public and to present the book
“Elements of Algebra”,

e to popularize the presence of a generally unknown important ancient collection
of mathematical books stored in the Biblioteca Statale Isontina,

e to be attractive and quite understandable at a certain distance,

e to be usable also by pupils and students coming from Nova Gorica, the
Slovenian part of Gorizia town.

The game should subsequently have certain peculiar features.

First of all, it needed to be social, i.e. to be played in teams in order to give the
possibility of sharing the displeasure of a failure as well as the joy of a victory.

Secondly, each game session had to last no more than half an hour, otherwise not all
the visiting group classes would have the opportunity to participate.

On the other hand, the chance component should be present to let open the prospect
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to win for the average or even the worse students, but not be prevalent, because one
of the aims was to promote mathematical thinking.

What is more, people of a very large range of ages should be given the opportunity to
participate.

Eventually it should be played on a colourful billboard and guided by the students
who had participated to its design both in the Italian and English version.

To try to fulfil all the characteristics, we conceived the following structure:

e a vivid billboard and one die are needed to play, as well as a person who asks
the questions and controls the answers giving the right ones if they are wrong,

e the board has 28 cubbyholes,

e with the first throw one simply enters the play, then, after a throw the
participants have to answer a question about progressions in 2 minutes: if they
answer correctly, they will advance the points obtained, otherwise they will
advance three points less,

e the winner is the player that first overcomes the 28" slot,

e there are three versions of questions: easy (for 8 to 11 years old pupils),
medium (for girls and boys from 11 to 15 years old), difficult (from 15 years
old to adults),

¢ an English version of the questions and answers is available on request.

In addition on the Festival’s Games Corner walls there were posters telling about
Euler’s life and work, and showing pictures of the Euler’s books conserved in the
Biblioteca Statale Isontina with particular attention to “Elements of Algebra” both in
English and Italian. Students were charged in turn to guide the participants to the
poster section visit and to explain a bit more about the work done during the
workshops or to drive the game in English or Italian.

Hereafter you can read the questions and the answers of the difficult version of the
game:

1) 5/8 5/4 15/8 ... Which is the next term?

2) 72 -1 -11/2 ... Which is the next term?

3) 3/7 2 25/7 ... Whichis the next term?

4) 0 -3/5 -6/5 ... Which is the next term?

5 -1/5 -3/5 -1 ... Whichis the next term?

6) 3 8 13 18 .. Whichisthe 10" term?
7 5 0 -5 -10 ... Whichis the 8" term?
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8)
9)
10)
11)

12)
13)
14)
15)
16)

17)
18)
19)
20)
21)
22)
23)

24)
25)

26)

5 8 11 14 ... Whichis the 12" term?
1 32 2 ... Which is the 1000™ term?
3 133 173 7 ... Whichis the 11" term?

In an arithmetical progression of 12 terms, the first is 7 and the last is 51.
Find the third.

In an arithmetical progression of 16 terms, the first is 11 and the last is 356.
Find the 12",

In an arithmetical progression of 7 terms, the first is 208 and the last —2.
Find the 5™,

In an arithmetical progression of 9 terms, the first is 8 and the last is —4.
Find the 5™,

In an arithmetical progression of 7 terms, the first is 4 and the last 23/2.
Find the 3"

In an arithmetical progression of 6 terms, the first is 8/7 and the last —97/7.
Find the 4".

4 6 8 ... Which is the sum of the first 10 terms?
15 12 9 ... Which is the sum of the first 6 terms?
24 32 40 ... Which is the sum of the first 7 terms?
18 22 26 ... Whichis the sum of the first 15 terms?
-1/8 1/8 3/8 ... Which is the sum of the first 12 terms?
2 32 1 ... Which is the sum of the first 8 terms?

How many and which are the arithmetical progressions that start by 3,
end by 25, and have as common difference a whole number?

How many and which are the arithmetical progressions that start by —20,
end by 17, and have as common difference a whole number?

How many and which are the arithmetical progressions that start by 11,
end by 2, and have as common difference a whole number?

How many and which are the arithmetical progressions that start by —I11,
end by 5, and have as common difference a whole number?

In the easy version the questions were essentially about the tables of multiplication
going up, down, and beyond the traditional tenth term; while in the medium one,
beside the multiplication tables with natural numbers as in the easy version, the
questions were extended to negative numbers and to fractions and sometimes we
asked for an intermediate term having given the first and the last.
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FINAL REMARKS

To close let me make only a few remarks.

The over 400 people who visited our Games’ Corner appreciated the activity
and were happy to play with us and some of them went to visit the stand twice
or three times bringing with them their parents.

Our exhibit had the attention of the local newspaper “Il Piccolo” that wrote
about our work.

The Old Books section of the Biblioteca Statale Isontina had an increase of
visitors after the Festival.

The teachers who brought their classes to our stand continued to visit us during
the following years.

All the students who have participated to the workshops improved their school
mathematics performances as well as their personal motivation in studying
Mathematics and together with their parents asked for repeating the experience
in the Consiglio di Classe’s [3] meetings during the following years.

The subsequent autumn the podium of the most known Italian Mathematics
Competition, the Giochi di Archimede, at the Istituto d’Arte “D’Annunzio-
Fabiani” was entirely covered by students that had participated to the
workshops (3 over 12 participants in a school of 800 students, one of them was
voluntarily taking part for the first time, the two others had already competed
and never had been in the first three positions before).

The group was invited by the Mathematics teachers of various schools to let
other classes play the game.

To sum up I would like to conclude with a personal opinion: I think that, beside the
good or excellent scientific work researchers do in their specific field, the widespread
dissemination of a more humanistic idea of what Mathematics is and how to think
mathematically should be felt by everybody in the Mathematics Education domain as
a moral duty going into the direction of accelerating the overall improvement of the
learning of Mathematics.

NOTES

1. Istituto nazionale per la valutazione del sistema educativo di istruzione e di
formazione.

2. Content and Language Integrated Learning.

3. The periodical meetings among students, parents and teachers in which the
advancement of the class activities is discussed.
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TWO INTRODUCTORY UNIVERSITY COURSES ON THE
HISTORY OF MATHEMATICS

Robin Wilson
Pembroke College, Oxford University& The Open University

Over the past five years | have been involved with the preparation and presentation of
two courses at a basic level on the history of mathematics. The first was for interested
adults, while the second was for liberal-arts college freshmen in North American
Universities. Both courses were based around Marcus du Sautoy’s award-winning
BBC-Open University television series ‘The Story of Maths’ and on a booklet that I
wrote to accompany this series.

The first course was an Open University 10-point Level 1 Course, designed to ‘teach
the maths behind the programmes’ to adult students studying at home. This course
used a 200-page OU booklet that | wrote, and has now been successfully presented a
dozen times to a total of about 2000 students. | shall describe the course content and
the motivation for producing this course, and also describe the results.

The second had two forms, and was presented as ‘total-immersion’ courses to first-
year liberal-arts students in Western Canada (over 18 days) and in Colorado, USA
(over 36 days). Like the Open University course, it was based on Marcus du Sautoy’s
television programmes and my course notes, but also (in order to emphasize the
differences between ‘the history of mathematics’ and ‘the history of mathematicians’)
on R. Flood and my recent illustrated book ‘The Great Mathematicians’. Again, I
shall describe and analyse the results of teaching these courses.
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THE DIFFERENCE AS AN ANALYSIS TOOL OF THE CHANGE
OF GEOMETRIC MAGNITUDES: THE CASE OF THE CIRCLE

Mario Sanchez Aguilar & Juan Gabriel Molina Zavaleta
CICATA Legaria, National Polytechnic Institute

In this paper we present a didactical proposal focused on the study of some of the
existing relationships between the radius, area and circumference of a circle. The
proposal is inspired by historic elements of the genesis of calculus and makes use of
the software GeoGebra. Although the proposal could add dynamism to the teaching
of geometry and even have some motivational value for students, it would be
necessary to do some field research to illustrate its scope and limitations.

INTRODUCTION

The use of history in the teaching and learning of mathematics is a well-established
area of research within the international community of mathematics educators; this
can be verified through the many publications, conferences, and study groups that
have specialized in this area in recent years. The sixth volume of ICMI studies
(Fauvel & Van Maanen, 2002), and the groups History and Pedagogy of Mathematics
(HPM) and History in Mathematics Education at the European conference CERME
are just a few examples that illustrate the interest of our community in the use of
history of mathematics as an element of mathematics instruction. However, not all the
uses made of the history of mathematics in teaching are of the same nature. In his
categorization of the “whys” and “hows” of using history in mathematics education,
Jankvist (2009) proposes three categories to organize the different uses of history in
mathematics education: (1) the illumination approaches, (2) the modules approaches,
and (3) the history-based approaches.

In this manuscript we present a didactical proposal framed in the category of history-
based approaches; it is a proposal inspired by the historical development of
mathematics. In particular, we consider the idea of the difference between two
quantities x; and x,, which was a tool for analysing the variation of quantities that
was used during the genesis of calculus. Our proposal is inspired by the interpolation
method called methodus differentialis which was first used by Isaac Newton as a tool
for predicting the behaviour of some celestial bodies (Newton, 1686, pp. 287-288).

One aim of our proposal is to help students to discover some existing relationships
between the length of the radius of a circle, and the area and perimeter of that circle.
As we will see, the proposal includes the use of the software GeoGebra, which is
perceived as an instrument of knowledge mediation.

In the next section we explain the context that gave rise to our proposal, referring to a
recent reform of secondary education in Mexico. Next, we briefly introduce the
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methodus differentialis. In the next two sections we detail the purpose and operation
of the proposal, but we also clarify the links between the proposal and Newton’s
methodus differentialis. We conclude the manuscript with some reflections on the
didactical proposal.

THE CONTEXT OF THE PROPOSAL

The didactical proposal originates in the context of a recent reform of secondary
education in Mexico. The implementation guidelines of the reform recommend the
use of dynamic geometry software to support the study of geometric bodies (see
Secretaria de Educacién Publica, 2006).

In the guidelines, the following instruction caught our attention:

As with the study of the other figures, the aim is not only is to calculate the
area and perimeter but also, given the perimeter and the area, to calculate
the length of the radius or diameter, as well as to find areas of shaded
regions (annulus); the relationship between the length of the radius and
the area of the circle must also be analysed, and compared with the
relationship between the length of the diameter and the length of the
circumference. (Secretaria de Educacion Puablica, 2006, p. 54, our
translation, our emphasis)

These guidelines tell the teacher what to teach, but do not clarify how it should be
taught. For this particular lesson, the guidelines recommend consulting the
supplementary material “Geometria dindmica” (Dynamic Geometry) (Secretaria de
Educacion Publica, 2000). One would expect this material to include specific
instructions on how the teacher can implement the required exploration using a
dynamic geometry software; however, as stated on pages 68—70 of the supplementary
material (which deals with the analysis of the magnitudes of a circle), only a pen-and-
paper activity is proposed, but not one using a dynamic geometry package. Our
didactical proposal was designed with the intention of filling this gap.

ILLUSTRATION OF THE OPERATION OF THE METHODUS
DIFFERENTIALIS

The methodus differentialis is a mathematical method originally used by lsaac
Newton as a tool for predicting the behaviour of some celestial bodies; it is
essentially an interpolation arithmetic method in which a finite set of points in a
plane, A, B, C, D, E, F, etc., is considered. From these points the line segments AH,
Bl, CK, DL, EM and FN are drawn. These segments are perpendicular to another line
segment HN (see Figure 1).
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Figure 1: Graph illustrating the operation of the methodus differentialis (Newton, 1686,
p. 288).

The main purpose of this method is to find the length or height corresponding to an
unknown point that is located in any intermediate position between the points A, B,
C, D, E, and F. In Figure 1 this unknown height is represented by the line segment
RS. Clearly the represented lengths could be interpreted today as the ordinates
corresponding to elements H, I, K, L, M and N in the domain of a function.

The method makes use of differences and quotients of these differences. Such
quotients are represented in Figure 1 by the expressions including the lowercase
letters a, b, c, d, e and f. The quotients are defined as follows:

AH — BI BI - CK CK — DL DL — ME
b= 2b = 3b = 4h = ———

HI K’ KL et
_b=2b  _26-3b . _3b—4b
“TTHk T 0T Tkm ¢

d_C—ZC 2d_2c—3c .
TTHL YT Tm ¢t
_d-2d
¢ = THM

It is important to clarify that the terms 2b, 3b, ..., 2c, 3c, ..., 2d, etc., do not carry the
meaning of multiplication by 2, 3, etc., but rather they carry the meaning of the
modern day notation of subscripts like by, bs, etc.

Our main interest in this manuscript is not to detail the operation of the interpolation
method, as it is not the underlying principle upon our didactical proposal is based;
instead we want to emphasize an idea behind our proposal, namely that the nth order
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differences of a polynomial of degree n are constant. Later we will illustrate this
principle in our proposal (see for example figures 3 and 4).

THE DIDACTICAL PROPOSAL TO ANALYZE RELATIONSHIPS
BETWEEN SOME MAGNITUDES OF THE CIRCLE

The GeoGebra software allows dynamic linking of the geometric and numeric
contexts of representation, which is ideal for analysing the relationships between the
magnitudes of the circle specified in the reform. The aim of the didactical proposal is
twofold: firstly, it aims to help students to discover that the area and length of the
circumference increase when the length of the radius increases, but not in the same
way or with the same speed; on the other hand, it is also intended to help
mathematics teachers to explore these kind of mathematical relationships along with
their students in a dynamic way.

We begin with the following situation:

Consider a circle whose initial radius is 1 unit long. As the length of the
radius increases in steps of 1, what happens to the area of the circle? What
about the length of the circumference?

This situation is represented by an animation made with GeoGebra in which the
length of the radius of a circle varies discretely, while the magnitudes of the area and
the circumference when the radius changes are recorded. Column A in Figure 2
shows the values of the radius r, while column B shows the respective areas and
column C the values of the circumference.

[ | ¥ Hojs de Caloin §

H 4| H |8 | =F e

Girounferencia de ¢= 12566 N ARs deiE s | CFUReR:

- | 2 | 2 1257 1257

o TG 3 3 2537 18.85

// \\\ 4 4 5027 2513

7 \ | 5 | 5 78.54 sz
/ Y & ] 1131 7T
i \ 7 7 15304 4308
,'I s }3 8 B 201 06 5027
\ | 5 | 9 26447 5055
\ / 10 10 416 6283
Y _j El| 1 38013 69.12
\\ # 12 12 15239 754
e // EEE 13 53093 168

A% — [ n 516 75 8796

Arende 6= 1756 64 |- 4as) 18 il Lt

16 16 BO& 25 10053

bié 7 07 52 10 81

K 18| 101788 1134

T FERRET e 11838

| 20 | 20| 128654 125 66

Figure 2: Variation of the radius of a circle and the magnitudes of the area and the
circumference using the graphical and spreadsheet capabilities of GeoGebra.
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Column D in Figure 3 shows that the calculation of the differences applied to the
values of the circumference during the animation generates the constant value of 6.28
~ 2mn. In the animation, it can be seen that as the radius grows, so do the area and
circumference, but how do the area and circumference grow? To address this question
we use the spreadsheet application in GeoGebra to calculate the differences between
consecutive numbers in a similar way as performed in the methodus differentialis. We

do this for both values: the values of the circumference and the values of the area of
the circle.

C, G 1885 1257 6728
C, C 2515 1885 628
C, C, 3142 2513 628

C, C 377 3142 028
C, C, 4398 377628
G G, 027 4308 628
Co G 3655 5027 0738

G, -G, 62835655 678
G, Gy 6912 6283 628
G, G, =754 6912=6728
G, BL68 754 678
G, G, E796 8108628
G, 94725 8796628
G, G, 10053 0425 628
Gy — Gy 106 81-10053 628
Ge G, 1131 10681 628
G, G, 11938 1131-678
Gy Gy 12566 11938 6.28

Figure 3: Calculating the differences between the values of the circumference using the
spreadsheet application in GeoGebra.

The constant value of the differences (6.28) indicates that the circumference of the
circle changes linearly when the length of the radius increases; if we plot the radius-
circumference ratio, we obtain a linear function graph. Since we calculated the
differences of the data once, we can say that we obtained a variation of first order and
in this case the result is a constant value.

A purpose of our proposal is to illustrate how the arithmetic difference may be used
as a tool to analyse the variation of geometrical magnitudes, and we believe such
mathematical technique is accessible to lower secondary school pupils; however,
some aspects of the relationship between the length of the radius of a circle and its
circumference and area can serve as an introduction to more advanced concepts
belonging to differential calculus. For example, if we proceed similarly for the case
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of the radius-area ratio, when calculating the second differences (i.e. the differences
of the differences contained in column B in Figure 3), we will obtain again the
constant value 6.28 ~ 2r. In this case we have a second order variation (Figure 4).

Figure 4: Calculating the first differences (column E) and second differences (column
F) for the values of the area of the circle using the spreadsheet application in
GeoGebra.

The fact that we obtain a constant value (approximately equal to 2r) after calculating
the first differences of the length of the circumference and the second differences of
the values of the area is related to the mathematical concept of the derivative, since
the idea of difference is the foundation of the structure of this mathematical concept:

it is known that the derivative of a function C = C(r) with respect to r is C'(r) =
limy,o S50 provided that this limit exists; if we deliberately omit applying

the limit as h approaches 0, then an approximation of the derivative is obtained.

In the case of the values of the circumference analysed in this work, h = 1 and the
expression m is equivalent to the differences C,,; — C, calculated in the

spreadsheet. In the case of the area we would have B,.,; — B, forr =2, 3, ... 19; these
are the calculations that we performed in the spreadsheet and that are shown in Figure
3 and Figure 5. A similar rationale is used for the second differences: the result of
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these calculations is 6.28 ~ 2x. Furthermore, it is known that the area of a circle is
A(r) = mr? and its derivative is A’'(r) = 2mr; the result of the second derivative is
A" (r) = 2m =~ 6.28. If both functions are graphed, the results are a parabola and a
straight line.

LINK BETWEEN THE METHODUS DIFFERENTIALIS AND THE
DIDACTICAL PROPOSAL

As previously mentioned, our proposal to explore how the changes in the magnitudes
of a circle is based on the methodus differentialis, but we consider only the first part
of the method in which quotients of difference are calculated. Next we illustrate the
application of this part of the method to the values of the areas that we have worked
in GeoGebra (these values are shown in Figure 3).

Figure 5: Representation of the variations of the area similar to the graphical
representation used in the methodus differentialis (see Figure 1).

In this case we would have:
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b= AS — BT 1256.64 —1134.11

5 N =122.53
op — BT —CS 113411-1017.88 _ 11623
TS 1 B :
3p = CS—DT 1017.88—907.92 109.96
Y 1 B '
. DT —ES 90792 —804.25 _ 103.67 ot

= TS = 1 = .67, etc.

FINAL CONSIDERATIONS

This combination of historical elements of mathematics with the use of technological
tools is not new; there are proposals like the one by Kidron (2004), in which software
with graphical and algebraic capabilities is used to teach the topics of approximation
and interpolation according to their historical development. We believe that these
types of proposals that combine history and the use of technology should be further
developed since, on the one hand, the use of history in the teaching of geometry can
have a motivational value to students (Gulikers & Blom, 2001), and, on the other
hand, the use of technology can add meaning to the concepts studied in the
mathematics classroom by making evident the relationship between the different
contexts of representation (such as the numerical, algebraic, and geometric). It is
necessary that proposals such as the one presented in this paper be tested in real
mathematics classrooms to learn more about the scope and limitations of this type of
teaching approach.
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Oral Presentation

MENO BY PLATO: AN ANCIENT INEXHAUSTIBLE MINE OF
KNOWLEDGE

Panagiotis Delikanlis
Greek Ministry of Education and Religious Affairs

Meno by Plato is a middle period dialogue. It was written about 385-386 B.C. The
dialogue begins with Meno asking Socrates whether virtue can be taught. Socrates
states that he does not know the definition of virtue. Meno is in aporia (puzzlement)
and responds with a paradox. Socrates introduces the recollection as a theory of
knowledge (since, it would seem, research and learning are wholly recollection, Plat.
Meno 81d). Afterwards, he illustrates his theory by posing a geometrical problem:
“A square of side two feet has area four square feet. Doubling the area, we draw
another square of eight square feet. How long is the side of the new square?”

In this oral presentation | would like to discuss:

+ Solutions using different types of square paper
* Socratic method solutions
» Pick’s formula solution

Square paper is a mediating tool. Tools are mediators of human thought and
behaviour. The use of square paper supported ingenious geometry solutions.

Page 401






Oral Presentation

TEACHING THE AREA OF A CIRCLE FROM THE PERSPECTIVE
OF HPM

HONG Yanjun® & WANG Xiaoqin®

*East China Normal University, "Shihezi University

In China, importance is attached to three objectives in mathematics teaching:
knowledge & skills, process & methods, affect & attitude, corresponding to which we
have the following “whys” of integrating the history of mathematics into mathematical
teaching: (1) The history of mathematics is helpful for deepening students’
understanding of mathematics; (2) The history of mathematics provides a lot of
problem-solving methods and can broaden students’ thinking; (3) The history of
mathematics increase students’ interest and create their motivation. The above values
had been really achieved in the mathematics classroom when the history of
mathematics was integrated into the teaching of the area of a circle at the sixth grade in

a junior high school, and the benefits were identified from the students’ viewpoints.

INTRODUCTION

In the field of education in China, great importance has been attached in recent years to
the Three-Dimension Instructional Objectives, i.e., knowledge & skills, process &
methods, affect & beliefs. From the perspective of HPM, we have designed teaching
projects to accomplish those objectives by integrating the history of mathematics into
mathematical teaching. The reasons we use this approach are listed as follows:

(1) The history of mathematics is helpful for deepening students’ understanding of
mathematics;

(2) The history of mathematics provides a lot of problem-solving methods and can
broaden students’ thinking;

(3) The history of mathematics increases students’ interest and creates their learning
motivation.

Can those goals really be achieved? Next, we will introduce an experiment of using
history of mathematics in the teaching of mathematics of one middle school in shanghai,
and share our experience as well.
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THEORIES RELATED TO HPM TEACHING

Principles of HPM teaching design

Italian scholar Fulvia Furinghetti (2000) introduced a general process to integrate
history of mathematics into mathematics teaching. Based on her idea, we made some
adaptations and set the following teaching process: choosing a teaching subject —
investigating related history — selecting suitable materials — analyzing classroom
requirements — developing classroom activities — implementing teaching design —
evaluating the course.

The key to success in HPM teaching design is selecting proper materials of history of
mathematics. In our opinion, the historical materials selected must be interesting,
scientific, effective, learnable and innovative. Interesting: the historical materials
should raise students’ interests in study, that’s why we need to select stories closely
related to the teaching design. Scientific: we mean the materials must comply with facts
or historical backgrounds. As the HPM teaching is not only using history of
mathematics for the sake of history of mathematics. Effective: we mean that the
materials should serve for the objectives of the teaching. Learnable: we mean that the
materials should be provided in accordance with students’ cognition level and could be
readily accepted by them. Innovative: we mean that the materials should be new to
students, the teaching design has distinguishing features, and can promote teachers’
professional development.

Approaches of integrating history of mathematics into classroom instruction

One of the important questions in HPM is the study on approaches to integrate history of
mathematics into mathematics education. Under the frame of mathematics education,
researchers have constructed many integrating approaches, considering the relations
between history of mathematics and teaching factors. Fauvel (1991) has generalized 10
ways. Tzanakis and Arcavi (2000) have 3 different approaches, including (1) "Learning
history, by the provision of direct historical information", (2) "Learning mathematical
topics, by following a teaching and learning approach inspired by history”, and (3)
"Developing deeper awareness, both of mathematics itself and of the social and cultural
contexts in which mathematics has been done". Jankvist (2009) outlined another three
ways, illumination, the modules and the history-based approaches. Professor Wang
Xiaogin (2012), by integrating and adapting the above-mentioned two grouping
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methods, labels them as complementation, replication, accommodation, and
reconstruction, (Table 1).

Table 1: Approaches of using history of mathematics in teaching

Approaches Description Tzanakis&Arcavi Jankwvist

Display mathematicians’
complementation pictures, give an account of
related stories,etc.

Direct historical Illumination
information approach

. . . Direct historical Illumination
Directly using mathematical

Replication problems, methods, etc. information approach;
modules.
DProblems adapted from
Accommodation  historical ones or based — -
upon historical materials
Teaching
Genesis of knmowledge based approach Historyv-
Reconstruction on or inspired by the history inspired by based
of mathematics historv (Genetic  approaches
approach)

Direct using of the historical materials is the first level of using the history of
mathematics, while mathematics teaching and learning in the perspective of HPM is the
second level, which means to learn from, replay, and reconstruct the history of
mathematics.

The next we’d like to present the teaching of the area of a circle as an example to better
elaborate the above mentioned problems.

TEACHING THE AREA OF A CIRCLE INTEGRATED WITH HISTORY
OF MATHEMATICS

The area of a circle is a knowledge point in the 6th graders’ mathematics textbook in
Shanghai. Previously the students have had a rough idea of the circle and the
circumference, after having studied the areas of the linear graphics such as rectangles,
squares, triangles, parallelograms and trapezoids. In this teaching design, Kepler’s
method of calculating the area of a circle is programmed and detailed in classroom
teaching. This is the approach of accommodation in HPM teaching.
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Investigating the history of the area of a circle

The ancient Babylonians and Egyptians encountered the problem of the area of a circle
when measuring land, but they did not produce a calculation formula (Liang, 1995,
p164-165). As shown on the Babylonian tablets YBC 7302, the area of a circle would be
1/12 times the square of its circumference. The Egyptian Rhind papyrus of 1800 BC
gives the area of a circle as (64/81) d?, where d is the diameter of the circle. In ancient
Greece, Antiphon (c.480-411BC) originated the idea of squaring a circle with an
inscribed regular polygon (Liang, 1995, p255). As in Figure 1, we inscribe a square in a
circle, and then double its number of sides repeatedly. When the sides are infinite, this
regular polygon eventually 'becomes' a circle. Then we have the area of a circle.
Learning from Antiphon’s idea, Archimedes (287-212BC) used inscribed and
circumscribed regular polygons, applying the method of exhaustion to prove that the
area of a circle is half its circumference times its radius (Heath, 1949).

Figure 1: Antiphon’s method of squaring a circle

In China, a book named The Nine Chapters on the Mathematical Art written before the
2" century BC also tells that the area of a circle is half its circumference times its radius.
However, ancient Chinese mathematicians used a quite rough method to compute the
area of a circle. They took the circumference of an inscribed regular 6-gon as a circle’s
circumference, and the area of an inscribed regular 12-gon as that of a circle, applying
the Out-In Complementary Principle to patch the regular 12-gon into a rectangular
which has half of the regular 6-gon’s circumference as its length and radius of the circle
as its width (Figure 2). Hence the area of a circle is 3 r 2, where r is the radius of the
circle. Here = is 3, very roughly in terms of its real value (Guo , 2007).
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Figure 2: Ancient Chinese Mathematicians’ method of calculating the area of a circle

To find a formula for the area of a circle, Liu Hui (c.225-295AD) used the cyclotomic
method (Wang, 2013), (Figure 3). The area of inscribed regular 2n-gon is added up by n
times of the deltoid OADB. As every deltoid is a rectangular consisting of 4 parts, its

area is %aHR. We then have the formula for the area of the regular 2n-gon s, =%nanR .

Liu Hui commented that when the sides of the inscribed regular n-gon increase, its
circumference is more approximate to the circumference of the circle and its area is
more approximate to the area of the circle. In today’s mathematical language, we have
S=1limS,, = Iimlnan R :%CR .

n—ow n—w 2

Figure 3: Inscribed regular 2n-gon is made up of n deltoids

0]

It is worthwhile to note that the ancient Greeks had no notions of limit. In their opinion,
the inscribed polygon approximates a circle, as close as one’s mind can reach. However,
there must be tiny parts missing between the area of a circle and that of a polygon. They
proved their thinking with the technique of double reduction to absurdity, not the
method of limit (Boyer, 1977). Liu Hui’s cyclotomic method, in his opinion, will
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eventually lose no parts of the circle. This idea is quite close to modern concept of limit
(Guo, 1983).

The German mathematician Johannes Kepler (1571-1630) came out an idea to compute
the area of a circle on his second wedding while calculating the volume of a wine barrel.
As in Figure 4, he divided a circle into countless small triangles with vertexes at the
circle centre and radius as their heights. In fact, these triangles are small sectors. As the
number of the circle divided is getting increasingly greater, the sector is coming closer to
atriangle (Struik, 1948). If we change these small triangles into triangles with same base

and height, they would form a right triangle. Hence we have s =Z%ci r :%Cr =7r?.

Figure 4: Kepler’s method of calculating the area of a circle

Selecting proper teaching materials

For the sixth graders, the area of a circle, upgraded from linear graph to curve graph, is
a qualitative leap in both learning contents and methods, especially the inference of the
area of a circle. Antiphon’s method of squaring a circle is just an idea. Archimedes’
calculation uses the double reduction to absurdity and the method of exhaustion, which
is quite a complicated process. Liu Hui’s cyclotomic method connecting 4 parts of a
deltoid into a rectangular is also a little bit complex compared to Kepler’s forming of
triangles. These methods